
Abstract— In this paper we discuss the numerical modeling of 
hysteresis in magnetic steels with oriented and non oriented grain. 
The modeling is fully 3-D, but it is applied here to typical 2-D 
magnetic problems.  Starting from a vector generalization of the 
Preisach model, we introduce here the concept of an operative 
magnetic field, function of the state of magnetization of the 
material.  This operative field is introduced in order to reproduce 
with more accuracy the peculiar behavior of Si-Fe steels 
approaching to the saturation state. The properties of the model 
are discussed and some examples are reported. 

Index Terms— Magnetic hysteresis, Oriented grain magnetic 
steels, Non Oriented grain magnetic steels, Preisach vector 
modeling. 

I. LIST OF SYMBOLS AND UNITS 

TABLE I 
SYMBOLS AND UNITS 

Hext Applied (external) magnetic field  (A/m). 
HI   Interaction magnetic field (A/m). 
HI0 Interaction magnetic field at zero magnetization (A/m).  
Heq Operative (equivalent) magnetic field (A/m). 
M Magnetization (A/m). 
MS Magnetization at saturation state (A/m). 
hext Per unit (relative) applied  magnetic field (dimensionless). 
hI   Per unit (relative) interaction magnetic field (dimensionless). 
hI0 Per unit (relative) interaction magnetic field at zero magnetization 

(dimensionless).   
heq Per unit (relative) operative  magnetic field(dimensionless). 
m Per unit (relative) magnetization (dimensionless).  
µ0 Magnetic permeability (H/m). 
B Magnetic induction (T). 
Ω Material parameter vector. 
HS Hysteron switching field (A/m). 
hS Per unit (relative)hysteron switching field (dimensionless). 

II. INTRODUCTION 

 The complete  modeling of magnetic hysteresis  for 
magnetic materials  at macroscopic scale is a difficult task 
being the material behavior influenced by different factors 
such as the grain size, the structural stress, the presence of 
enclosures, etc. [1][2]. It is almost difficult to reproduce with 
accuracy the magnetic hysteresis and the static losses for 
several magnetic materials, in particular for the oriented grain 
OG Si-Fe magnetic steels. The use of phenomenological 
models [3] has shown several successful attempts to reproduce 
the macroscopic magnetic hysteresis. To this aim, one basic 
issue is the identification of the approximation functions to use 
in the model. A recent, promising approach to treat the 
magnetic vector hysteresis is an extension of the Classical 
Scalar Preisach Model from the 1-d case to the 3-d one [4][5]. 
The model is based on the definition of a vector hysteron 
characterized by a material-dependent Preisach distribution in 
the H-space. In this paper we discuss the introduction of a 

operative magnetic field in order to reproduce with accuracy 
the magnetic behavior of OG and non oriented grain NOG Si-
Fe Steels. 

III.  THE VECTOR MODELLING OF HYSTERESIS 

 We start this section by considering the vector extension  of 
the Classical Scalar Preisach Model  presented in a previous 
paper [6]. The model is based on the definition of a vector 
mathematical operator, also called vector hysteron, described 
in the Hext- space by a closed and convex critical surface. Each 
vector hysteron has a unique critical surface, described by a 
suitable set of parameters, indicated here as the vector Ω. As 
an example, we can assume a critical spherical surface: in this 
case the components of the vector Ω, are the coordinates of the 
center of the sphere HIx, HIy, and HIx and the value of its radius 
HS. This example is represented in Fig. 1. 

 

 
Fig. 1 -  Working principle of the vector model. 

 
The distance of the center of the critical surface from the 

origin is the interaction field HI, that represents  the global 
effect of thermal effects,  stress effects and the presence of the 
other hysterons. Although this approach is phenomenological, 
the model is inspired to the static analysis of magnetic 
materials at micro-magnetic scale, where the fluctuation field, 
the magnetostatic and exchange field are properly defined [1]-
[3]. The value of the hysteron radius HS is function of the 
switching field, and it is function of the coercive field of the 
material. The magnetization state vector of the hysteron can be 
denoted by the unitary and dimensionless vector Q. For 
applied magnetic fields inside the critical surface Q is frozen 
in the direction that it had just before it entered the critical 
surface, and it remains constant until it exits the critical 
surface.  When exiting the critical surface Q instantly rotates 
so as to align itself along a new direction, perpendicular to the 
critical surface. This behavior is corresponding to the energy 
jump that occurs in the magnetic materials. Therefore for each 
hysteron and each value of the applied field Q is in general a 
multi-value function of  Ω and Hext. The hysterons are suitably 
distributed in the Hext-plane, and their density distribution can be 
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described by a dimensionless function P(Ω), defined in 
analogy with the classical Preisach model [3].  Each material, 
for a given thermal and mechanic stress condition, is defined 
and identified by a proper function P(Ω). The total 
magnetization is the vector sum of the magnetization due to all 
the vector hysterons. 

IV. THE OPERATIVE MAGNETIC FIELD 

 The basic idea introduced for the numerical modeling of 
hysteresis in a bulk material is the following definition of a so 
called operative, or equivalent magnetic field  Heq 

Iexteq HHH −=         (1) 

 The hysterons, referred to a Heq- frame, are all centered in 
the origin. In addition, the interaction field is written as  

IMII HHH += 0           (2) 

where HI0 is the value of the interaction field at zero 
magnetization and is function of the thermal and mechanical 
stresses of the material, and HIM is the change in interaction 
field due to the change in magnetization. Finally the magnetic 
field and the magnetization can be expressed in per unit, 
simply by dividing their values by the value of the 
magnetization at the saturation state, namely MS. The model 
can be represented geometrically in Fig. 2. 

 
Fig. 2 -  Representation of the vector model in the operative field reference 

frame. 

 

The change of the  interaction field due in function of the 
magnetization has been approximated here as follows 

mkhIM =          (3) 

where k is a constant, to be determined experimentally. 

V. PRELIMINARY RESULTS 

We postulate now that  the distribution function P is the 
product of three Lorentian’s functions LHIx, LHIy and Lu  

Syx LLLP ⋅⋅=             (4) 
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where σx, σy,  and σS are the shape parameters of each 
Lorentzian function  and  HC is introduced in order to allow 
the peak of the Lorentzian distribution of the hysteron radius 
to move toward  the value of the coercive field of the material. 

The identification of the model parameters is a ill posed  
problem and we can have multiple solutions.  The scope is to 
find a vector  

( )CSyx Hσσσ=Φ       (6) 

that minimizes the following fitness function J that defines the 
displacement between measured and computed data 
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where i is the ith time sample, n is the number of all samples, 
E(i) is the ith measured data, C(i) is the ith computed data. The 
experimental data were measured in our laboratory using a 
Round Rotational Single Sheet Tester RRSST [7]. We have 
used in this case a genetic algorithm [8] for the model 
parameter identification. In Fig. 3 we show some preliminary 
results about numerical computation of magnetization of both 
NOG and OG samples. The experimental data are measured 
using a suitable set-up with a feed-back system to obtain a 
circular magnetization. 
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Fig. 3 -  Comparison between measured (solid line) and computed (dotted 

line). The measured magnetic field is used as input for the hysteresis model.  
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