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Abstract—A novel 3-D integral formulation for solving eddy
currents in thin conducting structures with complex topology
is presented. As in discrete approaches field problem variables
are cochains, dual to chains defined on a pair of interlocked cell
complexes. So the discretized problem can be cast in a circuit-like
manner. The proposed method is formulated in terms of mesh
currents on a triangulated surface in order to reduce computing
requirements compared to edge element formulations. The basic
idea is to use homology generators of the triangulated surface to
compute the additional cochains needed by mesh analysis.

Index Terms—Eddy currents, Topology, Electromagnetic
shielding, Computational geometry, Circuit analysis.

I. Introduction

Computing eddy currents in thin conducting structures
embedded in unbounded air domains is computationally de-
manding when 3-D finite element formulations with volume
elements are used. In that case a huge amount of elements
with bad aspect ratio is required for discretizing conducting
regions. Moreover, meshing of air domains further increases
the number of degrees of freedom. Both of these aspects lead
to poor numerical performance and accuracy.

A viable solution is to use integral formulations which do
not require the discretization of the air region [1]. This reduces
time needed for pre-processing, e.g. model setup and meshing,
and, in turn, computing requirements during solution. Another
advantage during post-processing is that fields are computed
from equivalent sources only in limited regions, instead ofthe
whole computational domain as with finite element method.

Integral formulations based on the Cell Method (CM) have
been proposed for analyzing EM shielding problems at very
low frequency [2][3]. Hybrid formulations based on CM and
BEM have been developed for analyzing quasi-magnetostatic
problems [4][5]. These formulations are not suitable to com-
pute models with complex topology, e.g. shells with holes or
bulk domains with cavities. In [6], [7] and [8] surface integral
equation methods have been proposed for solving thin shell
problems with multiply connected domains. Among these, the
numerical strategy shown in [6] is particularly advantageous
since unknowns are related to interior nodes and holes.

A 3-D integral formulation for computing eddy currents in
thin conducting structures of arbitrary topology—in particu-
lar multiply connected—is presented. With mesh currents as
problem unknowns as in Circuit Theory the number of degrees
of freedom for solving eddy currents is minimal with benefits
in terms of computing requirements.

II. Cohomology Basis

The well-posedness of eddy current problems is related to a
proper definition of the algebraic structure of solution space,
which is related in turn to the topology of the computational
domain. Topological bases for the integral formulation devel-
oped in the next section are described below.

Thin conducting structures can be approximated as equiva-
lent surfaces when the eddy current density is approximately
uniform across the thickness, i.e. when the skin depth is greater
than the shell thickness. LetΓ ⊂ R3 be a closed surface, i.e.
compact and without boundary, representing the thin structure
and Γh its triangulation. LetK be the simplicial complex
related toΓh andK̂ its (barycentric) dual complex, constructed
by joining the centroids ofK̂. A k-chain is a formal sum of
k-simplices ofK, i.e. c =

∑

i ai σi, ai ∈ C. In the same way,
dual k-chainsσ̂ can be built onK̂. The boundary operator∂
from k-chains to (k−1)–chains allows building the (simplicial)
chain complex ofK, from which simplicial homology spaces
Hk(Γ;C) are obtained [9]. These are useful to characterize
surface topology with linear algebra for numerical computing.

Simplicial cohomology spacesHk(Γ;C) are the complex
vector spaces dual toHk(Γ;C). Representatives of homology
classes inHk(Γ;C) are k-cochains, i.e. linear forms mapping
k-chains to complex numbers. Poincaré duality for a closed
surface states thatH1(Γ;C) is isomorphic toH1(Γ;C) so that
cohomology basis can be built from homology basis. From
De Rham’s theoremH1(Γ;C) is also isomorphic to De Rham
cohomology spaceH1

dR(Γ), i.e. the quotient space of closed
k-forms Zk

dR(Γ) modulo exactk-forms Bk
dR(Γ). Therefore, any

k-cochain can be expressed as linear mapc 7→
∫

c
ω for some

k-form ω. Viceversa,ω defines ak-cochain on its turn.
The eddy current density onΓ (in the quasi magneto-static

limit) can be regarded as a closed 1-form, i.e. dω = 0.
Therefore,ω is an element ofZ1

dR(Γ) and the corresponding
coset is [ω] = ω + B1

dR(Γ). If [ωi], i = 1 . . .n, wheren is the
first Betti number, is the (finite) basis ofH1

dR(Γ)—the coho-
mology basis—, then [ω] =

∑n
i=1αi [ωi] for some complex

coefficientsαi. Equating cosets yieldsω = ω0 +
∑n

i=1αiωi,
whereω0 ∈ B1

dR(Γ). If Γ is of arbitrary topology,ω cannot be
expressed simply as the differential of a stream functionf . By
letting ω0 = df , the eddy current density becomes

ω = df +
n
∑

i=1

αiωi (1)



Figure 1: Loopsγ1, γ2 are associated to representatives of a
vector basis (equivalence classes) of spaceH1(T ;C).

Numerical procedures for finding cohomology generators
of electric vector potential formulations in bulk domains have
been proposed in [10][11]. It can be observed that, by com-
bining De Rham and Poicaré isomorphisms, a correspondence
between the homology and cohomology bases is established
and generatorsωi can be obtained. In this work the algorithm
proposed in [12] for building a shortest homology basis
has been used. Its basic advantage is to minimize generator
supports and, thus, number of coupling terms in linear systems.

III. I ntegral Formulation

According to the so-calleddiscrete approaches such as the
Cell Method, field problems can be formulated in terms of
1-cochains and dual 1-cochains. Let beC1(K) the complex
space of 1-cochains onK and C1(K̂) the complex space of
dual 1-cochains on̂K. By taking vector bases of these spaces
and from (1), dual 1-cochain ˆc 7→

∫

ĉ
ω can be expressed into

a discrete form with coefficient vectors and matrices, as

i = CT io +QT it (2)

where i is the array of eddy currents on 1-simplices ofK̂
related toω, io the array of mesh currents related tof , it is
the array of topological mesh currents related toωi (of size
n), C is the edge-to-cell incidence matrix andQ is the edge-
to-homology loop incidence matrix. Fig. 1 shows an example
of homology loops for a torusT : Each loop is associated to a
representative of a basis vector (equivalence class) ofH1(T ;C).

Because of dω = 0, the combinatorial expression (2) has to
identically fulfill the div-free condition at the algebraiclevel

GT i = 0 (3)

whereG is the node-to-edge incidence matrix. The kernel of
GT is spanned by the columns of mesh incidence matrixCT

m,
which is built by assembling column-wise incidence matrices
C and Q in (2). In such a way the eddy current problem is
well-posed also in the case of non-trivial domains.

The topological equation (3) for the cell complexK̂ must be
complemented with a topological equation for the simplicial
complex, involving magnetic fluxesb and induced emfse, as

C e+ j w b = 0 (4)

wherew is the angular frequency of magnetic field sources.
With (2) additional field problem unknowns, i.e. mesh currents
it, have been added in order to account for domains of arbitrary
topology. Additional constraints are thus required to determine
mesh currents, which are given again by Faraday’s law (4).

Constitutive equations map dual 1-cochains to 1-cochains.
These are constructed by approximating 1-forms with suitable
local basis functions. In the present work, div-conforming
piece-wise uniform basis functions, proposed in [6], are used
to approximateω locally. The electrical and magnetic consti-
tutive relationships aree = R i and a = L i , wherea is the
array related to the magnetic vector potential 1-form, andR
and L are the resistance and inductance matrix, respectively.
Magnetic fluxes in (4) can be expressed as a function of
magnetic vector potentials asb = C a.

The relationship (2) can be rewritten in compact form as
i = CT

m im, where im = (i0 it)T is the array of mesh currents.
Including additional constraints for topological mesh currents,
(4) becomesCm e+ j w b = 0 and b = Cm a. By inserting
electric and magnetic constitutive relations, the following
linear matrix system is finally obtained

(

CT
m Z Cm

)

im = − j w bs (5)

whereZ = R+ j w L is the impedance matrix, typical of mesh
analysis. The array of currents can be computed after solving
mesh analysis. A thorough discussion of the proposed integral
formulation and of numerical results are presented in the paper.
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