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Abstract—In magneto-elastic interactions, the Virtual Power
Principle is powerful enough to solve all force problems, but
only if the coupled constitutive laws are known integrally. We
discuss the problem of forces in magnetized matter, insisting on
the fact that a full knowledge of the magnetic field may not be
enough to determine the force density when the local B–H law
depends on the local strain of the material.

Index Terms—Electromagnetic forces, Maxwell tensor, magne-
tostriction.

I. Introduction

Forces in magnetized matter are not yet properly under-
stood. Not, at least, from the point of view of engineers
involved in calculations. We should like to have formulas that,
once the field has been computed by finite elements or other
numerical techniques, could be coded in order to compute the
force density from the fields data. There is no dearth of such
formulas, but their amazing diversity is disturbing: Are all
these proposals equivalent, in spite of formal differences, or are
they substantially distinct, being based on different theories?

Part of the difficulty—the mildest part—is notational: It
could be the case that two formulas are secretly the same,
being reducible one to the other by a few lines of vector
algebra, but checking that may be difficult when authors don’t
explicitly state what they mean by such formulas as B · ∇M
or ∇M · B. We shall try here to lift such ambiguities.

More seriously, theories on force density are often based
on microscopic models: For instance, magnetized matter is
construed as a distribution of magnetic dipoles, and since the
mechanical effect of the field on such dipoles is known, one
may think that summing up these elementary forces solves the
problem. But what if different microscopic models then appear
to disagree? Which does happen, as we well know: The field
M inside a hard magnet can be ascribed to magnetic charges
or to Amperian currents, with identical results as regards the
total force and torque on the magnet, but with spectacularly
different predictions about the force field, and hence, about
the eventual deformation of the magnet. So one should not
rely on imagined microscopic mechanisms, to develop the
theory, only on measurable macroscopic properties: The virtual
power principle (VPP) makes this possible, and points to the
determination of the energy density as a function of both the
electromagnetic field (EM field) and the material deformation
as the central problem in the question of forces.

At this stage, one realizes that knowing the EM field may
not be enough to compute the force field: a complete descrip-
tion of the coupled constitutive laws may be required. As a

corollary, the Maxwell tensor does not know all about forces,
which challenges its (alleged by some) status as cornerstone
of the theory: Indeed, there are cases when the force density
differs from the divergence of the Maxwell tensor. This is the
hallmark of magnetostriction: The state of affairs when local
magnetic properties such as permeability or magnetization
depend on the local deformation of the body.

The purport of the present paper is to unfold this theory from
first principles, using the lightest possible mathematical appa-
ratus. In particular, the “material form” [1] of the equations and
the differential-geometric formalism that naturally goes with it
[2] are avoided, in favor of a Eulerian treatment with familiar
vector entities only. We first reestablish a standard result: Force
is equal to J × B minus the derivative of magnetic energy,
expressed as a function of B and the displacement field, with
respect to the latter. Then we treat a few simple cases, enough
to show how easily can magnetostriction be overlooked, and
how the formalism allows to take it into account when needed.

II. General expression of the force field

We work in 3D Euclidean space, with dot product X · Y .
A material particle lying at point x at time t = 0 will be
found at point x + u(t, x) at time t, the displacement u being
a smooth vector-valued function of x and t, null for t = 0.
(We don’t want initially distinct particles to collide, so the
correspondence x → x + u(t, x) should be 1–1: This is so for
t > 0 small enough.) The velocity field v (set in roman to avoid
possible confusion with reluctivity ν) is the time derivative
∂tu. Only its value at time 0 will matter when invoking the
VPP. One assumes u(t, x) uniformly bounded and null outside
some bounded region of space that contains all the matter
and currents participating in the interaction. (For convenience,
points x of this region that lie in the air are also assigned a
displacement, whose value will play no role, provided u stays
smooth.) A source-current density J s(t, x), maintained by some
exterior agency, is given, also null far away. Time-dependent
fields E, H, B describe the electromagnetic situation. (The
displacement current D is ignored, as well as electric charge,
which entails the neglect of Coulomb forces.)

We adopt the time primitive (up to sign) of the electric field,
A(t) = A0 −

∫ t
0 E(s) ds, as field descriptor. Thus, E = −∂tA

and B = rot A. Conductivity and reluctivity (more convenient
here than its inverse, the permeability µ) will depend on the
displacement u, so we denote them by σu and νu, without
being more specific for the time being. A typical form of the



evolution equation is, with initial condition A(0) = A0,

σu(∂tA − v × B) + rot(νu rot A) = J s, (1)

but to gain some generality we shall introduce the magnetic
energy Ψ(u, A), equal to 1/2∫ νu |rot A|2 in the case of (1). (The
integration, here and in what follows, is over all space.) This
way the partial Fréchet derivative ∂AΨ is the vector field rot H,
where H = νu rot A = νu B, so the equation becomes

σu(∂tA − v × B) + ∂AΨ(u, A) = J s, (2)

which covers the nonlinear case of ferromagnetic (but non-
hysteretic) materials.

Since Ψ appears here as just a device to formulate the
magnetic law, we should justify calling it magnetic energy.
For this, remark that the rate of change of Ψ(u, A) is, by the
chain rule,

dt[Ψ(u(t), A(t))] = ∫ ∂uΨ · v + ∫ ∂AΨ · ∂tA. (3)

Next, taking v = 0 in (2), dot-multiply both sides of it by ∂tA
and integrate over space. This results in

∫ σu|∂tA|2 + dt[Ψ(u, A(t))] = − ∫ J s(t) · E(t). (4)

The right-hand side of (4) is the power brought into the system
by the source current, and

∫
σu |∂tA|2 =

∫
σu |E|2 is the Joule

loss. So the second term on the left represents the fraction
of power that must be stored in the magnetic field, which is
the needed justification: With the convention that Ψ(u, 0) =

0 whatever u, the quantity Ψ(u, A) appears as the magnetic
energy of the field B = rot A in configuration u.

Now, return to the case where u can evolve in time.
Denoting by J = σu(−∂tA + v × B) the induced current in
conductors, Joule losses are

∫ σu|∂tA− v× B|2 = ∫ σu(∂tA− v× B) · ∂tA− ∫ v · (J × B). (5)

Repeat the above process—dot-multiply both sides of (2) by
∂tA and integrate in space. Combining (3) and (5), one gets

∫ σu|∂tA − v × B|2 + dt[Ψ(u, A)] +

· · · + ∫ v · (J × B − ∂uΨ(u, A)) = − ∫ J s · E. (6)

Considering v here as the velocity in a virtual motion, the third
term on the left appears as the corresponding virtual power.
The force field, therefore, is J × B − ∂uΨ(u, A).

The full paper will show how the vector field ∂uΨ is
computed in practice, in a series of important cases: Non-
homogeneous B–H law, linear or non-linear, isotropic or
anisotropic, permanent magnets. This summary must restrict
to the first topic. Yet there is room for a remark of general
validity: We are interested in the force field in the reference
configuration, the one in which u = 0, so we only want
∂uΨ(u, A) at u = 0 (and A = A0, the initial condition). In such a
case the following trick, based on the concept of “directional”
derivative, is available: For each vector field v (conceived here
as a virtual velocity field), set u = tv, and find the limit of
[Ψ(tv, A0) − Ψ(0, A0)]/t when t tends to 0. This limit, which
is also the derivative in t of Ψ(tv, A0) at t = 0, has the form∫

v·∂uΨ(0, A0), from which what we shall call the “extra force
field”, f = −∂uΨ(0, A0), can be read off.

III. Computing ∂uΨ: An example
In the simplest case, ν = 1/µ0 all over, one has Ψ(u, A) =

1/2
∫
µ−1

0 |rot A|2, which does not depend on u, so f = 0, and
the only force is J × B, as expected.

Next, suppose that, at time 0, point x is occupied by
some material the reluctivity of which we shall denote by
νmat(x). Given the virtual velocity field x→ v(x), let us build
the virtual displacement u(t, x) = tv(x). Call νt the evolving
reluctivity at time t, equal to νmat at t = 0. Since the particle
that occupied point x at time 0 has reached the point x + tv(x)
at time t, it seems natural (but be wary there!!) to assert that
νt(x + t v(x)) = νmat(x). Differentiating in t this equality, we
find that ∂tνt + ∇νt · v = 0 at all points. Magnetic energy
at t being Ψ(tv, A0) = 1

2

∫
νt(x) |(rot A0)(x)|2 dx, where dx

denotes the volume element, its time-derivative at t = 0 is
− 1

2

∫
(v(x) · ∇νmat(x)) |(rot A0)(x)|2 dx. The extra force field,

−∂uΨ(u, A0), is therefore f (x) = 1/2 ∇νmat(x) |(rot A0)(x)|2, or
better, getting rid of the notational clutter, f = 1/2 ∇ν |rot A|2,
or else, 1/2 |B|2 ∇ν. Since B = µH and ν µ = 1, this is the same
as −1/2 |H|2 ∇µ (known to Helmholtz, according to Carter [3]),
more often encountered in the literature (cf., e.g., [3][4][5]).

But natural as this may look, assuming that the reluctivity
of a matter’s chunk does not change as it moves is an assertion
about the constitutive law that should be acknowledged and
experimentally tested. It may happen that ν changes with
compression or extension—an example of magnetostrictive be-
havior. If so, one must set νt(x+t v(x)) = νmat(x, t div v(x)) with
a different, more informative νmat, now a function νmat(x, ρ) of
two variables, ρ being a placeholder for the volumic expansion,
which is div u for a displacement u. (The ratio of volumes is
1 + div u.) This time, ∂tνt + ∇νt · v = ∂ρνmat div v, so the
t-derivative of Ψ(tv, A0) at t = 0 is one-half of

− ∫ [(v(x) · ∇νmat(x, 0) − ∂ρνmat(x, 0) div v(x)] |(rot A0)(x)|2 dx.

An integration by parts of the term containing div v leads to the
final form of the extra force field, 1/2 |B|2 ∇ν + ∇(∂ρν |B|2/2).
The last part of it is easily overlooked.

No armchair physics can give us the value of ∂ρν. It must
be measured! Note also that ν(x) = νt = 0(x) = νmat(x, 0), so the
fields B and H are the same whatever the dependence of νmat
on ρ. So the force density is not determined by them. This
implies that the divergence of the Maxwell tensor, which only
depends on B and H, would miss the ∇(∂ρν |B|2/2) part of the
force field, which supports our introductory claim. We’ll find
other supporting examples in the full-length paper.
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