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Abstract—This paper deals with the computation of quasi-
static fields induced in a conductor by a 3D Eddy Current (EC)
probe. The shape of the slab is locally distorded and constituted
by several homogeneous or non-homogeneous layers with non-
parallel interfaces. The approach is based on writing Maxwell’s
equations in a curvilinear system, leading to a simple analytical
expression of boundary conditions. In homogeneous layers, the
fields are expanded as sums of eigenfunctions. In the case of
non-homogeneous layers, a pseudo-spectral method is introduced
and combined with modal solutions to solve Maxwell’s equations.
Some numerical experiments validate this innovative approach,
resulting in a fast model, able to tackle a complex configuration
never solved in the context of EC Nondestructive Testing.

Index Terms—Computational Electromagnetics, Eddy cur-
rents, Nondestructive testing, Surface roughness, Electrical Con-
ductivity Measurement

I. Introduction

The analysis of the residual stresses inside a material after
any subsurface treatment is of great interest in order to improve
the time life of critical parts. By using ECNDT techniques,
the subsurface residual stress distribution may be related with
the depth profile of the electrical conductivity of the material.
The characterization of such material requires to develop fast
numerical models for solving direct and inverse problems.
Some analytical models already exist for investigating planar
structures, providing the depth profile of the conductivity
fits some specific known mathematical function in order to
obtain an analytical solution to the Helmoltz’s equation [1],
[2]. The problem of any arbitrary continuous depth profile
may be addressed by different numerical methods. Indeed,
it is possible to approach the continuous depth profile by a
constant piecewise function, the non-homogeneous medium
being replaced by a stack of homogeneous layers. Besides,
an alternative method based on the Taylor’s expansions of the
profile has been recently proposed [3].

In this paper, we propose an innovative solution which
combines both any arbitrary continuous depth profile of the
conductivity and a local complex shape of the structure
under test as depicted on Figure 1. The so-called Curvilinear-

Method, based on the covariant form of the Maxwell’s equa-
tions and usually used in the high frequency domain (optics
for instance) has been recently adapted to the computation of
quasi-static fields induced in 2D [4] or 2D1/2 [5] homogeneous
conductors with a rough surface. We propose here to couple
this method with a pseudo-spectral method [6] in order to
be able to take into account the continuous variations of the
conductivity in any non homogeneous layer. For this purpose,
the covariant Maxwell’s equations expressed in the Fourier
domain are solved by a combination of modal solutions for
homogeneous mediums (air and substrate for example...) with
a numerical pseudo-spectral solution in the non homogeneous
layers. Some numerical validations are given in order to show
the validity and the efficiency of this innovative method.

Figure 1: A complex ECNDT configuration combining two
consecutive rough interfaces and a continuous depth profile of
the electrical conductivity. This slab may be excited by any
air-core 3D EC probe.

II. Formalism

A. Change of coordinate system

The modal method previously obtained was based on a
translative change of coordinate system:

x1 = x
x2 = y
x3

m = z − am(x),
(1)

where m denotes the mth interface described by an analytical
expression z = am(x). By fitting a new coordinate system
corresponding to each interface, the distorded shape of the slab
is included in the metric tensor Gm = (gm,i j) and its inverse:
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m). Boundary conditions are thus written at each mth

interface with x3
m = constant.

B. Covariant Maxwell equations

In these non-orthogonal systems, the covariant form of
Maxwell’s equations can be written for each layer under a
compact form [7]:[
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where kc is the wave number in the medium (k2
c ' jωµσ in

a conductive medium), gm = det(Gm), Z is the characteristic
impedance of the medium, I stands for the identity operator.

C. Modal expansions in homogeneous layers

In homogeneous layers, the electromagnetic fields can be
expressed in the Fourier domain [8] (the spatial frequencies
are chosen along the axis x1 and x2), in terms of two scalar
potentials Γ and Π satisfying a single eigenvalue system [5].
Each potential and its derivative along the x3 axis can be
expanded in a linear combination of eigenfunctions ψm and
φm depending on the interface am(x):[
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The coefficients Γ+
m,q and Γ−m,q are determined by writing

boundary conditions. This modal approach has been validated
for a stratified medium considering that the depth profile of
conductivity is a constant piecewise function. For a continuous
profile, another complementary approach is proposed.

D. Pseudo-spectral approach in non-homogeneous layers

In non homogeneous layers, the eigenvalue system is no
longer available and the covariant form of Maxwell’s equations
expressed in Fourier domain are thus discretized along x3

(which is the direction of variation of the conductivity) by
using a Chebyshev differentiation matrix [6]. A set of N + 1
Chebyshev points are distributed as follows:

ξm, j =
x3

m − x3
m−1

2
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+
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m + x3
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2
, j = 0, 1, . . . ,N

where x3
m and x3

m−1 stand for the depth of the two consecutive
interfaces and x3

m−1 ≤ ξm, j ≤ x3
m. Moreover, a linear transition

function h(ξ) is added in order to link the two different shapes
as depicted in Figure 2. h(x3

m) = 0 at the upper interface
whereas h(x3

m−1) = 1 at the lower one.

Figure 2: Discretization of the x3 axis in one of the non ho-
mogeneous layers: vizualisation of the effect of the transition
function h(ξ) for N = 7.

By introducing the Chebyshev differentiation matrix on the
N−1 intermediate interfaces, ones obtains a numerical operator
corresponding to Maxwell’s equations in non homogeneous
layers. Two other boundary conditions are finally added in
order to link the modal expansions in the farthest layers (in
air) to the numerical solution in non homogeneous layers.

III. Numerical validation results

The impedance Z of the 3D EC probe is compared to other
numerical results provided by the full modal method consid-
ering that the depth profile conductivity may be approximated
by a constant piecewise function (see Figure 3).

Figure 3: Real and imaginary part of the total impedance
of a 3D air-core EC probe during a scan over the inho-
mogeneous piece (σ(z) = σ0[1 + arctan(z)], with σ0 = 1
MS/m) approached by a multilayered structure (N = 9) and the
homogeneous piece (σ = σ0) presenting the same geometry.
The operating frequency is 10 kHz. The structure is displayed
in Fig 2.
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