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Abstract—This paper proposes a 2D magnetostatic finite-
element solver for radially symmetric devices, in analogy to
2D cartesian and axisymmetric solvers. Dedicated edge shape
functions are developed and validated with regard to partity-
of-unity, consistency and convergence properties. Peculiarities
of radially symmetric modelling are discussed. Results obtained
with the new solver are compared to 3D simulation results for a
twin-rotor axial-flux permanent-magnet synchronous machine.

Index Terms—Finite element methods, magnetostatics, con-
vergence of numerical methods, partial differential equations,
permanent magnet machines.

I. INTRODUCTION

The standard 3D magnetostatic formulation reads

∇×
(
ν∇× ~A

)
= ~Js −∇× ~Hs (1)

with ~A the magnetic vector potential, ν the reluctivity, ~Js
the applied current density and ~Hs the source magnetic field
strength of permanent-magnet (PM) material. When both the
geometry and the excitations feature a translatory or cylindrical
symmetry, (1) is typically solved in a 2D setting. Then, ~Js
and ~A have only z- or θ-components respectively, whereas
~Hs and the magnetic flux density ~B = ∇ × ~A are confined
to the perpendicular xy- or rz-plane. For the translatory case,
degrees of freedom (DoFs) are defined for the z-component of
~A. The choice of DoFs for the cylindrical case is less obvious
and was an item of discussion during the early nineties [1].
Eventually, a consensus arose on defining DoFs for 2πrAθ
where Aθ is the θ-component of ~A [2]. 2D cartesian and ax-
isymmetric solvers are standard, both in commercial software
and freeware. Reductions to 2D for arbitary symmetries have
been proposed in e.g. [3]–[5]. To the best of our knowledge, a
2D reduction of (1) for radial symmetry has not been proposed
so far. This is remarkable because applications with a more or
less radial symmetry exist (disk motors, cylindrical magnetic
brakes) and an appropriate 2D reduction seems obvious. A
workaround reported in [6] consists of stacking and coupling
of number of thin cylindrical shells, each represented by a 2D
cartesian model. This paper develops a 2D radially symmetric
finite-element (FE) solver for the magnetic vector potential
formulation and discusses some particularities which are not
encountered in the cartesian and axisymmmetric cases.
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Fig. 1. Reduction of a disk motor to a cylindrical 2D shell.

II. 2D REDUCTION FOR RADIAL SYMMETRY

A cylindrical coordinate system (r, θ, z) with r the radial, θ
the azimuthal and z the axial coordinate is considered (Fig. 1).
The model reaches between r = r1 and r = r2 and has
an arbitrary shape in the θz-plane. The model domain has a
reluctivity ν, an applied current density ~Js = (hj/r, 0, 0) and
a source magnetic field strength ~Hs = (0, hθ/r, hz) where
ν, hj, hθ and hz only depend on θ and z. The specific
dependencies of ~Js and ~Hs on r ensure the divergence-
freeness of the current density and the curl-freeness of the
coercitivity. A reference plane Γref at a reference radius rref
is considered. For modeling convenience and visualisation,
the planar coordinates (rrefθ, z) are used. The magnetostatic
formulation (1) in terms of ~A = (Ar, 0, 0) becomes
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The additional equations (3) and (4) force the solution
Ar(r, θ, z) to have a particular dependence on the radial
coordinate r, i.e.,

Ar = rf(θ) +
1

r
g(z) , (5)

where f(θ) only depends on θ and g(z) only depends on
z. The magnetic flux density is then ~B = (0, 1r

∂g
∂z ,−

∂f
∂θ ).

Because the azimuthal and axial components of ~B have
different dependences on r, the reduced formulation is not
capable of representing a bended magnetic field. Nevertheless,



Fig. 2. Convergence of the discretisation error of formulation (1), discreti-
sation by the radially symmetry edge shape functions (6).

the discrete counterpart of (2) will redistribute between axial
and azimuthal components, albeit underrating the reluctance
of the magnetic path. The results indicate that the introduced
error is marginal as long as the considered model is truely
radially symmetric.

III. DISCRETISATION

An edge shape function ~wj(r, θ, z) associated with a radial
line (r1 → r2, θj , zj) perpendicular to Γref is defined by

~wj(r, θ, z) =
Nj(r, θ, z)

r2 − r1
~er ; (6)

Nj(r, θ, z) =
aj + bjrθ + cj

1
r z

2Se
, (7)

where Nj is a scalar function associated with node j and aj ,
bj , cj and Se are coefficients such that Nj(r, θi, zi) = δij .
The edge shape functions fulfil a partition-of-unity property,
i.e., their integration along the considered radial line through
the associated node j yields 1 [7]. The edge shape functions
are consistent, i.e., they allow to represent a homogeneous
axial field and an azimuthal field with dependence 1/r exactly.
Formulation (2) is discretized by the Ritz-Galerkin approach,
using ~wj(r, θ, z) both as test and trial functions.

The consistency and convergence of the discretisation is
verified for a model with extent [r1, r2]× [0, θ2]× [0, z2] and
homogeneous material submitted to a set of different excita-
tions (Fig. 2). The consistency of the edge shape functions is
reflected by the discretisation error at machine precision for
homogeneous axial flux and curl-free azimuthal flux. For the
other analytical test cases, the expected convergence of order
O(h2) = O(n−1) with h the mesh size and n the number of
DoFs, is attained.

IV. APPLICATION

The 2D FE solver for radially symmetric models is applied
to calculate the performance of a three-phase twin-rotor axial-
flux PM synchronous machine (Fig. 1) [8]. The no-load
electromotive force is calculated by the newly developed 2D
radially symmetric FE solver implemented in MATLAB and
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Fig. 3. Electromotive force generated by the disk motor; 3D model and 3D
flux pattern (bottom); 2D magnetic flux density (top).

compared to results from a 3D model constructed and simu-
lated using CST EMStudio [9]. The 2D reduction introduces
severe approximations: flux fringing at the inner and outer
ends is neglected, as is the case for any 2D model; PM cubes
are approximated by bended shapes (thereby preserving the
remanent flux); bending magnetic fluxes are treated approxi-
mately. Nevertheless, a very good agreement is obtained at a
substantially lower computational cost.

V. CONCLUSION

Specific edge shape functions are needed for achieving
consistency and convergence of a 2D FE discretisation of
the magnetic vector potential for radially symmetric models.
When applicable, the new solver outperform 3D simulation for
a three-phase twin-rotor axial-flux PM synchronous machine.
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