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Abstract—In this article we present a novel Discontinuous
Galerkin Finite Element Method for wave propagation problems.
The method employs space-time Trefftz basis functions that
satisfy the underlying partial differential equations exactly in
an element-wise fashion. We demonstrate spectral convergence
of the approximation error in the L2-norm. High order time
integration is an inherent property of the method, and we obtain
spectral convergence in the entire space-time domain of interest
(i.e. in space and time simultaneously), which is not achieved
by any common approaches of time-stepping finite element
discretizations of space only.

Index Terms—Computational Electromagnetics, Maxwell
equations, Finite Element Methods, Convergence of numerical
methods, Discontinuous Galerkin Method, Trefftz Method

I

Discontinuous Galerkin Finite Element Methods (DG-FEM)
[1]–[3] are a major class of tools to numerically simulate
complicated electromagnetic systems. In this article we present
a highly accurate type of DG-FEM for time-domain applica-
tions. A distinguishing new attribute of the method is the use of
Trefftz basis functions [4]–[6], which, by definition, satisfy the
underlying partial differential equations exactly in an element-
wise fashion. The method is, hence, a Discontinuous Galerkin
Trefftz Finite Element Method (DGT-FEM). Since Trefftz
functions are required to solve the equations exactly, theyneed
to depend both on space and time. Therefore, we obtain a
space-time DGT method. We obtain high order time integra-
tion in a consistent manner, and achieve spectral convergence
in space-time. Existing numerical methods exhibit polynomial
convergence or, at best, spectral convergence in space only.

U   

For a wave propagating in a given directionx with one-
component fieldsE ≡ Ey andH ≡ Hz, we can write the system
of sourceless Maxwell’s equations in a coordinate free form

∇T · ηµ · F = 0 and ∇T · ηǫ · F = 0. (1)

Here,F ≡ (E,H)T is the field vector defined in the space-time
domain of interestΩ. The matricesηǫ and ηµ represent the
material operators,∇ = (∂t, ∂x)T is the differential operator.
After this equation is obtained we apply the standard testing
procedure with test functionsv ≡ (vE , vH)T and subsequently
perform an integration by parts yielding

∫

∂Ω

vE(ηǫF
) · n dΩ +

∫

∂Ω

vH(ηµF
) · n dΩ (2)

−
(

∇T · vE , ηǫF
)

Ω
−
(

∇T · vH , ηµF
)

Ω
= 0,

wheren = (nx, nt)T is the unit outward normal on the space-
time domain boundary∂Ω. A numerical implementation of 2
is described in the following section.

A  T F

Trefftz basis functions are a set of problem specific solutions
of the underlying partial differential equations. Trefftz func-
tions in the form of plane waves have been previously applied
in the frequency domain in the context of a DG method for
the homogeneous Helmholtz equation [7]–[9]. In this work,
however, a space-time-domain Trefftz method is developed–to
our knowledge, for the first time.

For (1+1)-dimensional Maxwell’s equations (i.e. Maxwell’s
equations in one spatial and one temporal dimension) transport
polynomials of the form

up,±
=





















uE,p,±

uH,p,±





















=





















±
(

x ∓ v t
)p

1
Z

(

x ∓ v t
)p





















, (3)

provide a Trefftz basis. Here the first and second component,
uE anduH, of any basis function in (3) represents the electric
and magnetic field, respectively. We would like to emphasize
that the material parametersZ =

√

µ/ǫ and v = 1/
√
µǫ (i.e.

intrinsic impedance and local speed of light respectively)enter
the basis functions directly. Each order is included twice for
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Figure 1: Transport polynomials of ordersp = 0, 1, 2, 3 in free
space (i.e.ǫr = 1 and µr = 1) to describe waves traveling
rightwards.

representing the directions of the transverse electromagnetic
waves. A wave is traveling rightwards ifE and H have
equal sign, and leftwards otherwise. The first four transport
polynomials in free space are depicted in Fig. 1.

R

To date, we have simulated different wave propagation
scenarios. First, we verified the propagation of a Gaussian
wave in free space. Then, we applied the method to a Gaussian
wave propagation through several material interfaces, com-
forming the boundaries of the computational cells. Finally,
we used DGT to simulate Gaussian wave transmission and
reflection at a material interface located inside a computational
cell. Remarkably, as seen in Fig. 2, the presence of the
material interface does not affect the accuracy and the spectral
convergence ot the method. This is a key feature unique to the
proposed approach.

In Fig. 3 the relativeL2-error obtained with the DGT method
(boxes) is compared to the error obtained using a centered
DG discretization of space combined with a Leapfrog scheme
[10] (triangles). The straight line in the semi-logarithmic plot
demonstrates spectral convergence of DGT-FEM, whereas the
Leapfrog DG scheme is limited by the second-order time
integrator.
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Figure 2: Electric field of a one-dimensional Gaussian wave
with a medium interface atx0 = −0.25, simulated with the
DGT-FEM. The material interface is located in the interior of
an element. The solution in the whole space-time domain of
interest (x, t) ∈ [−5, 5] × [0, 20] is displayed.
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Figure 3: Order dependentL2 error of DGT and Leapfrog DG.
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