
Abstract—This paper introduces a multi-solver technique in 

order to enhance the broadband performance of time-harmonic 

finite element methods when solving electromagnetic problems 

with high-conductivity regions. The high-conductivity regions are 

modeled by the Trefftz-discontinuous Galerkin (TDG) 

formulation while the FEM is used in the rest of the 

computational domain. The novel multi-solver technique couples 

the methods by making use of Robin-type transmission 

conditions. The efficiency is illustrated by computing the 

broadband frequency sweep of the inductance of a two-wire 

transmission line: the necessary number of DoFs in the multi-

solver case decreases significantly compared to the pure FE case 

if the two solutions are generated with the same error criterion. 

Index Terms—Maxwell problem, Multi-solver technique, 

Finite element method, Trefftz-discontinuous Galerkin method. 

I. BACKGROUND 

Vector finite element (FE) methods are extremely 

successful tools for solving time-harmonic electromagnetic 

problems, especially when complex geometry and different 

materials including dielectrics and conductors are involved [1]. 

However, many problems contain highly dissipative metallic 

computational domains where the broadband FE modeling is 

quite inefficient even with utilizing high-order elements, and 

the mesh size can grow prohibitively high with increasing 

frequency. To mitigate this problem, modern FE solvers may 

introduce different surface or volumetric models of the 

conductive regions for different frequency bands. This can 

lead to certain inconsistencies in broadband frequency sweeps 

and increased complexity in the algorithm. 

Recently we have experimented with the Trefftz-

discontinuous Galerkin (TDG) method for solving time-

harmonic electromagnetic (EM) problems using different T-

complete bases [2][3]. Our conclusion is that the method gave 

superior performance in highly dissipative mediums compared 

to the FE method. This experience inspired us to try a multi-

solver approach to enhance the performance of adaptive FE 

simulators when solving broadband electromagnetic problems 

with metallic computational regions. This paper introduces an 

efficient multi-solver technique for such problems by utilizing 

the TDG method in the high-conductivity regions and the FE 

method elsewhere. To couple the two computational domains, 

the technique makes use of Robin transmission conditions 

similarly to the modern domain decomposition (DD) 

formulations [4][5][6]. 

II. MODEL DEFINITION 

Let 3Ω ⊂ �  be a bounded, polyhedral domain and n the 

unit normal vector field on ∂Ω . For the sake of brevity, we 

consider the following computational model with impedance 

boundary condition in terms of the electric field, E: 

 ( )1 2
                 in µ ω ε−∇ × ∇ × − = ΩE E 0  (1) 

 ( )1 1
           on Tjµ ωη− −∇ × × + = ∂ΩE n E g  (2) 

where ,  and ε µ η  are piece-wise constant, and ( )2

TL∈ ∂Ωg . 

Anisotropic  and ε µ  are allowed except in the good 

conductors where the TDG computational model is used. 

(TDG can be generalized to anisotropic materials too but such 

cases seem to have little practical importance in high-

conductivity conductors.) The discussions in the rest of the 

paper can trivially be extended to include most other boundary 

conditions or excitations. 

III. TREFFTZ-DISCONTINUOUS GALERKIN METHOD 

The framework of the discontinuous Galerkin (DG) 

method for time-harmonic Maxwell problems is described in 

[7], based on which we can derive the TDG method. See the 

details of the derivation, discretization and error analysis in [3] 

and [8]. 

The fundamental discretized TDG weak form of problem 

(1) and (2) for all 
h

K∂ ∈F is  

 ( )1ˆ ˆ 0h h h h

K K

dS j dSµ ω−

∂ ∂

× ⋅ ∇ × − × ⋅ =∫ ∫n E w n H w  (3) 

where mesh hT  is a finite element partition of Ω  with mesh 

width of h, hK ∈T  denotes a mesh element, and =
h

h

K

K
∈

∂∪
T

F is the 

skeleton of the mesh hT . In TDG the weighting functions 
hw  

have the Trefftz property, that is, they satisfy 

( )1 2

h hµ ω ε−∇ × ∇ × − =w w 0  or more precisely they are T-

complete [3]. (The bar denotes complex conjugate.) We define 

the numerical traces (or “numerical fluxes”) in (3) as 

 { } 1 1ˆ
h h h h T

jω β µ− −= − ∇ ×E E E� �
� �� �  (4) 

 { } 	 
1 1ˆ
h h h h T

jω µ α− −= ∇ × +H E E  (5) 
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where we use the standard DG notation for the average, 

{ } ( )1
2

 + −= +G G G , and the jump, 	 

T

+ + − −= × + ×G n G n G , on 

K K− +∂ ∂∩  of neighboring elements K +  and K − . 
h

E  

represents the discretization of E by T-complete approximation 

functions and the symbol ( )h∇ × ⋅  denotes the element-wise 

application of ( )∇ × ⋅ . Note that the inhomogeneous boundary 

condition (2) is also incorporated in (4) and (5) when K∂  is 

on ∂Ω . Finally, we want to point out that the solution of (3)–

(5) also incorporates the satisfaction of Robin transmission 

conditions on the mesh skeleton. 

IV. MULTI-SOLVER TECHNIQUE 

The nonoverlaping DD formalisms utilize Robin 

transmission conditions to “glue” the field approximations of 

the different domains together [4][5][6]. Since the field 

continuity at element interfaces is ensured through enforcing 

Robin transmission conditions in TDG (3)–(5) too, it is quite 

straightforward to couple the TDG and FE domains efficiently 

by a scheme similar to the DD techniques. We will show the 

details of the coupled multi-solver system in the full version of 

the paper. 

V. RESULTS  

A. Verification  

Our implementation of the TDG – FE coupled technique is 

successfully verified by matching numerical field solutions to 

the analytical solution of a standard eddy current benchmark 

problem where a cylindrical coil generates eddy currents in an 

infinite metal plate. (The coil axis is perpendicular to the plate.) 

This benchmark arrangement is widely used in eddy-current 

NDE (Nondestructive Evaluation) because it has a semi-

analytical full-wave solution that can be generated by high 

accuracy [9]. 

B. Two-Wire Transmission Line 

In order to illustrate the performance of the multi-solver 

technique, we investigate the broadband behavior of a two-

wire transmission line system depicted in Figure 1(a). The 

transmission line is excited by ports and we calculate the 

frequency sweep of the inductance as the output. Figure 1(b) 

illustrates the skin and proximity effects at increasing 

frequencies.  

Figure 2(a) compares the analytical frequency sweep of the 

inductance to the frequency sweeps calculated by the pure FE 

and multi-solver options. The inductances are calculated with 

the same accuracy criterion in the two numerical solutions. 

Figure 2(b) plots the DoF growth for the two numerical 

solutions.  Note that the FE solutions for the last two frequency 

points are missing because the solver ran out of memory on 

our workstation due to the excessive mesh size increase in the 

conductors during the adaptive refinement process that assures 

consistent accuracy.  

Nonetheless, we can see strong indications that the multi-

solver approach is much more efficient than the pure FE solver 

for broadband problems including high-conductivity regions.  

 
Fig. 1. (a)  Two-wire transmission line problem excited by Port 1 and 2, and 

(b) the distribution of the longitudinal electric field component in the 

conductors at different frequencies. δ is the skin depth. 
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Fig. 2. Two-wire transmission line problem: (a) Inductance and (b) number of 

DoFs vs. frequency. All computations have been carried out on a workstation, 

having 32 GB memory and a quad-core Intel Xeon X3440 CPU. 
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