Representation of Electrical Machine Windings using T_0 Formulation

R. M. Wojciechowski and C. Jedryczka Poznań University of Technology ul Piotrowo 3A, 60-965 Poznań, Poland e-mail: rafal.wojciechowski@put.poznan.pl; cezary.jedryczka@put.poznan.pl

Abstract— In the paper the representation of electrical machine stranded windings using T_0 formulation has been presented. In the discussed method the electric vector potential T_0 has been applied. In the proposed approach the distribution of the potential T_0 inside the winding is determined for given distribution of T_0 on the boundaries of the winding subdomains. Usefulness of proposed method has been tested on the example of multi-turn coil of two layer winding of the high voltage asynchronous machine stator.

Index Terms—Numerical analysis, electromagnetic devices, electric machines, coils, finite element method.

I. INTRODUCTION

The one of the problems presently being under examination in the area of FEM modeling of electrical machines is proper and accurate representation of the windings that are made of stranded conductors [1], [2]. In such windings the conductors are treated as thin wires where skin effects are neglected. The most commonly used methods of the representation of this kind of windings in the space of finite element analysis base on implementation of the Biot-Savart law [2],[4]. The advantage of those methods is simple algorithm of determining field sources. However implementation of those algorithms characterize rather high computational costs especially in the windings with geometrically complicated shape. An interesting way of stranded coils representation in finite element space has been presented and discussed in [1]. In this contribution author proposes two methods: (a) method based on definition of number of wires (turns) passing through finite element faces; and (b) method, in which winding distribution is defined by crosses of element edges and surfaces formed by turns of the coil. As author demonstrates the proposed methods are universal [1], however the complexity of automation process of determining field sources highly depend on number of turns in the winding. Other interesting methods have been proposed in [3],[5]. To represent windings and determine field sources authors of those papers propose to define and use the turn density vectors. Typically these vectors are calculated on basis of supposed current density distribution J_0 . Nevertheless the examples presented in the contributions relates only to coils with simple geometry, where current density distribution J_0 can be described by analytical functions.

In this paper the method of electrical machine stranded winding description using electric vector potential T_0 [6] has been presented and discussed. The method has been explained on the basis of example of a multi-turn coil shown in the Figure 1. In the proposed approach the distribution of the potential T_0 inside the winding is determined for given distribution of T_0 on the boundaries of the winding subdomains. The major advantage of discussed method is versatility and usefulness in the description simple and also geometrically complex coils. Moreover by using proposed method the field sources for formulations using either scalar Φ or vector A potentials can be easily determined. The correctness and accuracy of the method has been tested on the example of the two layers winding coil of asynchronous motor working in cryogenic conditions [7].

II. DESCRIPTION OF THE WINDING USING T_0 FORMULATION

In the considered domain Ω two sub-domains have been isolated: (a) sub-domain Ω_c that simple shaped represent multiturn coil with turn number equals z_c ; and (b) sub-domain Ω_n , without currents. Considered domain Ω has been shown in the Figure 1. Between sub-domains (a) and (b) two boundary surfaces Γ_o i Γ_{To} have been defined. That surfaces disintegrate considered sub-domains and boundary surface Γ_Ω of domain Ω . Therefore the coil sub-domain is treated as a multiple connected region.

Fig.1. A considered multi-turn coil

For given above conditions the distribution of electric vector potential T_0 for considered domain can be found by solving following equations

$$\nabla \times \boldsymbol{\rho} \nabla \times \boldsymbol{T}_0 = 0 \Big|_{\Omega} \tag{1a}$$

in sub-domain Ω_c , and

$$\nabla \times \nabla \times \boldsymbol{T}_0 = 0 \big|_{\Omega_n} \tag{1b}$$

in sub-domain Ω_n , for defined boundary conditions

$$\boldsymbol{T}_0 = \boldsymbol{\tau}_0 \Big|_{\Gamma_{\boldsymbol{\tau}}} \tag{2a}$$

$$\boldsymbol{T}_0 = \boldsymbol{0} \Big|_{\Gamma_0 + \Gamma_0} \tag{2b}$$

where: ρ is tensor of resistivity and τ_0 is function that describe distribution of potential T_0 on the surface Γ_{T_0} .

Equations (1) have been derived on basis of the DC current conduction field for domain Ω and relation between current density vector J_0 and electric vector potential T_0 , i.e. $J_0 = \nabla \times T_0$. Taking into account the boundary conditions (2) in (1) the distribution of potential T_0 inside domain Ω can be determined from

$$\nabla \times \boldsymbol{\rho} \nabla \times \boldsymbol{T}_{0} \Big|_{\Omega_{c}} + \nabla \times \boldsymbol{\rho} \nabla \times \boldsymbol{\tau}_{0} \Big|_{\Gamma_{T_{o}} \to \Omega_{c}} = 0 \qquad (3a)$$

for sub-domain Ω_c , and

$$\nabla \times \nabla \times \boldsymbol{T}_{0} \Big|_{\Omega_{n}} + \nabla \times \nabla \times \boldsymbol{\tau}_{0} \Big|_{\Gamma_{\boldsymbol{T}_{o}} \to \Omega_{n}} = 0$$
(3b)

for sub-domain Ω_n .

The boundary function τ_0 can be easily determined by numerical solving a condition that normal component of current density J_0 at considered boundary surface Γ_{T_0} of coil sub-domain Ω_c is equal zero, i.e.

$$(\nabla \times \boldsymbol{\tau}_0) \circ \boldsymbol{n} = 0 \tag{4}$$

where *n* is the normal vector to the considered boundary surface. To solve (4) it is necessary to satisfy the relation between magnetomotive force θ , vector J_0 passing through crosssection of the coil S_c perpendicular to current flow direction and vector T_0 along loop *L* surrounding surface S_c (Fig. 1). That relation can be expressed in the following form

$$\boldsymbol{\theta} = z_c \boldsymbol{i}_c = \int_{S_c} \boldsymbol{J}_0 \, \mathrm{d}\boldsymbol{s} = \oint_{L(S_c)} \boldsymbol{T}_0 \mathrm{d}\boldsymbol{l} = \boldsymbol{\tau}_{0_{12}} \boldsymbol{l}_z \tag{5}$$

where i_c is the coil current, τ_{012} is the value of boundary function assigned to the edge P_1P_2 of loop L (Fig.1), l_z is the length of the edge P_1P_2 corresponding to the coil height.

III. EXAMPLE

As mentioned the correctness and accuracy of the method have been tested on the example of the two layers winding coil (Fig. 2) of asynchronous motor working in cryogenic conditions [7]. In the considered example the current density distribution J_0 inside the coil was unknown. The distribution of J_0 has been determined on the basis of distribution T_0 calculated by solving (3) for given boundary conditions (2). The distribution of boundary function τ_0 describing potential distribution for chosen surface has been calculated numerically on the basis of (4) and (5). The calculations have been performed for rated coil current i_c equals 32 Ampere and turn number z_c equals 20.

In order to solve (3) the edge element method (EEM) has been applied [8]. Considered region has been meshed using tetrahedron elements. The number of tetrahedron elements in the presented example was about 24 000 elements and the number of EEM equations being solved was equal 33 554. Obtained distribution of current density has been shown in the Figure 2. In order to verify correctness and accuracy of obtained results of distributions J_0 two numerical tests have been proposed and performed: (a) first based on checking current flow continuity $\nabla \circ J_0 = 0$, and second test (b) in which the magnetomotive forces calculated for different crosssections perpendicular to current flow of the coil have been compared to each other. For test (a), the result of the numerical integration of the expression $\nabla \circ J_0$ over whole considered domain was on the level of 10^{-13} , whereas for test (b) the identical results for chosen cross-sections of the coil have been obtained the with 7-decimal-place accuracy. On the basis of obtained results it can be said that proposed method gives sufficient accuracy.

Fig.2. Distribution of current density vector J_0 in coil of the double layer winding

IV. CONCLUSION

The method of the description of electrical machines stranded windings has been discussed. The approach base on determining the electric vector potential T_0 distribution inside the coil for given its distribution on the boundaries of subdomains. The way of defining boundary function for known value of magnetomotive force in the coil has been proposed. The major advantage of presented method of winding description in finite element space is the versatility. Proposed T_0 approach can be successfully applied either for simple as well as for geometrically complex coils and it can be successfully applied for field sources description in vector and scalar potential formulations. The usefulness of considered method for complex shape coil has been proved on the basis of presented example. Obtained results, performed tests and analysis prove accuracy of the proposed method.

REFERENCES

- Demenko A., "Representation of windings in the 3D finite element description of electromagnetic converters," *IEE Proc. Sci. Meas. Technol.*, vol. 149, pp. 186 – 189, 2002.
- [2] Ohnishi T., Takahashi N., "Effective optimal design of 3-D magnetic device having complicated coil using edge element and Biot - Savart method", *IEEE Trans. Magn.*, vol. 38, no. 2, pp. 1021 – 1024, 2002.
- [3] Golovanov, C., Marechal, Y., Meunier, G., "3D edge element based formulation coupled to electric circuits," *IEEE Trans. Magn.*, vol. 35, no. 3, pp. 1837 – 1840, 1999.
- [4] Tamitani S., Takamatsu T., Otake A., Wakao S., Kameari A., Takahashi Y., "Finite element analysis of magnetic field problem with open boundary using infinite edge element," *IEEE Trans. Magn.*, vol. 47, no. 5, pp. 1194 – 1197, 2011.
- [5] Bouissou S., Piriou F., "Study of 3D formulation to model electromagnetic devices", *IEEE Trans. Magn.*, vol. 30, no. 5, pp. 3228 – 3231, 1994.
- [6] Wojciechowski R. M., Jedryczka C., Szelag W., Demenko A., "Description of multiply connected regions with induced currents using *T-T*₀ method," *Prog. Electromagn. Res. B*, vol. 43, 279 – 294, 2012.
- [7] Kolowrotkiewicz J., Baranski M., Szelag W., Dlugiewicz L., "FE analysis of induction motor working in cryogenic temperature," *Compel*, vol. 26, no. 4, pp. 952 – 964, 2007.
- [8] Demenko A., Sykulski J. K, Wojciechowski R. M., "On the equivalence of finite element and finite integration formulations," *IEEE Trans. Magn.*, vol. 46, no. 8, pp. 3169 – 3172, 2010.