
For Peer Review Only

Com
pum

ag 2013

GPU-optimized parallel preconditioners for the
element-by-element finite element method

Imre Kiss∗, Zsolt Badics† and Szabolcs Gyimóthy∗
∗Budapest University of Technology and Economics, Egry József utca 18, H-1521 Budapest, Hungary

†Tensor Research LLC, Andover, MA, U.S.A.
Email: kiss@evt.bme.hu

Abstract—The utilization of several different preconditioners
are investigated in conjunction with the parallel GPU version
of the Element-by-Element (EbE) FEM. The EbE technique
has long since been known to perform operations in Krylov-
subspace iterative solvers without actually assembling the global
system matrix. Since all the computations are performed on
the element level, traditional preconditioning techniques that
rely on the assembled matrix are not usable. Therefore efficient
preconditioning methods that can be constructed and applied
without the presence of the assembled matrix have been devel-
oped. Among these, the Hughes-Winget and the Gauss-Seidel EbE
preconditioners will be investigated and compared to the diagonal
Jacobi preconditioner. Each were implemented on a NVIDIA
CUDA GPU in a fully parallel way. Another novelty of the
implementations here is that the element matrices are not stored
but rather recomputed in each iteration. The preconditioner is
also generated on the fly, resulting in a minor overall memory
consumption.

Index Terms—CUDA, element-by-element, GPU FEM, precon-
ditioning.

I. INTRODUCTION

Our goal is to illustrate the efficiency of an application
centric parallel method for the solution of a wide range of
partial differential equations (PDEs) discretized by the finite
element (FE) method. We demonstrate here the performance
of the non-conventional finite element parallel method through
solving the Laplace equation with spatially varying conductiv-
ity arising from a static current flow problem. The introduced
technique exhibits highly improved locality and minimization
of data movement compared to other FE implementations on
GPUs.

Although several methods accelerating the FEM are already
implemented on GPUs [1], [2], these usually suffer from the
strict limitation of available memory. As large scale FEM
problems need large storage capacity, the few GB of available
memory on GPUs must be continuously cached to the global
system memory through the relatively slow bus system.

In contrast, our acceleration technique, based on the
element-by-element FE framework [3], provides a factor of ten
times speed improvement for the ECG (electrocardiography)
forward problem compared to top-notch CPU implementations
for different discretization levels tested up to 30 million
tetrahedrons. The present method utilizes the diagonal Jacobi
preconditioner to facilitate the solution of the Laplace equa-
tion. There are however certain limitations when applying such
a simple preconditioner. Most importantly, the high condition

number of the system matrix may either lead to high iteration
number or potentially fail convergence. When considering
more efficient preconditioners, besides the mere performance
attention must be payed to the computational demand of the
underlying implementation as well, since these are subjected
to be computed on the fly, in each iteration of the solver.

II. AIM OF THE WORK

As the gap between bus speed and computation density
increases, codes based on the accelerator design, that is,
execute only computation intensive parts on the GPU, will fall
behind codes that take full advantage of it [3], [4]. The latter
perform all the necessary computations on the GPU, contrary
to the accelerator design, where operations are performed on
the precomputed and transferred elements.

The aim of this paper is therefore to extend the scope
of problems GPUs can effectively handle, by utilizing sev-
eral different preconditioners that are suitable to the EbE
implementation of the bi-conjugated gradient (BiCG) solver.
Relying on the fact that it is cheaper to recompute element
matrices and form the preconditioner than continuously cache
the global system matrix between the GPU and the system
memory, neither the element matrices nor the preconditioner is
subjected to store, but are rather recomputed in each iteration.

III. ELEMENT-BY-ELEMENT METHOD

A. Element-wise computations

The finite element assembling procedure relies on some
functions by which the element matrix Ae and the RHS be

appearing in the element level equation, Aexe = be, are
computed. These functions depend among others on the type
of PDE to be solved as well as on the applied shape functions.
The computed element matrices and RHS vectors are then
assembled to form the global system matrix A and RHS b.
Let this assembly step be represented by an operatorM, which
is defined differently for matrices and vectors, as follows:

A = M(Ae) =
∑
e∈E

CT
e AeCe (1)

b = M(be) =
∑
e∈E

Cebe (2)

where E is the set of elements: 1, . . . , Ne and matrix Ce

represents the transition between local and global numbering
of the unknown variables for the e-th element. Contrary to the



For Peer Review Only

Com
pum

ag 2013

sparse global system matrix A, the matrix Ae of size ne×ne

(ne being the local degrees-of-freedom) is usually dense.
Using the above concept, for example the matrix-vector

product, which is the basis of iterative solvers, can be refor-
mulated in terms of element-wise computations as

Ax =
∑
e∈E

CT
e AeCex =

∑
e∈E

CT
e Aexe =M(Aexe). (3)

This means that the product of an assembled global matrix
and a vector is equivalent with the assembled vector of
the elementary matrix-vector products. According to (2) the
elementary contributions can be accumulated in a vector, the
size of which is equal to the global degrees-of-freedom (DoF),
hence only vectors have to be stored during the computations.
Elementary matrix-vector products in (1) can be computed for
each element separately, which enables parallel realization [5].

B. Element level preconditioners
The diagonal preconditioner The diagonal preconditioner is
a particularly simple preconditioner, which is also known as
Jacobi acceleration. Its form can be given as W = diag(A).
Its inverse hence can be computed straightforwardly, simply
by taking the reciprocal of the elements. In a symmetric form,
the preconditioned equation system can be written as

W− 1
2AW− 1

2 W
1
2x = W− 1

2b. (4)

Since the preconditioner is only a vector of DoF length, it
can be stored on the GPU and respective parts of it can be
recalled and applied on each element matrix.

The HW-EbE preconditioner EbE type preconditioners
were first introduced in [6] and hence are also called Hughes–
Winget preconditioners, after the authors’ names. A detailed
analysis on this technique is given in [7], [8]. Using the
definition of the assembly operation for the element matrix in
(1) and assuming that A is positive definite, one may write
the preconditioner as

A ≈W
1
2

(
Nel∏
e=1

Le

)(
Nel∏
e=1

De

)(
1∏

e=Nel

LT
e

)
W

1
2 , (5)

where W is the same as in (4), implying that a Jacobi pre-
conditioning is applied as a first step; Le and De are resulting
from the Crout factorization of the Winget regularized element
matrix:

Ae = I+W− 1
2 [Ae − diag(Ae)]W− 1

2 = LeDeL
T
e . (6)

GS EbE preconditioner The Gauss–Seidel EbE precon-
ditioner is based on the same decomposition as the EbE
preconditioner. But instead of using a Crout factorization, the
following decomposition is applied:

Ãe = W− 1
2 [Ae − diag(Ae)]W− 1

2 = Le + LT
e , (7)

with Le being a strictly lower triangular matrix. The precon-
ditioner is then

A ≈W
1
2

(
Nel∏
e=1

(I+ Le)

)(
1∏

e=Nel

(
I+ LT

e

))
W

1
2 . (8)

The advantage of this preconditioner is obviously its easy
construction. In fact, if the matrix is initially scaled so that its
diagonals are ones (Winget regularization), the preconditioner
need not be explicitly constructed.

IV. RESULTS

The test problem is a static conduction problem with
inhomogeneous conductivity that mimics the ECG forward
problem in a human TORSO [9]. The domain is discretized
by tetrahedral elements and linear nodal shape functions are
used. The computations were carried out on a HP-XW8600
workstation, having 32 GB memory, a NVIDIA GTX 480 GPU
and a quad-core Intel Xeon X3440 CPU.

As a reference, a multi-CPU version of the BiCG method
relying on the usual assembling technique with incomplete
Cholesky preconditioning was implemented. The performance
of the various element-level preconditioners on GPUs is com-
pared to the performance of the CPU implementation. Table I
shows the comparison for the diagonal preconditioner and the
full paper will present the results for the other element-level
implementations discussed in Section III-B.

Table I: Numerical resuls for the UTAH torso problem.

Test case #1 #2 #3 #4
No. of tetrahedral 560K 6, 559K 18, 884K 29, 772K
No. of unknowns 91K 1, 339K 3, 836K 6, 064K

GPU implementation – BiCG w/ diagonal Jacobi (EbE)
No. of iterations 322 671 978 1, 111
Memory [MByte] 12 213 613 968
Runtime (1 GPU) [s] 2.8 40.3 171.3 303.8

CPU implementation – BiCG w/ incomplete Chol. (assembled)
No. of iterations 79 248 338 391
Memory [MByte] 1, 564 5, 251 13, 645 19, 371
Runtime (4-cores) [s] 5.9 403 1, 166 1, 694

REFERENCES

[1] J. Bolz, I. Farmer, E. Grinspun, and P. Schröder, “Sparse matrix solvers
on the GPU: conjugate gradients and multigrid,” ACM Trans. Graph.,
vol. 22, pp. 917–924, July 2003.

[2] A. Cevahir, A. Nukada, and S. Matsuoka, “Fast conjugate gradients with
multiple GPUs,” in ICCS 2009, G. G. van Albada, J. Dongarra, and
P. Sloot, Eds., 2009, vol. 5544, pp. 893–903.

[3] I. Kiss, S. Gyimóthy, Z. Badics, and J. Pávó, “Parallel realization of
the element-by-element FEM technique by CUDA,” IEEE Trans. on
Magnetics, vol. 48(2), pp. 507–510, 2012.

[4] I. Kiss, S. Gyimóthy, and J. Pávó, “Acceleration of moment method using
CUDA,” The International Journal for Computation and Mathematics in
Electrical Engineering (COMPEL), vol. 31(6), pp. 1751–1761, 2011.

[5] G. F. Carey and B.-N. Jiang, “Element-by-element linear and nonlinear
solution schemes,” Appl. Num. Meth., vol. 2 (2), pp. 145–153, 1986.

[6] T. J. Hughes, I. Levit, and J. Winget, “An element-by-element solution
algorithm for problems of structural and solid mechanics,” Computer
Methods in Applied Mech. and Eng., vol. 36, no. 2, pp. 241–254, 1983.

[7] A. J. Wathen, “An analysis of some element-by-element techniques,”
Computer Methods in Applied Mechanics and Engineering, vol. 74, no. 3,
pp. 271–287, Sep. 1989.

[8] M. J. Daydé, J.-Y. L’Excellent, and N. I. M. Gould, “Element-by-element
preconditioners for large partially separable optimization problems,”
SIAM J. Sci. Comput., vol. 18, no. 6, pp. 1767–1787, Nov. 1997.

[9] R. MacLeod, C. Johnson, and P. Ershler, “Construction of an inhomoge-
neous model of the human torso for use in computational ECG,” in IEEE
Medicine and Biology Society. IEEE Press, 1991, pp. 688–689.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

