
Abstract—For coupled electromagnetic, fluid-dynamical and 
thermal simulation of electromagnetic devices with moving parts, 
if the computational domains of fluid and solid are both 
established, the velocity of moving parts cannot directly be 
applied on the interface due to no-slip boundary condition in 
fluid dynamic theory. In this paper, a three-dimensional 
multispecies fluid model is described. According to their own 
properties, moving parts are regarded as different fluid species 
so that the velocity can be applied as load. A comparison of the 
results obtained by traditional and novel methods indicates that 
the multispecies fluid model is available for the fluid-dynamical 
simulation of devices with moving parts. The rotating and sliding 
problems can be solved by this multispecies fluid model. 
 

Index Terms—Electromagnetic analysis, Electromagnetic 
devices, Fluid dynamics, Numerical simulation, Thermal analysis. 

I. INTRODUCTION 
The design of electromagnetic devices requires coupling 

electromagnetic field with the other disciplines, such as 
Thermal, Structural and Fluid flow [1]. For many devices 
including motor [2]-[4], bus duct system [5], reactor [6], GIS 
bus bar [7] and transformer [8], etc., as their temperature is 
greatly influenced by cooling system used, the thermal source 
obtained from a electromagnetic model is coupled to a thermal 
and fluid-dynamical model to achieve temperature calculation 
[3]. 

The power loss activates three heat transfer mechanisms, 
i.e., conduction, radiation, and convection. It is widely 
accepted that convection is the most important mechanism and 
the most complex to model [3], [9]. For some electromagnetic 
devices, such as motor, there are some moving parts which 
will influence the fluid flow. Therefore, the influence of the 
moving parts must be considered. However, according to no-
slip boundary condition in fluid dynamic theory, the flow 
velocity on interface between fluid and solid is zero. Namely, 
the velocity of solid cannot be applied directly when there are 
moving solid in fluid computing domain. 

To achieve the fluid-dynamical simulations in the domain 
with moving structural parts, three typical methods have been 
applied previously. In the computational domain, only fluid 
model is established without solid model. Slip boundary 
condition, thus, is defined, and the velocity of moving parts 
can be applied on the interface between fluid domain and solid 
domain. Then, the flow velocity of fluid can be calculated [10]. 

However, for this method, some moving parts of 
electromagnetic devices usually are heating elements, such as 
rotor of induction motor, so their models cannot be neglected. 
By equivalent thermal circuit method, the rotor rotation-
effects on air convection have been considered [4]. This 
method of equivalent lumped parameters is insufficient to 
achieve more accurate results. Moreover, the solid model is 
established in computational domain. Through using the 
dynamic mesh model, when the solid steps every movement, 
the calculation model must be remeshed [11]. The excessive 
computation by remeshing will influence the calculation speed 
of Navier-Stokes equations. 

In this paper, the moving parts of devices were regarded as 
some fluid models, which are different from the cooling fluid 
medium. With these various fluid components, a 3-D multi-
species fluid model was used to simulate the coupling process 
of electromagnetic devices with moving parts. Multispecies 
fluid model is used to describe the fluid mixture, which 
consists of several species fluids with different properties. The 
flow velocity on the interface between the two domains of 
different fluids can be easily applied in whole computational 
domain. For coupled multi-physics simulations of devices 
with moving parts, according to different properties, moving 
parts were considered as different species fluids. Thus, the 
multi-species fluid models are applicable for treatment of 
rotating and sliding problems. 

II. THREE-DIMENSIONAL MULTISPECIES FLUID MODEL 
For fluid medium, some physical quantities, i.e., flow 

velocity, temperature and species, are non-uniform so that 
there is transport process. However, in this paper, moving 
parts were defined as different fluids, among which a 
chemical reaction will never take place. Therefore, without 
this material transformation, each species of fluid has the 
independent governing equations. Two kinds of problems 
solved by multispecies fluid model are as follows. 

A. Rotating Problem 
For this kind of problem, the typical model is rotary motor. 

The stationary parts of devices are defined as solid model in 
the analysis of coupled multi-physics simulations. However, 
the rotary parts, such as the rotor and shaft, can be defined as 
different species fluids from the cooling medium, as shown in 
Fig. 1. 
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B. Sliding Problem 
For this kind of problem, the typical model is linear motor, 

and the trajectory of moving parts is linear and runs parallel to 
the interface, as shown in Fig. 2. After defined as fluid 
domains, the velocity can be applied on all nodes in the model 
of moving parts. Thus, for these domains, the Navier-Stokes 
equations needn’t be solved.  

III. METHOD VALIDATION 
To validate the effectiveness of multispecies fluid model, 

two three-dimensional calculation models for rotating problem 
were established. One only consists of cooling fluid domain 
with slip boundary condition [10], as shown in Fig. 3(a), and 
the other consists of stationary solid domain and multispecies 
fluid domains, including moving parts, as shown in Fig. 3(b). 
Then, the calculation results of the latter were compared with 
that of the former. 

To investigate the impact of rotation on fluid flow, it is 
assumed that the moving part is stationary. Under the three 
situations, with the same total air volume on the inlet, the air 
volume on the outlet of all vents and air gap can be calculated 
by using Gauss-Legendre Integral Formula, as shown in Table 
I. Furthermore, the same heat value per element is respectively 
applied to achieve the coupled fluid-dynamical and thermal 
simulations under the condition of rotation and non-rotation. 
Fig. 4(a) and Fig. 4(b) show the temperature distributions with 
regard to the two models. 

IV. CONCLUSION 
For a three-dimensional model with a rotating part, fluid-

dynamical simulation was achieved by using traditional and 
multispecies fluid methods, respectively. A comparison of the 
results obtained by these two methods indicates that the 
multispecies fluid model is available for the fluid-dynamical 

simulation of devices with moving parts. In addition, the 
impact of the rotation for axial fluid flow cannot be ignored, 
so moving parts must be considered in coupled simulations. 
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Fig. 2.  Computational model of sliding problem. 

 
Fig. 1.  Computational model of rotating problem. 

         
(a)                                                     (b) 

Fig. 3.  Two calculation models. (a) Only air domain without solid. (b) 
Multispecies fluid model. 

TABLE I 
AIR VOLUME UNDER THREE SITUATIONS (m3/s) 

Domain Only air domain 
without solid 

Multispecies 
fluid model Non-rotation 

Vents 9.42e-3 9.39e-3 8.06e-3 

Air gap 5.58e-3 5.61e-3 6.94e-3 

        
(a)                                                     (b) 

Fig. 4.  Results of temperature distributions (°C). (a) Non-rotation. (b) 
Rotation. 


