
Abstract—A multilevel preconditioner is described for high 

order finite element analysis of eddy currents using the     

formulation. The preconditioner combines p-type multiplicative 

Schwartz for the higher order degrees of freedom and auxiliary 

space preconditioning for the lowest order. Algebraic multigrid is 

applied to the first order scalar spaces. The new preconditioner 

performs 4 times faster than a standard preconditioner on a test 

problem with 13.3 million unknowns. 

Index Terms—finite element methods, eddy currents, 

multigrid methods. 

I. INTRODUCTION 

Three-dimensional eddy current problems treated with the 

finite element method (FEM) often lead to very large matrices. 

Generally these are solved with Krylov subspace iteration with 

a preconditioner that greatly affects the speed of convergence. 

The most common preconditioners are based on incomplete 

LU factorization (ILU) or on symmetric successive over-

relaxation (SSOR). On the other hand, multigrid 

preconditioners have been very successful in many fields of 

engineering, particularly with scalar problems. True multigrid 

requires a series of nested meshes, difficult to arrange in 

practical problems. Algebraic multigrid (AMG) overcomes 

this limitation. AMG for scalar potentials is well established 

[1]. A similar method has been applied to matrices arising 

from Whitney edge elements [2] [3], but for this case an 

alternative approach seems promising: Auxiliary Space 

Preconditioning (ASP) [4] [5]. This is a way of transforming 

the vector problem into a series of scalar problems, to which 

AMG is well suited. In [6] ASP was applied to an eddy current 

formulation using the magnetic vector potential. 

In this paper we apply ASP to the     formulation. 

Furthermore, we consider the case that high-order, hierarchical 

elements [7] are used and supplement ASP with a multi-level 

technique called p-type multiplicative Schwartz (pMUS)  [8]. 

II. THE      METHOD 

The phasor magnetic field,  , solves the following 

equations in conducting (  ) and non-conducting (  ) regions: 

 

                  in    (1a) 

        in    (1b) 

 

where   and   are the tensor conductivity and permeability, 

respectively. In the     method, these equations are solved 

by representing   as       in   , where    is a 

precomputed source field, and as      in   , where   is an 

unknown vector potential. The tetrahedral finite elements in 

[7] are used, including the vertex functions. The rotational 

functions represent   and the gradient functions represent   . 

The decomposition is gauged by building a tree from the 

edges of the tetrahedra in the conductors; rotational functions 

for tree edges are omitted. Application of the FEM leads to a 

matrix equation     . 

III. AUXILIARY SPACE PRECONDITIONING 

The basis functions of the order 1 element are classified as 

“first order”, the functions added to take an order 1 element to 

order 2 are classified as “second order”, etc. All the first order 

basis functions in the mesh are numbered first, then the second 

order functions, etc. This leads to the following partitioning: 

 

  [

       
   
       

] (2) 

 

where   is the highest order present in the mesh. 

 The preconditioner is a V-cycle that approximately solves 

    . The cycle consists of a series of steps, each of which 

computes an improvement,   , in  , and reduces   
accordingly. In the following, the   and   updates are implied. 

 First apply pMUS. Solve           by a single step of 

backward Gauss-Seidel (BGS). Repeat with         , then 

with         , etc. After    , switch to ASP. Transfer the 

residual to four auxiliary spaces: piecewise linear scalars,  , 

and the three Cartesian components of the space,   , of nodal 

vector fields. Now, for each space, use scalar AMG. Apply 

BGS, transfer the residual to an algebraically coarser problem, 

apply BGS again, etc. When the matrix problem is small 

enough, solve it exactly by a direct method. That is the 

descending half of the V-cycle. The ascending half is the 

mirror image. Forward Gauss-Seidel (FGS) is used instead of 

BGS. A W-cycle preconditioner may also be constructed. 

IV. NUMERICAL RESULTS 

 To demonstrate the performance of proposed method, the 

simulation of a hollow, conducting cube placed in a uniform 

field is considered. The geometry and the mesh are shown in 

Fig.1. The permeability and the conductivity of the conductor 

are      and                respectively. The skin 
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depth at the excitation frequency,       , is          . 

The length of the cube is    and the wall thickness is   . The 

computational domain,  ,  is a cube of side    . The source 

field    is zero in this example, but the scalar potential is 

constrained on two opposite surfaces of   to produce a 

magnetic field that would be uniform in the absence of the 

conducting cube. The domain is discretized with           

tetrahedra, resulting in         scalar and           vector 

unknowns at the lowest order. Three steps of p-adaption are 

applied. The matrix problems are solved by the preconditioned 

COCG method [9], with the termination criterion set to     . 

Table I presents the number of unknowns, the number of 

COCG iterations and the corresponding CPU times for solving 

the matrix problem at each adaptive step. pMUS 

preconditioners with different treatments at the first order are 

applied. Selected methods for approximating     are ILU with 

  level of fill-in, SSOR, and ASP with V- or W- cycles. For 

the ASP method, scalar AMG employs a hierarchy of three 

levels with        ,         and        unknowns.  

The comparison shows the superior iteration count and run 

time of ASP at each adaptive step. The experiments also 

indicate that a significant improvement can be achieved for 

higher order systems if a better algebraic solver is used at the 

first order. The cumulative CPU time for solving the problem 

with three p-adaptive steps using pMUS and ASP (W-cycle) is 

reduced by about     compared to ILU(0), and by about 

    compared with SSOR.  

The convergence history of COCG at step 3 is shown in Fig 

2. It is observed that while the convergence rate for ILU and 

SSOR are nearly same, the ASP (W-cycle) is able to reduce 

the number of iterations by a factor of almost  . 

V. CONCLUSION 

 The pMUS multilevel method combined with ASP is an 

effective technique for solving the large matrices that arise 

when using hierarchical finite elements to solve time-

harmonic eddy current problems.   
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TABLE I 

SOLUTION DETAILS FOR THE CONDUCTING CUBE PROBLEM  

 Step 1 Step 2 Step 3 

Unknowns 2,875,868 8,578,954 13,345,009 

Nonzeros 66,707,982    350,799,470    615,703,547 

    Prec. Iter. 
CPU Time 

(hh:mm:ss) 
Iter. 

CPU Time 

(hh:mm:ss) 
Iter. 

CPU Time 

(hh:mm:ss) 

ILU(0) 741 00:28:13 685 01:57:35 628 02:51:45 

SSOR 608 00:23:49 652 01:41:55 654 03:03:14 

ASP  

(V-Cycle) 
150 00:12:28 205 00:39:09 206 01:08:05 

ASP  

(W-Cycle) 
60 00:13:23 88 00:28:19 94 00:45:55 

 

 
Fig 1. Illustration of geometry and discretization for the conducting  

cube problem. 

 
Fig. 2. Convergence history of COCG with different preconditioners  

for solving the conducting cube problem at p-adaptive step 3.  
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