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Abstract—In this paper we study the eddy current prob-
lem with uncertainties in the nonlinear material characteristic
originating, e.g., from measurements. In the case of small
input uncertainties adjoint techniques can be used to efficiently
approximate the solutions statistics (first order second moment
method) at very low computational cost. We will carry out the
corresponding sensitivity analysis and investigate the methods
approximation properties. The main contribution of the present
work is the extension to nonlinear problems. Numerical results
for an electrical transformer and a comparison with the standard
Monte Carlo method are given.

Index Terms—uncertainty quantification, eddy current model,
sensitivity analysis

I. INTRODUCTION

To obtain reliable simulation results it is important to
quantify uncertainties. In particular the nonlinear material
relation of ferromagnetic materials in the eddy current model
is determined through measurements that contain errors. Fur-
thermore, in practice the material relation is perturbed by the
manufacturing process, [1], and the influence on the quantities
of interest (QOI) should be investigated. In many situations the
statistical moments are sufficient to characterize the systems
(uncertain) behavior. To compute these moments Monte Carlo
methods have been frequently used in the past. Due to its non-
intrusive character Monte Carlo simulation does not require
any modification of the simulation code. However, the main
drawback is the high computational cost, i.e., typically the
underlying problem has to be solved several thousand times.
More efficient alternatives are, e.g., based on generalized
polynomial chaos, but still the computational cost can be high,
in particular for a large number of uncertain inputs.

When the input uncertainties are sufficiently small the
moments of the QOIs, e.g., the mean and the variance, can
be efficiently approximated through second moment analysis,
[2]. Requiring only the solution of one deterministic and its
adjoint problem the computational cost of the aforementioned
methods can be reduced significantly at the drawback of being
an intrusive method. Additionally, the method easily handles a
large number of uncertain inputs. For the analysis of moment
based methods for linear problems we refer to, e.g., [3], [4].
The main contribution of the present work is their extension
to nonlinear problems.
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Fig. 1 2D model geometry. The domain D is composed of vacuum D0, a
ferrromagnetic material DFe and the primary/secondary coil windings DC

1;2.
FEMM example taken from [6].

II. MODEL PROBLEM

We consider the transient magnetoquasistatic problem{
curlE = −∂tB,

curlH = σE+ J.

In a 2D setting, referring to Fig. 1: let a domain D with bound-
ary Γ be decomposed into parts filled with a ferromagnetic
material DFe, vacuum D0 and coil parts DC

1;2, respectively.
Denoting u = Az for the longitudinal component of the
magnetic vector potential and introducing η(u) := ν(|u|)u
for the sake of readability, the weak formulation is to find
u ∈ V , where V is an appropriate space, subject to∫
D

σ∂tuv dx+

∫
D

η(gradu) · grad v dx =

∫
D

Jv dx, ∀v ∈ V,

endowed with the initial condition u(0, x) = u0(x), in D and
homogeneous Dirichlet boundary conditions on Γ. Uncertain-
ties are introduced through the probability space (Ω,Σ, P ).
The set of random realizations Ω is such that ν(ω, ·), ω ∈ Ω,
gives a physical admissible material curve. We assume for the
stochastic solution u ∈ L2(Ω, V ) to guarantee finite second
moments. Focussing on the nonlinear material relation we do
not model an uncertain conductivity.

III. DETERMINISTIC SECOND MOMENT ANALYSIS

A. Approximation of Mean and Variance

Many QOIs, e.g., energies or the mean inductance, can be
written in a general form as

F =

∫
IT

∫
D

f(t, u, ∂tu) dxdt,
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Fig. 2 Random Brauer model. Mean (solid) and random realizations (dashed).

with IT being the time interval of interest. Given the uncer-
tainty in the form νδ(ω) = ν̄+δν̃(ω), with mean ν̄, we expand
using Taylor’s series

F (νδ(ω)) = F (ν̄) + δdF (ν̄; ν̃(ω)) +O(δ2).

Under the assumption E[ν̃] = 0, it can be shown [2] and will
be discussed in more detail in the full paper that

E[F ] = F (ν̄) +O(δ2),

V ar[F ] = δ2E[dF (ν̄; ν̃(ω))2] +O(δ3).

Thus, computing E[dF (ν̄; ν̃(ω))2] we get a second order
approximation of the mean and a third order approximation of
the variance of the QOI in terms of the perturbation amplitude
δ, respectively.

B. Sensitivity Analysis

For brevity, we only state that the gradient is given by

dF (ν; ν̃) = −
∫
IT

∫
DFe

η̃(gradu) · grad ξ dxdt,

where η̃(u) = ν̃(|u|)u. This in turn requires the solution ξ of
the adjoint problem{

−σ∂tξ − div ηL(grad ξ) = fy(·, u, ∂tu)− ∂tfz(·, u, ∂tu),
ξ(T ) = ξend,

with linearization ηL(grad ξ), where fy and fz denote the
derivatives with respect to the second and third variable,
respectively. Finally, we can show with

h(t, x) := gradu(t, x) · grad ξ(t, x)

c(t, x, s, y) := Corν̃ (|B(t, x)|, |B(s, y)|)h(t, x)h(s, y),
and Cor being the two-point correlation function, that

E[dF (ν̄; ν̃(ω))2] =

∫∫
IT×DFe

∫∫
IT×DFe

c(t, x, s, y) dxdt dyds. (1)

IV. NUMERICAL RESULTS

We restrict ourselves to the case σ = 0. Let the reluctivity
be given by Brauer’s model [5]

ν(B) = k1e
k2B

2

+ k3.

Through linearization of the Brauer model we get

νδ(ω,B) = k̄1e
k̄2B

2

+ k̄3+

2δ(dk1(ω)e
B2k̄2 + dk2(ω)B

2eB
2k̄2 k̄1 + dk3(ω)).

TABLE 1
PERTURBATION ANALYSIS VS. MONTE CARLO (3375 SAMPLES).

δ E[L] Var[L]

Monte Carlo
0.1 6.58444 0.02952
0.05 6.56306 0.00843

0.025 6.53262 0.00195

Perturbation analysis
0.1 6.53942 0.03009
0.05 6.53942 0.00752

0.025 6.53942 0.00188

We model dk1, dk2, dk3 to be independent random variables
with uniform distribution, i.e., dki ∝ U(−0.5, 0.5). Note
that in a more realistic setting these parameters should be
considered to be correlated. Fig. 2 shows the mean value and
some random realizations for k = (3.8, 2.17, 396.2). However,
in this setting the two-point correlation function is

Corν̃ (x, y) =
1

12
(1 + ek̄2(x

2+y2)(1 + k̄21x
2y2)).

We use first order nodal finite elements and an in-house
MATLAB code for the simulation. The domain is triangulated
with 4571 nodes using FEMM [6]. Here, the QOI is the chord
inductance L of the primary coil. The numerical results are
given in Tab. 1. We observe that the second moment perturba-
tion analysis agrees with the reference solution (Monte Carlo)
up to 1%, 3% and 10% in the variance for the amplitudes
δ. While the Monte Carlo simulation requires a few thousand
simulations, the perturbation analysis requires only two solu-
tions of the deterministic and adjoint problems and the higher
dimensional quadrature (1). However, the computational costs
of this quadrature are negligible for linear elements.

V. CONCLUSION AND OUTLOOK

In this paper we proposed to use a second moment per-
turbation analysis as a cheap alternative to Monte Carlo
simulation. The results of the given example indicate that
we can approximate the variance accurately at a drastically
reduced cost. In the full paper the time-transient case will
also be illustrated by an example.
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