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Abstract — A boundary integral equation (BIE) with 
double layer charge as unknown has been applied to generic 
magnetostatic problems. However, in applying the BIE to 
solve shielding problems, as the permeability becomes higher, 
computing accuracy in the shielded area becomes worse and 
worse. In order to overcome the problem, we propose a new 
approach utilizing a concept of the boundary element method. 

I. INTRODUCTION 
We have direct and indirect approaches to derive 

boundary integral equations (BIEs) to solve magnetostatic 
problems. The direct approach gives BIEs with potential φH 
and its normal derivative Hn as unknowns. This approach is 
called usually Boundary Element Method (BEM) [1]. As 
discussed in [2], the BIEs of BEM are applicable to generic 
problems without cancellation errors but have cut-surface 
problems due to current sources. The indirect approach 
gives a BIE with single layer charge σs as unknown [2-4], 
which is called usually Surface Charge Method (SCM). 
Also, it gives another BIE with double layer charge σd as 
unknown [5-7], which is called here indirect BIE. Since 
both of the BIEs derived by the indirect approach contain 
only one unknown, they are advantageous to the BIEs of 
BEM from the viewpoint of numerical analysis. However, 
the SCM has deficiency such as cancellation errors, and the 
indirect BIE has also cut-surface problems as BEM. It has 
been proposed how to avoid the cancellation errors in the 
SCM [2-4] and the cut-surface problems in the indirect BIE 
[6, 7]. Therefore, these approaches have been capable of 
solving generic problems, but the SCM is incapable of 
treating magnetic fields at edges and corners while the 
indirect BIE is capable of doing them [5]. When we adopt 
the indirect BIE to analyze shielding problems with the 
high permeability, we cannot get accurate results in 
evaluating fields in shielded areas. In this paper, we study 
how to overcome the deficiency utilizing a concept of BEM. 

II. DERIVATION OF INDIRECT BIE 
The indirect approach replaces a magnetic material with 

the magnetic permeability μ to the magnetization M, which 
gives an integral form of magnetic field H. Ampere’s law 
relates M with an equivalent current Jv defined as: 

. The difference of μ on each side of interface 
produces a surface current J

MJ ×∇=v

s defined as: MnJ ×=s  with 
the unit normal n. If μ is constant, Jv is zero and the 
material is regarded as replaced to Js, which gives an 
integral form of magnetic flux density B. The current gives 

the solenoidal field and it cannot give the scalar potential φB. 
In order to derive φB, we introduce loop currents Jl for Js as 
shown in Fig. 1. The concept of magnetic shell relates Jl 
with σd as: Jl=σd [8]. By virtue of σd, φB at any point in the 
whole space is given as: 
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where (P) denotes values at the observation point Po, Si and 
So are the inner and outer surfaces S of shielding material, 
ni is the unit normal at the integration point Pi on S, r is the 
distance from Pi to Po, and φHe is the excitation potential. 
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Fig. 1 Magnetic shell and a part of its cross-section. 

As the difference ΔφB in φB either side of S is Jl as shown 
in Fig. 1, the line integral of B·dL about any closed path L 
piercing S is zero. Taking the gap Jl into account, obtaining 
φB on each side of S and enforcing the boundary condition 
of the tangential component Ht of H on S, we get a BIE as: 
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where Ωp is the solid angle subtended at Po, and μr is the 
relative permeability [5]. As the thickness of material 
approaches zero, Jl facing each other on smooth surfaces is 
becoming the same and (2) can be modified as its degree of 
freedoms becomes half.  The boundary condition of normal 
component B Bn of B is automatically fulfilled because Jl 
doesn’t produce any gap of BnB  on S. Since φHe produced by 
current sources is multi-valued, the cut-surface Sc [8] is 
utilized to get the unified BIE to solve generic problems [7]. 

Once Jl has been obtained, B is given by the negative 
gradient of φB in (1) and the integral form of B is given by 
adding BBσ due to Jl and BeB  due to source currents Ic as: 
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where Ns is the total number of segmental elements on S, uJ 
is the direction of Jl, which circulates anticlockwise along 
the contour of the element and ΔL is the length of Jl  [5]. 
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III. NUMERICAL ANALYSIS OF MAGNETOSTATIC SHIELD 
The solution Jl of indirect BIE in (2) gives correctly Ht 

evaluated by (3) because (2) has been derived from the 
condition of continuity of Ht. Even though BBn evaluated by 
(3) is continuous on S, BnB  is theoretically incorrect when the 
theoretical B Bn is much weaker than the normal component 
BenB  of BBe because the continuity of BnB  is fulfilled indirectly 
as described previously. As μr of shielding material 
increases, B Bn on Si becomes much weaker than BenB  and the 
calculation of B within Si suffers cancellation errors as 
observed in the SCM. In order to get accurate B within Si, 
we propose an approach utilizing a concept of BEM. 

Green’s theorem gives the scalar potential φH at an 
observation point Po bounded by a closed surface Si, where 
φHe =0, as: 
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where Hn is normal derivative of φH  [8]. The potential φH 
on Si is related to Jl as: 
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Substituting σH in (5) for that in (4) and obtaining φH on 
Si in the shielded area, we get a BIE to solve Hn as: 
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The magnetic field Hi within Si is given by the negative 
gradient of φH in (4). Once Hn has been obtained, Hi at any 
point Po in the shielded area is given as: 
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where Ni is the total number of segmental elements on Si, 
ΔS is the area of the element. 

IV. NUMERICAL VALIDATION OF PROPOSED APPROACH 

We solve a shielding problem with a magnetic hollow 
sphere (Inner radius: Ri=4.95 cm, Outer radius: Ro=5 cm) in 
the uniform magnetic field He of 1 A/cm. The origin of the 
coordinate system is located at the sphere center. The 
direction of He is parallel to the Z-axis, and μr=10000. 

Utilizing the model’s symmetry, we treat the problem as 
two-dimensional one. Dividing azimuthally both of the 
inner and outer surfaces, Si and So, into N segments and 
adopting the linear element, we obtain Jl in (2) and evaluate 
B in (3). The computed results are shown in Fig. 2(a) and 
(b), where the symbol Δ and ∇  denote the computed values 
when N=11 and 21, respectively, and the solid line gives the 
theoretical value [9]. The accuracy of computed results 
within Si (shielded area) becomes worse as the meshes 
become rougher. After we apply the approach explained in 
‘Chapter III’, the computed results in the shielded area are 
improved significantly. The improved values are shown by 
the blacken symbols, which are seen almost on the line of 
theoretical values. 
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Fig. 2. Computed results of magnetic field H and flux density B. 
(b) 

V. CONCLUSIONS 

When we apply the indirect BIE to solve shielding 
problems, we can’t get accurate results in the shielded area 
due to cancellation errors. We have proposed an approach 
to overcome the deficiency utilizing a concept of BEM and 
confirmed that the approach works effectively, and also the 
technique of this approach is applicable to the SCM. 
Though we have to solve the additional BIE derived by 
BEM concept, it is not time-consuming to solve it because 
Hn on Si facing the shielded area only has to be solved. 
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