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Abstract—An efficient connection scheme for the stable incorpo-

ration of several instructive FDTD computing models in the non-

standard (NS)-FDTD method, is proposed in this paper. Based on a 

straightforward formulation, the novel technique achieves an opti-

mal FDTD/NS-FDTD connection via an interlayer region. Subse-

quently, the proposed concept is extended to a robust subgrid algo-

rithm for the 3-D NS-FDTD method through the perfectly matched 

layer condition to decrease the total computational burden. The 

merits of the combined methodology are numerically validated by 

diverse applications, such as wire antennas and microwave devices. 

Index Terms—Antenna radiation patterns, FDTD methods, 

nonstandard FDTD methods, numerical analysis, subgrids. 

I. INTRODUCTION 

The nonstandard (NS)-FDTD method is a time-domain tech-

nique for fixed-frequency electromagnetic problems [1], with an 

error at least 4 orders of magnitude lower than conventional 

FDTD techniques [2]. To achieve such high accuracy the NS-

FDTD method needs about 36 nodes to update each field quan-

tity. If cost-effective computing schemes originally developed 

for the FDTD algorithm, e.g. the antenna feed model or the con-

tour-path model, were able to be used with the NS-FDTD 

method, its applicable range would be greatly expanded. This is 

the objective of this work. 

In order to smoothly insert the FDTD models mentioned above 

into the NS-FDTD method, a new, highly stable, 3-D technique 

which connects the regions of both methods is introduced in this 

paper. The two regions are joined together through an interlayer, i.e. 

a NS-FDTD region with α1 = 1 and α2,3 = 0 [1]. Also, to extend this 

concept, a precise subgrid model is presented to lower the NS-

FDTD simulation costs with partially subwavelength structures. In 

particular, for the consistent connection of elementary cells with 

different spatial increments (e.g. ∆ and δ = ∆/3), the interlayer for-

mulation is blended with the perfectly matched layer (PML) condi-

tion [2]-[4]. Thus, any artificial instabilities that could arise from the 

field interpolations are drastically diminished. A key advantage of 

the combined method is its simplicity, along with the absence of 

complex or specialized algorithms. Numerical results for a thin-

wire antenna FDTD model and other microwave structures prove 

the validity of the proposed formulation. 

II. THE 3-D FDTD/NS-FDTD CONNECTION METHOD 

Consider the computational domain shown in Fig. 1, which 

illustrates the novel connection model for the FDTD and NS-

FDTD regions, along with the interlayer region for the mitiga-

tion of any discontinuities between the two methods. 

 

Fig. 1. Lattice topology of the proposed connection model for the FDTD and 

the NS-FDTD methods through an interlayer region. 

 

Fig. 2. Stability comparison of the connection model with (proposed) and 

without (direct) the interlayer region. Incident angle: θ = 90ο and φ = 10ο. 

Fields are observed at the center of the FDTD region (| inc

zE | = 1 V/m).  

 

To stress the necessity of the interlayer region, Fig. 2 provides a 

stability comparison of our formulation with (proposed) and 

without (direct) the interlayer for a 20∆×20∆×20∆ FDTD vol-

ume embedded in a sufficiently large NS-FDTD domain. The 

interlayer has a 3∆ width (∆ = λ/10), where λ is the wavelength. 

For our discretizations, both cubic (∆, ∆, ∆) and two noncubic 

(∆, ∆, ∆/2), (∆, ∆, ∆/3) cells are utilized, with ∆t = λ/(20c), 

λ/(25c), λ/(35c) as their respective time-steps and c the speed of 

light. In the model a sinusoidal plane wave travels from the NS-

FDTD into the FDTD region to excite the domain. In this con-

text Fig. 2 reveals that the direct connection model is stable only 

for cubic cells and is totally unstable for noncubic cells. In con-

trast, the proposed model is always very stable, regardless of the 

cell type; a fact which proves the importance of the interlayer in 

establishing reliable FDTD/NS-FDTD connections.  

III. DEVELOPMENT OF THE ACCURATE SUBRGID MODEL 

   To reduce the overall system requirements considerably, the 

above concept is combined with a precise subgrid model. The con-

nection structure is shown in Fig. 3, where the interlayer is the NS- 

FDTD region, with α1 = 1 and α2,3 = 0, and a width of 3δ. All fields  
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Fig. 3. Geometry of the 3-D connection structure for the subgrid model with 

the interlayer where a PML condition is imposed for stabilization. All cells are 

assumed to be cubic and E-field components are positioned on the grid lines. 

 

Fig. 4. Effect of PML loss, σ, on the stability of the interlayer-PML. The width 

of the interlayer is 3δ (= ∆), with λ/∆ = 10, ∆t = λ/52c, and λ = 1 m. All fields 

are observed at the center of the subgrid region. 

 

on the interpolation surface, i.e. the interface between the δ and ∆ 

cubic cells, are interpolated by a weighted average procedure [2]. 

Detailed analysis has revealed that, despite the use of this accu-

rate interpolation scheme, instability may arise after a large number 

of iterations [5]. Hence, to overcome this defect, we impose the 

PML condition with ( )
1/ 2

/PMLσ σ µ ε∗ =  to drastically reduce the 

numerical instability in the interlayer. This is the same approach as 

in [5], although [5] refers to the case where 
1,2,3 0α ≠ . To verify this 

approach, Fig. 4 shows the effect of PML loss, σ, on the perform-

ance of our method. A sinusoidal plane wave of λ=1 m is launched 

from the NS-FDTD region (cell size = ∆) into the NS-FDTD sub-

grid region (cell size = δ). From the results it is easily observed that 

the interlayer-PML scheme can guarantee a stable subgrid connec-

tion over a large number of long time steps. Note that for optimal σ 

selection, the complexity of the impinging waves [5] must be care-

fully taken into account. 

IV. NUMERICAL RESULTS 

     As an indicative application, we investigate the wire antenna of 

Fig. 5, which involves a perfect electric conductor (PEC) corner 

reflector with an angle of 90° [6]-[8]. The radiator, placed along the 

z-axis in the FDTD region, forms a φ = 45° angle with the x-axis, 

while S is its distance from the corner of the reflector. The feed 

point is set at the center of the antenna’s wire (i.e. z=17∆/2) to coin-

cide with the reflector’s center. Moreover, the input impedance is 

50 Ω and the feed current amplitude is 1 A/m2. For the subgrid re-

gion, the cell sizes are ∆=λ/22 and δ=∆/3 respectively, whereas the 

metallic part uses the contour-path thin-wire FDTD model [2]. 

Using the connection technique of Section III, the NS-FDTD 

method is successfully combined with a PML loss of σ = 5×10
-4
  

S/m for the interlayer. As shown in Fig. 6, the results of the pro-

posed technique are in very good agreement with the reference  

 

Fig. 5. Wire antenna model [6]. Using the proposed method the total number 

of cells can be reduced to 1/10 compared with the all-δ−cell model. 
 

 

Fig. 6. Far-field radiation pattern on the xy-plane (θ =90°) for the wire antenna 

of Fig. 5 ( /120t cλ∆ = , time step = 2×104,  and λ = 1 m). 

 

along the radiation directions of 0°≤ φ  ≤ 90° at θ = 90°. The refer-

ence solution was obtained via the FDTD method [2] with a cubic 

cell of δ = λ/66. These results demonstrate the accuracy and stability 

of our method which, along with its mesh resolution reduction, lead 

to significant computational savings. 

V. CONCLUSION 

In this paper, a new FDTD/NS-FDTD connection methodol-

ogy, founded on an interlayer concept, has been developed. The 

new scheme has also been combined with a 3-D subgrid model 

for the NS-FDTD algorithm to reduce the computational burden. 

Numerical simulations have demonstrated the validity of the 

scheme, thus making it a potential candidate for combining vari-

ous useful FDTD computing models with the NS-FDTD method. 
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