
Abstract— The electric field has been computed using the hybrid 

technique FEM-BEM, so the motion modifies only the boundary 

conditions on the surface of the wood piece; FEM mesh inside the 

piece as well as some of the elements of the matrix associated to 

the inner nodes remain unchanged. The electric field problem is 

coupled with the thermal field problem because the complex 

permittivity depends on the temperature and the specific losses 

are influenced by the electric field strength. Besides that, the 

moisturized wood to be dried is moving and the water 

vaporization has impact on the thermal field. Our paper proposes 

a method for solving the electric field problem coupled with 

thermal diffusion and mass problems, taking into consideration 

the movement of the wood object exposed to the drying process. 

 Index Terms— Finite element methods, dielectric losses, wood 

industry, frequency, voltage. 

I. INTRODUCTION 

 The electric field inside the drying oven is produced by a 

set of electrodes powered by high voltages (8-20kV) and 

frequencies of: 13.56, 27.12 and 40.68 MHz. The heating of 

the objects by radio frequency electromagnetic field produces 

a volume distribution of the specific losses that leads to a 

uniformly enough level of distributed thermal field inside the 

moisturized piece to be dried. The wavelength (>10m) is 

greater than the oven dimensions; there are not ferromagnetic 

parts, thus the derivative of magnetic flux density from 

Faraday’s law can be neglected.   A quasi-electrostatic 

problem has to be solved, where the electric permittivity is a 

complex quantity that depends on the temperature, therefore 

the electric field problem is coupled with the thermal diffusion 

one. The specific losses in the thermal diffusion equation 

depend on the electric field strength and the complex 

permittivity. The motion of the wet wood changes the 

geometrical structure needed for solving the electric field 

problem. Therefore the hybrid technique FEM-BEM is 

recommended for the computation of the electric field. This 

method presents the main advantages of the FEM [1], [2]. The 

solution of the electric field problem coupled with the thermal 

and the mass ones for a 2D structure was presented in [3]. 

 Our paper proposes an analyzing procedure of the drying 

process for three-dimensional pieces of wood. The integral 

equation on the 2D boundaries of the piece and of the 

electrodes defines the stiffness matrix that is the boundary 

condition for the electric field problem analyzed with FEM 

inside the piece.  

 The mathematical model of water vaporization is 

particularly complicated if we consider the diffusion of the 

water and the vapors within the volume of the wood related to 

its fibrous irregular structure. Moreover, this structure depends 

on the piece to be dried and it cannot be generally known. 

Therefore, we may assume that there is only surface 

vaporization, and then the diffusion inside the wood piece is 

very rapidly done. Besides, the vaporization inside the piece 

must be avoided since it may lead to unwanted cracks. 

Evaporation on the wood surface reduces the temperature and 

it is part of the boundary condition of the thermal field 

problem. The speed of the wood piece inside the oven has to 

be determined, such that the imposed moisture level to be 

reached at the exit from the oven.  

II. FEM DISCRETIZATION OF THE ELECTRIC FIELD PROBLEM 

INSIDE THE PIECE  

 The solution of the sinusoidal electric field problem in the 

wood domain   is obtained by using phasor representation. 

The complex permittivity of the wood is:   j . Since 

we can neglect the derivative of magnetic flux density in the 

Faraday law, the electric potential satisfies equation:  
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is given by the integral equation written on the boundary   

(see par.III). U is the values of E-normal component produced 

by the electrodes when V =0 on   and )(VL is produced by 

the boundary potential when the electrodes potential is zero. 

The Galerkin discretization of equation (1) is: 
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where φ is the shape function. 

III. THE INTEGRAL EQUATION OF THE ELECTRICAL  

POTENTIAL IN BEM 

 On the boundary 0  of the air domain 0 , consisting of 

the electrodes surfaces 1 kk ,  and the boundary   of 

the wood, the following integral equation is valid [4]:  
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where:   is the solid angle under which a small vicinity of the 

domain 0  is seen from the observation point P, and n is the 
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inner normal unit vector, at the integration point Q. If the 

observation point P is placed on k , then the left side of 

relation (1) becomes kV4 =0.  

 We approximate the boundary 0  by a polyhedral 

surface with triangular sides and we hypothesize that the 

derivative with respect to the normal unit vector nV  /  on 

each side to be constant, while V has a linear variation defined 

by the values of the potential in the nodes that define the 

triangle. If we integrate the relation (4) on the triangular sides 

of the boundaries    and k , we obtain the relation (2) 

that represents the boundary condition for FEM inner problem. 

IV. THE THERMAL DIFFUSION PROBLEM, COUPLED WITH THE 

MASS PROBLEM AND MOTION OF THE WOOD PIECE 

 The diffusion of the thermal field is described by the 

equation:  
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where  is the thermal conductivity, c is the volume thermal 

capacity, and the specific losses in the dielectric are given by 

relation:  tgEp '2   where the electric field strength E is 

obtained from the electric field problem.  The boundary 

condition is: 

                       -   eTTnT  )/(                        (6) 

where:  is the coefficient of thermal transfer on the surface, 

and eT  is the temperature outside the piece of wood. The 

numerical solution of the equation (5) is given by FEM, using 

the same mesh as within the problem of electric field, while the 

time discretization has been done using the trapezoidal rule.  

 The vaporization of the water from the wood mass takes 

place in small part inside the piece of wood and largely on its 

surface. To take into consideration the inner vaporization leads 

to the computation of a complicated water diffusion problem 

in which a non-homogeneous pressure field interferes due to 

the water vapors. The high anisotropy of the wood, due to the 

orientation of the wooden fibers, makes almost impossible the 

water diffusion problem to be accurately modeled. 

Additionally, for drying processes, the rapid appearance of 

water vapors from the inner part of the wood can lead to its 

destruction. For this reason, the maximum temperature inside 

the wood object has to be limited (bellow 70
0
C). Thus, we can 

neglect the inner vaporization and take into consideration only 

that one on the surface of the wood. The evaporation speed on 

the surface unit depends on the difference between the 

temperature on the surface of the wood and the ambient 

temperature. It also depends on the degree of saturation of the 

vapors, on the air pressure, on the air flow in the proximity of 

the wood object etc.  

 We admit that the evaporation speed 
dt

d s
 of the water on 

the unit surface linearly depends on temperature:  
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If Λ  is the latent heat of the vaporization volume, then the 

loss of the heat due to the vaporization on the surface reduces 

the temperature on the surface alike the thermal convection. 

So, we can take into consideration the vaporization by using a 

virtual convection coefficient in the boundary condition (6), 

according to the relation:  

wech                                  (8) 

 The estimation of the temperature field on the interval 

],[ 1ii tt  allows the calculation of the water volume 

evaporated during this interval: 
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 This leads to a change of the piece moisture. The physical 

parameters of the wood piece depend on temperature and 

moisture and they are iteratively rectified at each time step. 

 The computation of the moving speed inside the oven 

requires the following procedure: the requisite time for 

reaching the imposed moisture value for the stationary piece is 

calculated; then the oven active length is divided by this time. 

Since the electric field depends on the position, the speed can 

be slightly reduced.  

V. CONCLUSIONS 

 The computation of thermal field change for wood pieces 

dried by radiofrequency described by our paper can be 

particularly useful in order to control the maximum values of 

the temperature and to estimate the drying time and the 

moving velocity of the piece. The extended paper will present 

computation details and an illustrative example.  
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