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Abstract—Resolving thin conducting sheets for shielding or
even skin layers inside by the mesh of numerical methods like the
finite element method (FEM) can be avoided by using impedance
transmission conditions (ITCs). Those ITCs shall provide an
accurate approximation for small sheet thicknesses d, where the
accuracy is best possible independent of the conductivity or the
frequency being small or large – this we will call robustness.
We investigate the accuracy and robustness of popular [3] and
recently developed ITCs [6], and propose robust ITCs which are
accurate up to O(d2).

Index Terms—Computational electromagnetics, Eddy currents,
Electromagnetic shielding, Partial differential equations.

I. Introduction
Thin conducting sheets for the protection of electronic

devices exhibit large ratios of characteristic lengths which
require a small mesh size when using finite difference or
finite element schemes. Besides this issue of computational
cost due to the small geometry detail, many commercial
mesh generators get difficulties with anisotropic geometrical
features.
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Figure 1. Impedance transmission conditions are set on the mid-line Γ of
the sheet and shall approximate the exact field outside the area the sheet was
originally located.

We consider the time-harmonic eddy current model [4]
(convention exp(−iωt), ω > 0) in two dimensions

curl2D e(x) = iωµ(x)h(x), (1)
curl2D h(x) = σ(x)e(x) + j0(x) (2)

where e and h are the out-of-plane electric and in-plane mag-
netic fields, σ is the conductivity of the thin sheet of thickness
d and zero elsewhere, µ is the permeability, and j0 is the out-
of-plane imposed current which is outside the conductor. We
have used the 2D rotation operators curl2D = (∂y,−∂x)> and
curl2D = (−∂y, ∂x).

The shielding behaviour can be modelled alternatively by
replacing the thin sheet by an interface on which impedance

transmission conditions are set. Popular ITCs for the time-
harmonic eddy current model are the perfectly electric con-
ductor (PEC) boundary condition, the shielding elements [1],
and the thin sheet conditions [2]–[3].

II. Thin sheet and limit conditions
A. Thin sheet conditions

With β = iωµ and γ =
√
−iωµσ the thin sheet conditions

by Mayergoyz and Bedrosian [3] are given by

e+
MB − e−MB =

β
γ

tanh( γd
2 ) (h+

MB · n + h−MB · n),

h+
MB · n

⊥ − h−MB · n
⊥ =

γ
β

tanh( γd
2 ) (e+

MB + e−MB)
(3)

which are set on the mid-line Γ of the thin sheet. Here, the
subscript MB denotes the approximative electric and magnetic
field, the superscript ± denotes the values on the two sides
of the sheet, and n = (n1, n2)> and n⊥ = (n2,−n1)> are the
normalised normal and tangential vectors on Γ like shown in
Fig. 1. Note, the relation of (3) to the conditons in [2].

B. The limit of vanishing thickness
Impedance transmission conditions are developed for thin

sheets and their accuracy shall be larger the thinner the sheet.
We observe three different limits for vanishing sheet thickness
(d → 0):

1) The frequency ω is remained or is increased less than
1/d. Then, we have twofold continuity

e+
0 − e−0 = 0,

h+
0 · n

⊥ − h−0 · n
⊥ = 0,

(4)

the sheet is vanishing like for δ =
√

2/ωµσ→ ∞.
2) The frequency ω increases like 1/d, where we get the

non-trivial limit conditions [5]

e+
1 − e−1 = 0,

h+
1 · n

⊥ − h−1 · n
⊥ = −σd

2 (e+
1 + e−1 ).

(5)

3) The frequency ω increases more than 1/d, e. g., like
1/d2. Then, the electric field on both sides get zero in
the limit d → 0,

e+
2 = e−2 = 0. (6)

Here, the respective subscripts 0, 1 and 2 correspond to the
scaling ω ∼ 1/dα with α = 0, 1, 2.
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(a) Low-frequency limit.
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Figure 2. The modelling error when using (a) the low-frequency limit, (b) the high-frequency limit, (c) the non-trivial limit, and (d) the thin sheet conditions (3)
to approximate the shielding of conducting sheets of different thicknesses d and different frequencies or skin depth δ =

√
2/ωµσ. The shown error is the one

of the magnetic field outside the thin sheet.

C. Discussion
We investigated the thin sheet conditions and the limit

conditions with high-order finite elements for a straight thin
sheet in a rectangular box (with periodic boundary conditions)
and two circular live wires with opposite current direction. The
original thin sheet conditions (3) turn out to be robust with
respect to the skin depth or frequency, see Fig. 2(d), which
is obvious as they transform into (4) for low frequencies and
into (6) for high frequencies, cf. [2].

The low-frequency limit conditions (4) achieve only some
accuracy if the sheet thickness is more than one or two
orders smaller than the skin depth. The high-frequency limit
conditions (6) entail some accuracy if the skin depth is at least
at the order of the sheet thickness.

The non-trivial limit conditions (5) are again robust and their
accuracy is comparable to the one of the original thin sheet
conditions for large skin depths / thickness ratios and much
better if the skin depth gets relatively small, see Fig. 2(c). This
obvervation is remarkable as the expression of (5) is much
simpler than the one of (3).

III. High order transmission conditions
In order to improve the accuracy we have studied an

asymptotic expansion for d → 0 where – motivated by the non-
trivial limit conditions – the conductivity is once scaled like
1/d (case α = 1) and – motivated by asymptotically constant
skin depth – the conductivity is once scaled like 1/d2 (case
α = 2).

A. Conductivity scaled like 1/d
The first order ITCs related to α = 1 are given by [6]

e+
1,1 − e−1,1 = 0,

h+
1,1 · n

⊥ − h−1,1 · n
⊥ = −σd

2 (1 − 1
6 iωµσd2)(e+

1,1 + e−1,1).

The second and third ITCs involve curvature terms and second
order tangential derivatives, see [6].

B. Conductivity scaled like 1/d2

The first order ITCs related to α = 2 are given by

e+
2,1 − e−2,1 =

βd
2

(
1 − tanh(γd/2)

γd/2

)
(h+

2,1 · n + h−2,1 · n),

h+
2,1 · n

⊥ − h−2,1 · n
⊥ =

γ
β

sinh(γd/2)
cosh(γd/2)−γd/2 sinh(γd/2) (e+

2,1 + e−2,1).

Additional terms will be present for curved sheets [7].

C. Discussion
Both proposed ITCs are robust and get improved accuracy

in comparison to the non-trivial limit and the original thin
sheet conditions. The accuracy for both ITCs is asymptotically
like O(d2). Especially, the α = 2-ITCs achieve accurate results
even for larger sheet thicknesses. Since their expression has
the same form as the original thin sheet conditions (3) they
are preferable – for low and for high frequencies.
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(a) Order 1 α = 1.
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Figure 3. Error of the respective impedance transmission conditions of
order 1 derived by asymptotic expansion for the scaling ω ∼ 1/dα, α = 0, 1.
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