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Abstract—The strong interaction between hysteresis and eddy
currents in electrical steel laminations cannot be resolved with-
out a strongly coupled finite element modelization. This paper
presents such a model, together with a systematic methodology
to identify the free parameters from standard measurements
(Epstein frame or Single Sheet Tester). As the model is based
on a thermodynamic analysis, the identified parameters are true
material parameters, that characterize the material irrespective
of load and geometry. They can therefore be used to quantita-
tively evaluate fields and losses at higher frequencies and in the
presence of higher harmonics.

Index Terms—Hysteresis modeling, eddy-currents, homoge-
nization, vector-hysteresis, higher harmonics, iron losses.

I. Introduction
Induced currents appear at various geometrical scales in

ferromagnetic samples subjected to a time-varying magnetic
field h(t). Following Bertotti [1], two main mechanisms can
be distinguished. On the one hand, induced currents that
result directly from the variation of the external magnetic
field and loop up over pathes of macroscopic dimension are
called eddy currents, or Foucault currents. They depend on
the geometry of the sample, and their rate of variation is
directly determined by that of the applied field, ∂th(t). On the
other hand, a microscopic induction mechanism also exists
associated with the broken (jerky) motion of Bloch walls
(Barkhausen effect) as the magnetic polarization changes in the
sample. The dynamics of this motion, which is ruled by the
microstructure, determines the intensity and the distribution
of the microscopic induced currents, whose associated Joule
losses are conventionnally called hysteresis losses. The density
of hysteresis losses does not depend on the geometry of the
sample, neither on the rate of variation of the applied magnetic
field (hysteresis is a local and quasi-static phenomenon), but
it depends, at each point in the sample, on the local maxima
attained by the field h(t) all through the magnetisation history.
The term iron losses generically covers the losses associated
with both phenomena.

The difficulty in modelling iron losses is associated with
the fact that ferromagnetic cores generally come up as stacks
of thin isolated electrical steel laminations (whose typical
thickness is between 0.2 mm and 1.0 mm). Homogenization
techniques have been proposed to model such composite mag-
netic structure [2], [3]. They however assume simplified forms
for the current density across the lamination (resulting e.g.
from the solution of the eddy current problem) and disregard
hysteresis in general. We believe that applying homogenization
techniques is premature because a reliable mesoscopic model
fails. The interaction between hysteresis and eddy currents
is indeed so strong that it cannot be resolved without an

explicit field modelization inside the laminations. The aim of
this paper is to present such a strongly coupled model that
addresses eddy currents (including skin effect) and hysteresis
simultaneously. The proposed parametrized model is based
on a thermodynamic analysis, and a methodology to identify
the material parameters from standard Epstein Frame (EF)
or Single Sheet Tester (SST) experiments is described. Once
identified, the material parameters can be used to analyze the
behaviour of laminated cores at higher frequencies and in the
presence of higher harmonics.

II. Hysteresis material model
The hysteresis model follows from the expression of the

conservation of energy in the material Ψ̇ = h · ḃ − D with
Ψ the internal energy density, h · ḃ the rate of magnetic work
and D a dissipation function. In order to appropriately account
for the susceptibility of empty space, the induction field, b =
J0 + J, is written as the sum of an empty space magnetic
polarization and a material magnetic polarization associated
with the presence of microscopic moments attached to the
atoms of the ferromagnetic sample. The energy density is

Ψ(J0, J) =
J2

0

2µ0
+ u(J) (1)

with µ0 is the magnetic permeability of vacuum, and its time
derivative writes

Ψ̇ =
J0

µ0
J̇0 + hr · J̇ with hr := ∂Ju. (2)

The dissipation function

D = κ|J̇| = hi · J̇ with hi := ∂J̇D = κ
J̇
|J̇|

(3)

describes hysteresis as the magnetic analogous of a dry friction
force, whose physical origin is the pinning effect that opposes
the motion of Bloch walls. Conservation of energy now yields

(h − J0/µ0) · J̇0 + (h − hr − hi) · J̇ = 0 ∀J̇0, J̇. (4)

As the state variables J and J0 are arbitrary, the factors
between parenthesis must vanish, and the constitutive rela-
tionships of the material are obtained, namely J0 = µ0h and

h − hr − hi = 0 ⇒ h − ∂Ju − κ
J̇
|J̇|

= 0. (5)

In reality, the pinning strength κ is not a constant but obeys
a statistical distribution, which can be represented with con-
trollable accuracy by combining several models like (5) [4],
[5].
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Figure 1: Comparison between measured data for M25050A FeSi
non-grainoriented electrical steel at 50Hz, 100Hz and 200Hz (solid
lines) and calculated data (points): Virgin and anhysteretic curve
(left), iron losses (right).

III. Finite element model

The measured quantities in EF or SST experiments are
currents and fluxes related to the magnetic field h and the
average induction 〈b〉 across the lamination thickness. Since
by construction those quantities are uniform across measured
samples, it is sufficient for our purposes to work with a finite
element (FE) model that consists of a 1D formulation of the
eddy current problem :∫

Ω

(
∂tb · h′ + σ−1curl h · curl h′

)
dΩ = 0 ∀h′ (6)

with h = (0, h(z), 0). A h-field formulation is chosen be-
cause the magnetic field is the natural driving quantity for
the irreversible constitutive relationship (5). Considering a
lamination of thickness 2d with an upper surface normal vector
n = (0, 0, 1), the domain of analysis Ω is a line parallel to n,
across half the thickness, and far from the edges. The boundary
condition at the center of the lamination is curl h(0) × n = 0,
whereas a given external field h(d) is applied at the surface
of the lamination. Iron losses per unit surface are given by
the flux of the Poynting vector σ−1curl h(d) × h(d) across the
lamination surface. The details of the implementation will be
given in the full paper.

IV. Parameter identification

Standard electric steel lamination measurements are ob-
tained under sinusoidal 〈b〉-field conditions. In order to iden-
tify them with FE simulations, the applied h-field that yields
a sinusoidal flux through the lamination must be determined.
This can be done iteratively (See full paper). Fig. 1 shows the
match obtained with a minimal number of material parameters.
A very good match over a quite large range of field intensities
(up to 1.4 Tesla) and frequencies (up to 200Hz) is observed.
It is remarkable that the large amount of measured data can
be quantitatively reproduced with so few parameters (7 in this
case). This indicates that the physical model based on the dry
friction analogy is close enough to the reality.
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Figure 2: Comparison between true (h,b) curves, at the surface and
at the center of the lamination, and the measured loop (h, 〈b〉).
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Figure 3: Time evolution of h and e at the surface of the lamination,
the product of which is the delivered power.

V. Application
The identified parameters fully characterize the material,

irrespective of load and geometry. They can be used in 2D or
3D models, or to calculate iron losses under loads for which
measurements are hard to obtain or unavailable, in particular
at higher frequencies and in the presence of higher harmonics.
Figures 2 and 3 illustrate the rather complex phenomenology
in such situations. A 350Hz magnetic field of magnitude
200A/m superimposed with a 7th higher harmonic (2450Hz) of
magnitude 60A/m has been applied to the lamination model.
The true and the measured hysteresis loops are compared in
Fig. 2. Figure 3 shows the complex shape of the magnetic
and electric fields, whose product h × e, the Poynting vector,
gives the iron losses. This model can be combined with a
homogenization approach like the one proposed in [?] to
address macroscopic devices such as, e.g., electrical machines.
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