
 
Fig. 1.  Brick workpiece of which the inside is vacant. 

Abstract —When a workpiece is heated by eddy currents 
using a zone-control induction heating (ZCIH) system, there 
exists both inductance and resistance in the induction heating 
circuit. In order to efficiently control a ZCIH system, the 
detailed behavior of the inductance and equivalent resistance 
of each coil, and the mutual inductance and equivalent 
resistance between the coils, should be clarified beforehand. 
This paper proposes the concept of self- and mutual-
equivalent resistance in the eddy-current circuit, and 
discusses the theoretical physical meaning and properties of 
these parameters. We also derive the theoretical formula for 
these parameters using a simple assumption and then examine 
their properties. 

Index Terms—Electromagnetic field, finite element method, 
induction heating. 

I. INTRODUCTION 
A zone-control induction heating (ZCIH) system, 

which has several coils and where each coil is connected to 
an independent power supply, has been previously 
proposed [1-3]. A ZCIH system can heat workpieces 
uniformly by controlling the amplitude of the current under 
the condition that the frequency and phase angle of the 
current in each coil are the same.  

When the workpiece is heated by an eddy current 
caused by the current in the coil, the coil can be treated as 
both inductance and resistance. The resistance that 
corresponds to the heat in the workpiece can be treated as 
an “equivalent resistance,” which can be classified as “self-
equivalent resistance” and “mutual-equivalent resistance.” 
Self-equivalent resistance appears in a coil when the 
current is applied to the coil, while mutual-equivalent 
resistance appears when the current is applied to the other 
coil. The eddy current in the workpiece can be explained by 
the equivalent circuit model using equivalent resistances.  

In this paper, we propose the concept of using self- and 
mutual-equivalent resistances for the precise control of a 
ZCIH system. We derive the theoretical formula of these 
parameters using simple assumption, and then examine 
their properties. 

II. SELF- AND MUTUAL-EQUIVALENT RESISTANCES 
We assume that the inductance in the eddy-current 

circuit is sufficiently smaller than that in the exciting circuit. 
From Faraday's law of induction, the interlinkage flux 

induced by the eddy current 𝛷e is proportional to d𝛷/d𝑡. 
Therefore, we can express 𝛷e as follows: 

 𝛷e = −𝜅
d𝛷
d𝑡

 (1) 

where 𝜅  is the proportional coefficient. The interlinkage 
flux in the coil is obtained as follows:  

 𝛷 +𝛷e = 𝐿𝐿 − 𝜅𝐿
d𝐿
d𝑡

 (2) 
Then, the induced voltage is obtained as follows:  

𝑣(𝑡) =  
d(𝛷 +𝛷e)

d𝑡 = (j𝜔𝐿+𝜔2𝜅𝐿) ∙ 𝐿(𝑡) (3) 

where 𝜔 is the angular frequency of the current and j = √−1. We 
define 𝜔2𝜅𝐿 in (3) as 𝑅 , which is called as a “self-equivalent 
resistance”. When we use the phasor in (3), we obtain the 
following equation: 

 �̇� = (j𝜔𝐿+ 𝑅)𝐼 ̇ (4) 
We consider the eddy-current loss of the specimen 𝑊e

∗ 
shown in Fig. 1. By assuming that the opposing field is 
negligible, we obtain 𝑊e

∗ as follows: 

𝑊e
∗ =  𝜎𝜎𝜔2𝐵m2 �

(𝑎+ 𝑏 + 2𝑑)4 − (𝑎 + 𝑏)4

64   

 −
(𝑎 − 𝑏)2

16
{(𝑎+ 𝑏 + 2𝑑)2 − (𝑎 + 𝑏)2}  

 +
(𝑎 − 𝑏)4

16 log
𝑎 + 𝑏 + 2𝑑
𝑎 + 𝑏 � (5) 

where 𝐵m  is the maximum flux density and 𝜎  is 
conductivity. Thus, we have the following relation:  

 𝐵m =  
𝛷m
𝑆𝑆 =  

𝐿𝐼m
𝑆𝑆 =  

√2𝐿𝐼
𝑆𝑆

 (6) 

 𝑊e
∗ = 𝑅𝐼2 (7) 

where 𝛷m is the maximum value of the flux, 𝑆 is the area of 
the coil, 𝑆 is the number of turns in the coil, and 𝐼m and 𝐼 
are the maximum current and the root mean square value of 
the current in the induced coil, respectively. Finally, we 
obtain 𝑅 as follows: 
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Fig. 3. Frequency characteristics of inductance coupling 
coefficient and equivalent resistance coupling coefficient. 

 

TABLE I 
SELF-EQUIVALENT RESISTANCE  

  𝑅1 [Ω]  𝑅2 [Ω] 

FEM 1.08 1.10 

Estimate 1.13 0.95 
 

 

When there are many coils, we obtain the following 
equation in the same manner:  

 𝑣 = 𝛷𝑚 +𝛷𝑚e + � (𝛷𝑚𝑛 +𝛷𝑚𝑛e )
𝑛;𝑚≠𝑛

  

 = 𝐿𝑚𝐿𝑚 − 𝜅𝑚𝐿𝑚
d𝐿𝑚
d𝑡

  

 + � �𝑀𝑚𝑛𝐿𝑛 − 𝜅𝑚𝑛𝑀𝑚𝑛
d𝐿𝑛
d𝑡 �

𝑛;𝑚≠𝑛
 (9) 

where, 𝐿𝑚  is the current in coil 𝑚, 𝛷𝑚  is the interlinkage 
flux in coil 𝑚 induced by itself, 𝛷𝑚𝑛 is the interlinkage flux 
in coil 𝑚  induced by coil 𝑛 , and 𝜅𝑚  and 𝜅𝑚𝑛  are the 
proportional coefficients corresponding to coil 𝑚 itself and 
coils 𝑚 and 𝑛, respectively.  

When we define 𝜔2𝜅𝑚𝑀𝑚 as 𝑅𝑚 (which is called “self-
equivalent resistance”), and 𝜔2𝜅𝑚𝑛𝑀𝑚𝑛 as 𝑅𝑚𝑛  (which is 
called “mutual-equivalent resistance”), we obtain the 
following equation: 

 �̇�𝑚 = (j𝜔𝐿𝑚 + 𝑅𝑚)𝐼�̇� + � (j𝜔𝑀𝑚𝑛 + 𝑅𝑚𝑛)𝐼�̇�
𝑛;𝑚≠𝑛

 (10) 

If we substitute j𝜔𝐿𝑚  for (j𝜔𝐿𝑚 + 𝑅𝑚)  and j𝜔𝑀𝑚𝑛  for 
(j𝜔𝑀𝑚𝑛 + 𝑅𝑚𝑛) in (10), respectively, the equation 
corresponds to the well-known equation of a transformer.  

III. EQUIVALENT RESISTANCE COUPLING COEFFICIENT 
The inductance coupling coefficient between coils 𝑚 

and 𝑛, 𝑘𝑚𝑛 is expressed as follows: 

 𝑘𝑚𝑛 =
𝑀𝑚𝑛

�𝐿𝑚𝐿𝑛
 (11) 

Similarly, we define the equivalent resistance coupling 
coefficient between coils 𝑚 and 𝑛, 𝑘𝑚𝑛R  as follows: 

 𝑘𝑚𝑛R =
𝑅𝑚𝑛

�𝑅𝑚𝑅𝑛
 (12) 

Using (10) and (12), we obtain 𝑘𝑚𝑛R  as follows: 

 𝑘𝑚𝑛R =
𝑅𝑚𝑛𝐼2

�𝑅𝑚𝐼2 ⋅ 𝑅𝑛𝐼2
=
𝑊𝑚,𝑛

Total −𝑊𝑚 −𝑊𝑛

2�𝑊𝑚𝑊𝑛
 (13) 

where 𝑊𝑚,𝑛
Total is the eddy-current loss when the current 𝐼 

paths through coils 𝑚 and 𝑛. 
If the workpiece is sufficiently thin and close to the 

coil, and the relative magnetic permeability of the 
workpiece approaches unity, we obtain the following 
equation using (13): 

 𝑘12R =
2𝑘12 + 𝑘12𝑘13

�(𝑘122 + 𝑘132 + 1)(2𝑘122 + 1)
 (14) 

 𝑘13R =
𝑘122 + 2𝑘13
𝑘122 + 𝑘132 + 1

 (15) 

IV. RESULTS AND DISCUSSION 
Table I shows 𝑅1  and 𝑅2  using FEM and estimated 

using (8) when the resistivity is 1200 µΩ∙cm and the 
frequency of the current is 35 kHz. The estimated 𝑅1 and 
𝑅2 are almost the same as those calculated by FEM.  

We calculate 𝑘𝑚𝑛R  using FEM, and estimate 𝑘𝑚𝑛R  using 
(14) and (15). In (14) and (15), we use 𝑘𝑚𝑛 calculated by 
FEM. Figure 3 shows the frequency characteristics of 𝑘𝑚𝑛, 
𝑘𝑚𝑛R  (FEM), and 𝑘𝑚𝑛R  (estimate). We obtain a fairly good 
agreement between 𝑘𝑚𝑛R  (FEM) and 𝑘𝑚𝑛R  (estimate).  

In this paper, we derive the theoretical formula for 𝑅𝑚 
and 𝑅𝑚𝑛: We can estimate 𝑅𝑚 using (8), and 𝑘𝑚𝑛R , which is 
necessary to calculate 𝑅𝑚𝑛 using (14) and (15). The details 
of the equations’ derivation will be shown in the full paper. 
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(a) Top view       (b) Side view 

Fig. 2.  Analyzed model of ZCIH. 
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