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Abstract—Numerical simulation methods at the fields level,
such as the finite-element method, are highly accurate but compu-
tationally expensive. In the context of mathematical optimization,
this implies that the cost function, which needs to be evaluated a
large number of times, is very expensive to compute. To overcome
this shortcoming, the present paper proposes to employ paramet-
ric reduced-order models for computing the cost function: They
introduce low systematic error, require little memory, and allow
for hundreds of model evaluations per second. The great utility
of the suggested approach in both deterministic and stochastic
optimization methods is demonstrated by a numerical example,
featuring 11 geometric parameters.

Index Terms—Computer aided engineering, design optimiza-
tion, numerical models, reduced order systems.

I. Introduction

Since fields-level simulations, specifically finite-element
(FE) computations, are often considered as too expensive for
calculating the cost function at every optimization step, one of-
ten resorts to cheaper surrogate models. Common approaches
include space-mapping [1], response surface modeling [2],
and Kriging [3]. As a highly accurate and efficient alternative
for linear time-invariant systems, the authors of this paper
propose to employ parametric reduced-order models (PROMs)
for computing the cost function.

Parametric model-order reduction (PMOR) involves a two-
stage process: The first and computationally more expensive
step is PROM generation. It needs to be performed only
once, before the optimization process begins. The second step
consists of evaluating the PROM for an arbitrary parameter
vector. It is very cheap but needs to be performed once or even
multiple times at every optimization step, to compute the cost
function. In the numerical example below, PROM generation
and evaluation times are 8840 s and 9.5 · 10−4 s, respectively.

PROMs offer the following characteristic features:
• The PROM is constructed from the fields-level model in

a systematic way that lends itself well to automation.
• It maintains the structure and parameter-dependence of

the fields-level model and thus preserves important sys-
tem properties.

• The systematic error of the PMOR process is easy to
control. If necessary, it can be made of the same order as
that of the fields-level model.

• PROM dimension depends on the complexity of the sys-
tem response and the error threshold chosen, respectively,
but not on the dimension of the fields-level model.

II. Parameter-dependent Finite ElementModel

We consider an N dimensional time-harmonic electromag-
netic FE system Σ( f ,p) with Q dimensional input and output
vectors u, y ∈ CQ, which depends on the frequency f ∈ R and
a vector p ∈ RP of P design parameters. Its general form is:(∑I

i=1
φi( f )Ai(p)

)
x( f ,p) =

(∑J

j=1
θ j( f )B j

)
u, (1a)

y( f ,p) =
(∑J

j=1
η j( f )BT

j

)
x( f ,p), (1b)

wherein x ∈ CN is the generalized state, Ai ∈ R
N×N and

B j ∈ R
N×Q are coefficient matrices, and φi, θ j, η j : R → C are

continuous functions. The cost function c( f ,p) : RP+1 → R,
which is computed via y( f ,p), is assumed to be smooth
enough to allow for gradient-based optimization.

III. Parametric reduced order model

By applying the PMOR method of [4] to the FE system (1),
one obtains a structurally identical PROM Σ̃( f ,p), which reads

(∑I

i=1
φi( f )Ãi(p)

)̃
x( f ,p) =

(∑J

j=1
θ j( f )B̃ j(p)

)
u, (2a)

y′( f ,p) =
(∑J

j=1
η j( f )B̃T

j (p)
)̃
x( f ,p), (2b)

with Ãi ∈ R
n×n, B̃ j ∈ R

n×Q, x̃ ∈ Cn, and y′ ∈ CQ. The key
feature of Σ̃( f ,p) is that its outputs are highly accurate over the
considered parameter domain, y′( f ,p) ≈ y( f ,p), even though
the PROM dimension is very small, n � N. Thus, the cost
function c( f ,p) can be approximated very efficiently, using y′.

IV. Numerical Example: Waveguide Filter Optimization

Fig. 1 gives a schematic representation of a bandpass filter
after [5]. It consists of seven resonant irises separated by
sections of empty waveguide (WG); see inset of Fig. 3 for
dimensions. The design parameters are given by the widths wi

and heights hi of the resonant windows as well as the lengths of
the WG sections Di. Assuming that the geometry is symmetric,
the total number of parameters is P = 11.

A. Cost Function

The nominal filter response is that of a bandpass of max-
imally flat amplitude (Butterworth), with center frequency fc
= 12.55 GHz and lower half-power frequency f0 = 11.5 GHz.
The frequency band of interest is 8 . . . 16 GHz [5]. The
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Figure 1: WG bandpass filter with seven irises.

Table I: Computational Data∗.

Model PROM FE model
Dimension 70 124,370
Model generation (s) 8839.72 -
Model evaluation (s) 9.47 · 10−4 23.61
Avr. error in S 3.95 · 10−4 -
Cost function evaluation (s) 1.01 18,982.69
∗ Single thread performance on Intel Xeon E5620.

analytical reference curve |S ref
1,2( f , f0, fc)| is calculated from

a simple network model, neglecting dispersion and parasitic
coupling. The cost function is taken to be the least-squares fit
of the actual filter response, sampled at N f = 201 equidistant
frequency points:

c(p) =
1

N f

∑N f

n=1

(
|S ref

1,2( fn, f0, fc)| − |S 1,2( fn,p)|
)2
. (3)

B. Modeling

First, a PROM Σ̃( f ,w, h) is generated from the FE analysis
of a single parameter-dependent iris for the first 5 dominant
modes, utilizing symmetry. Expected PROM error is in the
order of 10−3 . . . 10−2. Second, standard WG network tech-
niques are employed to interconnect the irises according to
Fig. 1. Table I shows that standard FE analysis would take
almost 19000 s to calculate a single cost function based on 203
frequency points, whereas the proposed method just requires
1 s. Thus, the time for constructing the PROM is well invested.

C. Optimization Results

As a representative for a deterministic method, we have
applied a quasi-Newton active set method [6], using a crude
hand-calculation for the starting point. The gradient of the
cost function was approximated by finite-differences, requiring
another 22 cost function evaluations per iteration. The method
terminated successfully after 46 steps.

To demonstrate stochastic optimization, the genetic algo-
rithm [7] from the optimization toolbox of MATLAB was
used. The population size was 1600, the number of elites 20,
and the cross-over and mutation rates were 80% and 20%,
respectively. Convergence was obtained after 495 generations.

The convergence criterion was ctol = 6 ·10−6. Fig. 2 presents
the convergence behavior of both approaches. Fig. 3 shows that
both methods yield very similar results, close to the reference
curve. Fig. 4 compares the PROM results for the optimized
configurations to FE calculations: The largest pointwise error
is 10−2, in good accordance with the accuracy of the PROM.

V. Conclusions

PMOR provides a powerful tool for both deterministic and
stochastic optimization at the fields level. Even though the
prototype methods of this abstract achieve speed-ups by orders
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Figure 2: Convergence of optimization algorithms. Inset shows
iris. Dimensions: t = 1 mm a = 22.86 mm, b = 10.16 mm.
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(a) Entire frequency band.
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(b) Close-up view on passband.

Figure 3: Amplitude response of optimized bandpass filter.

of magnitudes compared to conventional FE analysis, they yet
leave ample room for improvement. In the presentation, we
shall give optimized methods, including parallelization.
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Figure 4: Error of PROM compared to FE calculations.


