
Abstract—this paper compares the numerical performance of 2 
numerical methods, the finite element method and the natural 
element method. Natural element method is relatively recent and 
is based on functions belonging to the Voronoï cell family. 
Whereas it is has been proved that this method gives smoother 
and more accurate solutions than the finite elements, its 
computational cost is also known as being higher. In this paper 
we compare computational efficiency, i.e. accuracy for a given 
cost, of finite elements and natural elements, for both Lagrange 
and Sibson shape functions. We also bring into the comparison a 
Voronoï cell based finite difference scheme which proves to be 
very efficient. The error is calculated using dual formulations. 

Index Terms— Finite element methods, finite difference 
methods, Natural element methods, computational efficiency 
. 

I. INTRODUCTION 

Meshless methods have been widely studied during the 
past 20 years [1]. They proved to bring high accuracy 
solutions, but have also inherent difficulties to handle properly 
boundary conditions, material jump, and connection with finite 
elements [2]. In the late 90s, a new method called Natural 
Element Method (NEM) appears [3] [4], based on the Voronoï 
cell surrounding each node. This method proves to overcome 
all major drawbacks of previous meshless methods, while 
keeping the smooth and highly accurate solutions observed 
with the latter. This method has also been successfully used in 
the field of electrical engineering problems [6]. 

Still the computational cost of Natural Element Method is 
significantly higher than the usual cost of Finite Elements. In 
this work, we propose to compare computational efficiency - 
i.e. accuracy for a given cost, of finite elements and natural 
elements - of both FEM and NEM, for which we take into 
account both Lagrange and Sibson functions. Moreover, a 
finite difference implementation of Voronoï cell functions 
(NFDM) is also included in the comparison.  

II. VORONOI CELL FUNCTIONS 

A. Voronoï Diagram 

The natural element method uses the concept of Voronoï 
cell. Let consider a set of nodes N = {n1, n2, n3, … , nN} 
distributed in the whole domain. The Voronoï diagram is a 
subdivision of the domain into cells, where each cell Ti 
associated to node ni is such that any point in Ti is closer to 
node ni than to any other node nj for i ≠ j. These cells are the 
so called Voronoï cells.  

Considering for instance a 2D space, Ti is the region of the 
plane that contains the points x closest to node nj than to any 

other node as shown in Fig. 1. The Delaunay triangulation, 
which is the dual of the Voronoï diagram, is built by 
connecting the nodes whose Voronoï cells have common 
boundaries, thus leading to the notion of natural neighbors. 

 

 
Fig. 1. A Voronoï diagram (pink color) and its associated Delaunay 

triangulation (gray color). One node, its Voronoï cell and its 5 natural 
neighbors are highlighted. 

B. Shape Function  

Based on the Voronoï diagram, a natural element shape 
function can be expressed. In the literature, various formulas 
are proposed. Among the most used are the Sibson and 
Lagrange functions [4].  

 
Fig. 2. NEM shape function computation. 

 
For the Sibson functions, their determination may be 

performed by analogy with the classical FE shape functions. 
For first-order triangles for instance, it is well known that the 
shape functions are given by a ratio of surfaces. For Sibson 
shape functions, the same principle is applied to the Voronoï 
cells as shown in Fig. 2. The shape function at a point x is thus 
given by (2) where each Si(x) represents the sub area of the 
Voronoï cell centered on  x linked to the natural neighbor ni , 
illustrated by the hashed region in Fig. 2. 
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It can be noticed that when moving to 3D, Sibson function 
will involve relatively complex calculations of volumes.  

In 2D (resp. 3D), Lagrange functions are based on a ratio of 
length (resp. surface), and therefore are more cost efficient. 
However, continuity property in that case is slightly 
deteriorated. 

C. Finite Difference and Finite Element with Voronoï Cell 
Functions 

Both collocation for NFDM and Galerkin schemes for NEM 
can be built using Voronoï cell functions. Finite element 
approach requires the integration of the functions, and due to 
the rational aspect of these functions and their complex 
geometric support, a relatively large number of Gauss points is 
generally used. On the contrary, the finite difference approach 
described in [5] is very efficient in terms computation time and 
maintains good accuracy even on unstructured grids. 

III.  NUMERICAL RESULTS AND CONCLUSIONS 

To illustrate the computational performance of each 
method, we are presenting numerical results based on an 
electrostatic problem describing an L shaped capacitance. This 
test problem has been solved by all methods (FEM, Laplace 
and Sibson NEM, and NFDM) and for each case, by dual 
formulations to determine an error estimator. 

First, Fig. 4 plots the relative computation time. As we may 
expect, NFDM performs best since no integration is needed 
together with 2nd order FEM, then comes 1st order FEM and 
last NEM which pays the cost of both numerical integration 
and a larger band size. 

 
Fig. 4. Computation time for NEM (Laplace), FEM (1st and 2nd order) and 

NFDM according to the number of degree of freedom. 

 
Then, regarding accuracy, Fig. 5 clearly demonstrates the 

very interesting accuracy of NEM. But it also interesting to 
notice that the finite difference method based on Voronoï cell 
functions is also performing much better than first order finite 
elements. 
 

 
Fig. 5. Accuracy of NEM, FEM (1st and 2nd order) and NFDM according to 

the length between nodes. 

Last, Fig. 6 compares the computational performance of 
these 3 methods. For a given accuracy, the methods based on 
Voronoï cell functions - NFDM and NEM - are significantly 
much faster than 1st order FEM (more or less one order of 
magnitude in time). This tends to clearly demonstrate the very 
interesting behavior of the Voronoï cell approach: the 
interpolation has a high degree of continuity, it does not 
exhibit edge noise, and last, it has a kind of isotropic 
interpolation behavior around a node, very similar to the one 
observed with meshless methods. A more comprehensive 
review of these results will be developed in the extended 
version of the paper. 

 
Fig. 6. Compared performance of NEM, FEM and NFDM. 
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