
Imaging of Current Density
within a Planar Specimen

Patrick A. Hölzl and Bernhard G. Zagar
Johannes Kepler University of Linz,

Altenbergerstr. 69, 4040 Linz, Austria
patrick.hoelzl@jku.at, bernhard.zagar@jku.at

Abstract—Magnetic imaging is an non–destructive testing
(NDT) method which leads to an inverse problem if the under-
lying current density should be determined. The current density
permits either the determination of the geometry or the conduc-
tivity of an electrical conductor. For analyzing novel electrically
conductive materials, the uniformity of the conductivity is a
critical characteristic. This paper presents a deconvolution based
method to determine the current density distribution within an
inhomogeneous electrical conductor from the resulting magnetic
field measured with a state of the art GMR magnetometer.

Index Terms—Conductivity measurement, Deconvolution, In-
verse problems, Magnetometer

I. I NTRODUCTION

The methodology to determine a not directly observable
parameter via a measurable physical quantity is known as
solving an inverse problem. An inverse problem arises when
the current density within an electrical conductor should be
determined via the resulting magnetic field. Using the current
density, characteristics of a conductor such as its geometry
or its conductivity can be determined. The conductivity is
an important parameter for analyzing novel electrically con-
ductive materials, which allows to draw conclusions about
the homogeneity of the material. This paper presents a de-
convolution based method to determine the current density
within an inhomogeneous and anisotropic electrically conduc-
tive material from the magnetic field measured by a GMR
magnetometer. Furthermore, a deconvolution based procedure
to improve the spatial resolution of the used magnetic field
sensor is presented.

II. PROBLEM DESCRIPTION

Fig. 1 shows a schematic of the specimen consisting of 28
strands (each with a triangular cross–section) which extend
in x–direction. Due to the manufacturing process and the
material composition, the conductivityκ of the specimen is
inhomogeneous.

Based on Ohm’s law~J =κ~E and the continuity equa-
tion ∇· ~J =0, the current density~J inside the specimen
is deflected by spatially varying conductivityκ(x′,y′,z′),
where x′,y′,z′ are coordinates located inside the specimen
volumeV ′. Since the law of Biot–Savart (1) couples magnetic
fields and spatial current density distributions, variations ofκ
are recognizable by measuring the magnetic field.
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Figure 1. The right image shows a schematic of the specimen. The left
image shows the field componentHy(x0,y), 0.6 mm above a homogeneous
specimen obtained from COMSOL.
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Fig. 1 shows the magnetic field componentHy(x0,y) along
they–direction for a specimen with homogeneous conductivity
obtained by FEM simulation. In agreement with the measure-
ment setup the field component was simulated for a constant
current of3.482 A in negativex–direction,0.6 mm above the
specimen.

III. M EASUREMENTRESULTS

The magnetic field componentHy(x,y) was measured using
a NVE AA005–02 magnetometer. The magnetometer output
voltage is proportional to the magnitude of the magnetic
field component along its sensitive axis. A 3–axis precision
translation stage was used for spatial sampling of the magnetic
field in increments of∆x=2 mm and∆y=0.5 mm, while a
constant current of3.482 A was applied to the specimen in
negativex–direction. Fig. 2 shows the measured field com-
ponentH̃y(x,y), 0.6 mm above the specimen. Atx=−5 mm
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Figure 2. Measured field component̃Hy(x,y) (left side) and estimated
original field component̂Hy(x,y) (right side) obtained via a deconvolution.

and y=−14 mm a small field inhomogeneity is visible. The
measured field is smaller and spatially smoother than the FEM



results in Fig. 1. The inherent spatial low–pass filtering arises
from the sensors flux concentrators. In order to reverse the
impact of the internal structure, the sensor is modeled in (2)
as a linear space–invariant (LSI) system.

H̃y(x,y)=Hy(x,y) ∗G(x,y) +N(x,y) (2)

H̃y(x,y) is the measured (distorted) field,Hy(x,y) is the
original field, N(x,y) is additive noise andG(x,y) is the
sensitivity function aka. point spread function (PSF) of the
sensor [1]. To determineHy(x,y), the convolution must be
reversed taking into accountN(x,y), this process is called
deconvolution [2]. The sensors PSF can be determined by
deconvolving the measured field above a rectangular conductor
with its analytical solution via a Wiener filter [3]. Based onthe
PSF an estimate of the original field̂Hy(x,y) was computed
from H̃y(x,y) using a Wiener filter, see Fig. 2. The overall
distribution of Ĥy(x,y) agrees significantly better with the
FEM results.

IV. SOLVING THE INVERSEPROBLEM

According to [4], the field componentHy(x,y) at the
distancez resulting from a current density componentJx(x,y)
within a thin 2D structure of thicknessd can be expressed by

Hy(x,y)=
zd

4π

∫∫
−Jx(x

′,y′)

((x−x′)2 + (y−y′)2 + z2)3/2
dx′dy′

, (3)

which is derived from (1) or by an equivalent convolution

Hy(x,y)= − Jx(x,y) ∗GBiot(x,y). (4)

Equation (4) represents an inverse problem that can be solved
by deconvolution. Fig. 3 shows the current density component
J̃x(x,y) computed fromĤy(x,y) (see Fig. 2) via a decon-
volution, using the Lucy–Richardson algorithm. Experiments
with other samples [5] have shown that the Lucy–Richardson
algorithm provides better results than a Wiener or a regularized
filter for the computation of̃Jx(x,y).
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Figure 3. The left image shows̃Jx(x,y) obtained via deconvolvinĝHy(x,y)
with the Biot–Savart filter functionGBiot(x,y). The right image shows
J̃x(x0,y) computed similarly from the FEM results withGBiot(x0,y).

In contrast to the assumptions (z− z′≈z; dz′ = d; Jz≪Jx;
Jz≪Jy) made to derive (3) from (1), the specimen possesses
a rather thick and not rectangular structure. Thus,J̃x(x,y) is
equivalent to that in a rectangular structure with periodically
varying conductivity. To reduce or eliminate the impact of
the specimen geometry, a correction factorC(x,y) must be
determined from the forward solution provided by the FEM
simulation. We used the magnetic field shown in Fig. 1

to compute J̃x(x0,y) within a homogeneous specimen via
deconvolving (4). Fig. 3 shows the resulting̃Jx(x0,y). Since
a homogeneous specimen was modeled, the current density
Jx(x0,y) must be constant withI/A=12.926 kA/m2. The
ratio of J̃x(x0,y) and the constant valueJx(x0,y) determines
the correction factor toC(x0, y)= Jx(x0, y)/J̃x(x0, y). The
calculatedC(x0, y) models the impact of the triangular geom-
etry and eliminates boundary effects caused by the height of
the specimen, sincedz′= d presupposes a thin structure. By
multiplying C(x0,y) with each scan line of the preliminary
current densityJ̃x(x,y) (in Fig. 3) an improved estimate
Ĵx(x,y) can be computed, shown in Fig. 4.
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Figure 4. The left image shows the estimated̂Jx(x,y) obtained from
J̃x(x0,y) with the correction factorC(x0,y). The right image shows the
deviation of∆Ĵx(x,y) within the specimens base area due to variations of
the conductivity.

A small inhomogeneity is present atx=−5 mm and
y=−14 mm, which is also visible in Fig. 2. At the inhomo-
geneity, the current is deflected sidewards and into the comb
structure. Therefore, strands are partially visible in theregion
close to the inhomogeneity. To further reduce the influence of
the specimen geometry and the measurement setup (e.g. an
oblique alignment) linear trends extending inx–direction and
the mean value of̂Jx(x,y) have been removed. The resulting
deviation∆Ĵx(x,y) shown in (Fig. 4) indicates changes of the
conductivity∆κ in the specimens base area.

V. CONCLUSION

We have presented a method to estimate the current density
within an inhomogeneous electrically conductive materialby
measuring the resulting magnetic field. A specimen with an
inhomogeneous conductivity and a non–rectangular cross–
section was used to demonstrate the method. Finally, conclu-
sions were drawn on the conductivity within the specimen
based on the estimated current density distribution.
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