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Abstract—In this paper, a heterogeneous multiscale method
(HMM) based technique is applied to model the behaviour
of electromagnetic fields in soft magnetic composites (SMC).
Two problems are derived from the two-scale homogenization
theory: a macroscale problem that captures the slow variations
of the overall solution, and many mesoscale problems that
allow determining the constitutive laws at the macroscale. As
application, an SMC core is considered.

Index Terms—Composite materials, multiscale homogeniza-
tion, finite element methods, eddy currents, magnetic hysteresis.

I. Introduction

The use of the soft magnetic composites (SMC) in electric
devices has recently increased. These materials, made from a
metallic powder compacted with a dielectric binder, are a good
alternative to laminated ferromagnetic structures as their gran-
ular mesoscale structure allows to significantly reduce the eddy
current losses. Furthermore unlike the laminated ferromagnetic
structures, SMC exhibit isotropic magnetic properties what
makes them good candidates for manufacturing machines with
3-D flux paths.

The use of classical numerical methods such as the finite
element (FE) method to study the behaviour of SMC is
computationally very expensive. Indeed a very fine mesh is
required to capture fine scale variations, i.e. variations at
the level of metallic grains, whence the need of multiscale
methods. The application of multiscale methods to study SMC
is quite recent. In these methods, a cell problem is solved on
an elementary cell and the solution is used to compute the
homogenized constitutive laws (electric and magnetic) [1], [2],
[3]. The choice of the elementary cell is also crucial in order
to accurately model real SMC structures.

In this paper, we extend the computational homogenization
method successfully used for modeling laminated ferromag-
netic cores [4] to the case of SMC. The method is based on
the heterogeneous multiscale method (HMM) [5] and couples
two types of problems: a macroscale problem that captures the
slow variations of the overall solution, and many mesoscale
problems that allow to determine the constitutive laws at the
macroscale.

II. Multiscale computational homogenization model

Let the superscript ε = l/L be the ratio between the finest
scale l and the scale of the material or the characteristic length
of external loadings L, and denote quantities with rapid spatial
variations. The vectors x and y denote the macroscale and
the mesoscale spatial positions. We also define differential
operators with respect to these positions, e.g. curlx and curly
are curl operators with respect to x and y. The subscripts M,
m and c refer to the macroscale, the total and the correction
mesoscale quantities, respectively.

Further, we exploit the two-scale convergence theory [6] to
develop the homogenized model for the Maxwell equations
in magnetodynamics. This model is derived as the limit of
electromagnetic fields and operators in the Maxwell equations
for ε → 0, which holds if the nonlinear magnetic mapping
is maximal monotone [7] or can be derived from the mini-
mization of a lower semi-continuous convex functional [6]. In
practice, the homogenized model has already been used for
solving hysteretic problems [4].

We replace the fine-scale problem with rapidly fluctuating
fields by a macroscale problem defined on a coarse mesh
covering the entire domain and many mesoscale problems
defined each on a small, finely meshed area around the Gauss
macroscale points [4]. We use the a − v magnetodynamic
formulation for both scales.

The mesoscale problems are governed by the following
weak forms: find aεc and vεc such that(
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hold for all test functions a′εc and v
′ε
c in appropriate function

spaces. Domains Ωm, Ωmc and Γmc are the entire mesoscale
domain, the conducting part of the mesoscale domain and
the boundary of Ωmc. The mesoscale magnetic field is given
by hεm = Hε(bεm) and σεm is the electric conductivity tensor.
The macroscale fields bM , eM and jM , namely, the magnetic
flux density, the electric field and the current density are



imposed source terms determined by the macroscale problem
and downscaled (exchange of information from macro to
mesoscale). The constant κ equals 1, 1/2 for 2-D and 3-D
problems, respectively. Periodic boundary conditions must also
be imposed for the electric scalar potential and the tangential
component of the magnetic vector potential [4].

The macroscale problem is defined by the following weak
forms: find aM and vM such that(
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hold for all test functions a′M and v
′

M in appropriate function
spaces. Domains Ω, Ωc and Ωs denote the entire domain, the
conducting domain and the domain of inductors, respectively.
The macroscale terms hM = HM(bM), js and σM are the
magnetic field, the source current density and the electric
conductivity tensor, respectively. The upscaling (exchange of
information from mesoscale to macroscale) consists then in
computing the missing constitutive laws σM , hM together
with the tangent operator ∂HM/∂bM at the macroscale using
the mesoscale fields. We apply the asymptotic expansion
theory to homogenize once and for all the linear electric
conductivity [8]. To upscale the nonlinear magnetic law, we
average the nonlinear magnetic field obtained by solving cell
problems around the Gauss points of the macroscale mesh.

After time discretization of equations (1)–(4) the solution is
obtained iteratively using the Newton–Raphson method at each
level. For a given time step, we solve a macroscale problem
and as many mesoscale problems as Gauss points we have in
the macroscale mesh. The macroscale and mesoscale problems
exchange information (downscaling and upscaling) iteratively
till the convergence of the macroscale problem.

III. Application

An SMC material has been modeled using a 2-D geometry
with 10 × 10 square elementary cells of 5.5 × 5.5 mm2 each.
Each cell comprises a conducting material surrounded by an
insulating layer that represents the dielectric binder (Fig. 1 –
top). Only half of the geometry is used thanks to the symmetry
of the problem.

The insulation material is linear isotropic (with µr = 1 and
σ = 0). The conductor has an isotropic electric conductivity
σ = 5 MS and is governed by the nonlinear magnetic law
H

ε(bε) =
(
α+β exp(γ||bε||2)

)
bε with α = 388, β = 0.3774 and

γ = 2.97. A sinusoidal electric current density with frequency
f = 5 kHz and amplitude js = 5 108 A/m2 is imposed in
inductors located at the left, the right and the top of the SMC
material (see Fig. 1 – top). The reference solution is obtained
by solving a FE problem on an extremely fine mesh of the
whole SMC structure with 178 118 elements. The mesoscale
problems are solved on a square elementary cell meshed with
3 236 elements (Fig. 1 – top).

Results in (Fig. 1 – bottom) show a good agreement between
the reference solution (labelled “Ref”) and the local mesoscale
solutions (labelled “Meso1, Meso2 and Meso3”).
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Figure 1. Top: half of the geometry and magnetic vector potential a
(x3 component). Mesh of the square elementary cell, meso domain, on the
right upper corner. Bottom: Eddy currents jεm (x1 component) for a cut at
x1 = 0.0825 mm (t = 0.00002s). Comparison between the FE reference
model and 3 mesoscale solutions defined with x2 in intervals [0, 0.055] mm,
[0.11, 0.165] mm and [0.22, 0.275] mm, respectively.

More details on the method will be given in the full paper.
We will also apply the method to a magnetodynamic problem
with hysteresis and discuss the choice of the elementary cells.
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