
Abstract— TEAM Benchmark problem 22 is a standard 

optimization problem in electrical engineering; therefore, the 

comprehensive investigation of the design characteristics under 

uncertainty in design variables is indispensible. In this paper, the 

performance robustness and constraint feasibility are integrated 

into a single optimization modelreliability-based robust design 

optimization (RBRDO). The proposed RBRDO formulation 

yields results that provide new alternatives to the designer. 

Index Terms— Reliability, reliability-based robust design 

optimization, robustness, TEAM 22. 

I. INTRODUCTION 

One superconducting magnetic energy storage (SMES) 

system is shown in Fig.1. The optimal design of coils in SMES 

is selected as the 22nd benchmark problem for testing of 

electromagnetic analysis method (TEAM 22) in electrical 

engineering [1]. The objectives are to maintain the stored 

energy as close as to E0=180 MJ with a minimal stray field. In 

addition, the quench condition keeping superconductivity in 

Fig.2 must not be violated.  

Uncertainties in TEAM 22 such as manufacturing 

tolerances of geometric variables and perturbation 

compensation of a current controller cannot be ignored during 

design optimization. There has been a large amount of works 

about robust design optimization (RDO) of TEAM 22 such as 

the worst case optimization [2] and gradient index method [3]. 

Undoubtedly, they can improve the robustness of both 

performance and constraint functions, but the precise 

feasibility level of constraint is not guaranteed.  

The reliability-based design optimization (RBDO) is 

recently introduced to the optimal design of electromagnetic 

device [4], [5]. The RBDO focuses on finding a reliable 

solution where the chance of any constraints being violated is 

lower than a prescribed value, whereas it does not consider the 

effects of uncertainty on objective functions.  

It is obvious that neither RDO nor RBDO, if used 

individually, can ensure the design quality and the reliability 

simultaneously. In order to investigate comprehensive design 

characteristics under uncertainty, the RDO and the RBDO 

should be integrated [6]. However, there is very little research 

having been done to TEAM 22. An efficient and general 

approach to consider uncertainty is not available. 

In this paper, the robustness analysis by the gradient index 

method and the reliability analysis by one sensitivity-assisted 

Monte Carlo simulation (SA-MCS) approach are combined 

into a single optimization model. For implementation of 

greatly improving the optimality, robustness, and reliability, a 

new hybrid multi-objective reliability-based robust design 

optimization model is proposed.  

II. RELIABILITY-BASED ROBUST DESIGN OPTIMIZATION 

A. Optimal Characteristics under Uncertainty  

- Gradient index (GI): 

In GI method, the quantitative assessment of performance 

robustness is calculated as the maximum absolute deviation of 

objective function with respect to deign variables x:  

( ) max ( ) , 1, ,iGI f x i n   x x . (1) 

where n is the number of design variables. It can be seen that 

the GI method does not need any statistical information on 

design variations. Therefore, it is cost-effective and easily 

applicable to design optimization. 

- Reliability (R) 

The reliability of a design describes the probability of 

constraints keeping in the feasible region. In the SA-MCS 

method [4], the reliability of a design x is approximated as: 

( ( ) 0) /R g N M x  (2) 

where N is the number of test designs satisfying the constraint 

g(x)0 among M total test designs randomly generated in the 

uncertainty set U(x) of design x [4]. Since the constraint in 

U(x) is approximated using Taylor expansion assisted by the 

sensitivity analysis, the SA-MCS method is much more 

efficient than the optimization based ones. Therefore, a 

conventional RBDO problem is formulated as follows: 

 

Minimize ( )

subject to ( ) 0 , 1, , .t
i i

f

R g R i m  

x

x
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where R
t 
is a target reliability decided by a designer. The (3) 

concentrates on the feasibility assessment but does not attempt 

to minimize the variability in the objective function. 

B. Reliability-Based Robust Design Optimization 

1) Constraint RBDO assisted by GI (RBDO-GI) 

To provide a better and reliable design, applying the GI to 

minimize the performance variation in (3), a RBDO-GI 

optimization model is proposed and is formulated as follows: 
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If the normal constraints replace the probabilistic ones in (4), it 

will become one multi-objective robust optimization problem 

by GI (MORO-GI). As shown in Fig.3, by enforcing 

probabilistic constraints at a desired level, the corresponding 

reliable front may be different from the Pareto front of the 

MORO-GI, and will be placed inside the feasible objective 

space. As the target reliability is increased, the front is 

expected to move further inside the feasible objective space. 

2) Hybrid RBRDO 

Considering uncertainty, it is difficult to handle multiple 

objectives (optimal performance, strongest robustness, and 

maximum reliability) without the need of weighting factors. 

Based on (4), applying the concept of dominance by the α-

constrained method, a hybrid RBRDO model is suggested as: 

 min
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where Rmin is the minimum reliability among all constraints, 

f
*
(x) is the optimal value of objective function obtained from 

the deterministic design optimization, and α represents the 

performance deviation index. Problem (5) can supply a better 

trade-off between robustness and reliability while the 

performance can be improved at the same time. 

III. OPTIMIZATION RESULT 

The deterministic optimization of TEAM 22 is shown as: 
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where Bn=3 mT, x=[R2, H2, D2]
T
, and other symbols are 

defined in [1]. Other models can be derived from (6).  

For f(x), uncertainty is only considered in the magnetic 

stray field [2]. For reliability and robust analysis, uncertain 

parameters of current densities independently follow Gaussian 

distribution as J~N(μ=±22.5, σ=0.23)
 
MA/m

2
. In the SA-MCS 

method, the number of test designs is 1,000,000 and the 

confidence level used in the uncertainty set is 0.95. 

Fig.4 shows the typical Pareto fronts of MORO-GI and 

RBDO-GI with the target reliability of 0.9 for two constraints. 

It is obvious that both MORO-GI and RBDO-GI are able to 

search all possible designs by making a balance between f(x) 

and GI(x). Since the latter algorithm addresses reliability 

constraints, therefore, its Pareto front locates a little further 

inside feasible objective regions than that of former one as 

shown in Fig.4 (b). Therefore, even design A in Fig.4 (a) and 

design A′ are similar to the classical optimal design as listed in 

Table I, in fact, design A′ is more reliable and robust than 

design A. Fig.5 compares constraint values of g2(x).  

Undoubtedly, the Pareto solution of RBDO-GI have enough 

margins from constraint boundaries, which means the 

constraint feasibility is improved, however, some Pareto 

designs of MORO-GI such as design B and C almost locate on 

the critical boundaries with much bigger possibility to violate 

constraint g2(x)0. 

The final optimization result of the hybrid RBRDO and 

discussions about will be given in the full paper. 
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Fig. 3.  Reliability-based robust design optimization assisted by GI. 

TABLE I CLASSICAL OPTIMAL DESIGN  

R2 [m] H2/2 [m] D2 [m] Bs2 [T2] E [MJ] f(x) GI 

3.0819 0.2439 0.3849 7.8948E-7 180.000 8.7719E-2 0.8025 
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(a) Pareto front of MORO-GI 
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(b) Pareto front of RBDO-GI 

Fig. 4.  Pareto-optimal designs of GI-based methods. 
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Fig. 5. Constraint comparison of g2(x) for different Pareto fronts where all 

designs have enough margins for constraint g1(x). 

http://www.igte.tugraz.at/team%2022

