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Abstract—The magneto-mechanical coupling is studied using
different numerical methods for both physics. The magnetostatic
problem is solved with a volume integral method. This method
uses the range interactions between magnetizable elements and
is particularly well suited to compute energies and magnetic
forces, without meshing the air domain. A local application of
the virtual work principle adapted to the integral formulations is
used to compute the local magnetic forces. These forces are then
used in the mechanical formulation solved with finite element
method. The same mesh could then be used for magnetostatic
and mechanical problems.

Index Terms—magneto-mechanical coupling, integral method,
finite element method

I. Introduction
The modeling of magneto-mechanical devices using mag-

netic and deformable materials involves the resolution of the
magnetostatic and mechanical equations. The first problem is
an open boundary problem for the magnetic field whereas the
second is restricted to the solid domain. A classical method to
solve numerically such problems is the finite element method
[1]. However, for devices with a huge volume of free space
compared to the active structure or high size ratio between the
geometric objects (like MEMS), problems of accuracy could
be present [2].

Integral formulations of the magnetostatic field problems are
particularly advantageous for the numerical solution of open
boundary problems which include magnetic materials since
only the active regions containing these materials need to be
discretized. So, a volume integral method is used to solve the
magnetostatic problem.

To realize the magneto-mechanical coupling, the knowledge
of the magnetic forces distribution is necessary. A local
application of the virtual work principle adapted to the integral
formulations is used. A finite element method is then used to
solve the mechanical problem in the solid domain.

This paper presents in the first part the magnetostatic and
mechanical formulations. The second part is dedicated to the
magneto-mechanical coupling. A numerical example is given.

II. Formulations
A. Magnetostatic problem

Let us consider the following magnetostatic problem. A
three dimensional simply connected region Ω f is filled with

a isotropic magnetic material with the known linear magnetic
susceptibility χ. Primary sources of magnetic field in which
currents flows are associated to the region Ω j. Both region, Ω f

and Ω j, are disposed in free space Ω0 so that these regions do
not overlap, Ω = Ω f ∪Ω j ∪Ω0. The linear magnetic behavior
law is defined by:

M (r) = χH (r) , (1)

where M(r) is the magnetization and H(r) the magnetic field
at point of coordinates r. At any point of Ω, the magnetic
field is the sum of the reduced magnetic field created by
the magnetic material Hred(r) and the magnetic source field
created by currents flows H0(r).

The simply connected region Ω f containing no current
sources, the following volume integral equation [3] [4] using
the total scalar potential Φ is considered:

Φ (r) +
1

4π

∫
Ω f

χ
∇Φ (r′) · (r − r′)
|r − r′|3

dΩ′ = Φ0 (r) , (2)

where Φ0 is the scalar potential whose the magnetic field
produced by sources can be derived. A collocation method
at mesh nodes is used to solve (2).

B. Mechanical problem

Let us consider the following quasi-static mechanical prob-
lem. A three dimensional region Ωm is filled with isotropic
linear elastic material with the known stiffness tensor [C]. We
note Γm the boundary between the region Ωm and the free
space. The behavior law is defined by:

σ = [C]ε, (3)

where σ is the stress tensor and ε the strain tensor. The
local application of the equilibrium equations for a quasi-static
mechanical problem leads to the relation:

divσ + f = 0, (4)

where f is the volume force density applied to the mechanical
system. According to the small perturbation hypothesis, the
strain tensor can be written as:

ε(u) =
1
2

(∇u + ∇tu), (5)

where u is the displacement field. Two boundary conditions
can be imposed on Γm. We note Γu and Γσ the parts of Γm



associated respectively to the conditions on the displacement
and the stress with respect to Γσ ∪ Γu = Γm and Γσ ∩ Γu = ∅.
These conditions are defined by:

u = u0 on Γu, (6)
σ · n = fΓ on Γσ, (7)

where n is the outward unit normal vector. The weak formu-
lation associated to the mechanical problem is:∫

Ωm
ε(u)[C]ε(v) dΩ =

∫
Ωm

f · v dΩ +
∫

Γm
fΓ · v dΓ ∀v,(8)

where v is a displacement field verifying the boundary condi-
tion (6). A finite element method is used to solve (8).

III. Magneto-mechanical Coupling
This paper considers magneto-mechanical coupling without

magnetostriction effect. The force of magnetic origin acting on
the solid becomes a source term in (4). The following section
presents a method to compute this local magnetic force from
an integral formulation.

A. Local magnetic force computation

According to the virtual work principle, the magnetic forces
are deduced from the variation of magnetic co-energy, keeping
constant the current I during a virtual displacement [5]:

F =
∂Wco

∂u

∣∣∣∣∣∣∣I , (9)

where I is the electric current, Wco the magnetic co-energy, F
the magnetic force and u a displacement of the system.

Applying this principle at the element level, the nodal
magnetic force distribution is obtained by taking the partial
derivative of magnetic co-energy with respect to nodal dis-
placements. The nodal magnetic forces Fn can then be express
as [6]:
2Fn=

∫
∂Ω
∂un

M · B0 dΩ+

∫
Ω

M ·
∂B0

∂un
dΩ+

∫
Ω

∂M
∂un
· B0 dΩ. (10)

The computation of each term of (10) will be presented in the
full paper.

B. Application

Let us consider a cantilever beam with a linear and isotropic
magnetic behavior (1) and a isotropic linear elastic behavior
(3). Two positions for the coil, (a) and (b) (Fig. 1), are
considered. The volume integral method (2) is used to solve
the magnetostatic problem. The computed magnetic fields
are presented in Fig. 2a. The virtual work principle (10) is
applied to compute the nodal local magnetic forces which
are presented in Fig. 2b. These computed local magnetic
forces are validated by an application of the virtual work
principle with a finite element approach. The cases (a) and (b)
are equivalent to a beam problem with respectively bending
and traction stresses. We suppose that the magnetic force is
the unique volume force density acting on the beam. After
discretization, the corresponding source term in (8) is directly
the previous computed nodal magnetic forces. The mechanical
problem is then solved and the computed Von Mises stress and
displacement fields are presented in Fig. 2c and Fig. 2d.

Figure 1: Description of the application.

(a) Computed magnetic fields.

(b) Computed nodal magnetic forces.

(c) Computed Von Mises stresses.

(d) Computed displacements (200 and 2e5 amplification factors).

Figure 2: Results of the beam application.
C. Conclusion

A magneto-mechanical coupling problem is solved with a
volume integral method for the magnetic part and a finite
element method for the mechnical part. The volume integral
method allows to not mesh the free space and is well suited to
compute the energies. These last are used thanks to the virtual
work principle to compute the magnetic force density which
becomes a source term in the mechanical formulation. The
same mesh could be used for magnetostatic and mechanical
problems. A futur work can be the investigation of the nonlin-
ear case including a material magneto-mechanical coupling.
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