
Abstract — This paper presents a novel procedure for the fast 
numerical integration of magnetic field produced by arc-shaped 
conductors, characterized by rectangular cross section. Available 
procedures are based on the analytical integration of Biot-
Savart’s law but, most of them, exploit the analytical integration 
along one coordinate, and then perform a two dimensional 
numerical integration. In the proposed procedure, the analytical 
integration was performed along two coordinates, obtaining a 
one dimensional integrand (thus avoiding the use of Elliptic 
Integrals), very easy to process using a state-of-the-art numerical 
quadrature library. The result is very satisfactory in terms of 
high speed and precision, particularly on conductor surface, and 
when its cross dimensions are very uneven. 

I. INTRODUCTION 

Magnetic field generated by current flowing into 
conductors is calculated through the integration of Biot-
Savart’s law, that sadly cannot be evaluated in closed form for 
arbitrary conductor shapes. For bar-shaped conductors close 
formulas are available. In the other cases, direct numerical 
integration, though possible, is computationally intensive and 
subject to numerical problems due to the intrinsically singular 
structure of the integrand. Most researchers then developed 
methods characterized by a first analytical integration along 
one coordinate, and then a two dimensional numerical 
integration [1-2], usually involving elliptic integrals [3-7]. For 
this reasons, a novel procedure was developed that, integrating 
analytically along two coordinates, leads to a one-dimensional 
integrand. Such integrand (though characterized by some 
singularities) can easily be integrated by a numerical 
quadrature procedure. The proposed approach follows a 
logical procedure similar to EFFI [8], but appears to be even 
simpler and more compact. 

II. THE ANALYTICAL DEVELOPMENTS 

Starting from Biot-Savart’s law (1), it is well known that, 
for bar-shaped conductors, an analytical solution providing the 
field in every point does exist. The problems arise with arc-
shaped conductor, indispensable to model complex coils. 
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Assuming a cylindrical local coordinate system R, ϕ, Z, 
defined on the arc axis, the arc can be expressed as: 
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The first analytical integration is then performed along Z; the 
second along R; the procedure is relatively straightforward for 
Bx and By, i.e. the components laying on planes parallel to the 
current. On the contrary, the analytical integration is more 
involved for Bz, which usually is also the most important 
component. Naming field point coordinates as ρ, θ, z we get: 
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where “atan2” has the same meaning of Fortran language. 
 
To calculate the components of the induction, three 1D 
integrals must be evaluated (39-41). We decided to use the 
numerical quadrature package TOMS691 [9], in double 
precision version. Such library is based upon Gaussian 
quadrature integration; it is therefore extremely useful as it can 
naturally treat integrand singularities (due to the property that 
Gauss integration never samples the integrand on interval 
boundaries). The chosen routine was the DQAGP, which 
provides adaptive integration of singular integrands. The 
singularities do arise from the above reported eqs. in the cases: 
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It is apparent that singularities may only occur if the field 
point lies on conductor surface, for θ=� and θ=�+π. Also for 
some field points belonging to the z axis the method cannot 
provide a numeric solution; in this case the well-known 
analytical formulas are used to compute the correct value of 
the magnetic induction. 

III.  RESULTS 

Tests were performed on the required design specifications of 
the algorithm, to assess the speed, the accuracy of the results, 
and the stability of the numerical result when the aspect ratio 
of coils cross section tends to be very unfavourable. All test 
cases were run on a PC equipped with a 3.16 GHz CPU. 

A. Radial path across an arc coil 

This case is characterized by a radial path completely 
contained into the conductor, going from the internal face up 
to the external one. Usually the surface of conductors is the 
most critical area, especially for superconductors. The arc is ¼ 
of a solenoid. In Fig. 1 the comparison between the result from 
the proposed algorithm and commercial software is reported. 
The two curves are perfectly overlapping. 

B. Tangential path along the internal face of an arc coil 

This case was developed to test the behavior of the integration 
procedure along the angular variable. To solve the numerical 
problems arising in the singular azimuthal coordinate points 
(eqs. (42) and (43)), they had to be identified and passed to the 
integration routine. The testing proved this strategy successful. 
The arc is ¼ of a solenoid. 

C. Semicircular path along the axis of a solenoidal coil 

This test case was needed to verify the quality of the result on 
a sphere, centered on the axis of a solenoid, but with centre 
not coincident with the solenoid centre. Due to the symmetry 
of the problem the field was just computed on a plane with 
fixed angular coordinate, leading to a semicircular path. 
 
In Tab. I the column labeled “Avg. samplings” reports the 
total number of samplings of the integrand, divided by the 
number of field points (104 in our tests). With standard 
algorithms, C.P. times were about fifty times larger than ours, 
even though it is hard to make exact time measurements: in 
commercial codes the integration is deeply embedded into the 
code, and source code is not available to place time markers. 

 

 
Fig. 1. Magnetic induction Bz for test case A. 

TABLE I 
C.P. TIMES FOR 104 FIELD POINTS, SAMPLINGS AND ACCURACY 

Case Avg. samplings  Abs. Accuracy [T] Total C.P. Time [s] 

A 228 1.0e-04 1.02 
A 548 1.0e-09 2.87 
B 412 1.0e-04 2.31 

B 915 1.0e-09 4.59 

C 21 1.0e-04 0.19 
C 21 1.0e-09 0.19 
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