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Chairman Foreword

It is a great pleasure and honour for us to welcome you all to COMPUM-
AG 2009, the 17th International Conference on the Computation of Elec-
tromagnetic Fields in our town, Florianópolis, state of Santa Catarina, 
Brazil.

It is the second time that COMPUMAG is held in Brazil. The first one was 
in 1997, in Rio de Janeiro. That event accomplished an important goal: 
it encouraged the Brazilian Community to maintain and expand their ac-
tivities in the area of Electromagnetic Modelling. If today Brazil has a 
significant standing in this field of research, COMPUMAG 1997 contrib-
uted to this achievement. We believe that Compumag 2009 will assume a 
similar motivating role. In the same spirit, it is our sincere hope that this 
event will inspire our worldwide community.

At this point, we would like to provide you with some figures and facts 
about COMPUMAG 2009. The conference has attracted 622 valid sub-
missions from 36 countries. About 220 reviewers of the Editorial Board, 
led by Nathan Ida, have worked diligently to select the accepted papers. 
The list of reviewers was enhanced with several new members mostly rec-
ommended by the ICS Board. COMPUMAG 2009 has 8 Oral Sessions 
and 25 Poster Sessions, with 548 accepted contributions, including 8 in-
vited papers. The main criterion for the selection of invited papers was 
the technical and scientific quality of the papers. The first paper in each 
Oral Session is an invited paper.

The organisation of the conference started in 2005 when Florianópolis 
was chosen as the conference venue for 2009. Of course, the preparation 
activity became intense two years ago. The Brazilian community, espe-
cially our colleagues from Universidade de São Paulo and Universidade 
Federal de Minas Gerais were very active partners in our organization 
work. The SBMag – Sociedade Brasileira de Eletromagnetismo – was 
also very supporting since its financial participation was necessary in the 
conference preparation.

The Local Organizing Committee was formed mainly from members of 
GRUCAD – Grupo de Concepção e Análise de Dispositivos Eletromag-
néticos, from the Universidade Federal de Santa Catarina, an amazing 
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team that allowed us to organize COMPUMAG 2009 in a consistent and 
systematic way. They are a very reliable group of people who worked with 
serenity and professionalism. All were very enthusiastic when taking up 
duties and fulfilling tasks to shape the most prestigious conference in our 
scientific area.

We hope that all of you will benefit from the excellent quality of technical 
presentations at COMPUMAG 2009, have fruitful discussions and pleas-
ant moments through meeting friends and colleagues and establish new 
scientific relationships. A meeting of this size cannot be brought together 
without the dedicated efforts of many people and we would like to take 
this opportunity to thank everyone involved in the conference. Each at-
tendee and each paper are very important to its success.

As organisers of COMPUMAG 2009 we were particularly keen to encour-
age young researchers to attend the conference and enjoy all available 
benefits. We trust we achieved this goal by offering a significantly reduced 
registration fee for full time students (lower than at any previous COM-
PUMAG). Additionally, it is fully inclusive (all lunches, conference din-
ner, social programme). We strongly believe that students should have 
the same networking opportunities as their supervisors and we hope that 
this will motivate our young colleagues to work vigorously in the fascinat-
ing field of computational electromagnetic.

Finally, we hope that the conference will give you a chance to visit and get 
to know this country of the South Hemisphere. Florianópolis is a small 
but beautiful place and you certainly should try to capture its charm. We 
wish you a pleasant stay in our island and a safe return home after the 
conference. We also hope that the atmosphere at COMPUMAG 2009 will 
inspire new friendships amongst engineers and scientists for the benefit 
of the society in the years ahead.

João Pedro Assumpção Bastos 
Chairman
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LoCaL organising Committee

The organising committee is composed of members of the three main 
Brazilian research groups in EM Modeling: 

GRUCAD•	  (Grupo de Concepção e Análise de Dispositivos Eletro-
magnéticos), from the Universidade Federal de Santa Catarina 
(UFSC);
LMAG•	  (Laboratório de Eletromagnetismo Aplicado), from the Uni-from the Uni- Uni-
versidade de São Paulo (USP); 
GOPAC•	  (Grupo de Otimização e Projetos Assistidos por Computa-
dor) from the Universidade Federal de Minas Gerais (UFMG). 

Chairman
Prof. João Pedro Assumpção Bastos (GRUCAD, UFSC)

Vice-Chairman
Prof. Nelson Sadowski (GRUCAD, UFSC)

Committee Members
from GRUCAD/UFSC: R. Carlson, N. J. Batistela
from LMAG/USP: J. R. Cardoso, L. Lebensztajn, S.I. Nabeta, V. Silva, 
C.A.F. Sartori 
from GOPAC/UFMG: R.C. Mesquita, J.A. Vasconcelos, R.R. Saldanha, 
J.A. Ramirez, E.J. da Silva

Secretariat (GRUCAD/UFSC)
Mauricio Valencia Ferreira da Luz
Walter P. Carpes Jr.
Celly D. Melo

Treasurer
Patrick Kuo-Peng (GRUCAD/UFSC)

Technical Support
Mauricio Rigoni
Tulio L. dos Santos
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The Local Committee (left to right): Walter, Patrick, 
Mauricio, Renato, Celly, Nelson, João Pedro and Jhoe

Contact

compumag2009@grucad.ufsc.br

Address
GRUCAD / EEL / CTC, UFSC, CP 476
Florianópolis, SC, 88040-900, Brazil
Phone: +55 48 3721-9649
Fax: +55 48 3234-3790
website: www.compumag2009.com
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internationaL Compumag soCiety

http://www.compumag.co.uk

ICS Board

President: Prof. Arnulf Kost (Germany)
Honorary President: Dr. Bill Trowbridge (UK)
Secretary: Prof. Jan Sykulski (UK)
Vice-President (The Americas): Prof. David Lowther (Canada)
Vice-President (Asia and Oceania): Prof. Norio Takahashi (Japan)
Secretary (The Americas): Prof. João Pedro Bastos (Brazil)
Secretary (Asia and Oceania): Prof. Dexin Xie (China)
Prof. Raffaele Albanese (Italy),
Prof. Piergiorgio Alotto (Italy),
Dr. Oszkar Biro (Austria),
Dr. Patrick Dular (Belgium),
Prof. Chang-Seop Koh(Korea),
Mr. Behzad Forghani (Canada),
Prof. Herbert de Gersem (Belgium),
Prof. Kay Hameyer (Germany),
Prof. Nathan Ida (USA),
Prof. Hajime Igarashi (Japan),
Prof. Hyung-Kyo Jung (Korea),
Dr. Jun Wei Lu (Australia),
Prof. Jaime Ramirez (Brazil),
Dr. Zhuoxiang Ren (USA),
Dr. Stephan Russenschuck (Switzerland),
Dr. Sheppard Salon (USA),
Dr. Viviane Cristine Silva (Brazil),
Prof. Jan Sykulski (UK),
Prof. Qingxin Yang (China),
Prof. Jianguo Zhu (Australia).
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Editorial Board

Chairman: Prof. Nathan Ida (The University of Akron, USA)

Editorial Board Members
Abou El-Fadl, Ahmed Albanese, Raffaele
Alfonzetti, Salvatore Ali, Abakar
Alotto, Piergiorgio Andjelic, Zoran
Antonopoulos, Christos Arjona, Marco
Assumpção Bastos, João Pedro Auchmann, Bernhard
Außerhofer, Stefan Badics, Zsolt
Bandelier, Bernard Bardi, Istvan
Barmada, Sami Batistela, Nelson Jhoe
Belahcen, Anouar Biro, Oszkar
Bouillault, Frédéric Brandstaetter, Bernhard
Brauer, Hartmut Brauer, John
Brosseau, Christian Buchau, André
Burais, Noel Buret, François
Campelo, Felipe Canova, Aldo
Cardelli, Ermanno Cardoso, Jose Roberto
Carlson, Renato Carpentieri, Mario
Carpes Jr., Walter Pereira Cavalcante, Gervásio P.
Cesar, Amilcar Careli Chabu, Ivan
Chadebec, Olivier Chan, Tze-Fun
Cheng, Zhiguang Chiampi, Mario
Choi, Charles T. M. Christopoulos, Christos
Ciuprina, Gabriela Clemens, Markus
Clenet, Stephane Coco, Salvatore
Codecasa, Lorenzo Coulomb, Jean-Louis
Cranganu-Cretu, Bogdan Cui, Xiang
d´Assunção, Adaildo Gomes da Luz, Mauricio V. Ferreira
Davenport, Liz De Gersem, Herbert
de Vasconcelos, João Antonio Di Barba, Paolo
Di Rienzo, Luca Dolinar, Drago
Duffy, Alistair Dufour, Stephane
Dughiero, Fabrizio Dular, Patrick
Dupre, Luc Dyck, Derek
Dyczij-Edlinger, Romanus Emson, Cris
Fahimi, Babak Feliziani, Mauro
Fernandes, Paolo Figueroa, Hugo E. H.
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papers by topiCs

Here you find a survey of the number of submissions for each confer-
ence topic. Notice that some papers were assigned by the authors on more 
than one topic. 

Topics No. of 
Submissions

Static Fields 35
Quasi-Static Fields 45
Wave Propagation 47
Electromagnetic Compatibility 35
Nanomagnetics and Applications 5
Optimization 97
Material Modelling 49
Coupled Problems 62
Numerical Techniques 176
Software Methodology 32
Electric Machines and Drives 164
Devices and Applications 101
Education 7
Benchmarking (TEAM) 9
Photonics/Optoelectronics 8
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papers by Country

Algeria 3
Australia 11
Austria 16
Belgium 10
Brazil 89
Canada 18
China 61
Christmas Island 1
Cuba 1
Czech Republic 2
Finland 11
France 85
Germany 29
Greece 4
Hong Kong S.A.R. – China 7
Hungary 2
Iran (Islamic Republic of) 8
Italy 48
Japan 53
Lebanon 1
Mexico 3
Netherlands, The 4
Poland 14
Portugal 2
Romania 4
Russian Federation 3
Slovakia 1
Slovenia 4
Korea, South (Republic of) 95
Spain 1
Switzerland 7
Taiwan 2
Thailand 1
Turkey 2
United Kingdom 5
United States of America 14
TOTAL 622
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sponsoring and exhibitor 
Companies

UFSC – Universidade Federal de Santa Catarina

ICS – International Compumag Society

PPGEEL – Programa de Pós-Graduação em Engenharia Elétrica

SBMag – Sociedade Brasileira de Eletromagnetismo

CNPq – Conselho Nacional de Desenvolvimento Científico e Tecnológico

CAPES – Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Electromagnetics Tecnologia e Informática Ltda

ESSS – Engineering Simulation and Scientific Software

CST – CST: Computer Simulation Technology AG

EM Software and Systems – SA (Pty) Ltd

JSOL Corporation 

Schneider-Electric

Whirlpool S.A. – Unidade EMBRACO
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Venue

“Costão do Santinho” Resort and Spa is the venue of the conference. 
it is one of the best resorts in Brazil, recognized by Brazilians and • 
foreign people as an outstanding hotel, offering an international 
quality level service
it is the favourite place to hold conferences since it has several facili-• 
ties to meet various needs
the resort has a commercial center with stores, tourism agencies, • 
banks, transportation, pharmacy, etc.
inside the resort, there are several restaurants, cafes and meeting • 
points located in different places
several pools, gym rooms, sport and spa facilities are available for • 
the guests
the resort is located on the Santinho beach, one of the most beauti-• 
ful of the island

The “Costão do Santinho” Resort is located at the north of the island, 40 
km from downtown and 50 km from the airport. Typical prices for taxis 
to downtown are around 35 Euros (one way).

The Costão do Santinho is located at the Santinho beach
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Resort, aerial view

Florianópolis

Overview

Florianópolis is the capital of the state of Santa Catarina, located in south-
ern Brazil. It is located some 700 km south (about 1 hour flight) of São 
Paulo.  Its population is around 450,000 inhabitants and is known as a 
calm city, with excellent quality of life. 

The city of Florianópolis is located on an island called “Ilha de Santa 
Catarina”. Its dimensions are about 52 km (north-south) by 12 km (east-
west). Three bridges connect the city to the continent but only two are 
operational (the third is a historical monument and a symbol of the city). 
The airport “Hercílio Luz” is located on the island. Florianópolis boasts 
42 beaches, which are quite different from each other.  The ones located 
between the mainland and the island, (Canasvieiras, Jurerê, Cachoeira do 
Bom Jesus, Ponta das Canas, etc) are calm and the water is warm. Those 
who prefer a little fresher water with waves would choose the beaches on 
the ocean side (Joaquina, Moçambique, Campeche, Costão do Santinho, 
Pântano do Sul, Barra da Lagoa, Mole). The latter beaches offer excellent 
surfing. 
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In the interior of the island there is a large lagoon connected to the ocean 
by a narrow channel, called the “Lagoa da Conceição”, an amazing en-
vironment, with alternating water and landscapes. Around this lagoon, 
there are many bars and restaurants offering international food, but the 
typical fish dishes are, of course, the most appealing.

In downtown there is the concentration of buildings and commerce. That 
is also the place where the bridges connect the island to the continent. 
Being an average size town, the downtown is calm and walking on its 
pedestrian street (Felipe Schmidt) or on the main plaza (Praça 15 de No-
vembro) is highly recommended. The old public market (1898) is also an 
interesting point to be visited.

History

The foundation of Florianópolis dates to 1726 by Azorean (Portuguese) 
colonization. Shortly afterwards, Santo Antônio de Lisboa (1751) and 
Ribeirão da Ilha (1803) were established. They are also located on the 
island and are now neighborhoods in the city. These two villages boast 
old Portuguese colonial buildings as well as very good restaurants 
and bars and an atmosphere quite different than the rest of the city. Visit-
ing them is a very pleasant choice.

In 1823 Florianópolis became the capital of the state. At that time, 
its name was “Nossa Senhora do Desterro”. The name of the town changed 
to Florianópolis in 1894 in homage to the Marechal Floriano Peix-
oto. Interestingly, this military man was, and still is considered, a nasty 
personage by the people of the town. He was instructed by the national 
government in Rio de Janeiro (at that time) to quell a rebellion after the 
republican revolution (Brazil was a monarchy until 1889). Many influ-
ential people of the town were executed in this violent repression by 
the federal government. As a result, the name Florianópolis, imposed 
by Rio de Janeiro, was never well accepted by the local people. Today, 
these sad memories have been slowly erased by the time, but, neverthe-
less, some people still reject this name and prefer to use expressions such 
as “capital of Santa Catarina” or “Desterro” and even avoid pronouncing 
the word “Florianópolis”.

Florianópolis was an important and strategic place for the Portu-
guese colonizers, since this land was constantly disputed by Spain. In-
deed, the city of Laguna (100 km south of Florianópolis) was on the me-
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ridian that divided the lands of Portugal and Spain (treatise of 
Tordesilhas, agreed upon in 1494 by the two countries). Therefore for-
tresses were built on the island and on the main land, to protect the land 
from the Spaniards. The most important is the “Fortaleza da Ilha de 
Anhatomirim” which was restored and is a nice place to visit. There are 
also two fortresses on two small islands called “Ilha de Ratones Grande” 
and “Ilha de Ratones Pequeno”, both easily reached by boat. For a long 
period, Florianópolis was mainly the administrative capital and, in terms 
of economy, the town was far below the industrially developed 
Blumenau and Joinville to its north. These two cities were established 
by Germans and Italians in the XIX century.

In the 1970s, with the establishment of the Federal University of Santa 
Catarina and Eletrosul (utility company for the South Region of Brazil) 
Florianópolis became a more important town and a cultural cen-
ter of the state. Recently many other private universities were also es-
tablished in the capital and its economy is flourishing. Because of its priv-
ileged nature and the quality of life, many people moved to Florianópolis 
in the 90s and the city is constantly growing in population. Resi-
dential and commercial buildings as well as hotels have been constructed 
regularly in these last years. Since it is the most touristy and demanded 
town in the South Region, its population swells by about 50% each 
summer only to revert to its normal size by the end February.
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generaL inFormation

Conference Desk

The Conference Desk is located near the entrance of the Conference 
Area of the Hotel Costão do Santinho Resort. It will be open all day long, 
throughout the conference. Staff members will be available there to assist 
you in all matters related to the conference itself.

Açoriana Tourism Agency Desk

This tourism agency has a desk close to the Conference Desk. They will 
provide you information about tourist activities in Florianópolis, the post-
conference tour, flight information, etc.

Welcome Reception

The Welcome Reception takes place on Sunday, November 22nd, be-
tween 19:30 and 21:30 in the hotel chalet by the Santinho beach. Finger 
food and refreshments will be served, in a convivial atmosphere, to cel-
ebrate the reunion of the COMPUMAG community and the beginning of 
the conference. 

Lunches

All lunches are served in the Lunch room, between 12:10 and 13:30. Please, 
make sure to have with you, when presenting yourself at the restaurant’s 
door, the appropriate lunch ticket for that day.

Conference Dinner

The Conference Dinner takes place on Wednesday, November 25th, from 
20:00 to 23:30, in the Alameda Casa Rosa. A typical Brazilian music per-
formance will be presented to the guests. The coaches will be ready at 
19:00 at the Venue entrance. Make sure you have the appropriate ticket 
and, please, be on time for the buses departure.
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author inFormation

Guidelines for Oral Presentations

Timing 

Oral presentations are allocated 15 minutes for the talk and an addi-
tional 5 minutes for questions and discussion. Session timings are listed 
in the technical program booklet. Session chairs will strictly enforce these 
time limits. A useful estimate is to allot approximately one minute for 
each transparency or slide prepared for the talk.

As for invited papers, the allocated times are 25 minutes for presen-
tation and 5 minutes for questions and discussion. 

Format

All oral presentations should be prepared in Microsoft Powerpoint for-
mat. There will be a number of computers available at the Conference 
Computer Room with the same version of Powerpoint installed as in the 
plenary room, in order to allow all speakers checking their presentation 
in advance (fonts, resolution, etc.). After this check, the presentation can 
be uploaded into the Conference media system. You are asked to hand in 
the file of your presentation, on a CD-rom or a USB Memory stick, the 
day before the session where it will be presented. An assistant will be 
present in Media Center, every day between 8:00-10:30 and 14:00-17:10 
to receive your file and upload it on the system.

Presentation

The day of their oral presentation, all speakers should “check in” with the 
session chairman at least 10 minutes before the scheduled start of the ses-
sion in order to confirm the name of the author (or co-author) who will 
present the talk. Talks will be called at the time scheduled in the technical 
program booklet. Session chairs have the responsibility of reporting “no-
shows” to the Editorial Committee. No-show papers will not be consid-
ered for publication in the IEEE Transactions on Magnetics journal. All 
speakers are urged to prepare visuals in advance of the conference and to 
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practice their talk. The success of the conference depends on the quality 
of the technical work as well as their presentations. 

Guidelines for Poster Presentations

Attendance

Please arrive at least 10 minutes ahead of the scheduled poster session 
to arrange your poster and check that all necessary supplies are present. 
One or more of the authors including a prime presenter should be present 
at the poster for most of session and be capable of explaining it. Session 
chairs have the responsibility of determining whether papers have actu-
ally been presented. Failure to attend or adequately explain your poster 
will result in your poster being deemed a “no show”. No-show papers will 
not be considered for publication in the IEEE Transactions on Magnetics 
journal.

Dimensions

Poster boards will be available for the presentation of poster papers. Be-
fore the session begins, the conference organizer will place the paper 
number on the top left of the board, as shown on the opposite picture. 
Prepare your poster in the format 90cm (width) x 130cm (height). Your 
paper title and author names, affiliations should be displayed prominent-
ly across the top of your poster. Push pins or stickers will be provided by 
the conference organization. Please, keep in mind that your poster will be 
seen by everyone at the conference. Pay very close attention to the visual 
appearance of your presentation, be clear and concise, and keep text to a 
minimum. 

Removal

All poster materials must be removed promptly at the end of the session. 
Poster materials not collected immediately by an author will be removed 
and discarded by the organizers to allow preparation for the next poster 
session.

Software Companies Exhibits

During the conference, next to the Poster Session Room I, you have the 
opportunity to visit the stands of our software and industrial exhibitors, 
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presenting the latest innovations offered by state-of-the-art computa-
tional electromagnetic products available on the market.

Emerald Compel Award

This prize will be awarded to a young researcher, who is a participant of 
Compumag 2009 registered as a STUDENT. The paper may be co-au-
thored, but the recipient must have contributed significantly, the evidence 
of this being demonstrated for example by the fact that he/she is listed 
as the first author. Finally, the paper must be presented by the young re-
searcher in either an oral or a poster session. A special Awards Committee, 
working together with session chairs and the Board of the International 
Compumag Society, will select about 6 papers which will be commended 
and the authors will receive certificates on behalf of the ICS Board. One of 
these authors (in exceptional circumstances two for a joint award) will be 
identified as the recipient of the Emerald COMPEL award.

More information about the COMPEL journal can be found at:

http://www.emeraldinsight.com/info/journals/compel/compel.jsp.

Final submission

Papers presented at the conference will be considered for publication in 
2010 special issue of the “IEEE Transactions on Magnetics” journal after 
a second peer-review process. The length of all extended papers is lim-
ited to 4 pages for regular papers and 7 pages (minimum) for the 
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XXII

http://www.emeraldinsight.com/info/journals/compel/compel.jsp
www.compumag2009.com


session Chairs

Alotto, Piergiorgio, Università di Padova, Italy (OB2)

Arkkio, Antero, Helsinki University of Technology, Finland (PC2)

Badics, Zsolt, Rhythmia Medical, Inc., USA (PA4)

Batistela, Nelson Jhoe, GRUCAD, Univ. Federal da Santa Catarina, Brazil (PC1)

Benabou, Abdelkader, L2EP-University of Lille, France (PC3)

Biro, Oszkar, IGTE, TU Graz, Austria (OD2)

Bottauscio, Oriano, Instituto Nazionale di Ricerca Metrologica, Italy (PB7)

Bouillault, Frédéric, LGEP, France (PA2)

Cardelli, Ermanno, University of Perugia, Italy (PC5)

Cardoso, Jose Roberto, Escola Politécnica, USP, Brazil (OA1)

Carlson, Renato, GRUCAD, Univ. Federal da Santa Catarina, Brazil (PD2)

Carpes Jr., Walter Pereira, GRUCAD, Univ. Federal da Santa Catarina, Brazil (PB2)

Clemens, Markus, Univ. Fed. Armed Forces Hamburg, Germany (PC4)

Clénet, Stéphane, L2EP/Arts et Métiers Paris Tech, ENSAM, France (PB7)

De Gersem, Herbert, Katholieke Universiteit Leuven, Belgium (PD2)

Demenko, Andrzej, Poznan University of Technology, Poland (OD1)

Di Rienzo, Luca, Dipartimento di Elettrotecnica, Politecnico di Milano, Italy (PA4)

Dlala, Emad, Helsinki University of Technology (TKK), Finland (PD3)

Dular, Patrick, University of Liège, Belgium (OB1)

d’Assunção, Adaildo Gomes, Univ. Federal do Rio Grande do Norte, Brazil (PB3)

da Luz, Mauricio V. Ferreira, GRUCAD, Univ. Federal de Santa Catarina, Brazil (PA1)

Flores, Aly Ferreira, UFRGS, Brazil (PC2)

Forghani, Behzad, Infolytica Corp., Canada (PD1)

Françoise, Rioux-Damidau, U2R2M, France (PD4)

Freschi, Fabio, Politecnico di Torino, Italy (PD4)

Giannacopoulos, Dennis D., McGill University, Canada (PA3)

Hameyer, Kay, RWTH Aachen University, Germany (PA1)

Henrotte, François, RWTH Aachen University, Germany (PB5)

Ida, Nathan, The University of Akron, United States (OB1)

Kawase, Yoshihiro, Dept. of Information Science, Gifu University, Japan (PC3)

Kladas, Antonios, National Technical University of Athens, Greece (PC6)

Koh, Chang Seop, Chungbuk National University, South Korea (OD1)

Kost, Arnulf, TU Berlin, Germany (OC2)

XXIII



Krähenbühl, Laurent, CNRS, Université de Lyon, France (PB1)

Le Menach, Yvonnick, L2EP-University of Lille, France (PC4)

Lebensztajn, Luiz, Escola Politécnica, USP, Brazil (PA5)

Lowther, David, ECE Dept., McGill University, Canada (OB2)

Lu, Junwei, Griffith University, Australia (PC7)

Marechal, Yves, G2ELAB, Grenoble, France (PB1)

Matsuo, Tetsuji, Kyoto University, Japan (PC5)

Mazauric, Vincent, Schneider Electric, France (PD1)

Mesquita, Renato Cardoso, Universidade Federal de Minas Gerais, Brazil (OD2)

Muramatsu, Kazuhiro, Saga University, Japan (PB4)

Nabeta, Silvio, Escola Politécnica, USP, Brazil (PA6)

Nicolet, André, Université Paul Cézanne, France (PC8)

Perrussel, Ronan, CNRS, Université de Lyon, France (PA5)

Piriou, Francis, L2EP-University of Lille, France (OA2)

Preis, Kurt, IGTE, Technical University Graz, Austria (PB6)

Raizer, Adroaldo, GEMCO, Univ. Federal da Santa Catarina, Brazil (PB3)

Ramirez, Jaime, Universidade Federal de Minas Gerais, Brazil (PB2)

Razek, Adel, LGEP, France (PC6)

Ren, DaQi, The University of Tokyo, Japan (PC7)

Ren, Zhuoxiang, Mentor Graphics Corporation, USA (PD3)

Sabariego, Ruth V., University of Liège, Belgium (PC1)

Saldanha, Rodney R., Universidade Federal de Minas Gerais, Brazil (PB5)

Sartori, Carlos,  Escola Politécnica, USP, Brazil (PB4)

Scorretti, Riccardo, CNRS, France (PC8)

Silva, Elson J., Universidade Federal de Minas Gerais, Brazil (PB6)

Silva, Viviane Cristine, Escola Politécnica, USP, Brazil (PA3)

Sykulski, Jan, University of Southampton, United Kingdom (OA2)

Takahashi, Norio, Okayama University, Japan (OC1)

Tounzi, Abdelmounaim, L2EP-University of Lille, France (PA2)

Trowbridge, Bill, Honorary President of the ICS, United Kingdom (OA1)

Xie, Dexin, Shenyang University of Technology, China (OC2)

Yamazaki, Katsumi, Chiba Institute of Technology, Japan (PA6)

Zhu, Jianguo, University of Technology, Sydney, Australia (OC1)

XXIV



XXV

sCheduLe

Monday,  
23/Nov

Tuesday,  
24/Nov

Wednesday,  
25/Nov 

Thursday,  
26/Nov 

08:30
10:20

Opening 
Session* 
and OA1

OB1 OC1 OD1

Coffee Break

10:40
12:10

PA1 (PSR I)
PA2 (PSR I)
PA3 (PSR II)

PB1 (PSR I)
PB2 (PSR I)
PB3 (PSR II)
PB4 (PSR II)

PC1 (PSR I)
PC2 (PSR I)
PC3 (PSR II)
PC4 (PSR II)

PD1 (PSR I)
PD2 (PSR I)
PD3 (PSR II)
PD4 (PSR II)

Lunch

13:30
15:00

PA4 (PSR I)
PA5 (PSR I)
PA6 (PSR II)

PB5 (PSR I)
PB6 (PSR I)
PB7 (PSR II)

PC5 (PSR I)
PC6 (PSR I)
PC7 (PSR II)
PC8 (PSR II)

OD2 
(13:30-15:20)

Coffee Break

15:20
17:10

OA2 OB2 OC2 Closing 
Session

20:00
Conference 

Dinner

Oral sessions take place in the Plenary Session Room.

PSR I: Poster Session Room I

PSR II: Poster Session Room II

* The Opening Session takes place between 08:30 and 09:00 at the Plenary Session 
Room



XXVI

Sessions

OA1: Static and Quasi-static Fields
OA2: Coupled Problems
OB1: Wave Propagation and Nanomagnetics
OB2: Optimization
OC1: Material Modelling and Numerical Techniques
OC2: Devices and Applications and Electromagnetic Compatibility
OD1: Electric Machines and Drives
OD2: Numerical Techniques and Software Methodology
PA1: Static and Quasi-Static Fields I
PA2: Static and Quasi-Static Fields II
PA3: Coupled Problems I
PA4: Static and Quasi-Static Fields III
PA5: Coupled Problems II
PA6: Electrical Machines and Drives I
PB1: Optimization I
PB2: Optimization II
PB3: Waves Propagation I
PB4: Numerical Techniques I
PB5: Optimization III
PB6: Waves Propagation II, Nanomagnetics, Photonics and 

Optoelectronics
PB7: EMC – Electromagnetic Compatibility
PC1: Material Modelling I
PC2: Electrical Machines and Drives II
PC3: Devices and Applications I
PC4: Numerical Techniques II
PC5: Material Modelling II
PC6: Electrical Machines and Drives III
PC7: Numerical Techniques III
PC8: TEAM, Education and Software Methodology
PD1: Electrical Machines and Drives IV
PD2: Electrical machines and Drives V
PD3: Devices and Applications II
PD4: Numerical Techniques IV



teChniCaL program

Monday, November 23rd

Session OA1: Static and Quasi-static Fields
09:00-10:30 – Room: Plenary Session Room

OA1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

(Invited) Surface-Impedance Boundary Conditions in Dual Time-Domain 
Finite-Element Formulations
Ruth V. Sabariego, Patrick Dular, Christophe Geuzaine, Johan Gyselinck

OA1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3

Kriging for eddy-current testing problems
Sandor Bilicz, Emmanuel Vazquez, Szabolcs Gyimothy, Jozsef Pavo, Marc Lambert

OA1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5

Adaptive Parabolic-Elliptic Time Integration Method for Electroquasistatic 
Problems
Zsolt Badics

OA1.4  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7

Numerical experimentations on the coupling between PEEC and volume 
integral method
Le Duc Tung, Chadebec Olivier, Meunier Gerard, Lembeye Yves, Guichon Jean-
Michel, Delinchant Benoit

Session PA1: Static and Quasi-static Fields I
10:40-12:10 – Room: Poster Session Room I

PA1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9

Electromagnetic Device Analysis using a Meshless Approach coupled to a 
Kohonen Network
Rajeev Das, David Lowther

XXVII



PA1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Hysteresis Phenomenon Implementation in FIT: Validation with 
Measurements
Julien Korecki, Abdelkader Benabou, Yvonnick Le Menach, Jean Pierre Ducreux, 
Francis Piriou

PA1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Influence of a rough thin layer on the potential
Clair Poignard, Ronan Perrussel, Ionel Ciuperca

PA1.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Shell’s magnetization identification from very close magnetic measurements
Yannick Vuillermet, Olivier Chadebec, Jean-Louis Coulomb, Laurent Demillier, 
Laure-Line Rouve, Gilles Cauffet

PA1.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Interaction Body Force Field and Total Force on Permanent Magnet by 
Virtual Air-gap Approach
Se-Hee Lee, Young-Sun Kim, Ho-Young Lee, Heung-Geun Kim, Hong-Soon Choi

PA1.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Block-preconditioning for hybrid discretisations in combination with 
Lagrange-multiplier coupling
Stephan Koch, Herbert De Gersem, Thomas Weiland

PA1.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21

MHD Convection of a Electrically Conductive Fluid with Variable Thermal 
Conductivity
Mohsen Pirmohammadi, Majid Ghassemi, Asghar Keshtkar

PA1.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23

Introduction of a Direct Solver at Subdomains in Non-linear Magnetostatic 
Analysis with HDDM
Shin-Ichiro Sugimoto, Jian Zhao, Masao Ogino, Hiroshi Kanayama, Shinobu 
Yoshimura

PA1.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25

A Discrete Geometric Approach to solving 2D non-linear magnetostatic 
problems
Paolo Bettini, Ruben Specogna, Francesco Trevisan

XXVIII



PA1.10  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27

Optimal Selection of the Integration Surface in the Hybrid FEM-DBCI 
Method
Nunzio Salerno, Giovanni Aiello, Salvatore Alfonzetti

PA1.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29

Periodic and Anti-periodic boundary conditions with the Lagrange multipliers 
in the FEM
Mathieu Aubertin, Thomas Henneron, Francis Piriou, Pierre Guerin, Jean Claude 
Mipo

PA1.12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31

Analysis of the Ionized Field under HVDC Transmission Lines Including 
Wind’s Effect Based on Finite Element Method
Tiebing Lu, Han Feng, Xiang Cui, Zhibin Zhao, Lin Li

PA1.13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33

A new self-consistent 3D unbounded magnetic field FE computation for 
electron guns
Antonino Laudani, Salvatore Coco, Giuseppe Pollicino, Paola Tirrò

PA1.14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35

Using a direct field calculation method to solve magnetostatic design inverse 
problem
Raphael Vilamot, Carole Henaux, Bertrand Nogarede

PA1.15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37

Calculation of the Flux Linkage of a 12/8 Dual-Channel SRM Including 
Mutual Coupling and Saturation: From Magnetic Circuit Model to FEM 
Analysis
Wen Ding, Deliang Liang

PA1.16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39

Effects of Core Materials on Magnetic Bearing Parameters
Bronislaw Zbigniew Tomczuk, Jan Zimon, Andrzej Waindok

PA1.17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41

Optimization of Electrostatic Micromotor by a Non-linear Interior Point 
Method
Adriano Chaves Lisboa, Rodney Rezende Saldanha, Douglas Alexandre Gomes 
Vieira

XXIX



PA1.18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43

A Modified FEM-DBCI Method for Static and Quasi-Static Electromagnetic 
Field Problems
Nunzio Salerno, Giovanni Aiello, Salvatore Alfonzetti, Giuseppe Borzi’, Emanuele 
Dilettoso

PA1.19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45

Dynamic Simulation of Surge Corona with Time-dependent Upwind 
Difference Method
Wei Li, Bo Zhang, Jinliang He, Rong Zeng

PA1.20  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47

Using Neumann Series for Reduction of Computational Effort of Quasistatic 
EM-Simulations
Carsten Potratz, Daniel Kluess, Robert Souffrant, Hartmut Ewald, Ursula van 
Rienen

PA1.21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Exposure of working population to pulsed magnetic fields
Aldo Canova, Fabio Freschi, Luca Giaccone, Maurizio Repetto

Session PA2: Static and Quasi-static Fields II
10:40-12:10 – Room: Poster Session Room I

PA2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Comparative Study Applying Constant Current Source and Constant Voltage 
Source to Treat Cancer Using Electrochemical Therapy
Marcos Telló, Luciana Oliveira Oliveira, Rosemari Teresinha Oliveira, Orlando 
Parise Jr., Antonio Carlos Buzaid, Rodrigo Zanella, Helio Radke Bittencourt, 
Augusto Cardona

PA2.2  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53

Calculation of Poynting Vector and Analysis on the Energy Transfer of 
Transmission Line
Fan Yang, Wei He, Yuxin Yun, Dongping Xiao

PA2.3  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55

A Particle Trajectory Code using the FEM approach: preliminary results
César Candido Xavier, Cláudio Costa Motta

XXX



PA2.4  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57

Hierarchical Block Wavelet Compression for BEM Problems of Arbitrary 
Dimension
Christian Scheiblich, Remus Banucu, Jan Albert, Veronika Reinauer, Wolfgang M. 
Rucker

PA2.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59

A quick and efficient method to compute radial flux density distribution in the 
airgap of a superconducting inductor
Gaël Malé, Smail Mezani, Renaud Moulin, Jean Lévêque, Abderrezak Rezzoug

PA2.6  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61

Solution of Dual Stochastic Static Formulations Using Double Orthogonal 
Polynomials
Stephane Clenet, Nathan Ida, Roman Gaignaire, Olivier Moreau

PA2.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63

Nonlinear Eddy Current Analysis by BEM Minimum Order Formulation
Kazuhisa Ishibashi, Zoran Andjelic, David Pusch

PA2.8  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65

A perturbation method for the $T-\Omega$ eddy--current formulation
Ruben Specogna, Lorenzo Codecasa, Patrick Dular, Francesco Trevisan

PA2.9  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67

Electromagnetic Inspection of Outer Side Defect on Steel Tube with Steel 
Support using 3D Nonlinear FEM Considering of Non-Uniform Permeability 
and Conductivity
Yuji Gotoh, Atsushi Kiya, Norio Takahashi

PA2.10  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Discontinuous Galerkin method with T,Phi-Phi Formulation for 3D eddy 
current problems
Stefan Außerhofer, Oszkár Bíró

PA2.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

A Mesh-Free Model of Eddy-Current Losses for 2D Analysis of Ferromagnetic 
Laminations
Paavo Rasilo, Antero Arkkio

PA2.12  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73

Boundary Element Modelling of Earth Effects on Railway Track Transmission 
Line Impedances
Luca Di Rienzo, Zichi Zhang

XXXI



PA2.13  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75

Integral Formulation and Genetic Algorithms for Defects Geometry 
Reconstruction using Pulse Eddy Currents
Gabriel Preda, Mihai Rebican, Florea I. Hantila

Session PA3: Coupled Problems I
10:40-12:10 – Room: Poster Session Room II

PA3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77

A Coupling Procedure for Plasma, Iron and 3D Eddy Currents in the JET 
Tokamak
Raffaele Fresa, Raffaele Albanese, Giovanni Artaserse, Guglielmo Rubinacci, Fabio 
Villone, Bruno Viola

PA3.2  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79

Magnetic Saturation Modeling within Finite Volume Method
Loïc Rondot, Vincent Mazauric, Gerard Meunier

PA3.3  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81

Weak Coupling between Electromagnetic and Structural Models for Electrical 
Machines
Siegfried Rainer, Oszkár Bíró, Bernhard Weilharter

PA3.4  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Comparing Weak and Strong PEEC-MoM Coupling
MOKHTARI Lounes, DELINCHANT Benoit, CHEVALIER Thierry, COULOMB Jean 
Louis

PA3.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85

Dynamic Electro-Flow-Thermal 2D Model of a Transformer Using the CBS 
algorithm
Marco Arjona, R.B.B Ovando-Martínez, C Hernandez

PA3.6  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87

FEM for directly coupled magneto-mechanical phenomena in electrical 
machines
Katarzyna Anna Fonteyn, Anouar Belahcen, Reijo Kouhia, Antero Arkkio

PA3.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3D Numerical Modeling of the Thermo-Inductive Technique Using Shell 
Elements
Brahim Ramdane, Didier Trichet, Mohamed Belkadi, Javad Fouladgar

XXXII



PA3.8  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91

Coupled Mechanical-Electrical-Thermal Modeling of Electric Contacts based 
on the Cell Method
Federico Moro, Carmelo Majorana, Massimo Guarnieri, Mazzucco Gianluca

PA3.9  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93

Improvements to convergence of coupled nonlinear circuit modelling
Simon Taylor, Nick Robertson, John Simkin

PA3.10  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95

Particular Electromagnetic Field Computation for Permanent Magnet 
Generator Wind Turbine Analysis
Charalampos Patsios, Antonios Chaniotis, Evagelos Tsambouris, Antonios Kladas

PA3.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97

A Fully Coupled Three-dimensional Dynamic Model of Polymeric Membranes 
for Fuel Cells
Massimo Guarnieri, Piergiorgio Alotto, Federico Moro

PA3.12  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Coupled 3D Fluid Flow-Thermal FEM Model for Power Transformer 
Temperature Analysis
Marina Antonios Tsili, Eleftherios Ioannis Amoiralis, Antonios Kladas, Athanassios 
Souflaris

PA3.13  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Inductively Heated Incompressible Flow of Electrically Conductive Liquid in 
Pipe
Ivo Dolezel, Lenka Dubcova, Pavel Karban, Jakub Cerveny, Pavel Solin

PA3.14  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103

Equivalent stress criteria for the effect of stress on magnetic behavior
Laurent DANIEL, Olivier HUBERT

PA3.15  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105

Shape Formation of Ferrofluid Droplet in Magnetic Field and Gravity by FEA 
coupled with LSM
Young Sun Kim, Il Han Park

XXXIII



Session PA4: Static and Quasi-Static Fields III
13:30-15:00 – Room: Poster Session Room I

PA4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107

FEM/BEM Hybrid Method for Magnetic Field Evaluation Due to 
Underground Power Cables
Vitor Malo Machado

PA4.2  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109

Voltage and current sources for massive conductors suitable with the $A-\
chi$ Geometric Formulation
Ruben Specogna, Pawel Dlotko, Francesco Trevisan

PA4.3  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Efficient Computation of Eddy Current losses in SMC PM machines with 3D 
Time-Harmonic FEA
Ahmed Chebak, Philippe Viarouge, Jérôme Cros

PA4.4  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Decoupling of Nonequidistant Time Steps by Fixed Point Method for 
Nonlinear Eddy Currents
Gergely Koczka, Oszkár Bíró

PA4.5  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Homogenization for periodical electromagnetic structure: which formulation?
Gerard Meunier, Vincent Charmoille, Christophe Guerin, Patrice Labie

PA4.6  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Geometric interpretation of frequency-domain surface-impedance boundary 
conditions
Herbert De Gersem

PA4.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Field Analysis for Thin Shields in the Presence of Ferromagnetic Bodies
Ioan R. Ciric, Florea I. Hantila, Mihai Maricaru

PA4.8  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Evaluating the Guidance Force Capabilities of Flat Passive Maglev Guideway 
Topologies Using the A-phi Formulation
Jonathan Bird

XXXIV



PA4.9  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123

Improved Accuracy of Electro-Quasistatic Simulations of Large-Scale 3D High 
Voltage Equipment Including Nonlinear Field-Grading
Daniel Weida, Thorsten Steinmetz, Markus Clemens

PA4.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125

3-D Calculation of Surface Electric Field around Conductor of UHVAC 
Transmission Lines
Dongping XIAO, Wei HE, Mingyou CHEN, Fan YANG

PA4.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Analytical Prediction of Eddy-Current Loss in Armature Windings of 
Permanent Magnet Brushless AC Machines
Yacine Amara, Pascal Reghem, Georges Barakat

PA4.12  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129

Complementarity of Dual Eddy Current Formulations on Dual Meshes
Zhuoxiang Ren, Hui Qu

PA4.13  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Numerical Model of Transient Electromagnetic Field around the Grounding 
System by FEM
Anton Habjanic, Marko Jesenik, Mladen Trlep

PA4.14  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133

A New Formulation Using Differential Permeability Based on the Source-
Field Method
Nelson Sadowski, João Pedro Assumpção Bastos, Jean Vianei Leite

PA4.15  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135

Homogenization of Form-Wound Windings in Finite Element Modelling of 
Electrical Machines
Johan Gyselinck, Ruth V. Sabariego, Patrick Dular, Nelson Sadowski, Patrick Kuo-
Peng

PA4.16  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Electrokinetic Model Refinement via a Perturbation Finite Element Method – 
From 2-D to 3-D
Mauricio Valencia Ferreira da Luz, Patrick Dular, Ruth V. Sabariego, Patrick Kuo-
Peng, Nelson Jhoe Batistela

PA4.17  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139

Magneto-convection in an Enclosure with Partially Active Vertical Walls
Mohsen Pirmohammadi, Majid Ghassemi

XXXV



PA4.18  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Comparison between BEM + ACA and classical FEM for 3D low-frequency 
eddy-current analysis
David Pusch, Jasmin Smajic, Zoran Andjelic

PA4.19  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .143

An Energy-Based Error Criterion for Eddy Current Transient Analysis
Loïc Rondot, Dimitrios Ladas, Vincent Mazauric

PA4.20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145

Magneto-Mechanical effects under low fields and high stresses - Application 
to a ferromagnetic cylinder under pressure
Antoine Viana, Laure-Line Rouve, Gilles Cauffet, Jean-Louis Coulomb

Session PA5: Coupled Problems II
13:30-15:00 – Room: Poster Session Room I

PA5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Large-Scale Analysis of Magnetic Beads Behavior in Magnetic Field with Fast 
Multipole Method
Takuya Tatsuishi, Yasuhito Takahashi, Masahiko Miwa, Shinji Wakao

PA5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149

Dynamic Analysis Method of Linear Resonant Actuator with Multi-Movers 
Employing 3-D Finite Element Method
Yasuyoshi Asai, Katsuhiro Hirata, Tomohiro Ota

PA5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

New FEM Approach for Multi Physics Problems Modeling in EPM 
Applications
Yves Du Terrail Couvat, Annie Gagnoud

PA5.4  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .153

Analysis of Transient Eddy Current and Conductor Motion in an 
Electromagnetic Repulsion Mechanism with Meshless Collocation Method
Guangyuan Yang, K.R. Shao, Youguang Guo, Jianguo Zhu

PA5.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Coupled Magneto-Thermal FEM Model of Direct Heating of Ferromagnetic 
Bended Tubes
Michele Forzan, Alexandr Aliferov

XXXVI



PA5.6  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

Streamer Simulation based on Discontinuous Galerkin Method and 
Hierarchical Reconstruction
Chijie Zhuang, Rong Zeng, Bo Zhang, Shuiming Chen, Jinliang He

PA5.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .159

Buoyancy Force Evaluation on Nonmagnetic Solid Object Submerged in 
Magnetic Liquid Subjected to Non-uniform Magneto-static Field
Hong Soon Choi, Young Sun Kim, Il Han Park

PA5.8  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

Field-circuit Co-simulation of Controllable Reactor using Integral Equation 
Method
Yang Xiaobo, Zoran Andjelic, Cherry Yuen

PA5.9  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163

Steady and Transient Electromagnetic-thermal Fields Analysis for Induction 
Machines Using FEM and FVM
Shuhong Wang, Qiuwang Wang, Zhe Ren, Wei Sun, Dan Liao, Jie Qiu, Limin Zhou, 
Youming Jiang, Jian Guo Zhu, Youguang Guo, Yi Wang, Wei Xu

PA5.10  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165

Electromagnetic-Structure-Acoustic Coupled Analysis Method of GMM 
Transducer Speaker
Katsuhiro Hirata, Byungjin Yoo, Atsurou Oonishi

PA5.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

3D Transient Field-Circuit Modeling of Inductive Fault Current Limiters
Dalibor Cvoric, Domenico Lahaye, Sjoerd W.H. de Haan, J. Abraham Ferreira

PA5.12  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .169

Hybrid Analytical-FEM Method for Microwave Heating Analysis in a Single 
Mode Cavity
Diogo Batista Oliveira, Elson Jose Silva

PA5.13  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Distributed Models for Air-Core Ethernet Transformers
Isaak Mayergoyz, David Bowen, Charles Krafft

PA5.14  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

Dynamic simulation of an electromechanical energy scavenging device
Aldo Canova, Elvio Bonisoli, Fabio Freschi, Sandro Moos, Maurizio Repetto, 
Stefano Tornincasa

XXXVII



PA5.15  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

Accurate Control of Position by Induction Heating-Produced Thermoelasticity
Ivo Dolezel, Pavel Karban, Petr Kropik, David Panek

PA5.16  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

Physics Based High Frequency Transformer Modeling by Finite Elements
Osama A Mohammed, Nagy Y Abed

PA5.17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

Permanent Magnet Motor Damping Analysis by using a particular 2D FEM 
technique
Minos E. Beniakar, Themistoklis D. Kefalas, Antonios G. Kladas

PA5.18  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

Performance Investigation of Canned Induction Motor for Coolant Pump in 
Nuclear Reactor
Jian Li, Jungtae Song, Yunhyun Cho

PA5.19  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183

Field-Circuit Method for the Non-Steady State Analysis in the Active Magnetic 
Bearings
Bronislaw Zbigniew Tomczuk, Jan Zimon, Andrzej Waindok

PA5.20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .185

Study of a double-star synchronous machine fed by a dual Voltage Source 
Inverter
André de Andrade, Meynard, Thierry:Nelson Sadowski, Patrick Kuo-Peng

PA5.21  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187

Magneto-elastic finite element modeling based on a multiscale approach
Xavier Mininger, Laurent Daniel, Laurent Santandrea, Laurent Bernard, Frédéric 
Bouillault

Session PA6: Electrical Machines and Drives I
13:30-15:00 – Room: Poster Session Room II

PA6.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .189

Novel Design Method of a Single-phase Induction Motor considering 
Magnetic Balance
Myoung-Hyun Choi, Byung-Taek Kim

XXXVIII



PA6.2  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

Finite-Element Analysis for a Rolling-Rotor Electrical Machine
Antero Arkkio, Grzegorz Kaminski, Asko Niemenmaa, Pawel Staszewski

PA6.3  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193

Numerical Modelling of Transformer Inrush Current
Ermanno Cardelli, Vincenzo Esposito, Antonio Faba

PA6.4  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .195

Gaussian Modulated Pulse Excitation for SM Parameter Estimation Using a 
2D-FE Model
Marco Arjona, Concepcion Hernandez, Merit Cisneros-Gonzalez

PA6.5  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

Efficient FEA Identification of Equivalent Circuit Inductances for DFIM 
Design
Davide Aguglia, René Wamkeue, Philippe Viarouge, Jérôme Cros

PA6.6  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .199

Comparison of Analytical and Finite Element Calculation of Eddy-Current 
Losses in the Solid Back-Iron of PM Machines with Concentrated Fractional 
Pitch Windings
Anoop Jassal, Henk Polinder, Domenico Lahaye

PA6.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .201

Numerical Analysis of the Induced Current in an XY-Actuator with Soft 
Magnetic Composite
Nolvi Francisco Baggio Filho, Ály Ferreira Flores Filho

PA6.8  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

Least Square Support Vector Machine Network-Based Modeling for Switched 
Reluctance Starter/Generator
Wen Ding, Deliang Liang

PA6.9  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

An Accurate Magnetic Field analysis for Estimating Motor Characteristics 
Taking Account of Elasto-Plastic Deformation in the Magnetic Core
Shinichi Yamaguchi, Akihiro Daikoku, Yoshihiro Tani, Toshinori Tanaka, Chiyo 
Fujino

PA6.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

Calculation of Radial Forces in Cage Induction Motors at Start – the Effect of 
Rotor Differential
David George Dorrell

XXXIX



PA6.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

Eddy-current Losses and Temperature Rise in the Form-wound Stator 
Winding of an Inverter-fed Cage Induction Motor
Mohammad Jahirul Islam, Huynh Van Khang, Anna-Kaisa Repo, Antero Arkkio

PA6.12  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

Semi-Analytical Solution of Cogging Torque in SMPMM
Frédéric Dubas, Christophe Espanet

PA6.13  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .213

Interactive Postprocessing Formulations in 3D
Martin Hafner, Marc Schöning, Marcin Antczak, Andrzej Demenko, Kay Hameyer

PA6.14  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .215

Comprehensive Magnetic Model of Surface Mounted PM Machines 
Incorporating Saturation Saliency
Yi Wang, Jianguo Zhu, Youguang Guo, Shuhong Wang, Wei Xu

PA6.15  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

Magnetic Field in an Axial-Flux Permanent-Magnet Synchronous Generator
Tze-Fun Chan, Weimin Wang, Loi Lei Lai

PA6.16  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .219

Unified Scheme for Implementing the Fixed-Point and Newton-Raphson 
Methods in Finite-Element Programs of Electromagnetic Field Problems
Emad Dlala, Antero Arkkio

PA6.17  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .221

Parametric Design Coupled with Dynamic Equation of the BLDC Motor for 
Electric Vehicle
YoungKyoun Kim, Se-Hyun Rhyu, Jung-Pyo Hong

Session OA2: Coupled Problems
15:20-17:10 – Room: Plenary Session Room

OA2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

(Invited) Discrete Magneto-Elasticity: A geometrical approach
Alain Bossavit

OA2.2  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

Nonlinear coupled FE-circuit model for th optimization of hybrid motors
Noureddine Takorabet, Eric D. Kenmoe-Fankem, Farid Meibody-Tabar, Francois. 
M. Sargos

XL



OA2.3  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227

Co-Simulation as Multirate Time Integration of Field/Circuit Coupled 
Problems
Sebastian Schoeps, Andreas Bartel, Herbert De Gersem

OA2.4  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

Efficient Numerical Modelling of Field Diffusion in High-Temperature 
Superconducting Wires
Igor O. Golosnoy, Jan K. Sykulski

OA2.5  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .231

Unipolar and Bipolar Charge Injection and Transport in Dielectric Liquid by 
Finite Element Method
Se-Hee Lee, Il-Han Park, Francis O’Sullivan, Markus Zahn

XLI



Tuesday, November 24th

Session OB1: Wave Propagation and Nanomagnetics
08:30-10:20 – Room: Plenary Session Room

OB1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

(Invited) Masking with Generalized Cloaking
Andre Nicolet, Frederic Zolla, Christophe Geuzaine

OB1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .235

Micromagnetic Analysis of a Shielded Write Head Using Symmetric 
Multiprocessing System
Yasushi Kanai, Kazuya Koyama, Manabu Ueki, Toshio Tsukamoto, Kazuetsu 
Yoshida, Simon Greaves, Hiroaki Muraoka

OB1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .237

Efficient implementation of UPML in the finite integration technique using 
hexahedral and prismatic elements
Ruben Torrado, Laurent Bernard, Lionel Pichon

OB1.4  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

An Electromagnetic Field Computation Using Space-Time Grid and FIT
Tetsuji Matsuo

OB1.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .241

Solution of the frequency domain Maxwell equations by a high order non-
conforming discontinuous Galerkin method
Stéphane Lanteri, Mohamed El Bouajaji, Victorita Dolean, Ronan Perrussel

Session PB1: Optimization I
10:40-12:10 – Room: Poster Session Room I

PB1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

Identification of Hidden Ferrous 3D Objects Using a GMR Sensor Array
Alice Köstinger, Michael Jaindl, Markus Kienesberger, Christian Magele, Werner 
Renhart, Gunter Winkler

PB1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

Multiobjective Particle Swarm Approach for the Design of a Brushless DC 
Wheel Motor
Leandro dos Santos Coelho, Leandro Zavarez Barbosa, Luiz Lebensztajn

XLII



PB1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .247

Coupling Particles Swarm Optimization for Multimodal Function 
Optimization
Minh-Trien Pham, Baatar Nyambayar, Chang Seop Koh

PB1.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

Automatic Differentiation Applied for Optimization of Dynamical Systems
Petre Enciu, Laurent Gerbaud, Frederic Wurtz

PB1.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .251

Influence of Sensor Variations on the Condition of the Magnetostatic Linear 
Inverse Problem
Roland Eichardt, Jens Haueisen

PB1.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .253

The application of topological gradients to defect identification in magnetic 
flux leakage-type NDT
Min Li, David Lowther

PB1.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .255

Grid-enabled Tabu Search for Electromagnetic Optimization Problems
Sara Carcangiu, Alessandra Fanni, Anna Mereu, Augusto Montisci

PB1.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .257

An Exact Optimization Code Combined with a Hybrid Model for Magnetic 
Couplings Design
Julien Fontchastagner, Frederic Messine, Yvan Lefevre

PB1.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

Electromagnetic Device Design Based on New Sequential Optimization 
Strategies
Gang Lei, Keran Shao, Youguang Guo, Jianguo Zhu, J. D. Lavers

PB1.10  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .261

A Metaheuristic Algorithm for Multiobjective Designs of Inverse Problems
S.L. Ho, Shiyou Yang

PB1.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

The Use of Feature Selection to Create a Compact Prototype for 
Electromagnetic Device Optimization
Jun Ouyang, David Lowther

XLIII



PB1.12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

Optimization of Electromagnetic and Magnetic Shielding using ON/OFF 
Method
Norio Takahashi, Shunsuke Nakazaki, Daisuke Miyagi

PB1.13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .267

Reducing the Design Space of Standard Electromagnetic Devices using 
Bayesian Response Surfaces
Linda Wang, David A. Lowther

PB1.14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

Nonlinear Filtering on Mesh Discretization Errors by Neural Networks
Douglas Alexandre Gomes Vieira, Adriano Chaves Lisboa, Vasile Palade, Rodney 
R. Saldanha

PB1.15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

Particle Swarm Optimization of Coupled Electromagnetic-Electromechanical 
Systems
Nizar F. Al-Aawar, Toufic M. Hijazi, Abdul Rahman A. Arkadan

PB1.16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .273

Self-Adjoint Material Sensitivity Analysis for Solving Inverse Problems in RF 
Domain
Dong-Hun Kim, Jin-Kyu Byun, Hyang-Beom Lee, Hyeong-Seok Kim

PB1.17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .275

Spatio-temporal reconstruction of magnetic nanoparticle distributions
Daniel Baumgarten, Jens Haueisen

PB1.18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .277

Non-Iterative Methods for Locating Inclusions in Electrical Impedance 
Tomography
Flavio Calvano, Guglielmo Rubinacci, Antonello Tamburrino

PB1.19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .279

A Research of PTP MRAM about Shape Optimization for High Gb/Chip
Hyuk Won, Gwan Soo Park, Dong Sok Kim, Jae Min Kim

PB1.20  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .281

Brain source localization: a MILP approach
Fabio Freschi

XLIV



PB1.21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

A Hybrid Design of Distribution Transformers Using 2D-FE and a 
Conventional Method
Marco Arjona, Concepcion Hernandez

PB1.22  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

Inverse Magnetic Field Calculation For Underground Grid Condition 
Monitoring
Sheppard Salon, MVK Chari, J. Braunstein, J. Selvaggi

PB1.23  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

A Practical Approach to Robust Design of an RFID Triple-Band PIFA 
Structure
Jae-Hyeong Ko, Dong-Hun Kim, Hyang-Beom Lee, Hyeong-Seok Kim

PB1.24  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

Parameter Extraction and Optimal Design of Spiral Inductor Using Evolution 
Strategy and Sensitivity
Jae-Hyeong Ko, Jin-Kyu Byun, Hyeong-Seok Kim

Session PB2: Optimization II
10:40-12:10 – Room: Poster Session Room I

PB2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .291

Optimization of perfectly matched layer parameters for finite element 
modeling of grounding systems
Luiz Lebensztajn, Viviane Cristine Silva, Lucas Blattner Martinho

PB2.2  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

Corrosion diagnosis of a ship mock-up from near electric field measurements
Arnaud Guibert, Jean-Louis Coulomb, Olivier Chadebec, Corinne Rannou

PB2.3  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

Dynamic Multiobjective Clonal Selection Algorithm for Engineering Design
Lucas de Souza Batista, Diogo Oliveira, Frederico Gadelha Guimaraes, Elson Jose 
Silva, Jaime Arturo Ramirez

PB2.4  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .297

Stochastic uncertainty quantification of the conductivity in EEG source 
analysis by using polynomial chaos decomposition
Roman Gaignaire, Guillaume Crevecoeur, Luc Dupré, Christophe Geuzaine, 
Patrick Dular

XLV



PB2.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

The EMC Method Applied to the Design of Local and Asymmetric Gradient 
Coils for MRI
Hector Sanchez Lopez, Michael Poole, Feng Liu, Stuart Crozier

PB2.6  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .301

Two complementary methods to face with convexity issues in topology 
optimization problems
Thibaut Labbé, François Glineur, Bruno Dehez

PB2.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

A Multiobjective Gaussian Particle Swarm Approach Applied to 
Electromagnetic Optimization
Piergiorgio Alotto, Leandro dos Santos Coelho, Helon Vicente Hultmann Ayala

PB2.8  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

Magnetic Field Synthesis in the Design of Inductors for Magnetic Fluid 
Hyperthermia
Fabrizio Dughiero, Paolo Di Barba, Elisabetta Sieni

PB2.9  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

Stochastic Finite Element Analysis for Parasitic Extraction of Interconnects 
with Material Parameter Variations
Xiaoyu Xu, Hui Qu, Li Kong, Zhuoxiang Ren

PB2.10  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .310

Kriging assisted design of a synchronous superconducting generator with 
YBCO windings
Bartosz Lukasik, Kevin Goddard, Mihai Rotaru, Jan K. Sykulski

PB2.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .312

Multiobjective Efficient Global Optimization – A Win-win Approach to 
Optimal Design and Model Development
Alexandru Claudiu Berbecea, Sangkla Kreuawan, Frédéric Gillon, Pascal Brochet

PB2.12  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .314

Parallel hybrid algorithms based on Artificial Life for Multimodal 
Optimization
Francesco Riganti Fulginei, Alessandro Salvini, Antonino Laudani, Salvatore Coco

PB2.13  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .316

Two-level refined direct method for electromagnetic optimization and inverse 
problems
Guillaume Crevecoeur, Ahmed Abou-Elyazied Abdallh, Luc Dupré

XLVI



PB2.14  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .318

Application of Response Surface Methodology to Electric Machine Design 
with Multivariate Adaptive Regression Splines
Kenta Takayasu, Asuka Otake, Masahiko Miwa, Shinji Wakao, Tamio Okutani, 
Yasuhito Takahashi, Masahiro Tanai, Kazuhiko Onda

PB2.15  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

A Research on the Optimm Design of Magnet Structure for Improving 
Measurement Accuracy in the Dual Magnetic Float Type Level Gauge
Dong Sok Kim, Jae Min Kim, Gwan Soo Park

PB2.16  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322

Examination of Optimal Design of IPM Motor using ON/OFF Method
Norio Takahashi, Takaya Yamada, Daisuke Miyagi

PB2.17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324

Optimization of Inductors Using Evolutionary Algorithms and Its 
Experimental Validation
Kota Watanabe, Felipe Campelo, Yosuke Iijima, Kenji Kawano, Tetsuji Matsuo, 
Takeshi Mifune, Hajime Igarashi

PB2.18  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

Multiobjective Optimization of Electrooptic Modulators with Floating 
Electrodes
Ademar Muraro Jr, André Cortes, Angelo Passaro, Nancy Mieko Abe, Airam J. 
Preto, Stephan Stephany

PB2.19  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328

A Multi-frequency Strategy for Reconstruction of Deep Stress Corrosion 
Cracks from ECT Signals of Multiple Liftoffs
Li Wang, Zhenmao Chen

PB2.20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330

Accelerating Evolution Algorithm Using Kriging Metamodel
Dong-kung Woo, Jang-Ho Seo, Chany Lee, Hyun-Kyo Jung

PB2.21  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332

Topology Optimization of Electrostatic Actuator Using Level Set Method and 
Shape Design Sensitivity
Young Sun Kim, Il Han Park

XLVII



PB2.22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334

Electromagnetic Characterization of Biological Tissues with Particle Swarm 
Optimization
Nicolas Siauve, Corine Lormel, Romain Marion, Julien Dardenne, Fabien Sixdenier

Session PB3: Waves Propagation I
10:40-12:10 – Room: Poster Session Room II

PB3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336

Analysing the Relevant Features of GPR Scattered Waves in Time- and 
Frequency-Domain
Lucas Travassos, D. A. G. Vieira, V. Palade, N. Ida

PB3.2  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338

Recent developments on a DGTD method for time domain electromagnetics
Stéphane Lanteri, Hassan Fahs, Loula Fezoui, Victorita Dolean, Francesca Rapetti

PB3.3  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340

Detection of Defects in Wiring Networks using Time Domain Reflectometry
Smail Mostafa Kamel, Pichon Lionel, Olivas Marc, Auzanneau Fabrice, Lambert 
Marc

PB3.4  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342

Finite Element Multiharmonic Modelling for Nonlinear Optics
Pierre Godard, Frederic Zolla, Andre Nicolet

PB3.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344

An Amplitude Finite Element Formulation for Multiple-Scattering by a 
Collection of Convex Obstacles
Christophe Geuzaine, Patrick Dular, Roman Gaignaire, Ruth Sabariego

PB3.6  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346

Finnite element analysis of electromagnetic scattering using p-adaption and 
an Iterative absorbing boundary condition
Prakash Paul, Jon Webb

PB3.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348

Investigation on the shading effect of reinforced concrete construction to 
lightning radiation field based on TDIE method
Zhibin Zhao, Mingxia Zhang, Xiang Cui, Lin Li, Tiebing Lu

XLVIII



PB3.8  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350

2D Scattering Integral Field Equation Solution through a IMLS Meshless-
Based Approach
Williams Lara Nicomedes, Renato Cardoso Mesquita, Fernando José da Silva 
Moreira

PB3.9  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .352

Numerical Techniques for Multi-Objective Synthesis of an Inverted-S 
Antenna
Lei Liu, Junwei Lu, Shiyou Yang, Guangzheng Ni

PB3.10  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354

Blending PSO and ANN for Optimal Design of FSS Filters with Koch Island 
Patch Elements
Rossana M. S. Cruz, Paulo H. da F. Silva, Adaildo Gomes d’Assunção

PB3.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356

Coefficients of Finite Difference Operator for Rectangular Cell NS-FDTD 
Method
Tadao Ohtani, Kenji Taguchi, Tatsuya Kashiwa, Yasushi Kanai

PB3.12  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358

Investigation of UHF Circular Loop Antennas for RFID
Kurt Preis, Thomas Bauernfeind, Oszkar Biro, Igor Ticar

PB3.13  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360

Full Wave Analyses of Electromagnetic Fields with an Iterative Domain 
Decomposition Method
Amane Takei, Shin-ichiro Sugimoto, Masao Ogino, Shinobu Yoshimura, Hiroshi 
Kanayama

PB3.14  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362

A New Waveguide Design Based in Thin Films of Niobium and Tantalum
Marcílio Nunes Freire, José Patrocínio da Silva

PB3.15  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364

Analysis of Simple FSS Cascading With Dual Band Response
Antonio Luiz Pereira de Siqueira Campos, Robson Hebraico Cipriano Maniçoba, 
Lincoln Machado de Araújo, Adaildo Gomes d?Assunção

PB3.16  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366

A broadband symmetric surface integral equation based on Calderón 
projector
Annalisa Buffa, Guglielmo Rubinacci, Antonello Tamburrino

XLIX



PB3.17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368

Local Timestepping Techniques Using Taylor Expansion for Modeling 
Electromagnetic Wave Propagation with Discontinuous Galerkin - FEM
Steffen Schomann

PB3.18  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370

Safety Assessment of UWB Radio Systems for Body Area Network by the 
FDTD Method
Valerio De Santis, Mauro Feliziani, Francescaromana Maradei

Session PB4: Numerical Techniques I
10:40-12:10 – Room: Poster Session Room II

PB4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .372

Computation Method for Transients in Underground Cables with Lossy Earth 
Return Path
Xose M. Lopez-Fernandez, Casimiro Alvarez-Mariño, Vitor Malo Machado

PB4.2  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .374

FDTD Analysis of a Metamaterial with Particles Having Oh Point Group 
Symmetry
Tiago Carvalho Martins, Victor Dmitriev

PB4.3  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .376

Discrete Constitutive Relations for the Discrete Geometric Approach over 
Hexahedral Grids
Ruben Specogna, Lorenzo Codecasa, Francesco Trevisan

PB4.4  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378

Domain Decomposition Methods with Second Order Transmission Conditions 
for Solving Multiscale Electromagneitc Wave Problems
Zhen Peng, Vineet Rawart, Jin-Fa Lee

PB4.5  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380

Improving the Mixed Formulation for Meshless Local Petrov–Galerkin 
Method
Alexandre Ramos Fonseca, Bruno Carvalho Corrêa, Elson José da Silva, Renato 
Cardoso Mesquita

PB4.6  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382

Effectivenss of Higher Order Time Integration in Time Domain Finite 
Element Analysis
Yoshifumi Okamoto, Koji Fujiwara, Yoshiyuki Ishihara

L



PB4.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384

Extended Meshfree Point Collocation Method for Electromagnetic Problems 
with Layered Singularity
Young-Cheol Yoon, Do Wan Kim

PB4.8  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386

Strategies for accelerating non-linear convergence for T-Ω fromulation
Ping Zhou, Dingsheng Lin, Bo He, Sameer Kher, Zoltan Cendes

PB4.9  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388

Shape Optimization of Rotating Machines Using Time-Stepping Adaptive 
Finite-Element Method
Katsumi Yamazaki, Yuji Kanou

PB4.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390

Algorithmically Efficient Ray Tracing for the Simulation of Wall Heating in 
Particle Accelerator Structures
Eike Michael Scholz, Markus Clemens, Martin Dohlus

PB4.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392

Hierarchical Sparsified Models for the Substrate of Integrated Circuits
Daniel Ioan, Gabriela Ciuprina

PB4.12  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394

SUPG 3D vector potential formulation for electromagnetic braking 
simulations
François Henrotte, Enno Lange, Holger Heumann, Kay Hameyer

PB4.13  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396

Robust FEM-BEM Coupling for Magnetostatics on multi-connected Domains
David Pusch, Joerg Ostrowski

PB4.14  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398

Edge element multigrid solution of time-harmonic 3-D non-linear eddy-
current problems
Chao Chen, Oszkár Bíró

PB4.15  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400

FE Analysis of Magnetic Particle Dynamics on Fixed Mesh with Level Set 
Function
Young Sun Kim, Myung Ki Baek, Il Han Park

LI



PB4.16  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402

A Step Forward in Wavelet-Based Algebraic Multigrid Method Using the 
Lifting Technique
Fabio Henrique Pereira, Silvio Ikuyo Nabeta

PB4.17  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404

Solution of Static Field Problems with Random Domains
Stephane Clenet, Duy Hung Mac, Jean-Claude Mipo, Olivier Moreau

PB4.18  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406

Quality Evaluation of Automatically Generated Hexahedral Mesh for FEA
Yuichiro Motooka, So Noguchi, Hajime Igarashi

PB4.19  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408

Parallel Sparse Matrix Solver on the GPU Applied to Simulation of Electrical 
Machines
Wendell O. Rodrigues, Frédéric Guyomarc’h, Jean-Luc Dekeyser, Yvonnick Le 
Menach

Session PB5: Optimization III
13:30-15:00 – Room: Poster Session Room I

PB5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .410

Design of Conventional C-core Magnets Using a Multi-Step Optimization 
Procedure
Felipe Campelo, Jaime Arturo Ramirez, Hajime Igarashi

PB5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .412

Self-consistent Optimization of Multi-Quantum Well Structures by a Genetic 
Algorithm
Angelo Passaro, Roberto Yuji Tanaka, Ademar Muraro Jr., Gustavo S. Vieira, 
Nancy Mieko Abe

PB5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .414

Impact of Wave Propagation Effects in Electrical Tomography
Markus Neumayer, Gerald Steiner

PB5.4  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .416

Optimal Design of Electromagnetic Valve Actuator using Generic Algorithm
Jinho Kim, Junghwan Chang, Kyuyoung Han

LII



PB5.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .418

Niched Pareto-Archived Evolutionary Programming for Multi-Objective 
Electromagnetic Optimization
Nunzio Salerno, Emanuele Dilettoso, Santi Agatino Rizzo

PB5.6  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420

Optimization of Vibratory Behavior of Electromagnetic Devices through 
Material Properties Evaluation
Ferkha Nassira, Mekideche Mohamed Rachid, Miraoui Abdellatif, Djerdir 
Abdesslem

PB5.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422

An Improved Continuous Genetic Algorithm for Electromagnetic 
Optimization
Paulo H. da F. Silva, Rossana M. S. Cruz, Adaildo Gomes d’Assunção

PB5.8  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424

Differential Evolution-based Technique for Thermal Parameters Identification 
of a Transformer FEM model
Adnan Glotic, Joze Pihler, Nermin Sarajlic, Mensur Kasumovic, Majda Tesanovic

PB5.9  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426

Multi-objective Optimization of an Axial Flux Wind Generator
João Antônio Vasconcelos, Selênio Rocha Silva, Laís Martins Araújo, Claret 
Laurente Sabioni, Jonas Alves de Almeida Pereira, Moisés Ferber de Vieira Lessa, 
Bruno Marciano Lopes

PB5.10  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428

GA-based optimized design of the novel compact transversal-type UWB 
bandpass filter
Sungtek Kahng, Eunchul Shin, Koon-Tae Kim, Hyeong-Seok Kim

PB5.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430

Software Methodology for Optimization of Weakly Coupled Multiphysical 
Problems using Object Oriented Programming
Michael Jaindl, Alice Köstinger, Ralph Kutschera, Christian Magele, Werner 
Renhart

PB5.12  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432

Sensitivity based generation of optimized data set for ECT inversion
Szabolcs Gyimothy, Imre Kiss, Jozsef Pavo, Sandor Bilicz

LIII



PB5.13  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434

Dynamic Multilevel Optimization of Machine Design and Control Parameters 
for PMSM Drive System Based on Correlation Analysis
Shuhong Wang, Xiangjun Meng, Jie Qiu, Jian Guo Zhu, Yi Wang, Youguang Guo, 
Dikai Liu, Wei Xu

PB5.14  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436

Variational Level Set Methods in the Roentgen Images Segmentation
Tomasz Rymarczyk, Stefan Franciszek Filipowicz, Jan Sikora, Marek Tymburski

PB5.15  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438

Numerical tool for the design of magnetic sensors based on GMI effect
Lena ABI RACHED, Francisco ALVES, Yann LE BIHAN

PB5.16  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440

Harmony Search with Cauchy Operator Applied to the Hysteresis Modeling of 
a Transformer
Leandro dos Santos Coelho, Viviana Cocco Mariani

PB5.17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442

Automatic Design of Insulation Structure of Power Transformer Based on 
Sensitivity Analysis
Liu Yang

PB5.18  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444

The Use of Case-Based Reasoning in Creating a Prototype for Electromagnetic 
Device Optimization
Jun Ouyang, David Lowther

PB5.19  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446

Slot Shape Optimization for Permanent Magnet Synchronous Machines by 
Evolution Strategy and Time-Stepped Finite Element Analysis
Yang Zhan, Andrew M. Knight

PB5.20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448

Numerical-analytical coupled optimization of a echatronic system with 
particular attention to the embedded linear machine
Alexander Thomas Oswald

PB5.21  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450

3-D Optimal Design of Laminated Yoke of Billet Heater for Rolling Wire Rod 
using ON/OFF
Norio Takahashi, Shunsuke Nakazaki, Daisuke Miyagi, Naoki Uchida, Keiji 
Kawanaka, Hideyuki Namba

LIV



PB5.22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452

Multiobjective Differential Evolution Approach for the TEAM Workshop 
Problem 25
Luiz Lebensztajn, Leandro dos Santos Coelho

PB5.23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454

A Populational Particle Collision Algorithm Applied to Electromagnetic 
Optimization
Piergiorgio Alotto, Leandro Dos Santos Coelho

LV



Session PB6: Waves Propagation II, Nanomagnetics, 
Photonics and Optoelectronics

13:30-15:00 – Room: Poster Session Room I

PB6.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456

Microstrip Ring Antennas on Double-Layered Ferrimagnetic Substrates
Christianne F. L. Vasconcelos, Sandro Gonçalves Silva, Maria Rosa M. L. 
Albuquerque, José de Ribamar S. Oliveira, Adaildo Gomes d’Assunção

PB6.2  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458

CFL Conditions for Finite Integration Methods Using Parallelogram and 
Parallelepiped Grids
Tetsuji Matsuo

PB6.3  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460

A hybrid model for path loss calculation in urban environment
Leandro Carísio Fernandes, Antonio José Martins Soares

PB6.4  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462

Temperature Dependence of Optical Fiber
Jose Patrocíno da Silva, Vitaly Felix Rodriguez Esquerre, Diego Souza Bezerra, 
Hugo Enrique Hernandez Figueroa

PB6.5  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464

Analysis of the Effects of Irregular Terrain on Radio Wave Propagation Based 
on a Three-dimensional Parabolic Equation
Marco Aurélio Nunes da Silva, Emanoel Costa, Markus Liniger

PB6.6  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466

Determination of Electromagnetic Sources Through Field Measurements
Ibrahim Akduman, Hulya Sahinturk, Ali Yapar

PB6.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468

Improved FE-mesh truncation by surface operator implementation to speed 
up antenna design
Werner Renhart, Christian Magele, Christian Tuerk

PB6.8  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470

Application of Method of Moments for Near Field Optics with Metal 
Nanoparticles
Karlo Queiroz Costa, Victor Dmitriev

LVI



PB6.9  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .472

Eigenvalue analysis of lossy waveguide structures using hybrid H(curl) second 
order finite elements
Christian Scheiber, Oszkàr Bíró

PB6.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .474

Efficient Interface Conditions for Finite Difference Time Domain Methods
Dirk Schulz

PB6.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .476

FDTD Analysis of UHF-band RFID for Metallic Objects
Yuta Watanabe, Kota Watanabe, Hajime Igarashi

PB6.12  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478

The Auxiliary Problem For Transient Lossy Transmission Lines With Non-
Matched Loads
Turhan Karaguler

PB6.13  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480

A low cost parallel and distributed architecture for full micromagnetic 
numerical codes
Carlo Ragusa, Bartolomeo Montrucchio, Maurizio Repetto, Vittorio Giovara, Fabio 
Freschi, Baochang Xie

PB6.14  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482

A Research of Various MRAM Design for High Gb/Chip on Perpendicular 
Pole System
Hyuk Won, Gwan Soo Park, Kang Seo, Il hwan Park

PB6.15  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484

Theoretical Analysis of Field Distribution and Attenuation in a Ag/GaN 
Periodic Plasmon Waveguide
Anderson Oliveira Silva, Victor Dmitriev

PB6.16  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486

Model for Antenna Positioning in Indoor Environments Using 2-D Ray-
Tracing Technique Associated to a Particle Swarm Optimizer
Stevan Grubisic, Emanuela Cabral, Walter Pereira Carpes Junior

PB6.17  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488

Accurate Transmission-Path Ray-Tracing Computation for Indoor EM Field 
Prediction
Antonino Laudani, Salvatore Coco, Giuseppe Pollicino

LVII



Session PB7: EMC – Electromagnetic Compatibility
13:30-15:00 – Room: Poster Session Room II

PB7.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490

Study of the Parasitic Effect Caused by Vias in High-Frequency Circuit
Adaildo Gomes D’Assunção Jr, Glauco Fontgalland, Henri Baudrand

PB7.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492

A 3D PEEC Method for the prediction of radiated fields from automotive 
cables
Yahyaoui Wissem, Pichon Lionel, Duval Fabrice

PB7.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494

Simulation of a Real Overvoltage Transient in a TLM-Modeled Grounding 
Mesh
Luiz Henrique Alves de Medeiros, Marcos T. de Melo, Fabio R. L. Silva, Andre A. 
Almeida, Fabio. N. Fraga

PB7.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496

Conservativeness of the Head Tissue Equivalent Liquid for Body-Worn SAR 
Assessments
Vikass Monebhurrun

PB7.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498

Investigation of Electronic Stirring Chamber Phase-shifting Excitation and 
Load Effects
Mario Alves dos Santos Jr, Damien Voyer, Carlos Antonio França Sartori, Djonny 
Weinzierl, Ronan Perrussel, Christian Vollaire, Laurent Krahenbuhl, Jose Roberto 
Cardoso

PB7.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500

3D Near-field Reconstruction from PCBs by Equivalent Sources Using 
Legendre Functions
Lotfi Beghou, Lionel Pichon, Adroaldo Raizer, François Costa

PB7.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502

Evaluation of Shielding Effectiveness within Operating Room Using TLM 
Method
Wilson Valente Jr., Luciana Firmino, Adroaldo Raizer

PB7.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504

Full Wave Solution for Intel CPU with a Heat Sink for EMC Investigations
Junwei Lu, Boyuan Zhu, David Thiel

LVIII



PB7.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506

Conductor Positions Optimization of a Transmission Line Excitation Chamber
Avila Sérgio, Santos Jr Mario, Lebensztajn Luiz, Sartori Carlos, Krahenbuhl 
Laurent, Cardoso José, Weinzierl Djonny

PB7.10  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508

Magnetic Shielding of Apertures Loaded by Resistive Coating
Marcello D’Amore, Valerio De Santis, Mauro Feliziani

PB7.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .510

Numerical FEM models for the evaluation of EM fields exposure near welding 
machines
Fabrizio Dughiero, Michele Forzan, Elisabetta Sieni

PB7.12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .512

Identification of equivalent multipolar electromagnetic sources by space 
filtering
Benjamin Vincent, Olivier Chadebec, Jean-Luc Schanen, Kévin Berger, Ronan 
Perrussel, Laurent Krähenbühl

PB7.13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .514

Pre-evaluating a SAR Measurement System Performance by Numerical 
Simulations
Carlos Antonio França Sartori, Marcelo Perotoni, Antonio Marini de Almeida, José 
Kleber Cunha Pinto, José Roberto Cardoso, Sérgio Mühlen, Alberto Lisboa Dantas, 
Mário Leite Pereira Filho

PB7.14  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .516

Computer Analysis of Electromagnetic Transients in Grounding Systems
Rafael Silva Alípio, Marco Aurélio de Oliveira Schroeder, Márcio Matias Afonso

PB7.15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .518

Proposal of Computational Model Validation for EMC Automotive Tests in 
Vehicles
Leonardo Lopes Santos Alvarenga, Ricardo Luiz Adriano, José Osvaldo Paulino, 
Joao Antônio Vasconcelos, Arnaud Christophe Pierre Marie Colin, Claudio 
Henrique Gomes Santos

PB7.16  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520

Effect of grounding system on Electromagnetic Fields around Building Struck 
by Lightning
Bo Zhang, Jinliang He, Rong Zeng, Shuiming Chen

LIX



PB7.17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 522

Conservativeness of the SAM Phantom for the SAR Evaluation in the Child’s 
Head
Vikass Monebhurrun

PB7.18  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524

3D-Modelling of an Aperture Illuminated by HF Electromagnetic Source for 
EMC Application
Mohammed djennah, Françoise Rioux

PB7.19  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526

The Dynamic Circuit Model of the Spark Plug for EMI Prediction
Ya-li ZHENG, Ji-hui YU, Quan-di WANG, Jin JIA

PB7.20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528

Steady-state Inductive Coupling to the Underground Pipeline Parallel to 
Overhead Transmission Line above Two-layer Soil
Lei Qi, Yan Wu, Xiang Cui

PB7.21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530

A New Stochastic LPP Model for studying ELF Bioelectromagnetic Interaction
Antonino Laudani, Enrica Calà, Salvatore Coco

Session OB2: Optimization
15:20-17:10 – Room: Plenary Session Room

OB2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .532

(Invited) An Enhanced Ellipsoid Method for Electromagnetic Devices 
Optimisation and Design
Douglas Alexandre Gomes Vieira, Adriano Chaves Lisboa, Rodney R. Saldanha

OB2.2  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534

Robust Optimization Utilizing the Second-order Design Sensitivity 
Information
Dong-Hun Kim, Giwoo Jeung, Dong-Wook Kim, Heung-Geun Kim, David A. 
Lowther, Jan K. Sykulski

OB2.3  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 536

Adapted Output Space-Mapping Technique for a Bi-Objective Optimization
Stephane Brisset, Tuan-Vu Tran, Pascal Brochet, Fouzia Moussouni

LX



OB2.4  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 538

Niching Evolution Strategies for Simultaneously Finding Global and Pareto 
Optimal Solutions
Christian Magele, Alice Koestinger, Michael Jaindl, Werner Renhart, Bogdan 
Cranganu-Cretu, Jasmin Smajic

OB2.5  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540

Design Optimization of Waveguide Filters Using Continuum Design 
Sensitivity Analysis
Dong-Hun Kim, Nak-Sun Choi, Giwoo Jeung, Joon-Goo Park, Jin-Kyu Byun

LXI



Wednesday, November 25th

Session OC1: Material Modelling and Numerical Techniques
08:30-10:20 – Room: Plenary Session Room

OC1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542

(Invited) Evaluation of Electromagnetic Inspection of Hardened Depth of 
Spheroidal Graphite Cast Iron using 3-D Nonlinear FEM
Yuji Gotoh, Nobuya Sasaguri, Norio Takahashi

OC1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544

Modelling of Vector Hysteresis in Si-Fe Magnetic Steels and Experimental 
Verification
Ermanno Cardelli, Edward Della Torre, Antonio Faba

OC1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546

Size Is in the Eye of the Beholder: Technique for Non-destructive Detection of 
Parameterized Defects
Flavio Calvano, Pasi Raumonen, Saku Suuriniemi, Lauri Kettunen, Guglielmo 
Rubinacci

OC1.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 548

An Improved Jacobi-Davidson Method for the Computation of Selected 
Eigenmodes in Waveguides
Bastian Bandlow, Denis Sievers, Rolf Schuhmann

OC1.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 550

GPU Accelerated Adams-Bashforth Multirate Discontinuous Galerkin FEM 
Simulation of High Frequency Electromagnetic Fields
Nico Gödel

Session PC1: Material Modelling I
10:40-12:10 – Room: Poster Session Room I

PC1.1  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .552

Determination of Induction Motor End-Winding Leakage Inductances Using 
3-D Non-Conforming FE Meshes
Andrej Stermecki, Oszkár Bíró, Kurt Preis Preis, Siegfried Rainer, Klaus Krischan 
Krischan, Georg Ofner Ofner

LXII



PC1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .554

Neural FEM for Hysteretic Materials Unbounded Magnetic Field Analysis
Alessandro Salvini, Salvatore Coco, Antonino Laudani, Francesco Riganti Fulginei

PC1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .556

Homogenization of anisotropic laminated stacks taking into account eddy 
currents
Slawomir Jan Wiak, Ewa Napieralska-Juszczak, Nabil Hihat, Jean Philipe 
Lecointe, Krzysztof Komeza, Piotr Napieralski

PC1.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558

An Anisotropic Vector Hysteresis Model Using Isotropic Vector Play Model
Tetsuji Matsuo

PC1.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 560

Influence of Material Dynamic Hysteresis Modelling in Losses Computation
Thai Phuong Do, Fabien Sixdenier, Laurent Morel, Eric Morin, Laurent Gerbaud, 
Frederic Wurtz

PC1.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 562

Interlamination Shorts in Transformer Cores: Estimation of Local Power 
Dissipation
Carl A. Schulz, Daniel Roger, Stéphane Duchesne, Jean-Noël Vincent

PC1.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 564

Modeling of Magnetoelectric Effect: A Comparison between Homogenization 
and Finite Element Techniques
Romain Corcolle, Laurent Daniel, Frédéric Bouillault

PC1.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 566

Simple Numeric Modelling of Anomalous Eddy Current Taking Account of 
Domain Wall Motion in Steel Plate
Yanhui Gao, Kazuhiro Muramatsu, Koji Fujiwara

PC1.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 568

Inclusion of Eddy Currents in Laminations in Two-Dimensional Finite 
Element Analysis
Jenni Elina Pippuri, Anouar Belahcen, Emad Dlala, Antero Arkkio

PC1.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 570

Electromagnetic Multi-scale Homogenization of Carbon Fiber Composite 
Materials
Guillaume Wasselynck, Didier Trichet, Javad Fouladgar

LXIII



PC1.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .572

The Effects of Steel Lamination Core Losses on 3D Transient Magnetic Fields
Dingsheng Lin, Ping Zhou, Qingming Chen, Zol Cendes

PC1.12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .574

Analytical calculation of the interactions between two cylinder-shaped 
magnets
Jean-Paul Yonnet, Hicham Allag, Benoit Delinchant

PC1.13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .576

Numerical Modelling of Superconducting Filaments for Coupled Problem
Thitipong Satiramatekul, Frederic Bouillault

PC1.14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .578

Improved Accuracy of the Classical Eddy-Current Loss-Computation 
Technique
Anouar Belahcen, Emad Dlala, Jenni Pippuri

PC1.15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 580

A New 2D Magnetic Reluctivity Model for Rotating Magnetic Fields and Its 
Application to FEM
Hee Sung Yoon, Sun-ki Hong, Chang Seop Koh

PC1.16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 582

Measurement and Analysis of Magnetic Properties of Soft Magnetic 
Composite Material Considering 3-D Reluctivity Tensor
Yongjian Li, Qingxin Yang, Jianguo Zhu, Youguang Guo

PC1.17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 584

A Model for Specific Losses in Grain-Oriented Steel
Oszkár Bíró, Ulrike Baumgartner, Yu Chen, Gerald Leber

Session PC2: Electrical Machines and Drives II
10:40-12:10 – Room: Poster Session Room I

PC2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 586

Transient Performance of an Induction Motor with the Smith Connection
Tze-Fun Chan, Loi Lei Lai, Lie Tong Yan

PC2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 588

Multi-objective Shape Optimal Design of PMLSM Utilizing Response Surface 
Method and Grid Computing
Chang Seop Koh, Hee Sung Yoon, Nyambayar Baatar, Hong-soon Choi

LXIV



PC2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 590

End-Effect Equivalent Method for back-EMF of High Speed SPMSM
Ki-Yong Nam, Soon-O Kwon, Jeong-Jong Lee, Jung-Pyo Hong

PC2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 592

A performance model of an induction motor for transient simulation with a 
PWM drive
Derek Dyck, Geoff Gilbert, David A. Lowther

PC2.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 594

Design of a Dual-Rotor Dual-Output Radial-Flux Motor for Variable Speed 
Air Conditioners
Min-Fu Hsieh, Yu-Han Yeh, David G. Dorrell, Samsul Ekram

PC2.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 596

Vibration Synthesis for Electrical Machines based on Force Response 
Superposition
Matthias Boesing, Timo Schoenen, Knut A. Kaper, Rik W. De Doncker

PC2.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 598

Torque Ripple Analysis Method for Permanent Magnet Synchronous 
Reluctance Motor
Ki-Chan Kim, Ju Lee

PC2.8  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 600

On the Importance of Incorporating Iron Losses in the Magnetic Field 
Solution of Electrical Machines
Emad Dlala, Anouar Belahcen, Antero Arkkio

PC2.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 602

Efficiency Evaluation of PMASynRM Vs. SynRM Using Coupling FEM & 
Preisach Modeling
Tae Won Yun, Yong Hyun Kim, Jung Ho Lee

PC2.10  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 604

Optimization of Magnetic Bearing applied to a Ventricular Assist Device
Luiz Lebensztajn, Everton S. Yoshida

PC2.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 606

Design of High Performance Line Start Permanent Magnet Synchronous 
Motor with High Inertia Load
Jian Li, Byongkuk Kim, Yunhyun Cho

LXV



PC2.12  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 608

Slit Effect of Laminated Stator Core in Transverse Flux Rotary Machine
Ji-Young Lee, Seung-Ryul Moon, Do-Hyun Kang, Jung-Pyo Hong

PC2.13  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .610

Design and Analysis of a Written-pole Motor Using a Symmetric Field and FE 
Methods
Byung-Taek Kim, Dae-Kyong Kim, Byung-Il Kwon

PC2.14  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .612

Inductance Calculation and Measurement of Interior Permanent Magnet 
Synchronous Motor
Tao Sun, Soon-O Kwon, Jeong-Jong Lee, Geun-Ho Lee, Jung-Pyo Hong

PC2.15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .614

Shape Optimization of a Thomson-coil Actuator for Fast Response Using 
Topology Modification
Wei Li, Jiang Lu, Young Woo Jeong, Chang Seop Koh

PC2.16  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .616

Optimized Axially Magnetized Permanent Magnet Tubular Actuator: Pole-
Piece Shaping
Laurentiu Encica, Johan Paulides, Koen Meessen, Bart Gysen, Jorge Duarte, Elena 
Lomonova

PC2.17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .618

Permanent Magnet Wheel Motor for Electric Vehicle Applications
Konstantinos I. Laskaris, Anastasios G. Vichos, Antonios G. Kladas

PC2.18  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 620

Optimized geometrical parameters of a SRM by numerical-analytical 
approach
Ammar Bentounsi, Redem Rebbah, Fares Rebbahi, Hind Djeghloud, Hocine 
Benalla, Soltane Belakehal, Bachir Batoun

PC2.19  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 622

Methods for efficient computation and visualization of magnetic flux lines in 
3D
Martin Hafner, Marc Schöning, Marcin Antczak, Andrzej Demenko, Kay Hameyer

PC2.20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 624

Calculation of Copper Losses in Intercell Transformers by 2D FEM simulation
Bernardo Cougo, Thierry Meynard, François Forest, Eric Labouré

LXVI



PC2.21  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 626

Loss Analysis and Efficiency Evaluations of Synchronous Reluctance Motor 
Using Coupled FEM & Preisach Modelling
Il Kyo Lee, Yung Hyun Kim, Jung Ho Lee

Session PC3: Devices and Applications I
10:40-12:10 – Room: Poster Session Room II

PC3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 628

A Novel Calculation Method of Distributed Parameters in Transformer 
Winding
Chun Zhao, Zhiye Du, Jiangjun Ruan, Ying Peng, Liang Chen

PC3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 630

Optimal Regularization for MEG Source Reconstruction by Inverse Methods
Feng Luan, Chany Lee, Jong-Ho Choi, Hyun-Kyo Jung

PC3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 632

Dynamic Force Analysis of Saturated Core HTS FCL under Short-Circuit 
Operation
Xu Fang, Jie Qiu, Shuhong Wang, Hongli Xiao, Weizhi Gong, YIng Xin, Jian Guo 
Zhu, Youguang Guo, Yi Wang, Wei Xu, Xiaoyang Zhang

PC3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 634

Adaptive Ablation Treatment Based on Impedance Imaging
Alessandro Formisano, Ida Maria Vincenza Caminiti, Fabrizio Ferraioli, Raffaele 
Martone

PC3.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 636

A contactless dielectrophoretic handling of diamagnetic levitating water 
droplets in air
Paul Kauffmann, Pascale Pham, Alain Masse, Thibault Honegger, David Peyrade, 
Vincent Haguet, Gilbert Reyne

PC3.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 638

Compact Electromagnetic Bandgap Structures for Notch Band in Ultra-
Wideband Applications
Mihai Dragos Rotaru, Jan K. Sykulski

PC3.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 640

Microwave Characterization using Least-Square Support Vector Machines
HACIB Tarik, Acikgoz Hulusi, Le Bihan Yann, Meyer Olivier, Pichon Lionel

LXVII



PC3.8  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 642

Electromagnetic disruption loads on ITER blanket modules
Maurizio Furno Palumbo, Raffaele Albanese, Roberto Palmaccio, Guglielmo 
Rubinacci, Pietro Testoni, Fabio Villone

PC3.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 644

Fast Computations Technique of Forces Acting on Moving Permanent Magnet
Marek Ziolkowski, Hartmut Brauer

PC3.10  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 646

A model to relate SAR to surface field measurements in human phantoms
Oriano Bottauscio, Mario Chiampi, Luca Zilberti

PC3.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 648

Design of Railway Wheel Detector Insusceptible to Electromagnetic Noise
Asuka Otake, Kenta Takayasu, Shinji Wakao, Tamio Okutani, Yasuhito Takahashi, 
Masahiko Saito, Akihisa Toyoda

PC3.12  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 650

Simulation of Internal Myocardium Defibrillation using Macroscopic 
Anisotropy Models and Finite Element Analysis
Steve McFee, Maryam Golshayan

PC3.13  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 652

Novel Applications of Inductive Method for Measuring Critical Current 
Density
Atsushi Kamitani, Teruou Takayama, Soichiro Ikuno

PC3.14  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 654

Hybrid generation of subject specific head models
Robert Szmurło, Jacek Starzyński, Bartosz Sawicki, Stanisław Wincenciak

PC3.15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 656

Modeling a “flying carpet” stable in both the positive and negative z-directions
Mikhail Kustov, Orphée Cugat, Gilbert Reyne

PC3.16  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 658

3D Voltage Driven Finite Element Analyses of Eccentric Rotor Positions of a 
Novel Hybrid Radial Active Magnetic Bearing
Erich Schmidt, Matthias Hofer

LXVIII



PC3.17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 660

Contact Parameter Computation and Analysis of Air Circuit Breaker with 
Permanent Magnet Actuator
Shuhua Fang, Heyun Lin, Siu-lau Ho, Xianbing Wang, Ping Jin

PC3.18  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 662

Reduction of Repulsion Forces on Current-Carrying Contact using 3-D FEM
Tomohiro Ota, Satoshi Suzuki, Katsuhiro Hirata

PC3.19  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 664

Dynamic Analysis Method for Electromagnetic Artificial Muscle Actuator 
under PID Control
Yoshihiro Nakata, Hiroshi Ishiguro, Katsuhiro Hirata

PC3.20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 666

Controllable Reactor Simulation using Integral Equation Method
Zoran Andjelic, David Pusch, Xiaobo Yang

PC3.21  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 668

SAR Calculations Using Realistic Phone Models: Uncertainty Due to 
Positioning
Vikass Monebhurrun, Azzedine Gati, Man-Faï Wong, Joe Wiart

PC3.22  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 670

Antenna Modeling for Inductive RFID Applications Using the PEEC Method
Peter Scholz, Wolfgang Ackermann, Thomas Weiland, Christian Reinhold

PC3.23  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .672

Design and Implementation of a High Frequency Flyback Converter Using 
New-developed Polymer-bonded Magnetic Cores
Kai Ding, K.W.E Cheng, Yang Shiyou

PC3.24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .675

Evaluation of Discharge Current by Generalized Energy Method and Integral 
Ohm’s Law
Se-Hee Lee, Il-Han Park, Francis O’Sullivan, Markus Zahn

Session PC4: Numerical Techniques II
10:40-12:10 – Room: Poster Session Room II

PC4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .677

On the equivalence of Finite Element and Finite Integration formulations
Andrzej Demenko, Jan Sykulski, Rafal Wojciechowski

LXIX



PC4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .679

A Fast Numerical Analysis of Electromagnetic Fields in Large Grounding 
Systems
Hongxia Huang, Lin Li

PC4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .681

Overlapping Finite Elements for Arbitrary Surfaces in 3D
Stephane Clenet, Guillaume Krebs, Igor Tsukerman

PC4.4  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 683

Basis functions for divergence constraints in the finite element method
C. M. Pinciuc, A. Konrad, J. D. Lavers

PC4.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 685

Agglomeration-based algebraic multigrid for linear systems coming from 
edge-element discretizations
François Musy, Laurent Nicolas, Ronan Perrussel

PC4.6  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 687

A 2D robust FE-FV mixed method to handle strong nonlinearities in 
superconductors
Abelin Kameni, Smail Mezani, Frédéric Sirois, Denis Netter, Jean Lévêque, Bruno 
Douine

PC4.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 689

A Posteriori Error Estimation and Adaptive Mesh Refinement Controlling in 
Finite Element Analysis of 3D Steady State Eddy Current Fields
Jinbiao Li, Dexin Xie, Xiaoming Liu

PC4.8  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .691

Auto adaptive interface treatment for the EFGM in electromagnetic problems
Carlos Alex Sander J. Gulo, Jose Marcio Machado, Gleber Nelson Marques

PC4.9  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 693

Automatic treatment of multiply connected regions in Integral Formulations
Guglielmo Rubinacci, Antonello Tamburrino

PC4.10  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 695

Complex Adjoint Variable Method for Finite Element Analysis of Eddy 
Current Problems
Hajime Igarashi, Kota Watanabe

LXX



PC4.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .697

New Method Analysis of Non-rotating Magnetoacoustic Tomography with 
Magnetic Induction
yang zhang

PC4.12  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 699

Combined Spectral-Element, Finite-Element Discretization for Magnetic-
Brake Simulation
Herbert De Gersem

PC4.13  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .701

Weight Function Control of Moving Least-Squares Interpolants: Application 
to Axisymmetric Shielding Current Analysis in HTS
Soichiro Ikuno, Teruou Takayama, Atsushi Kamitani

PC4.14  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 703

Interior Penalty Discontinuous Galerkin Method for the Time-Domain 
Maxwell’s Equations
Stylianos Dosopoulos, Jin-Fa Lee

PC4.15  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 705

A FEM Approach for Analyzing the Corona Ionized Field of Bipolar Bundled 
Conductors
Haiyan Yuan, Zhengcai Fu, Junwei Lu

PC4.16  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .707

The Solution of Electromagnetic Field Problems using a Sliding Window 
Gauss-Seidel Algorithm on a Multi-Core Processor
Hussein Moghnieh, David Lowther

PC4.17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 709

Speeding Up the Process of Building High-Quality Finite-Element Meshes
Cássia Regina Santos Nunes, Renato Cardoso Mesquita, David Alister Lowther

PC4.18  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 711

Extended Boundary-Node Method: Application to Potential Problem
Ayumu Saitoh, Taku Itoh, Atsushi Kamitani

PC4.19  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 713

Reduction of Eddy Current Losses by several Cuts in Conductors
Arnulf Kost, Matthias Ehrich

LXXI



PC4.20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 715

Fields and Current Formulation for Radiofrequency Antennas
Nabil El Alami, Bernard Bandelier, Francoise Rioux-Damidau

PC4.21  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 717

A New Method to Solve 3D Magnetodynamic Problems without Assembling 
an Ax = b system
João Pedro Assumpção Bastos, Nelson Sadowski

PC4.22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .719

Multiphysics problems via the Cell Method: the role of Tonti diagrams
Piergiorgio Alotto, Fabio Freschi, Maurizio Repetto

PC4.23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 721

Time--domain geometric eddy--current $A$ formulation for hexahedral grids
Ruben Specogna, Lorenzo Codecasa, Patrick Dular, Francesco Trevisan

PC4.24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .723

A finite element method for structures defined by a regular 3D grid of material 
properties
Huanhuan Gu, Jean Gotman, Jon Webb

Session PC5: Material Modelling II
13:30-15:00 – Room: Poster Session Room I

PC5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .725

Hysteresis Losses’ Calculation of Magnetostrictive Ultrasonic Transducer with 
Jiles-Atherton Hysteresis Model
Jianbin Zeng, Baodong Bai, Haiquan Zeng

PC5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .727

Implementation of an Advanced Eddy-Current Model for Non-Linear 
Laminated Media
Anouar Belahcen, Emad Dlala, Jenni Pippuri

PC5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .729

Vector Magnetic Hysteresis Modeling of Soft Magnetic Composite Material
Youguang Guo, Haiyan Lu, Jianguo Zhu, Zhiwei Lin, Jinjiang Zhong, Shuhong 
Wang

LXXII



PC5.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 731

On the Use of Multi-Direction Si-Fe Sheet Sample Magnetic Properties 
Measured by Epstein Frame in Finite Element Analysis
Dexin Xie, Qilin Liu, Zhiqiang Ren, Xiaoyan Wang, Yanli Zhang, Zhiguang Cheng

PC5.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .733

A Study for Harmonic Iron Loss for Electrical Steel under Alternating 
Magnetic Field
Sun-Ki Hong, Chang Seop Koh

PC5.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .735

An Improved Reluctivity Model for Vector Magnetic Properties of Silicon 
Steels under Distorted Magnetic Flux Density
Yanli Zhang, Jingguo Yuan, Dexin Xie, Chang Seop Koh

PC5.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .737

Inrush Currents in a Three-Phase Transformer Taking Into Account Vector 
Hysteresis
Jean Vianei Leite, Abdelkader Benabou, Nelson Sadowski

PC5.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .739

Study of Different FEM Models to Analyze Homogenized Iron Lamination 
with Electrical Fault
Juliana Luisa Müller, Abdelkader Benabou, Thomas Henneron, Francis Piriou, 
João Pedro Assumpção Bastos, Jean-Yves Roger

PC5.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .741

Three-Phase Transformer Modelling Using the Vector Hysteresis Model and 
Including the Eddy Current and the Anomalous Losses
Mauricio Valencia Ferreira da Luz, Jean V. Leite, Abdelkader Benabou, Nelson 
Sadowski

PC5.10  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .743

Iron-Loss Modeling for Rotating Machines: Comparison between Bertotti’s 
Three-Term Expression and 3-D Eddy-Current Analysis
Katsumi Yamazaki, Noriaki Fukushima

PC5.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .745

Effect of Temperature Dependence of Magnetic Properties on Heating 
Characteristics of Induction Heater
Norio Takahashi, Hiroyuki Kagimoto, Hiroaki Kurose, Daisuke Miyagi, Naoki 
Uchida, Keiji Kawanaka

LXXIII



PC5.12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .747

Evaluation of Electromagnetic Inspection of Retained Austenite in High 
Chromium Cast Iron using 3-D Nonlinear FEM Considering Non-Uniform 
Permeability
Yuji Gotoh, Akira Nishishita, Nobuya Sasaguri, Norio Takahashi

PC5.13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .749

3-Dimensional Modelling of Magnetostriction in Iron Core with Equivalent 
Nodal Forces
Yanhui Gao, Kazuhiro Muramatsu, Koji Fujiwara, Yoshiyuki Ishihara, Shigemasa 
Fukuchi, Tetsumi Takahata

PC5.14  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 751

Tolerance Analysis of NMR Magnets
Alessandro Formisano, Raffaele Martone

PC5.15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .753

homogenization in electromagnetism: a thermodynamic insight
Vincent Mazauric

PC5.16  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .755

FE Analysis of Plasma Discharge and Sheath Characterization in Dry Etching 
Reactor
Gwang-Jun Yu, Young Sun Kim, Se-Hee Lee, Il Han Park

Session PC6: Electrical Machines and Drives III
13:30-15:00 – Room: Poster Session Room I

PC6.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .757

Permanent-Magnet Synchronous Generator Supplying an Isolated Load
Tze-Fun Chan, Weimen Wang, Loi Lei Lai

PC6.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .759

Development of Flux Reversal Linear Synchronous Motor with Multiple 
Auxiliary Salient Poles
Shi-Uk Chung, Hong-Ju Lee, Byung-Chul Woo, Ji-Won Kim, Seung-Ryul Moon, 
Sang-Moon Hwang

PC6.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .761

Reduction of Cogging Torque for Axial Flux Generator Applied to Small Wind 
Turbine
Min-Fu Hsieh, Yu-Han Yeh, David G. Dorrell, Samsul Ekram

LXXIV



PC6.4  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .763

Comparison of Magnetic Characteristics according to Stator Core 
Composition in Transverse Flux Rotary Machine
Ji-Young Lee, Ji-Won Kim, Byung-Chul Woo, Sang-Ho Lee, Jung-Pyo Hong

PC6.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .765

Design of the Cage-bars for Single Phase LSPMSM considering the Starting 
Torque and Magnetic Saturation
Seung Joo Kim, Won Ho Kim, Kwang Soo Kim, Jong Bin Im, Ju Lee

PC6.6  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .767

Analysis of Very Fast Transient Overvoltages and Electric Field Stresses in 
Conventional Tesla Transformers Using FDTD Method
Edris Agheb, Ehsan Hashemi, Kaveh Niayesh, Ali Mousavi, Mohsen Faridi

PC6.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .769

Computational Analysis of Fringing Fields and Forces in the Cylindrical 
Coordinate System
Bart. L.J. Gysen, Koen J. Meessen, Johannes J.H. Paulides, Elena A. Lomonova

PC6.8  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 771

Field Calculation in the Innovative Transformers with Amorphous Modular 
Cores
Dariusz Koteras, Bronislaw Tomczuk, Kazimierz Zakrzewski

PC6.9  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .773

Automated Optimization in the Design Process of a Pending Workbench
Jan Albert, Remus Banucu, Alexander Hafla, Veronika Reinauer, Christian 
Scheiblich, Wolfgang M. Rucker, Alexander Huf

PC6.10  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .775

Effects of Load Variation on Eccentricity Fault Diagnosis in Round Rotor 
Synchronous Motors
Bashir Mahdi Ebrahimi, Mohammad Mohammad Etemad Rezaie, Jawad Faiz

PC6.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .777

Dynamic Characteristics Analysis of Spherical Resonant Actuator Using 3-D 
FEM
Satoshi Suzuki, Yoshihiro Kawase, Tadashi Yamaguchi, Shuhei Kakami, Katsuhiro 
Hirata, Tomohiro Ota

LXXV



PC6.12  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .779

Finite Element Processing Methods to Peripheral Flux Leakage in Axial Field 
Flux-Switching PM Machines
Mingyao Lin, Lei Zhang, Xin Li, Haitao Yu

PC6.13  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .781

Slotted and Torus PM Generators for Low Speed Direct Drive Applications 
using an Analytical/Static 2D FEA Design Technique
David George Dorrell

PC6.14  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 783

A General Cuboidal Element for Three-Dimensional Thermal Modeling
Rafal Wrobel, Phil Mellor

PC6.15  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .785

Time-Stepping Finite Element Analysis of a Salient-pole and Round-Rotor 
Synchronous Generators under Dynamic Eccentricity Fault
Jawad Faiz, Mojtaba Babaie, Bashir Mahdi Ebrahimi, Jalal Nazarzadeh

PC6.16  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .787

Magnetic Forces and Displacement Analysis of Large Scale BLDC Motor by 
Magneto-Mechanical Formulation
Pan Seok Shin, Hee Jun Cheong, Sung Hyun Woo, Chang Seop Koh

PC6.17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 789

Optimized Coil Position for Improvement of Holding Torque of the PM - 
Spherical Motor
Sung-Hong Won, Dong-Woo Kang, Won-Ho Kim, Sung-Chul Go, Cheol-Jick Ree, 
Ju Lee

PC6.18  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .791

Comparative study of the inductances of an induction motor with rotor 
eccentricities
Elkin Ferney Rodriguez Velandia, Jose Andres Santisteban Larrea, Antonio Carlos 
Ferreira

PC6.19  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .793

Development of a Flexible Phase Variable Model for Two-Phase Hybrid 
Stepping Motor Using Virtual Magnetic Gateway based FEA
Jiaxin Chen, Youguang Guo, Jianguo Zhu, Weinong Fu

LXXVI



PC6.20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .795

Novel Modeling of Flux-barriers in Interior-type PM Synchronous Motor For 
Pulsation Torque Reduction: Part I. Various Flux-barrier Designs
Liang Fang, Jeong-Jong Lee, Jung-Pyo Hong

PC6.21  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .797

Parametric Finite Element Analyses of a Permanent Magnet Synchronous 
Machine with an External Rotor
Erich Schmidt, Marko Susic

PC6.22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .799

2D Exact Analytical Solution of Open Circuit Magnetic Field in Slotted 
Surface Mounted PM Radial Flux Synchronous Machines
Yacine Amara, Jacques Raharijaona, Georges Barakat

PC6.23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 801

Quasistatic Electromagnetic Field Computation by Conformal Mapping in 
Permanent Magnet Synchronous Machines
Martin Hafner, David Franck, Kay Hameyer

PC6.24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 803

Calculation of Inductances in Intercell Transformers by 2D FEM simulation
Bernardo Cougo, Thierry Meynard, François Forest, Eric Labouré

Session PC7: Numerical Techniques III
13:30-15:00 – Room: Poster Session Room II

PC7.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 805

Study on Analysis Method for Ferrofluid
Yu Okaue, Gaku Yoshikawa, Fumikazu Miyasaka, Katuhiro Hirata

PC7.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 807

Isogeometric analysis for electromagnetic problems
Annalisa Buffa, Rafael Vázquez

PC7.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 809

Nonoverlapping and overlapping decomposition methods in 3D BEM 
multilayered model for Optical Tomography
Tomasz Marek Grzywacz, Jan Sikora

LXXVII



PC7.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 811

Galerkin Projection Method for Sliding Interfaces in Finite Element Analysis 
of Electrical Machines
Enno Lange, François Henrotte, Kay Hameyer

PC7.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .813

Convergence Acceleration of Time-Periodic Electromagnetic Field Analysis by 
Singularity Decomposition-Explicit Error Correction Method
Yasuhito Takahashi, Tadashi Tokumasu, Akihisa Kameari, Hiroyuki Kaimori, 
Masafumi Fujita, Takeshi Iwashita, Shinji Wakao

PC7.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .815

Efficient Block Gauss-Seidel Preconditioner for 3D Full-Wave Finite Element 
Analysis
Toshio Murayama, Shinobu Yoshimura

PC7.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .817

Numerical Convergence of Method of Moments in the Analysis of Bodies of 
Revolution
Ursula Resende, Fernando Moreira

PC7.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .819

A 3-D FE Particle-in-Cell Parallel code with adaptive load balancing
Antonino Laudani, Salvatore Coco, Giuseppe Pollicino, Paola Tirrò

PC7.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .821

Parallel Computing of Magnetic Filed for Rotating Machines on the Earth 
Simulator
Tomohito Nakano, Yoshihiro Kawase, Tadashi Yamaguchi, Masanori Nakamura, 
Noriaki Nishikawa, Hitoshi Uehara

PC7.10  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 823

An efficient algorithm for planar circuits design
Alexandre Serres, Glauco Fontgalland, José Ewerton P. De Farias, Henri 
Baudrand

PC7.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 825

MPI Parallelization for Large Electromagnetic Simulations using Curvilinear 
Finite Elements
Wolfgang Ackermann, Galina Benderskaya, Thomas Weiland

LXXVIII



PC7.12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 827

Multicore Acceleration of CG Algorithms using Blocked-Pipeline-Matching 
Techniques
David M. Fernández, Dennis D. Giannacopoulos, Warren J. Gross

PC7.13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 829

A New Approach to the Impedance Method
Airton Ramos, Daniela O.H. Suzuki

PC7.14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .831

A simplified T-φ formulation for eddy current computation in thin CFRP 
plates
Hocine MENANA, Mouloud FELIACHI

PC7.15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 833

Preconditioned BICGSTAB Algorithm and its Application to a Moving Linear 
Electric Motor
Haitao Yu

PC7.16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 835

An Efficient Two-Level Preconditioner for FEM-BEM Equations based on 
Lifting
Fabio Henrique Pereira, Marcio Matias Afonso, Silvio Ikuyo Nabeta

PC7.17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 837

A Comparison of Parallel Finite Element Analysis Using Domain 
Decomposition
Kota Watanabe, Kenji Yoneta, Hajime Igarashi

PC7.18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 839

Kernel Regularization for Volume Integral Equations
Michael V. Davidovich

PC7.19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .841

Error Estimators based on Kriging Interpolation
Vanessa Gomes Cruz, Luiz Lebensztajn

PC7.20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 843

Investigations on the Accuracy of Maxwell Stress Tensor based Force 
Calculations
Ghislain Remy, Guillaume Krebs, Francois Henrotte

LXXIX



PC7.21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 845

Determination of Uniform Magnetizing Current Density With Stable ICCG 
Convergence Using Simple Technique and Regularization
Yoshifumi OKAMOTO, Koji FUJIWARA, Yoshiyuki ISHIHARA, Tetsuji MATSUO

PC7.22  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 847

Parallel Direct Solver For The Finite Integration Technique in Electrokinetic 
Problems
Abdellatif TINZEFTE, Yvonnick Le Menach, julien korecki, Frédéric Guyomarch, 
francis piriou

PC7.23  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 849

Computation of forces using mean and difference potentials
Antônio Flavio NOGUEIRA

PC7.24  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .851

Numerical algorithms for the image reconstruction in electrical impedance 
tomography
Stefan Franciszek Filipowicz, Tomasz Rymarczyk, Jan Sikora

Session PC8: TEAM, Education and Software Methodolgy
13:30-15:00 – Room: Poster Session Room II

PC8.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 853

The Application of System Dynamics in Learning Electromagnetic Contactor 
Operation
Paulo Irineu Koltermann, Jéferson Meneguin Ortega, Valmir Machado Pereira, 
Éder Rodrigues Martins, Luiz Antônio Righi

PC8.2  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 855

Educational Software for the Numerical Correction of the Experimental 
Magnetization Curves
Valentin IONITA, Emil CAZACU

PC8.3  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .857

Application of the Method of Residues in Comparison to TLM Method in a 
Practical Case
Sérgio Henrique Lopes Cabral, Sávio Leandro Bertoli

PC8.4  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 859

Semi-Analytical Solution of 2-D Rotor Eddy-Current Losses due to the 
Slotting Effect in SMPMM
Frédéric Dubas, Christophe Espanet

LXXX



PC8.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .861

Effect of Source Replacement on both Iron Loss and Flux in Solid and 
Laminated Steel Configurations
Zhiguang Cheng, Norio Takahashi, Behzad Forghani

PC8.6  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 863

An Adaptive Equivalent Circuit Method for TEAM Problem 28: An 
Electrodynamic Levitation Device
Wei Li, Jiang Lu, Chang Seop Koh

PC8.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 865

Proposal of a Benchmark for Multi-Level Optimization with 3D Finite 
Element Model
Stephane Brisset, Tuan-Vu Tran, Pascal Brochet

PC8.8  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 867

Visualization Method of Magnetic Flux Lines with Accurate Allocation 
Applying Tube System
So Noguchi, Hideo Yamashita

PC8.9  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 869

A Weakly Coupled Parallel 2D Delaunay Refinement Algorithm
Mauro Massayoshi Sakamoto, José Roberto Cardoso Cardoso, Marcelo Facio Palin 
Palin, Fabio Henrique Pereira Pereira, Maurício Barbosa de Camargo Salles Salles

PC8.10  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .871

The Broad Sense Chain-Making and Chain-Coupling Theorems of Element 
Grid in 2-D Problems
Nan Xiong, Kexun Jiang

PC8.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 873

Analyse of different programming solutions adapted to block matrix type in 
electromagnetic modelling
Laurent Santandrea, Yahya Choua, Alejandro Ospina, Yann Le Bihan, Claude 
Marchand

PC8.12  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .875

Simulation of Electric Field Distribution in Polymeric Insulators
Rosemeri C Fagundes, Walmor C Godoi, Marco A A Vasco, Vitoldo Swinka-Filho, 
Klaus de Geus, Andre E Lazzaretti

PC8.13  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .877

The Cross-Entropy Method and its Application to Inverse Problems
S.L. Ho, Shiyou Yang

LXXXI



PC8.14  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 879

Scalability of Higher-Order Discontinuous Galerkin FEM Computations for 
Solving Electromagnetic Wave Propagation Problems on GPU Clusters
Markus Clemens, Nico Gödel, Tim Warburton, Nigel Nunn

Session OC2: Devices and Applications and Electromagnetic Compatibility
15:20-17:10 – Room: Plenary Session Room

OC2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .881

(Invited) EMC Modeling of an Industrial Variable Speed Drive with an 
Adapted PEEC Method
Vincent Ardon, Jérémie Aimé, Olivier Chadebec, Édith Clavel, Jean-Michel 
Guichon, Enrico Vialardi

OC2.2  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 883

Calculation of Equivalent Circuit Parameters for a High-Frequency RFID 
Transponder
Thomas Bauernfeind, Kurt Preis, Oszkar Biro, Florian Hämmerle

OC2.3  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 885

Planar Coil Model using Shell Elements Applied to an Eddy-Current Non-
Destructive Testing
Alejandro Ospina, Laurent Santandrea, Yann Le Bihan, Claude Marchand

OC2.4  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 887

Numerical Field Calculation in Support of the Hardware Commissioning of 
the LHC
Bernhard Auchmann, Stephan Russenschuck

OC2.5  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 889

Fault Classification and Detection by Wavelet Based Magnetic Signature 
Recognition
Francisco Xavier Sevegnani, Carlos A.F. Sartori

LXXXII



Thursday, November 26th

Session OD1: Electric Machines and Drives
08:30-10:20 – Room: Plenary Session Room

OD1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .891

(Invited) Modeling the dynamic behavior of magnetostrictive actuators
Oriano Bottauscio, Paolo E. Roccato, Mauro Zucca

OD1.2  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 893

Determination of d-q Axis Parameters of Interior Permanent Magnet 
Machines
Ping Zhou, Dingsheng Lin, Georg Wimmer, Zoltan Cedens

OD1.3  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 895

Simulation of the Winding Overhangs in Permanent Magnet Synchronous 
Machines
Bogdan Funieru, Andreas Binder

OD1.4  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 897

Dynamic Analysis Method of Spiral Resonant Actuator Using 3-D FEM
Satoshi Suzuki, Yoshihiro Kawase, Tadashi Yamaguchi, Shuhei Kakami, Katsuhiro 
Hirata, Tomohiro Ota

OD1.5  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 899

Field Reconstruction Method in the Optimal Design of Doubly Fed Induction 
Generators
Wei Wang, Babak Fahimi

Session PD1: Electrical Machines and Drives IV
10:40-12:10 – Room: Poster Session Room I

PD1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .901

Analysis of Harmonic Iron Losses for IPMSM Considering the Rotating Field
Jang-Ho Seo, Hyun-Kyo Jung

PD1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 903

Characteristic Analysis & Optimum Design of Permanent Magnet Assisted 
Synchronous Reluctance Motor for Premium Efficiency Performance
Tae Won Yun, Sung Ju Mun, Jung Ho Lee

LXXXIII



PD1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 905

Characteristic Analysis Method of Irreversible Demagnetization in Single-
phase LSPM Motor
Byeong-Hwa Lee, Soon-O Kwon, Jeong-Jong Lee, Liang Fang, Jong-Pyo Hong, 
Hyuk Nam

PD1.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 907

Pre-Processing of Inductances for Intercell Transformer Optimization
Bernardo Cougo, Thierry Meynard, François Forest, Eric Labouré

PD1.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 909

Hysteresis Torque Analysis of PM Motor Using Initial B-H curve and Tested 
Core Loss
Jeong-Jong Lee, Soon-O Kwon, Jung-Pyo Hong, Hong-Soon Choi

PD1.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 911

Contactless Torque Transmission by a Magnetic Gear
Veronika Reinauer, Jan Albert, Remus Banucu, Wolfgang Hafla, Christian 
Scheiblich, Wolfgang M. Rucker

PD1.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .913

Tests and simulation results of the static torque characteristics of a brushless 
DC permanent magnet motor
Pedro Pereira de Paula, Paulo Sérgio Ulian

PD1.8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .915

An Improved Calculation Model for Core Losses of Soft Magnetic Composite 
Motors
Yunkai Huang, Jianguo Zhu, Youguang Guo

PD1.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .917

An Extended B-H Curve Modeling of 2D Magnetic Properties of Silicon Steel 
and Its Influences on Motor Performances
Hee Sung Yoon, Pan-seok Shin, Chang Seop Koh

PD1.10  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .919

Computation on Electromagnetic Torque of Solid Rotor Induction Motor
Yan Hu

PD1.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .921

Dynamic Characteristics Analysis in A Pole Changing Memory Motor Using 
Coupled FEM & Preisach Modeling
Yong Hyun Cho, Il Kyo Lee, Jung Ho Lee

LXXXIV



PD1.12  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 923

Improvement in accuracy of thermal FEM model partition wall with the use of 
optimization algorithm
Peter Kitak, Igor Ticar, Joze Pihler, Oszkar Biro, Kurt Preis

PD1.13  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 925

Field Computation and Performance of a Series-Connected Self-Excited 
Synchronous Generator
Tze-Fun Chan, Weimin Wang, Loi Lei Lai

PD1.14  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .927

Power Factor Calculation by the Finite Element Method
Claudia Andréa da Silva, Francis Bidaud, Philippe Herbet, José Roberto Cardoso

PD1.15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 929

Comprehensive Research on Stator Shapes and Frames in Switched 
Reluctance Motor: Electromagnetic, Thermal and Vibration Analyses
Jian Li, Xueguan Song, Dawoon Choi, Yunhyun Cho

PD1.16  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .931

Investigation of System Efficiency in Nd-Fe-B and Ferrite Magnet 
Synchronous Motors with Coupled Field-Circuit Analysis
Tao Sun, Soon-O Kwon, Jung-Pyo Hong

PD1.17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 933

Minimizing Torque Ripple of a BLDC Motor by Offsetting Cogging Torque 
with Voltage Control
Jin seok Jang, Byung teak Kim

PD1.18  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 935

A novel transverse flux linear motor for direct drive applications
Junghwan Chang, Jiwon Kim, Dohyun Kang, Deokje Bang

PD1.19  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .937

Design Strategy of Interior Permanent Magnet Synchronous Motor for 
Electric Power Steering Considering Cogging Torque and Torque Ripple using 
Current Harmonics
Soon-O Kwon, Jeong-Jong Lee, Tao Sun, Young-Kyun Kim, Geon-Ho Lee, Jung-
Pyo Hong

PD1.20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 939

Calculate the Parameters of IPMSM according to distance of PM and 
Magnetic saturation.
Ik Sang Jang, Chang Sung Jin, Seung Joo Kim, Ju Lee

LXXXV



PD1.21  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .941

Axial Magnetic Flux and Eddy-Current Loss in Core Ends of a Large Induction 
Machine
Ranran Lin, Ari Haavisto, Antero Arkkio

PD1.22  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 943

Double-layer Interior-PM Design in Single-Phase Line-Start Motor For 
Reducing Magnet
Liang Fang, Byeong-Hwa Lee, Jung-Pyo Hong, Hyuk Nam

Session PD2: Electrical machines and Drives V
10:40-12:10 – Room: Poster Session Room I

PD2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 945

Study on Partial Discharge Location in Oil Based on Ultrasonic Phased Array 
and Wideband Array Signal Processing
Qing Xie, Yan-qing Li, Fang-cheng Lu, Cheng-rong Li, Nna Wang

PD2.2  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .947

A Study on the Relation between Deformation of Stator Yoke and Acoustic 
Noise in Interior Permanent Magnet Motor
DoJin Kim, SangHo Lee, JeongJong Lee, JiMin Kim, JungPyo Hong

PD2.3  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 949

Analysis of Vibration and Music Scale of Brushless DC Motor with Surface 
Permanent Magnets
Takeo Ishikawa, Satoshi Azami, Ryo Ataka

PD2.4  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .951

Internal Faults Simulation and Analysis for Linear Synchronous Motor
Haitao Yu

PD2.5  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 953

Effects of Magnetic Saturation on Spindle Motor Characteristics
Jaenam Bae, Seung-Joo Kim, Sung-Chul Go, Dong-Woo Kang, Sang-Hwan Ham, 
Ju Lee

PD2.6  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .955

The Optimal Design of the Secondary Reaction Plate Shape of Single-Sided 
Linear Induction Motor for Urban Maglev Train
Sang-Hwan Ham, Sung-Gu Lee, Su-Yeon Cho, Chang-Sung Jin, Ju Lee

LXXXVI



PD2.7  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .957

The impact of static eccentricity on rotor bar current distribution in case of 
one broken bar in Induction Motor
Hubert Razik, François-Michel Sargos

PD2.8  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 959

Optimum LIM Interval Selection of Vector Controlled Moving Secondary 
Plate Conveyor System Using FEM & SUMT
TaeHoon Lee, YongHyun Cho, JungHo Lee

PD2.9  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .961

Novel method for analyzing the Permanent Magnet Motors
Sung-Hong Won, Cheol-Jick Ree, Ju Lee

PD2.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 963

Design of copper die-cast rotor bar of single phase induction motor for high 
starting torque
Kwangsoo Kim, Jong Bin Im, Seung Joo Kim, Won Ho Kim, Ju Lee

PD2.11  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 965

A Study on Performance Simulation of Interior Permanent Magnet 
Synchronous Motor for Electric Vehicle considering Nonlinearity
Ki-Chan Kim, Ju Lee

PD2.12  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .967

Characteristics Analysis & Optimum Design of Anisotropy Rotor SynRM 
Using Coupled
Il Kyo Lee, Yong Hyun Cho, Jung Ho Lee

PD2.13  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 969

Irreversible Demagnetization on Permanent Magnet Motors
Flavio Jorge Haddad Kalluf, Luiz Von Dokonal, Rodrigo Stanziola Teixeira

PD2.14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .971

Improved FE Post-Processors for Design of PM Fractional-Slot Machines
Jérôme Cros, Mehdi Taghizadeh, Philippe Viarouge

PD2.15  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .973

Novel DTC Based on SVM with Adaptive stator Flux Observer for Induction 
Motors
Zhifeng Zhang, Renyuan Tang, Baodong Bai

LXXXVII



PD2.16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .975

A New Anisotropic Bonded NdFeB Permanent Magnet and Its Application to 
a Small DC Motor
Chang Seop Koh, Hyo Jun Kim, Hee Sung Yoon

PD2.17  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .977

Optimum Design For Premium Efficiency of 250 kW Traction Induction 
Motor Using Response Surface Methodology & FEM
SUNG JU MUN

PD2.18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .979

Optimal PM Design of PMA-SynRM for Wide Constant-Power Operation and 
Torque Ripple Reduction
WonHo Kim, KwangSoo Kim, SeungJoo Kim, JongBin Im, Ju Lee

PD2.19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .981

Study of Static and Dynamic Eccentricities of a Synchronous Generator Using 
3D FEM
Bruno Akihiro Tanno Iamamura, Yvonnick Le Menach, Abdelmounaïm Tounzi, 
Nelson Sadowski, Eilin Guillot

PD2.20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 983

FE-Circuit Coupled High Frequency Model of Electric Machines for 
Simulation and Evaluation of EMI Issues in Motor Drives
Osama A Mohammed

Session PD3: Devices and Applications II
10:40-12:10 – Room: Poster Session Room II

PD3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 985

A New Scheme for Detecting Longitudinal Defects in Conductive Tubes by EC 
Testing
Alessandro Formisano, Raffaele Martone, Francesco Iacotucci, Fabrizio Ferraioli

PD3.2  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 987

A Study on the FE Analysis of a Flux-Reversal Machine under 4-switch 
converter
Tae Heoung Kim, Hyun-Soo Kang, Byoung-Kuk Lee

PD3.3  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 989

EEG inverse problem solution with minimal influence of the conductivity
Bertrand Russel Yitembe, Guillaume Crevecoeur, Luc Dupré, Roger Van Keer

LXXXVIII



PD3.4  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .991

Modeling and Extraction of Parasitics in IGBT Modules
Zarife Cay, Olaf Henze, Stephan Koch, Thomas Weiland

PD3.5  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 993

Modelling Motion, Stiffness and Damping of a Permanent-Magnet Shaft 
Coupling
Antero Arkkio, Asko Niemenmaa, Lauri Salmia, Juha Saari

PD3.6  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 995

Discrete geometric approach to modeling the cathodic region in a PEM fuel 
cell
Paolo Bettini, Ruben Specogna, Andrea Stella, Francesco Trevisan

PD3.7  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .997

Modeling of a current sensor with a FE-tuned MEC: Parameters identification 
protocol
Fabien Sixdenier, Marie-Ange Raulet, Bruno Lefebvre

PD3.8  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 999

Study of Three Dimensional Flux Distribution in Nonlinear Core of Power 
Transformers Based on 3-D FEM Modeling
Seyed Ali Mousavi, Mohsen Faridi, Vahid Nabaei, Hashemi Ehsan

PD3.9  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1001

Wideband Equivalent Circuit Model for Automotive Ignition Coil
JIA Jin, YU Ji-hui, WANG Quan-di, ZHENG Ya-li

PD3.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1003

Factors Affecting Eddy Current Losses of Segmented Nd-Fe-B Sintered 
Magnets without Insulation
Norio Takahashi, Hirofumi Shinagawa, Daisuke Miyagi, Yuhito Doi, Koji Miyata

PD3.11  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1005

Electromagnetic Analysis of Umbilical Cables with Complex Configurations
Mauricio Barbosa de Camargo Salles, Mauricio Caldora Costa, Mario Leite 
Pereira Filho, Jose Roberto Cardoso, Giuseppe Renato di Marzo

PD3.12  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1007

Signal-to-noise ratio analysis of radio frequency coils in low-field MRI 
systems
Ye Li, Xiaohua Jiang

LXXXIX



PD3.13  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1009

Time Domain Analysis Of Compact Lumped Element Circulators
Dirk Schulz

PD3.14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1012

Determination of a correction factor due to joints for core losses in power 
transformers by 2D FEA
Wilerson Venceslau Calil, Viviane Cristine Silva

PD3.15  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1014

Effects of a remanent magnetization on the detection signals of the metal loss 
in Magnetic Flux Leakage type NDT
Kang Seo, Gwan Soo Park

PD3.16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1016

Force Computation in a MEMS Structure Using Adaptive Mesh Refinement
Francisc Attila Bölöni, Abdelkader Benabou, Guillaume Krebs, Abdelmounaim 
Tounzi

PD3.17  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1018

A methodology for applying three-dimensional constrained Delaunay 
tetrahedralization algorithms on MRI medical images
Feras Abu Talib, Dennis D. Giannacopoulos

PD3.18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1020

Analysis of copper losses in resistance spot welding transformer windings 
with Dowell method and numerical approach
Jelena Popović, Drago Dolinar, Gorazd Štumberger, Igor Tičar, Beno Klopčič

PD3.19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1022

Lightning Induced Voltage on the Underground Pipeline near Overhead 
Transmission Line
Lei Qi, Xiang Cui, Yan Wu, Zhaonan Luo

PD3.20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1024

A Development on the Analysis Method of Synchronous Reluctance Motor 
Using FEM Coupled Electomagnetic Field of Thermal Field
TaeHoon Lee, SungJu Mun, JungHo Lee

XC



Session PD4: Numerical Techniques IV
10:40-12:10 – Room: Poster Session Room II

PD4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1026

Novel Preconditioning in Finite Element Analysis of Electromagnetic Field: 
A-φ Block IC Preconditioning
Yasuhito Takahashi, Takeshi Mifune, Takeshi Iwashita

PD4.2  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1028

H-Matrix Based Operator Preconditioning For Full Maxwell At Low 
Frequencies
Jörg Ostrowski, Mario Bebendorf, Ralf Hiptmair, Florian Krämer

PD4.3  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1030

The hybrid numerical integration algorithm of Hankel transform for magnetic 
induction tomography
He wei, Luo haijun, Xu zheng, Li qian, Wang junfeng

PD4.4  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1032

A New Multilevel Smoothing Method for the Wavelet-Based Algebraic 
Multigrid
Fabio Henrique Pereira, Silvio Ikuyo Nabeta

PD4.5  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1034

Analysis of Omnidirectional Compact Dual-reflector Antenna
José Ricardo Bergmann, Sandro Rogério Zang

PD4.6  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1036

Mixed Fault Diagnosis of Squirrel Cage Induction Motor by Winding Function 
Approach
Kyungil Woo, Daesuk Joo

PD4.7  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1038

Simple Parallelization Strategy for Mesh Refinement Algorithms
Thiago Emanuel Alves Macêdo, Adriano Chaves Lisboa, Renato Cardoso Mesquita

PD4.8  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1040

Magnetic Field Analyses of Architectural Components Using Homogeneous 
Technique
Shunya Odawara, Yu Haraguchi, Kazuhiro Muramatsu, Keita Yamazaki, 
Shigetaka Hirosato

XCI



PD4.9  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1042

Finite element method coupled with Delaunay refinement for curved 
geometries
Adriano Chaves Lisboa, Renado Cardoso Mesquita, Rodney Rezende Saldanha, 
Ricardo Hiroshi Caldeira Takahashi

PD4.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1044

Impact of Tetrahedral Mesh Quality for Electromagnetic and Thermal 
Simulations
Julien Dardenne, Nicolas Siauve, Sébastien Valette, Rémy Prost, Noël Burais

PD4.11  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1046

Parallel Computing of Magnetic Field for Rotating Machines on PC Cluster
Tomohito Nakano, Yoshihiro Kawase, Tadashi Yamaguchi

PD4.12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1048

Mesh Refinement in Eddy Current Testing with Separated T-R probes
Yahya Choua, Laurent Santandréa, Yann Le Bihan, Claude Marchand

PD4.13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1050

Demagnetized Permanent-Magnet Fault Recognition in Synchronous Motors
Bashir Mahdi Ebrahimi, Jawad Faiz

PD4.14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1052

Induction motor analysis using optimal torque predictor and massive 
conductor approach
Slawomir Stepien

PD4.15  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1054

FD-TD Calculations of SAR validated through measurements
Ana de Oliveira Rodrigues, Juliano Junio Viana, Alisson Henrique Quemel de 
Souza, Eduardo Aparecido dos Santos

PD4.16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1056

Finite Element Method Model Improvement for the Conducted Emission 
Analysis of a Lighting Fixture
Yoshihiko Namba, Tomoyuki Kida, Katsuhiro Hirata, Shohei Ikejiri, Fuminao 
Obayashi

PD4.17  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1058

Reduced Thermal Model for Stator Slot
Idoughi Laïd, Mininger Xavier, Bouillault Frédéric, Hoang Emmanuel

XCII



PD4.18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1060

Distributed Processing Management using ROME
Nancy Mieko Abe, Claudio Dias Marins, Angelo Passaro

PD4.19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1062

Evaluation of Solution Accuracy on Finite Element Analysis using Magnetic 
Flux Lines
So Noguchi, Hideo Yamashita

PD4.20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1064

Performance Analysis of Inductive Coil Gun Based on Field-Circuit Method
Liu Shoubao, Ruan Jiangjun, Zhang Yu, Peng Ying, Du Zhiye

PD4.21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1066

Finite Element Magnetic Models via a Coupling of Subproblems of Lower 
Dimensions
Patrick Dular, Ruth V. Sabariego, Christophe Geuzaine, Mauricio V. Ferreira da 
Luz, Patrick Kuo-Peng, Laurent Krähenbühl

PD4.22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1068

Improved Bacterial Foraging Strategy Applied to TEAM Workshop 
Benchmark Problem 22
Piergiorgio Alotto, Leandro dos Santos Coelho, Camila da Costa Silveira, Cezar 
Augusto Sierakowski

PD4.23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1070

A Population Based Incremental Learning Method for Robust Optimal 
Solutions
S.L. Ho, Shiyou Yang

PD4.24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1072

Krylov-based algebraic multigrid for edge elements
François Musy, Artem Napov, Yvan Notay, Ronan Perrussel, Riccardo Scorretti

Session OD2: Numerical Techniques and Software Methodology
13:30-15:20 – Room: Plenary Session Room

OD2.1  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1074

(Invited) A p-adaptive scheme for scalar fields, using high-order, singular 
finite elements
Jon Webb

XCIII



OD2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1076

A Discrete (2+1)-D Formulation for 3-D Field Problems with Continuous 
Symmetry
Bernhard Auchmann, Bernd Flemisch, Stefan Kurz

OD2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1078

Electromagnetic Field Computation in 2D Using the Discrete 1D Green’s 
Function
Do Wan Kim, Young-Cheol Yoon

OD2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1080

Load Scheduling for Power Aware Matrix Multiplication on CPU-GPU 
Multiprocessing Platform
DaQi Ren, Reiji Suda

OD2.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1082

Finite element sparse matrix vector multiplication on graphic processing 
units
Maryam Mehri Dehnavi, David M. Fernández, Giannacopoulos, Dennis D.

XCIV



COMPUMAG-FLORIANOPOLIS 2009, 2. QUASI-STATIC FIELDS, C. TIME AND FREQUENCY DOMAIN 1

Surface-Impedance Boundary Conditions in Dual
Time-Domain Finite-Element Formulations

R. V. Sabariego 1, P. Dular 1,2, C. Geuzaine 1 and J. Gyselinck 3

1 Dept. of Electrical Engineering and Computer Science, University of Liège, Belgium, r.sabariego@ulg.ac.be
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Abstract—This paper deals with time-domain surface-
impedance boundary conditions in computational magnetody-
namics considering both magnetic-vector potential and magnetic-
field formulation. Based on the resolution of the 1-D eddy-current
problem in a semi-infinite slab, the massive conducting region is
accounted for by choosing a number of exponentially decreasing
trigonometric basis functions covering the relevant frequency
range. Herein the method is elaborated for the magnetic-field
formulation. Results for both formulations are compared and
validated on a two-dimensional test case.

I. INTRODUCTION

SURFACE-impedance boundary conditions (SIBCs) are
widely applied in frequency-domain eddy-current prob-

lems for considering massive conducting regions. The ap-
proach is based on the relation between the tangential com-
ponents of the electric and the magnetic field at the surface
of the conducting region and allows to avoid the discretisation
of its volume. The few time-domain extensions proposed to
date are mostly based on the fast Fourier transform [1], [2], or
on the iterative coupling between the main 3-D finite element
(FE) model and a large number of 1-D FE calculations (with
classical nodal basis functions) [3].

In [4], the authors proposed a time-domain approach based
on the magnetic-vector-potential formulation. This approach
is herein extended for the magnetic-field formulation. Results
of both formulations will be compared and validated on a 2-D
test case.

II. 1-D EDDY CURRENT PROBLEM IN SEMI-INFINITE SLAB

Let us consider a low-frequency eddy-current problem in
a bounded domain Ω = Ωc ∪ ΩC

c ∈ R3 with boundary Γ.
The conductive and non-conductive parts of Ω are denoted by
Ωc and ΩC

c , respectively. We are only concerned with linear
and homogeneous media, i.e. the conductivity σ (resistivity
ρ = 1/σ) and the permeability µ (reluctivity ν = 1/µ) are
constant scalars in Ω.

The following Maxwell equations and constitutive laws are
taken into account:

div b = 0 , curlh = j , curl e = −∂t b , (1 a-c)
j = σ e , b = µh , (2 a b)

where b is the flux density (or induction), h the magnetic field,
j the current density and e the electric field.

This work was partly supported by the Belgian Science Policy (IAP P6/21).

A. 1-D eddy-current problem and FE model
The 1-D eddy-current problem in a semi-infinite slab (0 ≤

x ≤ ∞, b(x, t) and h(x, t) parallel to the z-axis, j(x, t) and
e(x, t) parallel to the y-axis) can be expressed in terms of the
z-component of h(x, t) denoted by h(x, t):

∂2xh = σµ∂th with h(x =∞, t) = 0 , (3)

where the boundary condition at infinity (x = ∞) ensures
the uniqueness of h(x, t). The sinusoidal steady-state solution
of (3) at frequency f (pulsation ω = 2πf ), with boundary
condition h(x = 0, t) = ĥ cos(ωt+ φ), reads

h(x, t) = ĥ cos(ωt+ φ) e−x/δ cos(x/δ)

+ ĥ sin(ωt+ φ) e−x/δ sin(x/δ) , (4)

with δ the skin depth and φ an arbitrary phase angle.
The FE discretisation of (3) by means of N basis functions

αi(x), 0 ≤ x <∞, 1 ≤ i ≤ N , leads to a system of first-order
differential equations. It reads

[S][H(t)] + [M ] ∂t[H(t)] = [V (t)] , (5)

where [H(t)] is the column matrix that comprises the N
degrees of freedom of h(x, t); the only non-zero element (first)
of column matrix [V (t)] equals the electromotive force; the
elements of [S] and of [M ] are given by

Sij = ρ

 ∞

0

∂xαi(x) ∂xαj(x) dx , (6)

Mij = µ

 ∞

0

αi(x)αj(x) dx . (7)

The associated positive-definite quadratic forms are the instan-
taneous magnetic energy density w(t) and the instantaneous
eddy-current loss density p(t):

w = [H]T [M ] [H] and p = [H]T [S] [H] . (8)

B. Dedicated basis functions
The choice of basis functions is motivated by the solution of

the 1-D eddy-current problem (4) [4]. For a given time-domain
problem, a set of skin depths δk can be preset accounting for
the frequency content of the magnetic fields and the accuracy
required. We define thus the following 2n basis functions:

αc1(x) = e−x/δ1 cos(x/δ1) , (9)

αck(x) = e−x/δk cos(x/δk)− αc1(x) , 2 ≤ k ≤ n , (10)

αsk(x) = e−x/δk sin(x/δk) , 1 ≤ k ≤ n . (11)

Note that all basis functions vanish at the boundary except the
first one, i.e. αc1(x = 0) = 1.

1
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III. INTEGRATION IN FE MODEL

The SIBC method is applied to a massive subdomain Ωm

of Ωc. The weak form of the Faraday law (1 c) is written as:

∂t(µh, h)Ω\Ωm
+(ρ curlh, curlh)Ωc\Ωm

+n×e, h∂Ωm = 0 ,
(12)

where (· , ·)Ω and · , ·∂Ωm
denote a volume integral in Ω and

a surface integral on ∂Ωm, respectively, of the scalar product
of their arguments; n is the outward normal on ∂Ωm. At the
discrete level Whitney edge elements are adopted for (12).

Ignoring the finite depth of Ωm and the curvature of
∂Ωm, we can consider a local coordinate system and write
the magnetic field in Ωm as h = ht(y, z) p(x, t), with ht

tangential to ∂Ωm and p(x, t) differentiable with respect to
x (0 ≤ x < ∞). With our time-domain approach, the two
volume integrals considered in Ωm are thus reduced to the
following surface integrals:

∂t(µh, h)Ωm= ∂tht, h

t∂Ωm· µ

 ∞

0

p p dx , (13)

(ρ curlh, curlh)Ωm= curlht, curlht∂Ωm· ρ
 ∞

0

∂xp ∂xp
 dx ,

(14)

Considering αck(x) and αsk(x) for the space discretisation of
p(t) and p(t), the integration along the x-axis in (13) and
(14) produces the elements of the matrices [S] and [M ].

IV. APPLICATION EXAMPLE

The 2-D application example concerns a non-magnetic
conducting cylinder (radius R = 10 cm; σ = 6107 S/m) inside
an inductor (rectangular cross-section) with imposed current.
Only one quarter of the geometry is modeled (see Fig. 1). The

Fig. 1. Flux pattern (in phase with imposed sinusoidal current) with δ/R =
0.5 (left) and δ/R = 0.1 (right)

classical magnetic-field (h-)formulation and magnetic-vector-
potential (a-)formulation with a very fine discretisation of the
cylinder near its surface provide an accurate reference solution.
Two typical flux patterns obtained with the a-formulation are
depicted in Fig. 1. When applying the SIBC, only the mesh
outside the cylinder is effectively considered. A trapezoidal
current varying between 1 and −1 at 1 kHz is considered. We
adopt a low order approximation of the SIBC with f1 = 1 kHz
and further discrete frequencies being odd multiples of f1.
The induction and the current density in a point at the surface
of the cylinder are shown in Fig. 2 for the first fundamental
period. Note that the results obtained with the low-order
SIBC converge faster (n = 1) for the induction with the h-
formulation and for the current with the a-formulation.

The magnetic energy and the joule losses in the cylinder
have been calculated during the first period with the fine model
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Fig. 2. Induction and current density in a point at the surface of the cylinder
versus time obtained with dual fine models and time-domain SIBC approaches

(without SIBC) and the low-order SIBC (n equal to 1 and 2).
A good convergence of the SIBC results towards the reference
results for both formulations is observed in Fig. 3.
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Fig. 3. Joule losses and magnetic energy in the cylinder versus time obtained
with dual fine models and time-domain SIBC approximations (n = 1, 2)

Further results obtained with the two dual formulations on
a 3-D application will be included in the full paper.
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Abstract: Accurate numerical simulation of eddy-current
testing (ECT) experiments usually requires large computa-
tional efforts. To avoid time-consuming computations, a natu-
ral idea is to build a cheap approximation of the expensive-to-
run simulator. In this paper, a kriging-based approximation
of an ECT simulator is presented. Kriging is widely used in
other domains, but is still quite unexplored in the ECT com-
munity. The kriging approximation is built using a random
process model of the simulator and a set of simulation results
obtained for a number of different input configurations. The
resulting approximation might yield almost the same results
as those of the simulator.

Keywords: Eddy-current testing; Kriging; simulator ap-
proximation

I. Introduction

Eddy-current testing is well-known for a long time and
is applied in a wide range of industrial problems. How-
ever, the accurate numerical simulation of the physical
phenomenon is still challenging. Finite element and/or in-
tegral equation methods are able to provide acceptable ac-
curacy, at a quite high price however, since these methods
are implemented using technically complex computer pro-
grams that generally necessitate advanced hardware and
long computation times. Nowadays, more and more em-
phasis is put on the emulation, or surrogate modeling of
EM phenomena [1]. This trend leads the electromagnetic
community to consider new methods based on mathemati-
cal tools from other domains.

Our paper presents an application of kriging to eddy-
current testing problems. The proposed method provides
a way to construct a cheap approximation for a specific
ECT problem. The main idea is to build a database of ECT
configurations, i.e. a set of pairs consisting of a vector of
the parameters of a defect and the corresponding output
signal, and then to use kriging to predict the output sig-
nal at any untried vector of defect parameters. Once the
database is built, one does not need the expensive simula-
tor any longer, but only a cheap kriging model.

Kriging is a prediction method appeared in the 60s in
the domain of geostatistic. By now, several variants of the
method have been developed and a comprehensive litera-
ture deals with kriging (see, e.g. [2]). For a recent review
of the topic, see [3]. Some applications in electromagnetics
are presented for instance in [4]. Also the authors have ap-
plied kriging to solve ECT inverse problems in [5]. How-
ever, the approach of [5] focuses on the kriging predic-
tion of a cost-function (to be minimized in an optimization
loop) – now the present paper deals with the use of kriging
directly on the output signal.

II. The proposed method

A. The forward prediction problem

The cheap input-output approximation will be built from
a database of computer simulations of the ECT problem.
To simplify the notation, let us suppose that a vector of
output parameters y is related to a vector of input parame-
ters x through

y = f (x) , (1)

f representing the underlying physical phenomena. For
eddy-current testing application x might be the geometri-
cal parameters describing a defect affecting a plate and y
the measured data (coil impedances at different locations
above the plate). A possible realization f is a numerical
solution of the corresponding Maxwell’s equations.

The proposed method is a two-step approach.
1) Compute some corresponding (x i, yi), i = 1, . . . , n

pairs (“samples”) using (1) and store them in a
database that one will use at the stage 2.

2) Fit a kriging interpolator to the samples stored in the
database and predict the sought y output at any arbi-
trary x input point.

B. Basics of kriging

The main idea of kriging is to model a real-valued func-
tion f by a Gaussian process, the latter being characterized
by its mean and its covariance function. The covariance
function describes the statistical dependence between two
values of the process and it is a scalar function of one pa-
rameter under the hypothesis of a stationary modeling pro-
cess. However, the covariance function is not known be-
fore f has been observed. Generally, one chooses a class of
parameterized covariance functions and tunes the parame-
ters in order to fit the modeling process to the pointwise
observations of f .

Once an appropriate covariance function is determined,
the prediction f̂ (x) of f (x) at any arbitrary x is written as a
linear combination of the observations:

f̂ (x) =
n�

i=1

λi(x) f (xi).

The λi(x) weights are computed using the covariance func-
tion, by solving a linear system of n equations. The predic-
tion is an interpolation, since f (xk) = f̂ (xk) holds for all
k = 1, 2, . . . , n. Note that beyond the mere interpolation,
kriging provides additional information about the uncer-
tainty of the prediction as well.

C. Application to the ECT problem

In (1), the output y is a vector of size q. It is then ap-
propriate to use an extension of kriging called co-kriging
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[2] to obtain a prediction model, which takes into account,
not only the statistical dependence between the inputs and
each component of the vector-valued output, but also the
dependence between the components of the output vector.
Formally, the kriging prediction is

ŷ(x) =
n�

i=1

Λi(x)yi, (2)

with the weighting matrices Λi(x) of size q × q. The use
of n pre-computed samples (y i = y(xi), i = 1, 2, . . . , n)
leads to a linear system of n × q equations to solve which
can be computationally demanding. The hypothesis that
all entries of y have similar statistical behaviour leads to a
simpler problem of q distinct kriging models (one for each
entry of y). Due to the assumed statistical similarity of
entries, the models are the same and one can then write

ŷ∗(x) =
n�

i=1

λi(x)yi, (3)

using the weighting scalar λi(x) obtained through the solu-
tion of a system of only n linear equations. The common
covariance (describing the behaviour of all entries of y)
can be either chosen “by hand” or fitted by maximum like-
lihood to an appropriate one-dimensional representation of
y (e.g. the first principal component).

The (3) expression is a convenient and computationally
cheap interpolator. Beyond the introduction of the method,
the main aim of our paper is to examine the validity of the
assumptions (leading from the exact (2) to the treatable (3)
predictions).

III. Illustrative ECT problem

In the studied ECT configuration, a volumetric defect
(with a σ(r) variable conductivity) takes place within a ho-
mogeneous, non-magnetic conductive plate (with σ 0 con-
ductivity). An air-cored pancake type coil (probe) scans
above the damaged zone, in a plane parallel to the plate.
The coil is driven by sinusoidal current and the variations
of its impedance at different locations are measured. These
locations are placed at the nodes of a rectangular grid, i.e. a
surface scan is performed. The defect is assumed to be
cuboid-shaped of volume Ω, thus, can be described by a
small number of geometrical parameters, such as sizes and
positions. The solution of the forward problem is obtained
by the classical volume integral approach [6]. The elec-
tric field at a position r in the plate is written as a sum of
two terms: E(r) = Ei(r) + Ed(r) where Ei is the incident
field (in a flawless plate), and Ed is the defect field, i.e. the
distortion of the field due to the flaw. The current dipole
densities P and Pi are defined by P(r) = (σ(r) − σ0) E(r)
and Pi(r) = (σ(r) − σ0) Ei(r). The interaction of the EM
field of the coil with the flaw can be described by an inte-
gral equation given by

P(r) = Pi(r) − jωμ0σ0χ(r)
�
Ω

G(r|r�)P(r�) dV �. (4)

The so-called defect description function χ(r) is defined as
χ(r) = [σ(r) − σ0] /σ0. G(r|r�) is nothing but the classical
dyadic Green’s function. Once (4) is solved, the variation

of the coil impedance can be expressed as

ΔZ = − 1
I2
0

�

Ω

Ei(r) · P(r)dV, (5)

based on the reciprocity theorem. Here, I0 denotes the cur-
rent of the probe coil.

A simple case with two input parameters is chosen to il-
lustrate the method. An OD-type defect (having σ(r) = 0
everywhere in Ω) with a known position and width takes
place within the plate. The defect is characterized by its
length (L) and depth (D, given in % of plate thickness)
leading to a 2-dimensional input parameter vector x. The
surface scan of the probe coil is centered on the crack and
contains q = 841 measurement points and the correspond-
ing q ΔZ complex values (5) are stored in the output pa-
rameter vector y.

The region of interest in the input domain is 0.5 mm <
L < 3.5 mm for the lenght and 10 % < D < 90 % for
the depth, respectively. In Fig. 1, one can see the input
samples (5 × 5 regularly spaced) and the normalized error
of the prediction by (3).

The result is promisingly nice: a very small (≈ 2%) pre-
diction error, by using only n = 25 samples (which means
that the kriging prediction is made in no time).
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Figure 1. Normalized interpolation error (%) in the example. The nor-
malizing term is ||y||2 of the largest (L = 3.5 mm, D = 90%) defect.

IV. Conclusion and future work

A kriging-based approach as a cheap approximation for
ECT problems is presented. In the light of the preliminary
results, the method is promising. However, a precise ex-
amination of the validity of the simplifications is the main
task for the future.

Though no theoretical limitation restricts the method to
the domain of ECT problems, we described and formalized
our approach in the context of a given ECT configuration.
However, generality is not narrowed in this way, one can
also easily imagine other applications.
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Abstract — In order to model ferromagnetic material in quasi-
static PEEC method, a coupling with a volume integral equation 
is proposed. This coupling enables to take advantage of the strong 
points of each method. The modeling of complex conductor 
geometry is achieved thanks to PEEC method and magnetic 
materials are taken into account thanks to a volume integral 
equation. The coupling is carried out by introducing an 
impedance matrix (computed with PEEC method in the vacuum) 
within an integral magnetostatic equation solved by moment 
method. 

I. INTRODUCTION

The PEEC method (Partial Element Equivalent Circuit) is 
mainly used for the modeling of complex interconnections and 
can be applied to a large range of devices where the air region 
is dominant [1] (printed circuits, bus bars…). However, the 
classical PEEC method does not enable the 3D modeling of 
ferromagnetic materials widely present in devices 
(ferromagnetic shielding, disruptive magnetic masses, and 
cores of inductance). The magnetostatic moments method is 
well-known and derives from a volume integral equation 
solved by a point matching approach. It is particularly well 
adapted to model lightly very simple magnetic materials 
volume. Like the PEEC method, it does not require the 
meshing of the air region; on the other hand, it is limited to 
modeling of magnetostatic effects. Both methods are 
complementary. A strong coupling of them can be 
accomplished by modeling non conductive magnetic regions 
with a method of moments, while PEEC method allows the 
modeling the contributions of the inductors fed with alternative 
currents. 

II. COUPLING PRINCIPLE

A. Magnetostatic moment method 

Let us consider a non conductive magnetic material placed 
in an inductor field H0. The total magnetic field H is the sum 
of H0 and Hred,, the reaction of the material. A well-known 
integral volume equation links the local field to the 
magnetization of the whole material volume Vmat: 

dV)
rr

).(
3(

4

1

Vmat
35∫ −

π
+= M

r
rM

HH 0
 (1) 

where r is the vector linking the integration point to the point 
where the field is expressed, Vmat the ferromagnetic volume 
and M its magnetization. Usually, this integral is solved with a 
numerical technique. The easier way is to mesh the volume 
into n elements and to consider that the magnetization is 
uniform on each of them. Then, thanks to a point matching 
approach of the linear magnetic material’s law at the center of 

each element, a linear matrix system is obtained. It remains to 
solve it, to obtain the magnetization of the whole volume Vmat. 
This method is usually called magnetostatic moment method. 
This formulation is known to suffer of some inaccuracies in 
some specific configurations [2]. However, the purpose of this 
paper is the coupling and very similar methodology can be 
applied to more sophisticated volume integral formulations. 

Let’s now assume that the inductor field is created by m 
unknown alternative currents I flowing in m conductors. In a 
very similar way to the previous one, we can get a linear 
system of equations. For instance, the equation associated to 
magnetic element k is:  

j
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where µr is the relative permeability of the material. The 
second integral term correspond to the Biot and Savart’s law 
integrated on each conductor volume Vcond_j. The global matrix 
system obtained has 6n equations (a vector complex equation 
per element) and 6n+2m unknowns (a vector complex 
magnetization per element plus m complex currents). 

B. Inductive PEEC method 

Let us consider m volume conductors fed with alternative 
sources placed in a surrounding air region without any 
magnetic materials. The well-known PEEC method is 
particularly reliable to solve this kind of problem. It is based 
on the determination of partial voltage generated on each 
conductor by electromagnetic sources. To compute these 
voltages volume integration on the conductor of the magnetic 
vector potential created by all the others conductor is 
provided. For instance, for the conductor k, the expression is 
[1]: 

ki

V
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1i Vi

i

k

0
cond_k dV)dV

r
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s

I
(

s
j

4
V

k i
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=

ω
π

µ=  (3) 

where ω is the angular frequency and Si is the section of the i-
th conductor. This equation links partial voltages of 
conductors to currents flowing in them. If we write this 
equation for all conductors, we get a matrix system known as 
impedance matrix system. By combing these electromagnetic 
equations with the circuit ones representative of the conductors 
wiring and adding resistance source effect, it is possible to get 
a simplified system representative of the device which can be 
easily coupled with a standard circuit simulator. This inductive 
PEEC method has already shown is efficiency for the 
modeling of complex conductor geometries in comparison 
with FEM.  

Let us now consider that linear ferromagnetic materials are 
present in the surrounding air region. Equation (3) has to be 
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Tung Le Duc, Olivier Chadebec, Jean-Michel Guichon, Gérard Meunier, Yves Lembeye  
Grenoble Electrical Engineering Laboratory, Grenoble-INP / Université Joseph Fourier / CNRS 

ENSE3, BP46, 38402 Grenoble, France

7

oa1.4



modified by taking into account the influence of the field 
created by the material. In fact, like in the first approach, we 
have to integrate the magnetic vector potential on the volume 
conductor k. A new voltage has to be added to the previous 
one, not generated by the current but by the magnetization [3].  

k

V

i

n

1i V
3

k

0
mat_k dV.)dV

r
(

s
j

4
V

k i

k
i u

rM
∫ ∑∫

=

×ω
π

µ=  (4) 

Finally, equations (3), (4) and (5) are brought together in a 
global square (6n+2m)×(6n+2m) matrix system:  









=








×







V

0

I

M

LL

BSMoM

standardM

 (5) 

where MoM is the standard moments matrix (first two 
rearranged term of equation (2), BS is the Biot and Savart 
integral term (last term of (2)), LM is the influence of 
magnetization on conductors in PEEC approach (equation (4)) 
and Lstandard the classical inductive and resistive PEEC matrix. 
By taking into account circuit equations, it is possible to 
reduce (5) to get a lighter system and to solve it to get 
magnetizations and currents in conductors. 

III. NUMERICAL EXAMPLES

We consider two numerical examples (Fig.1.). For both, three 
numerical methods are compared. The first one is the scalar 
magnetic potential FEM coupled with circuit equations. In this 
modeling, a special care is given to the mesh around both 
conductors to ensure accurate results. The second one is a 
coupling between PEEC to model inductances and FEM to 
take into account the ferromagnetic material. This approach 
has already shown its good accuracy with a reduced number of 
elements in comparison with standard FEM [4]. The last one is 
the considered coupling. 

In the first example, two conductors are considered with a 
ferromagnetic bar (µr =1000, linear) placed between them 
(Fig.1, left).The first conductor is fed by a voltage source (1V, 
1 kHz). The second one is in short circuit mode. To compare 
different approaches, we focus on the computed current in the 
second conductor with different meshes for the three 
approaches (see table I). 

TABLE I. Currents values obtained (A) 

FEM 

Nb of elements 230.000 600.000 1.000.000 
Current values  -36.25+6,00i -32.47+7,94i -32.61+7.87i 

FEM/PEEC 

Nb of elements 60.000 150.000  
Current values  -32.60+8,38i -32.50+8.34  

MoM/PEEC 

Nb of elements 32 126 392 
Current values  -35.97+8,95i -32.94+8.34i -32.70+8.32i 

Whereas the convergence is quickly reached with the 
FEM/PEEC method, the problem needs a very fine mesh to be 
accurately solved with FEM. We can see a small difference 
between both computed values. It can be explained by a small 
difference in the modelling method used to represent 
conductors Results provided by our coupling are very 
encouraging, the convergence being reached with a very few 

number of elements (around 200). Of course, the obtained 
matrix is fully dense, but the computation time is divided per 
one hundred in comparison with FEM and ten with 
FEM/PEEC. Moreover, no specific mesh refinement has been 
needed. 

The second test case is an inductance of microphone 
converter. It is composed of a complex-shaped conductor and 
of two ferrite parts (Fig.1. right). In our study, the conductor is 
fed by a voltage source (1V, 10 kHz) and the ferrite is 
considered as linear with a permeability of 1000. Values of 
currents are still compared.  

TABLE II. Currents values obtained (A) 

FEM 
100.000 elements 

FEM/PEEC 
30.000 elements 

MoM/PEEC 
2000 elements 

14,36 – 1,97i 14,39 – 1,85i 14,43 – 1,68i 

Results seem to be not so good for the coupling MoM / 
PEEC especially if we have a look to the imaginary part of the 
current. This inaccuracy is mainly due to the small distance 
between conductors and the magnetic material, leading to 
important variation of magnetization in the neighborhood of 
currents. This configuration benefits FEM in comparison with 
our coupling. A good improvement would certainly be to 
couple PEEC with a more sophisticated implementation of the 
volume integral equation. 

IV. CONCLUSION 

In this paper, we have presented a coupling between PEEC 
and an integral volume equation. Our approach can be very 
fast and accurate and enables the introduction of linear 
magnetic material in PEEC methodology. It is particularly 
capable for the modeling of complex shapes conductors and 
relatively simple magnetic material geometry.  

Fig.1. Geometry of both tested numerical cases. 
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13. NUMERICAL TECHNIQUES

Abstract — The paper describes a novel adaptive solution 
system for electromagnetic field problems. The solution method is 
based on a meshless approach and thus the pre-processing effort 
is minimized. The positions of the nodes used for this solution are 
determined adaptively using a Kohonen Neural Network. The 
objective of the proposed approach is to obtain an optimal placing 
of the nodes before adding any new degrees of freedom to reduce 
the error.  

I. INTRODUCTION

The numerical solution of electromagnetic field problems 
has been a subject of research for almost half a century and it is 
now possible to simulate the real device to a very high level of 
accuracy. The most commonly used methods for low frequency 
electromagnetic systems are based around the finite element 
technique which has been steadily improved in all its aspects 
over many years. However, the computational cost is still 
relatively high and can lead to long execution times, especially 
if an adaptive system is used to reduce the error. One of the 
problems with the finite element approach is that it requires the 
solution domain to be meshed. While great gains have been 
made in reducing the complexity of solving the resulting linear 
equations, the mesh generation process is still costly and can be 
the most time consuming part of certain classes of problems. 
When adaptation is included, and is implemented by modifying 
the mesh to add new degrees of freedom, this cost becomes 
significant. For this reason, attention has been paid to alternate 
differential approaches usually known as “meshless methods”. 
These systems, as the name implies, do not need to generate a 
mesh and thus bypass this drawback of the finite element 
system. Adaptation can also be implemented in such a system 
by adding new nodes at points of high error. However, this 
approach increases the size of the problem and thus the 
solution time. A better, initial approach to adaptation might be 
to consider an optimal placement of the starting node set such 
that the global and local errors in the solution are minimized. 
This paper proposed that this might be done by considering the 
nodes of a meshless system to be part of a Kohonen Self 
Organizing Feature Map – a form of neural network. Using this 
approach, the nodes of the system can be repositioned to 
minimize the errors before any new degrees of freedom are 
added.   

II. MESHLESS SOLUTION SYSTEMS

In a meshless system, the field solution is approximated by 
local shape functions, often, but not always, a form of radial 
basis function. Each node, through its shape function, is 
considered to have a domain of influence which could cover 
the entire problem space or might be limited to a local 

neighborhood [3]. The field value at any point in space is then 
given by summing the contributions of all the nodes within 
whose domain of influence the point lies. Boundary and 
interface conditions can be handled through a collocation 
technique.

Fig.1. A meshless discretization of an arbitrary domain 

A typical radial basis function is the Gaussian given by 

                 Ψ (r) = e-(εr)2            r ∈ ℜ            (1) 
The radius, r, can be expressed in terms of the distance from 
the center of the function, x-xk. [4] 

III. KOHONEN NEURAL NETWORKS 

.                  
Fig.2. The Kohonen Architecture. 

The Kohonen network, also known as self-organizing map is a 
two-layer unsupervised neural network and has fully 
interconnected processing units that compete among 
themselves to be activated or fired[1][2]. It has a strong self-
organizing ability, because of which after the training 
procedure the predefined network grid will follow the structure 
and distribution of the input points. It is trained iteratively. In 
each training step one vector x from the input data set is chosen 
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13. NUMERICAL TECHNIQUES

randomly and the distances between it and all the weight 
vectors of the Kohonen nodes are calculated using the 
Euclidean distance. The neuron whose weight vector is the 
closest to the input vector x is called the Best Matching Unit 
(BMU) denoted here by b

                               || x – m b ||  =  min {|| x – m i ||}                (2)                           
                                                           i  ∈ N
N represents the set of Kohonen nodes and ||.||, the Euclidean 
distance. After this the BMU along with its topological 
neighbors are moved closer to the input vector in the input 
space using the following relation. 

                mi (s + 1) = mi (s) + α(s)h bi(s)[x(s) – mi (s)] (3) 

where s denotes time or iteration steps, x is an input vector 
drawn from the input data set during s, h bi(s) is the kernel 
function around the winning neuron b and α(s) is the learning 
rate during s.

IV. THE PROPOSED ALGORITHM

Based on the above, the meshless adaptive algorithm is as 
shown in Fig. 3.  

Fig. 3. Flow chart of the proposed algorithm. 

The error criterion being used in the present work is relatively 
simple. The error is estimated by taking the average value of 
the potential around a particular point and comparing it with 
the potential computed at that point. Thus an error map is 
created covering the entire problem domain.  The points of 
maximum error are then identified and the coordinates are used 
to “train” the Kohonen network and, in the process, the nodes 
are moved towards the high error positions. 

V. INITIAL TESTS

The algorithm has been tested on a very simple problem in 
order to check out the overall performance and convergence 
characteristics. The device considered is a parallel plate 
capacitor. Fig. 4.                           

                     Fig.4. A simple parallel plate capacitor 

The solution space was populated with 16 nodes which formed 
the basis of both the meshless solution and the Kohonen 
network. At each iteration, the problem was solved using the 
meshless system and the error computed. The nodes were then 
moved by using the Kohonen network and the process 
repeated. The results are shown in Fig. 5. 

Fig.5. Final positions of the 16 nodes and the field solution and the 
convergence plot at the bottom. 

VI. CONCLUSIONS 

An adaptive meshless algorithm using a Kohonen network has 
been proposed and initial results are shown. The system 
appears to optimize the positions of the nodes and thus 
provides the most accurate solution that can be obtained with 
the given degrees of freedom. The full paper will provide an 
analysis of the performance of the algorithm and give examples 
on more complex geometries.
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9. NUMERICAL TECHNIQUES 1

Influence of a rough thin layer on the potential
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Abstract—In this paper, we study the behavior of the steady-
state voltage potentials in a material composed by an interior
medium surrounded by a rough thin layer and embedded in
an ambient bounded medium. The roughness of the layer is
supposed to be ε–periodic, ε being the small thickness of the layer.
We present and validate numerically the rigorous approximate
transmissions proved by Ciuperca et al. in [1]. This paper extends
previous works in which the layer had a constant thickness.

I. INTRODUCTION

In the domains with a rough thin layer, numerical difficulties
appear due to the complex geometry of the rough layer when
computing the steady-state potentials. We present here how
these difficulties may be avoided by replacing this rough layer
by appropriate transmission conditions. Particularly, we show
that considering only the mean effect of the roughness is not
sufficient to obtain the potential with a good accuracy.

A. Statement of the problem

Ω

O0
ε

O1

Om
ε

Γ

Γε

Fig. 1. Geometry of the problem.

Let Ω be a smooth bounded domain of R
2 with connected

boundary ∂Ω. For ε > 0, we split Ω into three subdomains:
O1, Om

ε and O0
ε . O1 is a smooth domain strictly embedded in

Ω (see Fig. 1). We denote by Γ its connected boundary. The
domain Om

ε is a thin oscillating layer surrounding O1. We
denote by Γε the oscillating boundary of Om

ε : Γε = ∂Om
ε \Γ.

The domain O0
ε is defined by: O0

ε = Ω\ (O1 ∪ Om
ε ). We also

denote by O0 = Ω\O1. Two piecewise-constant conductivities
on the domain Ω have to be defined:

σ(z) =






σ1, if z ∈ O1,

σm, if z ∈ Om
ε ,

σ0, if z ∈ O0
ε .

σ̃(z) =

�
σ1, if z ∈ O1,

σ0, if z ∈ Ω \ O1.

where σ1, σm and σ0 are given positive constants1.
Let uε and u0 be defined by:
�

∇. (σ∇uε) = 0, in Ω,

uε|∂Ω = g,
,

�
∇.

�
σ̃∇u0

�
= 0, in Ω,

u0|∂Ω = g,
(1)

where g is a sufficiently smooth boundary data. We present
how to define the potential u1 such that uε is approached by
uε = u0 + εu1 + o(ε3/2) for ε tending to zero2.

II. HEURISTICS OF THE DERIVATION OF THE CONDITIONS

Suppose Γ is a smooth closed curve of R
2 of length

1 and parameterize it by the curvilinear coordinate Γ =
{Ψ(θ), θ ∈ [0, 1]} . Let n be the (outward) normal to ∂O1.
Γε is described by

Γε = {Ψ(θ) + εf(θ/ε)n(θ), θ ∈ [0, 1]},

where f is a smooth 1–periodic and positive function, which
describes the roughness of the layer.

A. Boundary layer corrector in the infinite strip

The key-point of the derivation of the equivalent transmis-
sion conditions consists in taking advantage of the periodicity
of the roughness. This is performed by unfolding and upscal-
ing the rough thin layer into the infinite strip R × [0, 1].

Define the closed curves C1 and C0, which are trigonomet-
rically oriented by

C0 = {0} × [0, 1], C1 = {(f(y), y), ∀y ∈ [0, 1]} .

The outward normals to C0 and C1 equal

nC0
=

�
1
0

�
, nC1

=
1�

1 + (f ′(y))2

�
1

−f ′(y)

�
. (2)

According to [1] there exists a unique couple (A0, a0) where
A0 is a continuous vector field and a0 is constant such that

A0 is 1-periodic in y, ∆A0 = 0, in R × [0, 1], (3a)

σ0∂nA0|
C
+

1

− σm∂nA0|
C
−

1

= (σm − σ0)nC1
, (3b)

σm∂nA0|
C
+

0

− σ1∂nA0|
C
−

0

= −(σm − σ0)nC0
, (3c)

A0 →x→−∞ 0, A0 − a0 →x→+∞ 0, (3d)

where the convergences at infinity are exponential. We empha-
size that a0 is not imposed but is a floating potential.

1The same following results hold if σ0, σ1, and σm are given complex
numbers with imaginary parts (and respectively real parts) with the same sign.

2The notation o(ε3/2) means that
‚

‚uε − (u0 + εu1)
‚

‚ goes to zero faster
than ε3/2 as ε goes to zero. We refer to Theorem 1.1 of [1] for a precise
description of the involved norms and the accuracy of the convergence.
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9. NUMERICAL TECHNIQUES 2

B. Approximate transmission conditions

Our transmission conditions are then obtained with the help
of the constant vectors D1 and D2 defined by:

D1 = (σ0 − σm)

�� 1

0

f(y) dy nC0
+

� 1

0

A0(f(y), y) dy

�

+ (σm − σ1)

� 1

0

A0(0, y) dy − σ0a
0,

D2 = (σm − σ0)

�� 1

0

A0(f(y), y)f ′(y) dy

−

� 1

0

f(y) dy

�
0
1

��
.

The potential u1 is then defined by3:




∆u1 = 0, in O0 ∪ O1, u1|∂Ω = 0,

�
σ̃∂nu1

�
Γ

= −κD1 ·

�
∂nu0|Γ+

∂tu
0|Γ+

�
+ D2 · ∂t

�
∂nu0|Γ+

∂tu
0|Γ+

�
,

�
u1

�
Γ

= a0 ·

�
∂nu0|Γ+

∂tu
0|Γ+

�
,

where ∂t and ∂n denote the tangential and the normal deriva-
tives along Γ and κ is the curvature of Γ.

We emphasize that our conditions are different than if we
would only consider the mean effect of the roughness. In this
case, denoting by f the mean of f , the conditions would be
(see [1], [3], [4]):
�
σ̃∂n�u1

�
Γ

= (σ0 − σm)f∂2
t u0|Γ,

�
�u1

�
Γ

=
σ0 − σm

σm
f∂nu0|Γ+ .

III. NUMERICAL SIMULATIONS

In order to verify the convergence rate stated in Section I,
we consider a problem where the geometry and the boundary
conditions are ε−periodic. The computational domain Ω is
delimited by the circles of radius 2 and of radius 0.2 centered
in 0, while O1 is the intersection of Ω with the concentric
disk of radius 1. The rough layer is then described by f(y) =
1 + 1/2 sin(y). One period of the domain is shown Fig 2(a).
The Dirichlet boundary data is identically 1 on the outer circle
and 0 on the inner circle.

The mesh generator Gmsh [2] and the finite element library
Getfem++ [5] enables us to compute the four potentials uε,
u0, u1 and �u1.

The rough thin layer is supposed slighty insulating. The
conductivities σ0, σ1 and σm respectively equal to 3, 1 and
0.1. The computed coefficients4 issued from Problem (3) are
given in Table I.

TABLE I
COEFFICIENTS ISSUED FROM THE SOLUTION TO PROBLEM (3). 3

SIGNIFICANT DIGITS ARE KEPT.

a0
1

a0
2

D1

1
D1

2
D2

1
D2

2

19.3 0 0 0 -0.0499 -3.87

3We denote by [w]Γ the jump of a function w on Γ.
4The convergences at the infinity in Problem (3) are exponential hence we

just have to compute problem (3) for |x| ≤ M , with M large enough to
obtain a0 with a good accuracy.

0 0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(a) One period. (b) Error order 0. (c) Error order 1.

Fig. 2. Representation of one period of the domain and the corresponding
errors with approximate solutions u0 and u0 + ǫu1. ǫ = 2π/30. Do not
consider the error in the rough layer because a proper reconstruction of the
solution in it is not currently implemented.

The numerical convergence rates for the H1-norm in O1

of the three following errors uε − u0, uε − u0 − εu1 and
uε−u0−ε�u1 as ε goes to zero are given Figure 2. As predicted
by the theory, the rates are close to 1 for the order 0 and for
the order 1 with the mean effect, whereas it is close to 2 for
the “real” order 1 equal to uε − u0 − εu1.

Fig. 3. H1-Error in the cytoplasm vs ǫ for three approximate solutions.
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Abstract — This paper presents an algorithm dedicated to the 
determination of shells unknowns magnetization. Thanks to 
magnetic measurements realized on sensors located very close to 
ferromagnetic material, an inverse problem is solved enabling the 
determination of the whole magnetic state of the device. The 
method is experimentally validated on a mock-up of submarine, 
the purpose of the study being the prediction of its magnetic 
anomaly form onboard measurements. 

I. INTRODUCTION

Most part of submarines are made of steel. One of the 
drawbacks using such material is that steel is ferromagnetic. 
The hull of the submarine, placed in the earth’s magnetic field 
and subjected to important pressure effect, get a static 
magnetization. This phenomenon is well-known and called 
magnetostriction. This magnetization creates a local static 
magnetic anomaly around the submarine and can lead to its 
detection or localization by magnetic sensors embedded in 
airplanes or even worse in mines. Therefore, for decades, 
worldwide marines are looking for reducing this magnetic 
anomaly by setting up large coils in the whole ships feeding 
them with adapted currents. Before achieving the reduction of 
anomaly, it is necessary for the ship to evaluate its own 
magnetic anomaly. The key point of such system is the 
identification of the magnetization of the ship’s hull and this 
problem is quite difficult to solve. Indeed, the magnetization 
can be divided in two parts: an induced one, due to the 
reversible reaction of the material in the inductor field, and a 
remanent one due to the magnetic history of the material 
(which depends on hysteresis, mechanical and thermal 
constraints). The computation of the induced magnetization is 
now a well-known problem, however, the remanent part is 
impossible to evaluate with a deterministic calculation because 
we have no access to the magnetic past of the material. 
Moreover, even if we had such knowledge, existing models 
would be too complex to be applied to 3D geometries. It is 
then necessary to use magnetic measurements to determine the 
total magnetization of the hull. Thus, the main goal is to solve 
an inverse problem (i.e. determination of the sources by 
knowing the effects) with magnetic sensors placed in the air 
region closed to the hull. 

This problem has already been studied and the 
magnetization identification has already been achieved when 
sensors could be located far enough from the sheets and with a 
simplified mock-up of a surface ship [1], [2]. Some of main 
results of this problem will be reminded in this paper. 
However, this method has not been tested yet on realistic 

mock-up of a double-hull submarine with an important 
magnetic sensors number placed between the two hulls. 

II. BACKGROUND THEORY

A. Forward modeling 

Let us consider a device composed of a ferromagnetic 
sheet S with a thickness e and placed in an inductor magnetic 
field H0 (the earth’s magnetic field, for instance). This sheet 
has an unknown static magnetization M which contributes to 
the global magnetic field. Therefore, field H is the sum of the 
inductor field and the field created by the shell itself. The field 
generated by the ferromagnetic material is directly linked to its 
magnetization by a classical volume integral equation. For a 
sheet configuration, it is standard to assume that the 
magnetization is tangential to the shell and constant through it, 
its permeability being high and its thickness e being low in 
comparison with other dimensions. Therefore, the integral 
equation can be written as follows: 

∫∇+=
s

dS
r

e
3

.

4

rM
HH 0 π

 (1) 

where r is the vector between the point where H is expressed 
and the integration point on the S surface of the shell. For 
complicated geometries, this equation has of course no 
analytical solution, it is then necessary to discretized it to get a 
numerical expression. Lets us consider that surface S is 
meshed into n surface patches with a uniform magnetization 
Mi associated to each of them. Equation (1) becomes: 

∑ ∫
=

∇+=
n

i s

i
i dS

r

e

0
3

.

4

rM
HH i

0 π
 (2) 

This equation is a vector one and depends linearly from the Mi

values. Let us remember that the magnetization is tangential to 
the surface S. Each patches magnetization has then two 
degrees of freedom. Therefore, equation (3) can be represents 
as a system of equations: 

[ ] [ ] [ ]MAHH 0 ][+=  (3) 

where H0 and H are vectors of 3 components (each component 
of the inductor and total field), A is a 3×2n matrix which 
represents the interaction linking the sources to the field and 
M is the 2n magnetization vector (2 components per meshed 
element). 

B. Inverse modeling 

Let us now imagine that we want to determine M vector
(an image of the magnetization of the sheet projected on it 

Shell’s magnetization identification from very close 
magnetic measurements

Y. Vuillermet1,2, O. Chadebec1, J.L. Coulomb1, L. Demilier2, L.L. Rouve1, G. Cauffet1

1 Grenoble Electrical Engineering Lab (CNRS, Grenoble INP, UJF), Université de Grenoble 
ENSE3, BP 46, 38402 Grenoble, France  

2 DCNS, 2 rue Sextius Michel, 75732 Paris cedex 15, France
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mesh). A solution is to place magnetic sensors around the shell 
to have a measurement of H at a given point of the air region. 
Let us consider that m tri-axis magnetic sensors are placed 
around the shell, (3) leads to a Matrix system where H is 
measured, H0 is known (the position of the device in the 
earth’s magnetic field is known), A is a 3m×2n matrix (the 
coefficient of the matrix can be computed with numerical 
integration techniques) and M is searched. To get M, it 
remains to solve this system. Unfortunately, this task is not so 
simple and several aspects can lead to very uneasy resolution 
process: 

-The system is underdetermined: If the shell geometry is 
complicated and the magnetization has important local 
variations, a very fine mesh is needed to accurately represent 
the real device. The sensors number being limited, we are 
faced to a linear system with fewer equations than unknowns. 

-The system has a poor condition number: This 
mathematical property leads to an unstable solution. In fact, 
the measurement vector is associated with a non negligible 
range of noise and a poor condition number will amplify it 
during the resolution process to give a divergent solution.  
This Inverse problem is said ill-posed. In order to solved it, [1] 
proposes to add others equations representative of the 
magnetic behavior of the shell. In our case, it enables to write 
2n additional equations and to add them to the previous 
system. The dimension of the research space is therefore 
considerably reduced and a standard single value 
decomposition, which returns the solution with the minimal 
norm generally, succeeds. Let us notice that this approach is 
efficient if sensors are located sufficiently far enough to ensure 
a global magnetic observation of the whole device. However, 
in a real naval application, magnetic sensors have to be placed 
very close to the hull to get a sufficient signal level and to 
avoid magnetic disturbance. In this configuration, the solution 
proposed by [1] failed, returning a non satisfying solution. It is 
then necessary to use additional a-priori information to select 
the good solution. It is done by combining the classical 
approach to a regularization method like proposed in [3]. This 
kind of method ensures the stability of the solution and 
improved magnetization identification process. 

III. EXPERIMENTAL VALIDATION

A submarine double-hull mock-up of about 3.5 meters long 
has been designed, built and placed on a railway in a field 
simulator. It has been instrumented with 75 bi-axis fluxgate 
sensors and 5 tri-axis ones placed very close to the hull. Above 
the mock-up, another fluxgate sensor has been placed. By 
moving the submarine over it, we get a measurement of the 
anomaly to compare it with the predicted one. Then, the 
accuracy of the inversion process can be evaluated (Fig.1.). 
Pictures of the experimental set-up are shown on figure 2. The 
mock-up has been placed in a realistic magnetic state with a 
strong permanent magnetization. 

The whole geometry of the mock-up is meshed into more 
than 4000 surface elements. So, about 8000 unknowns, fully 
describing the magnetization, have to be determined. From 

sensors; 165 measurement equations are get, the system is then 
strongly over-determined. To reduce the size of the research 
space, 4000 equations, representative of the intrinsic magnetic 
material behavior are added. Then, the matrix system is 
regularized to finally get a magnetization distribution which 
seems to be satisfying (Fig.3.). From this magnetization 
distribution, it is possible, by applying a matrix relation similar 
to (3) to compute a predicted field on a reference line located 
outboard the submarine. As it is shown on figure 4, the 
predicted and the measured field present a very good 
adequacy. 

Fig 1: Mock of a double hulls submarine with the mesh, internal fluxgates 
sensors (bi-axis in red and tri-axis in yellow) and anomaly measurement line. 

           
Fig 2: Pictures of the experimental set-up Experimental results 

Fig 3: Reconstructed hull’s magnetization 

Fig 4: Results of the experimental set-up (measured, predicted and reduced 
magnetic fields) 

IV. REFERENCES

[1] O. Chadebec, J.L. Coulomb, J.P. Bongiraud, G. Cauffet, P. Le Thiec, 
“Recent improvements for solving inverse magnetostatic problem 
applied to thin hulls”, IEEE Trans. Magn., vol.38, pp.1005-1008, 2002. 

[2] Yang, C.-S., Lee, K.J., Jung, G., Chung, H.-J., Park, J.-S., Kim, D.-H., 
“Efficient methodology for solving an inverse magnetostatic problem by 
utilizing material sensitivity”, Journal of Applied Physics, Volume 103, 
Issue 7, 2008 

[3] A. N. Tikhonov, V. Y. Arsenine, “Solution of ill-posed problem,” 
Wiston/Wiley, Washington , 1977. 

Internal tri-axis and bi-axis magnetic sensors 

fixed magnetic anomaly sensor 

moving 
direction 

16

 



1. STATIC FIELDS 

Abstract —	The	 interaction	body	 force	density	and	 total	 force	
were	 evaluated	 in	 permanent	magnets	 by	 using	 the	 virtual	 air-
gap	 scheme	 incorporating	 the	 finite-element	method.	Until	now,	
the	 virtual	 air-gap	 concept	 has	 been	 successfully	 applied	 to	
calculate	 a	 contact	 force	 and	 a	 body	 force	 density	 in	 soft	
magnetic	materials.	For	permanent	magnets,	however,	there	have	
been	 few	research	works	 on	 a	 contact	 force	 and	a	 force	 density	
field.	When	the	generalized	methods,	methodologies	with	virtual	
air-gap	 scheme,	 are	 introduced,	 one	 can	 have	 an	 actual	 total	
force,	 but	 their	 distribution	has	 an	 irregularity,	which	 seems	 to	
be	random	distribution	of	body	 force	density.	 Inside	permanent	
magnets,	 however,	 a	 smooth	 pattern	 was	 obtained	 in	 the	
interaction	 body	 force	 density,	which	 represents	 the	 interacting	
force	field	among	magnetic	materials.	To	evaluate	the	interaction	
body	 force	 density,	 the	 intrinsic	 force	 density	 should	 be	
withdrawn	 from	 the	 total	 force	density.	Several	 analysis	models	
with	 permanent	 magnets	 were	 tested	 to	 verify	 the	 proposed	
methods	 evaluating	 the	 interaction	 body	 force	 density	 and	 the	
contact	 force,	 in	 which	 the	 permanent	 magnet	 contacts	 with	 a	
soft	magnetic	material.		

I. INTRODUCTION 
Virtual air-gap method has been successfully applied to 

soft magnetic materials for evaluating the force density and 
global force, especially contact force [1]-[2]. These force 
calculating methods employing the virtual air-gap scheme 
have been called as generalized methods such as the 
generalized magnetic charge force density method (GMC), the 
generalized magnetizing current force density method (GCM), 
and the generalized Kelvin force density method (GKV).  

Unlike the soft magnetic materials, there have been few 
research works related to force density and global force in 
permanent magnets [3]. One might have a difficulty in dealing 
with permanent magnet because of its permanent 
magnetization, which is linked to the energy after magnetizing 
process. To deal with this energy consideration, the intrinsic 
and interaction forces between a magnet and exterior media 
were introduced incorporating the virtual work principle [3].  

By the same analogy, here, we calculated the interaction 
body force field inside permanent magnet and contact force, 
sliding force between a magnet and soft magnetic material, by 
using the virtual air-gap method. The resultant interaction 
body force field was quite interesting and seemed to be 
interpreted as an actual interaction body force density field 
between a magnet and magnetic materials. In addition to this, 
the global force including sliding contact force was also 
successfully evaluated and verified by the conventional 
magnetic charge and magnetizing current methods. 

II. GENERALIZED FORCE CALCULATING METHODS 
To model the permanent magnet, the magnetic flux density 

B including permanent magnetization can be expressed as 
 

0 0( )i  B H M M                 (1) 
 

where 0  is the magnetic permeability in air, H the magnetic 
field intensity, Mi the magnetization in soft magnetic materials 
due to an applied magnetic field, and M0 the permanent 
magnetization in hard magnetic materials.  

The GMC, GCM, and GKV were derived by multiplying 
the equivalent magnetizing sources such as magnetic charge, 
magnetizing current and magnetic dipole by external applied 
fields, respectively [1]-[2]. It is important to point out that 
those external fields have to be obtained after insertion the 
virtual air-gap at common edge. The resultant external applied 
fields, extH and extB , acting on the equivalent sources, 
therefore, should be included the additional fields and can be 
expressed as 

 
(1 2) 1 2 (2 1)( ) / 2

mext or or  H H H H               (2) 

(1 2) 1 2 (2 1)( ) / 2
mext or J or  B B B B            (3) 

 
where 1H  and 2H  are the magnetic field intensity, and 1B  
and 2B  are the magnetic flux density acting at the edge of 
material 1 and 2, respectively. 

m
H and 

mJB are the magnetic 
field intensity and flux density produced by the adjacent 
magnetic charge m  or magnetizing current mJ  after 
insertion of the virtual air-gap, respectively.  

III. INTERACTION BODY FORCE DENSITY 

Energies and force densities of permanent magnet can be 
divided into three different categories: total magnetic energy 
and total force density, intrinsic magnetic energy and intrinsic 
force density, and interaction magnetic energy and interaction 
force density [3]. The intrinsic force density is obtained when 
a single magnet in the air and its distribution is supposed to 
represent the force density on the magnet due to its intrinsic 
magnetization. The interaction force density represents that 
the pure interaction force between a magnet and exterior 
materials. To evaluate the interaction body force density, 
therefore, the intrinsic force density should be withdrawn from 
the total force density. 

Interaction Body Force Field and Total Force on 
Permanent Magnet by Virtual Air-gap Approach 

Se-Hee Lee,1 Young-Sun Kim,2 Ho-Young Lee,1 Heung-Geun Kim,1 and Hong-Soon Choi3 
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1. STATIC FIELDS 

Because the generalized force density methods were 
calculated in each element inside material, the resultant force 
field represents a body force density, but this total force 
density has an irregular pattern [2]. On the contrary, the 
interaction body force density was obtained in regular pattern 
after subtracting the intrinsic force density from the total force 
density. 

IV. NUMERICAL RESULTS 
Figs. 1(a) and 1(b) represent the effect of different 

interaction forces between two magnets with x direction of 
magnetization. The intrinsic body force field has an 
irregularity as shown in Fig. 2(a), but the interaction body 
force field, a regularity, which seems to represent an actual 
body force density field inside the magnet as shown in Fig. 
2(b) and Fig. 3.  

To verify the sliding contact force, two magnet systems 
were tested as shown in Figs. 4(a) and 4(b), of which the 
magnetization had a horizontal and vertical directions, 
respectively. While the permanent magnets slides into x 
direction, the resultant forces can be correctly calculated by 
using the magnetic charge force density method for Model III 
and the magnetizing current force density method for Model 
IV. Figs 5(a) and 5(b) show well the trends of solution as we 
mentioned above. Figs 6(a) and 6(b) represent the resultant 
distributions of interaction force. 

In extended paper, we will present more numerical 
examples including mechanical deformation and discuss about 
its physical meanings in detail. 

  
(a) Model I                                               (b) Model II 

Fig. 1. Analysis models with two permanent magnet systems (Unit: [mm]). 

           
(a) Intrinsic body force field             (b) Interaction body force field 

Fig. 2. Distributions of electromagnetic body force field for model I. 

 
Fig. 3. Distribution of interaction body force field for model II. 

     
(a) Model III                        (b) Model IV 

Fig. 4. Analysis models with two different magnetization (Unit: [mm]). 

 
(a) Sliding forces for model III 

 
(b) Sliding forces for model IV 

Fig. 5. Comparisons of sliding contact forces with air-gap. 

   
(a) Interaction force field for model III (b) Interaction force field for model IV 
Fig. 6. Distributions of interaction body force fields with the air-gap of 6 mm. 
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9. NUMERICAL TECHNIQUES
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Abstract— The linear systems of equations arising from hybrid
discretizations, e.g., by coupling finite elements (FE) with spectral
elements (SE), are sparse and symmetric. However, the use of a
saddle-point formulation leads to indefinite algebraic equations.
Their solution requires, therefore, the application of appropriate
iterative solvers and preconditioners. In order to achieve an
acceptable solution time, in particular for transient simula-
tions requiring repetitive solves, an adapted block-preconditioner
based on approximations of the Schur complement is applied. The
performance regarding the number of iterations of the Krylov
subspace method as well as the solution time is compared for
different types of preconditioners.

I. INTRODUCTION

In case of technical devices featuring large subdomains
in which a particular symmetry holds, such as according
to rotation or translation, the application of an anisotropic
discretization can lead to a beneficial reduction of the number
of degrees of freedom in the numerical model [1]. This
approach is based on domain decomposion, whereas the actual
model is separated into parts exhibiting symmetry and the
surrounding region lacking symmetry (Fig. 1(a)). While for
formulations involving scalar potentials the systems of equa-
tions remain regular, as, e.g, in [2], introducing the magnetic
vector potential to the magnetostatic approximation of the
Maxwell equations leads to a consistently singular system due
to the nullspace of the curl-operator. This inhibits the use of
direct solution strategies, e.g. by LU-factorization. Therefore,
iterative methods are required in order to solve the system of
equations [3].

II. HYBRID DISCRETIZATION

The magnetostatic formulation in terms of the magnetic vec-
tor potential A introduced in order to represent the magnetic
flux density B as B = ∇ × A reads

∇ × (ν∇ × A) = J (1)

with the reluctivity ν and the impressed current density J.
Based on the decomposition of the computational domain into
parts with and without symmetry (Fig. 1), discretization is
carried out for the respective subdomains separately. While
in the non-symmetric region, standard 3D-FE shape functions
w3D

j are applied to discretize A in the weak formulation of (1),
special shape functions accounting for the symmetry present
in the model are used for the translatory symmetric region.
In contrast to a scalar potential formulation as, e.g., in [1],
two sets of vectorial shape functions, v

xy

i,j,q and vz
i,q , based

(a) (b)

x
x

y
y

z

coil

yoke

symmetry

Fig. 1. (a) Idealized model of a long dipole magnet featuring a large domain
of symmetry; (b) Cross-section of the magnet serving to establish geometric
modeling of reduced order.

on triangular prisms defined by the triangulation of the cross-
section in Fig. 1(b) are required to discretize the weak form of
(1) inside the domain of symmetry. These are introduced in [2]
for the representation of the source field in combination with
a magnetostatic formulation in terms of the magnetic scalar
potential. Here the two sets of shape functions are used to
approximate the primary unknown A. The discretization leads
to two independent systems of equations for the separate do-
mains. These are combined by means of Lagrange multipliers
vlg which guarantee a symmetric coupling by ensuring the
tangential continuity of the magnetic field strength H as well
as the normal continuity of the magnetic flux density B across
the interface between both regions. The coupled system reads



K3D 0 −B3D

0 Kfese Bfese

−BT
3D BT

fese 0







a3D
afese
vlg


 =




j3D
jfese

0


 (2)

with the vector of degrees of freedom a and the vector j

corresponding to the excitation for the non-symmetric part
(3D) and the translatory symmetric part (fese), respectively.

III. BLOCK-PRECONDITIONING

In order to ensure an efficient numerical solution of the
system (2), an appropriate preconditioner is required, as the
condition number of the system matrix is very large especially
due to the anisotropic discretization with respect to the direc-
tion of symmetry. The approach chosen here accounts for the
blockwise structure of the matrix making use of the property
�

A CT

C 0

�−1

=

�
T −A−1CTS−1

−S−1CA−1 S−1

�
(3)
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9. NUMERICAL TECHNIQUES

TABLE I

COMPARISON OF THE ACHIEVED ACCURACY AND THE REQUIRED

SOLUTION TIME IN COMBINATION WITH DIFFERENT PRECONDITIONERS

USING THE GMRES METHOD LIMITED TO 3000 ITERATIONS WITHOUT

RESTARTING. THE DIMENSION OF THE SYSTEM MATRIX IS 30952.

precond type (for A/S) iterations time / s rel. residual
no precond / - (3000) 4873 1.7e-1
global Jacobi / - (3000) 5567 6.7e-3
Jacobi/Jacobi 401 178 2.4e-5
Gauss-Seidel/Gauss-Seidel 187 66 1.7e-5

with T = A−1 + A−1CTS−1CA−1 and the Schur comple-
ment S = −CA−1CT. Taking the upper left (2 × 2)-block
of the system matrix in (2) as A and C =

�
−BT

3D,BT
fese

�
,

different approximations of the inverse of A and S, respec-
tively, are sought. Even though the system matrix is symmetric,
the generalized minimal residual method (GMRES) is used
in combination with an approximation of the inverse in (3)
as a preconditioner. In the full paper the algebraic symmetry
will be exploited by using the computationally more efficient
minimal residual method (MINRES) which is more efficient
with respect to memory comsumption due to the three-term
recursion scheme. In that case, however, a symmetric positive
definite preconditioner must be used [4], [5].

An approximation of the inverse of A is required to form
the sub-blocks of the preconditioning matrix in (3). Moreover,
the inverse of the Schur complement S needs to be built
using an appropriate representation of A−1. Two possibilities
are investigated here: First, the exact inverse of A in (3) is
replaced by the reciprocal of the main diagonal, yielding a
Jacobi-type preconditioning. The dimension of S corresponds
to the number of degrees of freedom allocated at the interface
between the separate domains. Therefore, the size of this
matrix remains moderate and explicit inversion can be carried
out for sufficiently small numerical models. Secondly, an
additive splitting of A into upper and lower triangular parts
leads to Gauss-Seidel preconditioning. Now, the action of the
particular blocks of the preconditioning matrix on a given
vector is provided by forward and backward substitution at
the corresponding occurrences of A−1.

IV. COMPARISON OF DIFFERENT PRECONDITIONERS

The performance of different types of preconditioners is
investigated by solving the system matrix resulting from
the hybrid discretization of the schematic magnet model in
Fig. 1(a). For the matrix dimension of 30952 the maximum
number of GMRES iterations is set to 3000. The results
in terms of the achieved accuracy and the required solution
time are summarized in Table I. In order to compare the
performance to common approaches, the results without any
preconditioning as well as for global Jacobi preconditioning
are also included. For the latter, the zeros present on the
main diagonal of the system matrix are replaced by unity
during the construction of the preconditioner. Therefore, the
coupling blocks C are not considered in the preconditioning
process. As a consequence, only a slight benefit compared
to the absence of any preconditioning is observed as shown
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Fig. 2. Convergence history for different types of preconditioners in terms
of the relative residual in each iteration step of the GMRES method.

in Fig. 2. In both cases achieving the prescribed accuracy
of 1e-6 is virtually impossible due to the increasing amount
of memory for each additional iteration step. Restarting the
GMRES iteration discarding the previous search directions
does not generally change the situation. However, a significant
improvement is observed by considering the coupling blocks
of the inverse in (3) in terms of blockwise Jacobi and Gauss-
Seidel approximations for A as a part of T and S, respectively.
Even though the time required for each iteration is larger in
case of the Gauss-Seidel procedure due to the forward and
backward substitutions, the number of iterations as well as the
solution time is decreased. This is very important especially
when considering the hybrid discretization scheme in the time-
domain, where the system matrix is solved repeatedly.

V. CONCLUSION

The saddle-point problem resulting from a hybrid discretiza-
tion in combination with Lagrange multipliers is solved by
means of the preconditioned GMRES method. Accounting
for the particular structure of the system matrix, superior
convergence results in terms of the number of iterations as
well as in the solution time are observed using blockwise pre-
conditioning. The beneficial approximation properties of the
anisotropic discretization using vectorial shape functions can
be exploited in combination with appropriate preconditioners
as proposed in this paper.
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Abstract —	 The	 effect	 of	 temperature-dependent	 thermal	
conductivity	on	the	magneto-convection	in	a	low	Prandtl	number	
liquid	 is	 investigated	 numerically.	 The	 liquid	 is	 contained	 in	 a	
closed	 square	 enclosure	 with	 isothermal	 vertical	 walls	 kept	 at	
different	temperatures.	The	top	and	bottom	walls	are	assumed	to	
be	 insulated.	 To	 solve	 the	 governing	 non-linear	 differential	
equations	 (mass,	 momentum	 and	 energy)	 a	 finite	 volume	 code	
based	 on	 SIMPLER	 algorithm	 is	 utilized.	 The	 results	 for	
different	 Rayleigh	 and	 Hartmann	 numbers	 show	 that	 the	
strength	of	 the	magnetic	 field	has	 significant	effects	on	 the	 flow	
and	temperature	 fields.	The	convection	becomes	stronger	as	 the	
Rayleigh	 number	 increases	 while	 the	 magnetic	 field	 suppresses	
the	convective	flow	and	the	heat	transfer	rate	.The	heat	transfer	
is	found	to	decrease	appreciably	across	the	cavity	with	a	decrease	
in	thermal	conductivity.	

I. INTRODUCTION 
The Lorentz force acts against the buoyancy force. This 

phenomenon is used in material manufacturing industry and 
turbine blade casting as a control mechanism. Employment of 
an external magnetic field has increasing applications in 
material manufacturing industry as a control mechanism since 
the Lorentz force suppresses the convection currents by 
reducing the velocities. Study and thorough understanding of 
the momentum and heat transfer in such a process is important 
for the better control and quality of the manufactured 
products. The Garandet et al. [1] proposed an analytical 
solution to the governing equations of magneto 
hydrodynamics to be used to model the effect of a transverse 
magnetic field on natural convection in a two-dimensional 
enclosure. Al-Najem et al. [2] used the power law control 
volume approach to determine the flow and temperature fields 
under a transverse magnetic field in a tilted square enclosure 
with isothermal vertical walls and adiabatic horizontal walls at 
Prandtl number of 0.71 and showed that the suppression effect 
of the magnetic field on convection currents and heat transfer 
is more significant for low inclination angles and high Grashof 
numbers. Recently, Pirmohammadi et al. [3] studied the effect 
of a magnetic field on buoyancy-driven convection in 
differentially heated square enclosure. They showed that the 
heat transfer mechanisms and the flow characteristics inside 
the enclosure depend strongly upon both the strength of the 
magnetic field as well as the Rayleigh number. It was 
concluded that the magnetic field considerably decreases the 
average Nusselt number. 

In previous studies the dependency of thermal conductivity 
on temperature has not been considered. The present study 
considers laminar natural convection flow in the presence of a 
longitudinal static magnetic field in a square enclosure heated 

from the left wall and cooled from the right wall while the 
other walls are kept adiabatic. The enclosure is filled with an 
electrically conducting fluid which its thermal conductivity 
varies with temperature. The object of the study is to obtain 
numerical solutions for the velocity and temperature fields 
inside the enclosure and to determine the effects of the 
magnetic field strength on the transport phenomena. 

 

II. BASIC EQUATIONS 
The geometry and the coordinate system are schematically 

shown in Fig. 1.  
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Geometry of enclosure configuration with magnetic effect. 
 
The non-dimensional governing equations in this study are 

based on the conservation laws of mass, linear momentum and 
energy are given as:  
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In the above equations, the primary non-dimensional 
parameters, the Rayleigh number and the Prandtl number, are 
defined as: 

α
ν=Pr , 

αν
β 3)( HTTg

Ra Ch −
= ,  

ρν
σ= HBHa 0

  , 
0

*

k
kk =             (5)    

Where, ρ  is the density, g is the gravitational acceleration, 
υ  is the cinematic viscosity, β  is the coefficient of thermal 
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expansion, k0 is thermal conductivity in reference temperature 
and 0B  is the magnitude of magnetic field and σ  is the 
electrical conductivity. Also U, V and θ  are non-dimensional 
velocity components and temperature, respectively. The non-
dimensional thermal conductivity of the liquid is assumed to 
vary linearly with temperature as k*=1-ηθ  where η  is the 
temperature coefficient of thermal conductivity. 

The local Nusselt number 
X

Nu
∂
∂−= θ  is computed at the 

hot wall (Nu) and cold wall (Nuc). The average Nusselt 

number is expressed as dYNuNu ∫=
1

0

. 

III. RESULTS 

The accuracy of results is verified with that of Rudraiah and 
is presented in Pirmohammadi et al [5].  

  The computations have been done for Ra = 104 and 105, 
η =0, 0.25 and 0.5, Ha= 0, 15, 30 and 90and Pr is fixed at 
0.054 corresponding to liquid sodium– potassium alloy.Fig.2 
shows the effect of magnetic field and variability of thermal 
conductivity  on  temperature field.  
It is observed that in the case η =0 (constant k, i.e. k = k0) and 
Ha=0, as the left wall is maintained at a higher temperature, 
the adjoining liquid particles experience a drop in their local 
densities and hence a clockwise rotating buoyancy-induced 
cell appears and the upper region of the isotherms are pushed 
towards the cold wall and the lower region towards the hot 
wall. This results in a simple clockwise rotating convection 
cell. When η  is increased to 0.5 (varying k, i.e. < k0) the 
isotherms are attracted towards the hot wall as such without 
any change in their qualitative shape and the formation of 
thermal boundary layer is clear [4], showing that smaller 
quantity of heat is propagated from the hot wall to the cold 
wall across the cavity compared to η =0 case. By applying 

magnetic field (Ha=90) the Lorentz force acts against the 
buoyancy force and convection heat transfer suppresses. Also 
it is shown that the temperature stratification in the core 
diminishes and the thermal boundary layers at the two side 
walls disappear. This is due to the retarding effect of the 
Lorentz force. For a sufficiently large Ha, the convection is 
completely suppressed as in the case of a small Ra. 
We observe that the effect of η  is to increase the Nu  from 

Table I. Nu  gives the relative measure of the total heat 
ransfer rate to the conductive heat transfer rate. This shows 
that the retardation of conductive mode of heat transfer is 
more compared to that of convective mode near the hot wall, 
eventhough the heat transfer across the cavity from the hot to 
cold wall gets reduced by both conduction and slower 
convection for an increasingη . Also it can be seen that Nu  
decreases with an increase of Hartmann number. This shows 
that the convection in the enclosure is suppressed due to the 
introduction of the magnetic field. 
 

TABLE I 

EFFECT OF η  AND Ha ON AVERAGE NUSSELT NUMBER 

Ra η Ha Nu cNu
 
 
 
 

104 

 
0. 
 

0 1.93 1.93 
15 1.54 1.54 
30 1.17 1.17 

 
0.25 

0 2.33 1.77 
15 1.88 1.42 
30 1.40 1.05 

 
0.5 

0 3.01 1.56 
15 2.46 1.27 
30 1.83 0.93 

 
 
 
 

105 

 
0. 

0 3.26 3.26 
30 2.65 2.65 
90 1.30 1.30 

 
0.25 

0 3.91 2.99 
30 3.21 2.45 
90 1.57 1.19 

 
0.5 

0 5.03 2.67 
30 4.18 2.21 
90 2.08 1.07 
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13. EDUCATION 

Abstract � This paper deals with large-scale 3D non-linear 
magnetostatic analysis by Hierarchical Domain Decomposition 
Method (HDDM). In magnetostatic numerical analysis, the 
computational object is always made in a complicated way at a 
large scale, and computational time is always very large. But, 
with the development of computational capabilities, it is now 
possible to focus our attention on the computational time without 
worrying about the amount of memory. In this paper, we 
reexamine the solution strategy for Finite Element Analysis 
(FEA) in the subdomain problems. Because the finite element 
equation of the A method that neglects the Lagrange multiplier p
is singular, it has been solved by the Conjugate Gradient (CG) 
method in past researches. To solve it by the direct method, the A
method that doesn�t neglect the Lagrange multiplier p is 
considered. In this method we can expect to analyze more 
complex objects in relatively short time. 

I. INTRODUCTION 
There are many machines or devices where the 

electromagnetic phenomena are applied such as a computer, a 
cell phone, a transformer, and an MRI, etc. In order to analyze 
these engineering or physical phenomena, computer simulation 
is a reliable and yet economical approach. 

Moreover, a computational object tends to be large and 
complicated for numerical analysis recently. In addition, 
subdivision of the mesh is performed for the improvement of 
accuracy. Therefore, large-scale computations are increasingly 
important in electromagnetic field problems. To meet this 
requirement, we have already introduced Hierarchical Domain 
Decomposition Method (HDDM) [1][2] together with the data 
handling type �Parallel processor mode (P-mode)� [3][4] to 
3D non-linear magnetostatic problems using the Newton 
method to solve the simultaneous non-linear equations and the 
A method with the continuity of the electric current density that 
uses the magnetic vector potential A as an unknown function 
[5]. To verify the accuracy of our analysis, Testing 
Electromagnetic Analysis Methods (TEAM) Workshop 
Problem 20 was analyzed changing its Degrees of Freedom 
(DOF) several times up to 50 million DOF. The computations 
were performed with a PC cluster that consists of 32 PC. As a 
result, a non-linear magnetostatic problem with 50 million 
DOF was successfully solved in about 8.5 hours [6]. 

The possibility of large-scale analysis in 3D non-linear 
magnetostatic problems has been shown. However, we have to 
reduce the number of iterations and computation time. In this 
paper, to reduce computation time, the solution strategy of 
Finite Element Analysis (FEA) in subdomains is reexamined. 

Usually, FEA in subdomains is performed by the direct 
method. However, because the finite element equation that we 
employ is singular, it is solved by the ICCG method, namely 

Conjugate Gradient method that uses the shifted incomplete 
Cholesky factorization as the preconditioner. If the direct 
method is applied for solving FEA in subdomains, the 
computation time seems to be reduced by storing matrices that 
are results of the LU decomposition on main memory. 
Moreover, because the accuracy of the solutions in 
subdomains is improved by solving with the direct method, the 
characteristic of convergence of the interface problem can be 
improved, too. Therefore, to solve FEA in subdomains by the 
direct method, we consider the A method that doesn�t neglect 
the Lagrange multiplier p in subdomains. 

II. ITERATIVE DOMAIN DECOMPOSITION METHOD 
We consider 3-D non-linear magnetostataict problems 

using the A method and the Newton method, see [5]. Then, we 
introduce an iterative domain decomposition method to this 
method. Let us denote the finite element equations of the A
method by the matrix form as follows: 

fKu = (1) 
where K denotes the coefficient matrix, u the unknown vector, 
and f the known vector. 

The polyhedral domain  is partitioned into the non-
overlapping subdomains. Then the linear system (1) is 
rewritten as follows: 









=
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B
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IBII
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f
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KK
KK (2) 

where the subscripts I, B correspond to the nodal points in the 
interior of subdomains and on the interface boundary. 

At first the unknown vector uB is obtained from the 
algorithm based on the CG method to (2), see [5]. After 
solving uB, the unknown uI is obtained from: 

BIBIIII uKfuK = . (3) 
The vector uI can be solved independently in each subdomain. 
Hence we can get the unknown u in the whole domain. 

In the past, the vector uI was solved by the ICCG method, 
because the finite element equation of the A method that 
neglects the Lagrange multiplier p is singular. In this paper, to 
solve FEA in subdomains by the direct method, the A method 
that doesn�t neglect the Lagrange multiplier p is considered in 
subdomains. 

In the actual parallel computing in the next section, we 
adopt HDDM with �Parallel processor mode (p-mode)�. 

III. NUMERICAL EXAMPLES 

In this section, TEAM Workshop Problem 20 [7] is 
considered, which consists of a center pole, a yoke and a coil. 
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13. EDUCATION 

The center pole and the yoke are made of SS400, and the coil 
is made of polyimide electric wire. The electric current in the 
coil is 1,000 [A]. The magnetic reluctivity is a positive 
constant in each element such that in the region of air and coil, 
the value is 1/(4×10-7) [m/H]. TABLE I shows numbers of 
elements, DOF and subdomains. 

TABLE I 
NUMBERS OF ELEMENTS, DOF AND SUBDOMAINS 

elements DOF
Model (1) 440,634 527,319 
Model (2) 1,033,404 1,227,859 
Model (3) 1,786,748 2,114,436 
Model (4) 38,052,061 44,440,020
Model (5) 50,254,629 58,650,613

TABLE II 
COMPUTATION TIME, SPEED-UP RATIO AND AMOUNT OF 

MEMORY PER CPU 

 method computation 
time [s]

speed-up 
previous//new

memory per 
CPU [MB]

Model (1) previous 230 1.60 25.3 
new 144 60.7 

Model (2) previous 715 1.49 59.3
new 481 142

Model (3) previous 1,402 1.52 102 
new 920 246 

Fig. 1. History of residual norms (Model (4)). 

Fig. 2. History of residual norms (Model (5)). 
A. Comparison the new method with the previous method 

In this section, we compare the new method (solving by the 
direct method with Lagrange multiplier p) with the previous 
method (solving by ICCG method) by solving Model (1)-(3). 
A simplified block diagonal scaling is used as the 
preconditioner in the CG procedure on the interface. Each 
process is stopped when the residual norm becomes less than 
10-4. The Newton iteration is stopped by 11 ++  n

b
n
B

n
b uuu < 10-5.

FEAs in subdomains of the previous method are solved by the 
shifted ICCG method (the shift value is 1.2) and it is stopped 
when the preconditioned residual norm becomes less than 10-9.
Computations were performed by a PC cluster that consisted 
of 8 CPUs of Intel Core2Duo E6600 (2.4GHz). TABLE II 
shows computation time, speed-up ratio and amount of 
memory per CPU versus method cases. In any Model (1)-(3), 
the new method needs much memory than the previous method 
by about twice, because the matrices that are results of the LU 
decomposition are stored on  main memory. However, the 
computation times of the new method are reduced and speed-
up ratios are 1.5-16. 

B. Characteristics of convergence of the interface problem 
To investigate characteristics of convergence of the 

interface problem, the CG procedure on the interface is 
iterated up to 4,000 times or is stopped when the relative 
residual norm become less than 10-8. In this section, Model (4) 
and (5) are computed. Computations were performed by a PC 
cluster that consisted of 28 CPUs of Intel Core2Duo E6600.  
Fig. 1 and Fig. 2 show the histories of residual norms. It is 
clear that the characteristic of convergence of the new method 
is better than that of the previous method. Moreover, the 
residual norms of the previous method have diverged after 
reaching the minimum residual nom. However, those of the 
new method have become small smoothly. 

IV. CONCLUSIONS 

To solve FEA in subdomains by the direct method, the A
method that doesn�t neglect the Lagrange multiplier p is 
considered in subdomains. Because the direct method is used 
in subdomains, the amount of memory of the new method is 
about twice as much as that of the previous method. However, 
the computation time of the new method is about 0.65 times 
as long as that of the previous method by storing matrices 
that are results of the LU decomposition on main memory. 
Moreover, the characteristic of convergence of the interface 
problem is improved. As present work, we are trying to 
analyze the model with 100 million DOF. 
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A Discrete Geometric Approach to solving 2D
non–linear magnetostatic problems
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Abstract—The aim of this paper is to introduce a Discrete
Geometric Approach to solving 2D non–linear magnetostatic
problems. In particular, an efficient algorithm will be presented
to solve magnetostatics in isotropic non–linear media by means
of a Newton–Raphson scheme, in which the Jacobian is calcu-
lated analytically. Results on a reference configuration (TEAM
Workshop Problem 25) are reported and discussed.

Index Terms—Discrete Geometric Approcah, Non–linear Mag-
netostatics, TEAM Workshop Problem 25

I. INTRODUCTION

We focus on a Discrete Geometric Approach (DGA) based
on the geometric structure behind Maxwell’s equations [1],
[2] to solving non–linear magnetostatic problems in two–
dimensional domains. An efficient Newton–Raphson scheme
will be presented in which the elements of the Jacobian matrix
can be calculated analytically in the case of isotropic non–
linear media. As an application, the optimal design of a die
press model (TEAM Workshop Problem 25 [3]) is carried out.

II. DISCRETE GEOMETRIC APPROACH

In a 2D domain of interest D, a pair of interlocked cell
complexes (K, K̃) [1], [4] is introduced, where K is simplicial
and K̃ is obtained from it using the barycentric subdivision,
see Fig. 1. The interconnections between the pairs (edge e,
node n), (face f , edge e) of K are described by the incidence
matrices G, C respectively; we denote with C̃ the incidence
matrix between pairs (dual faces f̃ , dual edges ẽ) of K̃ and
C̃ = CT holds. The edge and face vectors will be denoted in
roman type.

e2

n1

n2n3

e3

e1

f1f3

f2

e1
~

e2
~

~e3

e

~
f1

Fig. 1. A restriction of the primal and dual cell complexes is shown within
a single volume v.

Next, we consider the integrals of the field quantities
involved in the magnetostatic problem with respect to the

oriented geometric elements of K−K̃, yielding the Degrees of
Freedom (DoF) arrays. There is a precise association between
the DoFs and the geometric elements of K and K̃ [5]. We
denote by Φ the array of magnetic fluxes associated with
primal faces f , by F the array of magneto–motive forces
(m.m.f.s) associated with dual edges ẽ, by Is the arrays of
electric source currents across dual faces f̃ , and by A the
array of circulations of the magnetic vector potential on primal
edges e.

Maxwell’s laws can be written exactly as topological bal-
ance equations between DoFs arrays, as

(CT F)e = (Is)e, e ∈ D (1)

(Φ)f = (CA)f , f ∈ D (2)

where (1) is the Ampère’s Law, (2) involves the array A in
such a way that Gauss’ Law DΦ = 0 is satisfied identically
(since DC = 0). The discrete counterpart of the constitutive
law H = νB can be written as

F = νΦ, (3)

where the matrix ν is a square symmetric matrix which can
be efficiently constructed in a pure geometric way. In fact,
considering the cell vk, the Gauss’ law, since f1 +f2− f3 = 0,
is always verified for an element–wise constant field B

Φ1 + Φ2 − Φ3 = B · f1 + B · f2 − B · f3 = 0. (4)

The three fluxes are dependent and only two are used to
produce the B field by

f1x f1y

f2x f2y

 
Bx

By


=


Φ1

Φ2


. (5)

Inverting this linear system and using the fact that fiy = eix

and fix = −eiy

B =
1

2S


e2x −e1x

e2y −e1y

 
Φ1

Φ2


, (6)

where S is the area of vk. The local constitutive matrix νk,
for an isotropic medium, can be obtained by

Fk = νkΦk =




ẽ1

ẽ2

ẽ3


 ν

1
2S


e2x −e1x 0
e2y −e1y 0


Φk, (7)

Substituting (2) and (3) in (1), the set of algebraic equations
governing the magnetostatic problem can be derived

CTνCA = Is. (8)
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1. STATIC FIELDS 2

A. Non linear case

In the presence of non–linear (ferromagnetic) media, the
following set of non–linear equations has to be solved

CTν(A)CA = Is. (9)

An iterative scheme is needed to nullify the vector

f(A) = CTν(A)CA− Is. (10)

At the n–th step of the iterative process we get

Wn hn = −f(An)

An+1 = An + hn
(11)

where hn is the correction vector used to determine the new
estimate An+1 and Wn is the Jacobian matrix or a non–
singular matrix which approximates it, if a Newton–Rapshon
or a Broyden method are adopted respectively. The advantage
of the Broyden method is that the Jacobian matrix needs not
to be recomputed at each iteration; on the other hand the order
of convergence is lower (in between 1 and 2).

B. Computation of the Jacobian

The element (i, j) in the Jacobian matrix can be written as

Wi,j =
∂fi
∂Aj

=

CTν(A)C


i,j

+

CT ∂ν(A)

∂Aj
CA



i

. (12)

For the primal edges e not belonging to the ferromagnetic
region the second addendum of (12) vanishes while the
first one is independent of A. It is convenient to compute
the contribution Wk to the Jacobian W due to the cell
vk. For isotropic non–linear media, the reluctivity matrix is
scalar and the constitutive matrix νk can be rewritten as
νk(A) = mkνk(Ak), where mk is the matrix νk calculated
by swapping the reluctivity νk with the pure number 1. The
contribution of vk to the Jacobian becomes

Wk
i,j =


Kk


i,j
νk(Ak) +


KkAk


i

∂νk(Ak)
∂Ak

j

, (13)

where Kk = CkTmkCk is a constant matrix. The derivative
in (13) becomes

∂

∂Ak
j


1

µk(Ak)


= − 1

(µk)2
∂µk

∂Bk

∂Bk

∂Ak
j

, (14)

where Bk is the amplitude of the induction field in vk, ∂µk

∂Bk

is the slope of the permeability curve. By substituting (2) in
(6) with f = {1, 2}, we write the components of B in terms
of Ak by defining two vectors kx and ky , such that

Bx = kx ·Ak, By = ky ·Ak (15)

holds. The amplitude Bk can thus be computed by

Bk =


(kx ·Ak)2 + (ky ·Ak)2. (16)

Using these equations, the ∂Bk

∂Aj
term can be calculated ana-

lytically as

∂Bk

∂Ak
j

=
(kx ·Ak)kxj + (ky ·Ak)kyj

(kx ·Ak)2 + (ky ·Ak)2
, (17)

where kxj and kyj represent the values in the j−th column
of kx and ky respectively. Finally (17) can be rewritten as

∂Bk

∂Ak
j

=
Bx kxj +By kyj

Bk
, j = 1, ..., 3. (18)

III. PROBLEM DESCRIPTION AND RESULTS

As a test problem, the TEAM Workshop Problem 25 [3] has
been considered. A detail of the two–dimensional benchmark
geometry is shown in Fig.2. The die molds are set to form
a radial flux density distribution. The shape of the inner die
mold is assumed as a circle; the inside shape of the outer die
mold is represented by an ellipse and a line parallel to the x-
axis. Then, the radius R1 of the inner die, the long and short
axes (L2, L3) of ellipse and the dimension L4 are chosen as
design variables with specified upper and lower bounds.

x

y

R1
L2

L4

L3

Fig. 2. TEAM Workshop problem 25: enlarged view of the die press model.

The developed 2D numerical code based on the DGA is
coupled to a hybrid optimization approach which combines
parallel genetic algorithms for global minimum search and a
deterministic algorithm for local refinement.

In Fig.2 the magnetic flux density distribution is shown,
evaluated for the final (optimal) shape of die molds obtained
using the numerical code developed based on the proposed
DGA. The maximum errors of the of the flux density in Pi

are εmax
B = 0.87% in terms of amplitude and εmax

θ = 1.1 deg
in terms of direction.

The main features of the hybrid search algorithm and the
results of the investigations on number of mesh elements,
iterations, CPU time, accuracy, will be described in detail in
the full paper.
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Abstract  — In this paper the optimal placement of the 
integration surface for the integral equation in the hybrid FEM-
DBCI method is achieved by selecting it as lying in the middle of 
the tetrahedral or hexahedral finite elements. Better accuracy is 
obtained with respect to the case in which the integration surface 
lies along the element faces. Some numerical examples are 
provided. 

Index Terms— Finite Element Method, Integral Equations, 
Open Boundary Problems. 

I.  INTRODUCTION 

FEM-DBCI (Finite Element Method - Dirichlet Boundary 
Condition Iteration) is a numerical method devised by the 
authors to solve a variety of static and quasi-static 
electromagnetic field problems in unbounded domains [1-4]. 
FEM-DBCI, like the well-known FEM-BEM (Boundary 
Element Method) [5-6], is a hybrid method in which the 
differential equation, which governs the interior problem, is 
coupled with an integral one which expresses the unknown 
boundary condition on the fictitious truncation boundary ΓF. 

The integral equations of the two methods make use of the 
free-space Green function, but while the integration surface 
and truncation boundary coincide in FEM-BEM, FEM-DBCI 
uses another closed surface, say ΓM, strictly enclosed by ΓF

and containing all relevant parts of the system. The resulting 
global algebraic systems are partly sparse and partly dense; 
however, the FEM-DBCI integral equation is explicit with 
respect to the boundary unknowns and this property allows a 
simple iterative solution of the global system: assuming an 
initial guess for the Dirichlet condition on the truncation 
boundary ΓF, the sparse FEM equations are solved by means 
of the conjugate gradient (CG) solver; the dense equations are 
then used to improve the Dirichlet condition on ΓF; the 
procedure is iterated until convergence is reached. This 
solution strategy is efficient because the CG is only applied to 
the sparse equation, and the dense equation is only used a few 
times. An improvement on this solving method is obtained by 
means of the Generalized Minimal Residual (GMRES) 
method, as described in [7]. A detailed comparison between 
FEM-BEM and FEM-DBCI is made in [8], concluding that the 
former is more accurate than the latter but more time-
consuming. 

Recently the authors showed that a notable improvement in 
the accuracy of FEM-DBCI is obtained in a mesh of triangular 
elements by selecting the integration curve as constituted by 
segments connecting the middle points of triangle sides [9]. 
The improvement is obtained with respect to the standard 

selection of the integration curve as made of triangular element 
sides. 

In this paper it is shown that a similar improvement is 
obtained in a mesh of tetrahedral elements. The paper is 
organized as follows: In the next section a brief description of 
the FEM-DBCI method is given, by referring, for sake of 
simplicity, to a simple electrostatic problem. In Section III the 
proposed improvement is highlighted. A simple system is 
numerically analyzed in Section IV. 

II.  FEM-DBCI FOR ELECTROSTATIC PROBLEMS

Consider a three-dimensional electrostatic system made of 
distributed and/or lumped charges, voltaged conductors and 
non-homogeneous objects embedded in air. In order to 
compute the electrical potential v, a closed truncation 
boundary ΓF is introduced enclosing all the conductors, all the 
dielectric objects and some distributed charges, but possibly 
leaving out some other distributed and/or lumped charges 
(external charges). In the bounded domain D delimited by (F, 
the Poisson equation holds: 
       ( ) ρ=∇ε⋅∇− v                              (1)

where ε is the electric permittivity and ρ the charge density. 
The unknown Dirichlet condition on ΓF is expressed through: 

∫∫Γ 







∂
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where ΓM is a closed surface enclosing all the conductors and 
dielectric non-homogeneities but strictly enclosed by ΓF, n' is 
its outward normal unit vector and vext is due to the external 
charges. By discretizing the domain D by means of tetrahedral 
finite elements, equations (1) and (2) read as follows [1]: 
    FF0 VABAV −=                                                  (3) 

    HVVV += 0FF                                                      (4)

where A is a standard FEM matrix (symmetric and positive 
definite), V is the vector of unknown nodal values inside the 
domain, B0 and VF0 are due to source and conductor potentials, 
AF is a rectangular matrix of coefficients similar to A, VF is the 
vector of nodal field values on ΓF, and H is a rectangular 
matrix in which null entries appear for the nodes of the 
elements not adjacent to the integration surface ΓM. The 
integrals in (2) are performed by means of the Gauss method 
with a variable number of Gauss points according to ratio of 
the distance of the node on ΓF from a point on ΓM to the mean 
radius of the subpart of ΓM. The system (3)-(4) is solved 
iteratively. Starting with an initial guess for the potential on ΓF

(for example VF=0), equation (3) is solved for V. Equation (4) 

Optimal Selection of the Integration Surface in 
the Hybrid FEM-DBCI Method 

Optimal Selection of the Integration Surface in 
the Hybrid FEM-DBCI Method 
Giovanni Aiello, Salvatore Alfonzetti, and Nunzio Salerno 

Dip. Ing. Elettrica, Elettronica e dei Sistemi, Università di Catania – Viale A. Doria, 6 – I-95125 Catania– Italy
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is then used to improve VF. The procedure is iterated until 
convergence takes place. 

III.  SELECTING THE INTEGRATION SURFACE

The most simple way to select the integration surface ΓM in 
a tetrahedral mesh is to build it by means of triangular faces of 
tetrahedral elements (see triangles ABD and BCD in Fig. 1, 
where capital letters denote the element vertices and small 
letters denotes the middle points of edges). In this way, 
however, accuracy is not well balanced between v and ∂v/∂n in 
(2). No accuracy problems arise in evaluating G and ∂G/∂n, 
because the Green function is known analytically. In fact, the 
first term is much more accurate than the second one, since the 
numerical derivative ∂v/∂n is maximally erroneous on the 
tewrahedral faces, where v is maximally correct because of the 
presence of several nodes on the element face itself.  

To improve the accuracy of the integral equation, one can 
select the integration surface as constituted by sub-surfaces 
internal to the tetrahedra and connecting the middle points of 
their edges (see fig.1). Note that two kinds of sub-surfaces 
arise: triangles and quadrangles (it is simple to show that the 
four points b, d, f, and h in fig. 1 are coplanar).  

In this way the accuracy of the derivative ∂v/∂n is 
maximized, whereas the accuracy of the field variable v is not 
greatly decreased, so that a global improvement in the 
accuracy of the integral equation and the whole solution is 
expected. In order to verify this, in the next sections an 
example is provided for which analytical solutions is known. 

IV..A VALIDATION EXAMPLE

The example concerns the computation of the electrostatic 
potential v near a conducting sphere of radius R, voltaged at 
V0, embedded in a homogeneous unbounded dielectric 
medium of permittivity ε0. By selecting the origin of a 
Cartesian reference frame in the center of the sphere, the 
problem exhibits the analytical solution: 

        0
222

* V
zyx

R
)z,y,x(v

++
=             (5) 

A B

CD

E F

GH

a b c

d

efg

h

Fig. 1- Two different choices for the integration surface ΓM in a tetrahedral 
mesh (tetrahedra: ABDE, CDBG, FGBE, HGED, EGBD); first choice: 
triangles ABD and BCD; second choice triangles abh, bcd, def, fgh and 
quadrangle bdfh. 

Fig. 2- Tetrahedral mesh of the example. 

The analysis can be restricted to the first octant only, by 
imposing homogeneous Neumann conditions on the coordinate 
planes. The unbounded domain is truncated by a spherical 
fictitious boundary ΓF of radius R+d, with d=1.2 R. The mesh 
was made of 8640 first-order tetrahedra, with two layers of 
elements in the radial direction (see Fig. 2). Selecting ΓM

coinciding with the conductor surface, the relative error 
between the computed solution and the analytical one is 2.8 
per cent, having set the convergence tolerance to 0.1 per cent. 
Selecting ΓM at a distance of d/4 from the conductor (that is in 
the middle of the first layer of tetrahedra), the relative error 
decreases to 0.8 per cent. More details and examples will be 
provided in the full paper. 
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9. NUMERICAL TECHNIQUES

Abstract — In this paper, an approach based on the double 
Lagrange multipliers is developed in the finite element method 
in order to impose complex periodic or anti-periodic boundary 
conditions. The magnetostatic equations are solved using the 
vector or scalar potential formulations. In order to show the 
possibilities of the proposed approach, an example of 
application is studied and the results are discussed. 

I. INTRODUCTION

To model an electromagnetic device, the finite element 
method is currently used today. In order to reduce the mesh 
of the studied domain, the geometric symmetries of the 
system are generally considered. Then, only one part of the 
device is modelled. The reduction of the domain can
introduce periodic or anti-periodic conditions on the fields. 
To impose these conditions, a simple method consists to 
build a same mesh on the boundaries where the conditions 
are applied. In the device with a simple geometry, same 
meshes on two boundaries can be easily fixed. In the case of 
complex structures, this method is not rather flexible and 
becomes difficult to implement. In order to avoid this 
difficulty, a technique based on the double Lagrange 
multipliers method can be used [1][2]. By using this 
approach, the meshes on the boundaries with periodic or 
anti-periodic conditions can be different. The continuity of 
the fields is obtained by imposing supplementary relations. 

In this communication, the double Lagrange multipliers 
approach is introduced in the case of magnetostatic 
problems. In first, the magnetostatic problem is presented. 
Then, the double Lagrange multipliers approach is 
developed in the scalar and vector potential formulations to 
impose the periodic or anti-periodic boundary conditions. At 
last, an application based on the simplified structure of a 
claw pole electrical machine is analyzed.  

II. MAGNETOSTATIC PROBLEM  

Let's consider a domain D with its boundary Γ divided 
into four parts such that Γ= ΓS1∪ΓS2∪ΓB∪ΓH and 
ΓS1∩ΓS2∩ΓB∩ΓH =∅ (Fig. 1). In the case of a magnetostatic 
problem, Maxwell's equations and the behaviours law are 
given by: 

div B = 0   with   
BΓ

nB ⋅

curl H = J  with  
HΓ

nH ×

B = µ H

(1) 

(2) 
(3) 

with n the outward normal of Γ, B the magnetic flux density, 
H the magnetic field, J the current density supposed to be 
known in stranded inductors and µ the magnetic 
permeability. The boundaries ΓS1 and ΓS2 are used to impose 

a periodic or anti-periodic condition on the fields. These 
conditions can be expressed such that:  

s2s1s2s1 ΓΓΓΓ αandα nHnHnBnB ×=×⋅=⋅      (4) 

 with α a scalar value equal to 1 or –1. This one depends on 
the periodic or anti-periodic condition between ΓS1 and ΓS2. 

ΓB

ΓB

ΓH

ΓS1

ΓS2

n D: 

J 

µ0

µ0µr

Fig. 1 Definition of the studied domain 

III. POTENTIAL FORMULATIONS 

In the scalar potential formulation, a source field Hs is 
introduced such that rot Hs = J with Hs × n = 0 on ΓH, ΓS1

and ΓS2. From (2.a), a scalar potential  can be introduced 
and the magnetic field can be rewritten such that H= Hs –
grad  with  = Cst on ΓH. Equation to solve in the studied 

domain is given by the weak formulation of (1.a) such that: 

D

Γs2Γs1D

ψ) s,(

ψ,ψ,ψ),(µ
s2s1

gradH

nBnBgradgrad =⋅+⋅+ α
(5) 

with ψ a test function chosen in the same space than Ω and 
ψs1 and ψs2 the restriction of ψ on  ΓS1 and ΓS2. On ΓB and 
ΓH, the surface integrals vanish by (1.b) and (2.b). To 
impose a periodic or anti-periodic condition on ΓS1 and ΓS2, 
the double Lagrange multipliers method can be introduced. 
The Lagrange multipliers can be expressed on ΓS1 or ΓS2. We 
define the multipliers λB1 and λB2 on ΓS1 such that 

2B1BΓs1
λ+λ=⋅nB [1]. The test function associated with the 

multipliers is chosen equal to ψs1. The geometric 
transformation T between ΓS1 and ΓS2 is defined in order to 
project the test function ψs2 on ΓS1. The final equation 
system to solve can be written such that: 

( )
( )

0ψ ,λλψ ,T

0ψ ,λλψ ,T

ψs,Tψ,λTψ,λ

ψ,λψ,λψ,

s1S1

s1

s1

s1

Γs1B2B1Γs1s2s1

Γs1B2B11Γs1s2s1

DΓs2B21Γs2B1

Γs1B21Γs1B1D

=+−++

=−++

=++

++

α

α

αα

s

s

s

gradH

gradgrad

(6) 

with Ωs1  and Ωs2 the restriction of Ω on  ΓS1 and  ΓS2. The 
two last equations are introduced to insure the continuity of 
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the scalar potential on ΓS1 and ΓS2. For a periodic condition, 
these last relations impose the equality of Ω on Γs1 and Γs2. 
To discretize Ω, ψ, λB1 and  λB2, nodal shape functions are 
used. 

In the vector potential formulation, a potential A is 
introduced by using (2.a) and the magnetic flux density can 
be rewritten such that B= curl A with A×n = 0 on ΓB. From 
(2.a), the weak formulation is given by: 

DΓΓD
1- ) ,(,,  ) ,(µ

s2s1
ψJψnHψnHψcurlAcurl s2s1 =×+×+ α

(7) 

with ψ a test function and ψψψψs1 and ψψψψs2 its restriction on  ΓS1

and  ΓS2. A similar approach to the scalar formulation is used 
to impose a periodic or anti-periodic condition. Then, we 
define λλλλH1 and λλλλH2 the Lagrange multipliers on ΓS1 such 
that

H2H1Γs1
λλnH +=× . The final equation system to solve 

is given by: 
( )

( )

0 , ,T

0 , ,T

,T,T,

,,,

s1S1

s1

s1

s1

Γs1H2H1Γs1s2s1

Γs1H2H11Γs1s2s1

DΓs2H21Γs2H1

Γs1H21Γs1H1D
-1

=+−++

=−++

=++

++

ψλλψAA

ψλλψAA

ψJψλψλ

ψλψλψcurlAcurl

α

α

αα

s

s

s

(8) 

with As1  and  As2 the restriction of A on ΓS1 and ΓS2. Edge 
shape functions are used to discretize the vector potential 
and the Lagrange multipliers.   

IV. APPLICATION

The studied structure is based on a simplified claw pole 
electrical machine (Fig. 2). The rotor is composed by two 
half claws and the stator by three windings. These ones are 
supplied by a three phase current source. The mesh is 
constituted by 5663 nodes and 28786 tetrahedrons. An anti-
periodic condition, according to an axis, is applied on two 
boundaries (Fig. 3). This structure has been solved by both 
potential formulations. For the scalar and vector formulation, 
the number of unknowns is equal to 6525 and 36090. In Fig. 
4, the distribution of the magnetic flux density trough a 
section obtained by the scalar potential formulation is 
presented for a given time step. In Fig. 5, the magnetic 
energy waveform in function of time obtained by both 
formulations is presented. The shapes of the curves are 
similar. The different between the maximal values is due to 
the discretization of the mesh in the air gap [3]. In term of 
solution, the matrix systems are solved by the minimum 
residual method with a SSOR (Successive Over Relaxation) 
preconditionner. The iteration method requires 3% of 
unknown number to obtain the solution with the scalar 
formulation and 12% with the vector formulation.  

V. CONCLUSION 

The double Lagrange multipliers method has been 
introduced in the scalar and vector potential formulations in 
order to impose the periodic and anti-periodic conditions. 
The studied example shows the possibilities of the proposed 
model for a complex geometry with anti-periodic conditions.  

stator 

rotor 

A B C 

claw

Fig. 2. Application example (a- structure, b- mesh of the rotor) 

B1

anti-periodic axis   

B1

B2
B2

B3
B3

Fig. 3. Definition of  the anti-periodic condition 

Fig. 4.Distribution of the magnetic flux (T) trough a section of the machine  
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Abstract: The corona generated from HVDC transmission lines 
can affect the environment nearby. Based on the upstream finite 
element method, an iterative algorithm to analyze the ionized 
field and the ion current density at the ground level generated 
from the bundled conductors of bipolar lines is modified. The 
algorithm is proved to be convergent efficiently. The effect of 
wind is taken into account. A unipolar line in the presence of 
wind is calculated and the validities are testified by comparing 
with measurement results. Finally, bipolar lines can be analyzed 
by the method. 

I. INTRODUCTION 

In order to set up a strong and steady power system in 
China, ±800kV ultra HVDC transmission lines system is 
building. But the ionized field and the ion current density at 
the ground level due to the corona have to be analyzed in 
advance to make sure the environment friendly.  

Because of the ions existing in the space, the ionized field 
is very difficult to be calculated [1]. However, the problem 
has been considered by a number of researchers over the past 
several decades [2-6]. Based on Deutsch's assumption, Sarma 
et al. [2] firstly proposed an analytical equation to solve the 
ionized fields of unipolar line. Obviously, it is not valid when 
wind is present. Janischewskyj and Gela [3] proposed a 
numberical method by using the finite element method. 
Furthermore, Takuma et al. [4] proposed the upstream finite 
element method. The stability and convergence can be 
improved effectively. They assumed that the space charge 
density remains constant around the surface of the conductors. 
As a matter of fact, the assumption of the constant charge 
density is not quite true, especially in the presence of wind. 
Z.Al-Hamouz [5] suggested a method to solve the ion current 
density based on a finite element mesh which fits the flux 
tubes of the field. Fortin et al. [6] proposed a similar approach 
to calculate the ionized electric field of bundled bipolar 
conductors by treating the conductors in the bundles 
individually.  

In this paper, an iterative method based on upstream 
FEM is modified to analyze the ionized electric field and the 
ion current density under the HVDC lines and the effect of 
wind is included. Different from [4], the assumption that the 
space charge density remains constant around the surface of 
the conductors is waived to avoid empirical factor. The 
algorithm is proved to be convergent efficiently. The effect of 
wind is taken into account. The validities of the method are 
testified by comparing with measurement results.   

II. METHODOLOGY OF BIPOLAR LINES  

Under some assumptions, for the bipolar lines with the 
effect of wind, the potentialϕ , the ionized field sE , the space 

charge density +ρ  and −ρ , the current density 
+j  and −j are

defined by the following equations [1]: 

0
2 /)( ερρϕ −+ −−=∇                                             (1) 

)( wEKj s += +++ ρ                                          (2) 

)( wEKj s −= −−− ρ                                          (3) 
eRj i /−++ −=•∇ ρρ                                            (4) 

         eRj i /−+− =•∇ ρρ                                               (5) 
ϕ−∇=sE                                                              (6) 

where K is the ionic mobility within the corona area, iR  is the 

ion recombination coefficient. The subscript + is for positive 
and – for negative, and w  is the wind velocity vector and e  is 
the charge of the electron.  

Because FEM only can be applied in a limited region, an 
artificial boundary far from the lines must be placed, where 
the potential is equal to the value of the charge-free field 
obtained by Charge Simulation Method (CSM).  

The iterative process is started by assuming initial values of 
charge density at grid nodes. The space-charge density at the 
conductor surface can be gained from [7]. Equations (1) and 
(6) are used to compute values of ionized field. Based on (2)-
(5), we can get: 

ρρερερ −+

+

+

+
++ ⎟

⎟
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⎞
⎜
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⎛
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⎛
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e
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0
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0

                   (8) 

where wEKv s += ++
, wEKv s +−= −− are the mobility 

velocity vector of positive and negative ions, respectively.  
In order to calculate (7) and (8), the upstream FEM is 

applied [4]. The nodes are calculated one by one from their 
upstream elements from the surface of the conductor until all 
of the nodes have been calculated.  
     The charge density in the element ijm can be described by 
the following interpolating function: 

( ) [ ][ ]ρρρρρ NNNNyx mmjjii =++=,
      (9) 

If b, c are functions of corresponding coordinates: 
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i j mb y y= −        

j m ib y y= −      
m i jb y y= −        

      
i m jc x x= −        

j i mc x x= −      
m j ic x x= −         

we can obtain: 
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Equation (7) and (8) can be changed as: 

           
2 0i iA B Cρ ρ+ + + + ++ + =                                (13) 

where 

0

K
A

ε
+

+ = ,                                                          
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Δ Δ
               

( )1
2 i j j ib c b cΔ = −

The larger solution can be looked as the final result, thus 
the calculation is stable. Next, the obtained charge density is 
used to calculate the ionized field in (1), so the iteration 
continues until the satisfied result is obtained. 

III. VALIDITY 

Fig. 1 shows the calculated results of a ±200kV unipolar 
test line in the presence of wind with 0.25cm in radius and 2m 
in height. The relevant measurements in [8] are also shown in 
Fig. 1 as separate stars and circles. The star * is for the results 
without wind, and the circle o is for the results with 8m/s wind 
velocity. The calculated curves agree reasonable with 
measurement results.  

(a) Ionized field                               (b) Ion current density  
Fig.1 Comparison between the measurement and calculation  

IV. APPLICATIONS

The proposed method is applied to an operating HVDC 
lines in the present of wind of 1m/s and 3m/s respectively. 
The unipolar line is energized at 500kV with a 4*1.185cm and 
a 45cm spacing conductor bundle at height of 12.5m. The 
distributions of ionized electric field and the ion current 
density at the ground level are shown in Fig. 2. The results 
show that the ionized field can be influenced by wind 

obviously. Both of the maximum of electric field and current 
density shift to the downwind side, increasing down the wind 
and decreasing against the wind. And the effect of wind on 
ion current density is stronger than that on ionized field. Both 
of the field and current curves became wider down the wind. 
This trend is visible when wind velocity increases from zero 
to 3m/s. However, if the velocity is increased to 6m/s or more, 
the field strength almost doesn’t increase any longer. The 
explanation of the results and the case of bipolar lines will be 
included in the final version  

(a) Ionized field                        (b) ion current density 
               Fig. 2 Effect of winds on ionized field and ion current density   

V. CONCLUSIONS 

The charge generated from corona conductors of HVDC 
transmission lines can enhance greatly the electric field in the 
space and on the ground plane. An upstream FEM-based 
approach can effectively calculate the ionized field and ion 
current density e. The influence of wind can be taken into 
account. The validity of the method is testified. And the 
rapidity of convergence is satisfying. Then, the influence of 
wind on one unipolar line is analyzed. The tendency can be 
explained corresponding to the physical fact.  
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Science Foundation of China under grant No. 50677016. 
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Abstract — An innovative 3-D Finite Elements approach for 
the computation of the self-consistent unbounded magnetic field 
of electron beams is presented for the analysis of electron guns. 
The solution of the whole problem is obtained by solving 
iteratively a Vlasov-Maxwell equation together with the 
relativistic dynamical equations of motion, by assuming 
stationary conditions. The self-consistent unbounded 
magnetostatic field is computed by using an edge elements curl-
curl formulation for the magnetic vector potential A, and by 
adopting a fictitious boundary iterative algorithm to overcome the 
problem of boundary conditions assignment. An example of 
application to the spread of relativistic beam is given in order to 
better illustrate the procedure.  

I. INTRODUCTION 

In the design process of electron guns the electromagnetic 
analysis is a critical issue in order to achieve the desired 
electron beam characteristic. In fact, the adoption of more 
complex geometries and the insertion of appropriate control 
grids allow the designer to obtain a better performance, but, on 
the other hand, require the use of dedicated tools to carry out 
the electromagnetic analysis. For this reason some numerical 
analysis tools, most of them based on the Finite Element 
Method (FEM), have been set up [1], but they do not address 
satisfactorily the self-consistent magnetic field (SCMF). In 
fact, although high focusing magnetic fields (about 100 times 
the self consistent component) are usually used for these 
devices in the focusing region, the influence of SCMF is 
important above all in the electron gun region, where the 
focusing magnetic fields vanish. Several approaches were 
developed to model self-consistent magnetic field: some apply 
directly the Ampere’s law to obtain only the angular 
component (in a cylindrical symmetric system) of the magnetic 
field, others solve numerically the whole magnetic problem by 
using the magnetic vector potential, taking into account all the 
three components (angular, radial and axial) of the magnetic 
field. In the latter case a tricky problem is the assignment of 
the boundary conditions for the magnetic vector potential A.  

In this paper we present an innovative scheme for the 
treatment of the self-consistent unbounded magnetic field in 
3D Finite Elements code for the analysis of electron guns. The 
solution of the whole problem id obtained by solving 
iteratively a Vlasov-Maxwell equation together with the 
relativistic dynamical equations of motion [2], by assuming 
stationary conditions. In particular in order to model efficiently 
the self-consistent unbounded magnetostatic field a curl-curl 
formulation for the magnetic vector potential A has been 
employed, and a fictitious boundary iterative algorithm has 
been adopted to overcome the problem of boundary conditions 

assignment. On the fictitious boundary the A components are 
initially guessed and successively updated according to the 
magnetic vector potential and current density distributions 
obtained in the preceding iteration step. This treatment closely 
follows an analogous approach, successfully used for the 
solution of uncoupled electromagnetic problems in unbounded 
domains [3]. 

II. 3-D FE ANALYSIS OF ELECTRON GUN 

The dynamics of a set of charged particles subject to an 
electromagnetic field in collisionless conditions can be 
described by means of the Vlasov equation for the particle 
distribution function f(t,x,p), defined in the phase space         
(x, p)∈ℜx×ℜp and time t, 

0)( =∇⋅×++∇⋅+
∂
∂

f
m

qf
mt

f
px BpEp

       (1) 

where p is the particle momentum, m and q are the particle 
mass and charge respectively. The electric field E and 
magnetic field B satisfy the Maxwell equations, for which the 
charge and current densities 

=
pR

dtfqt ppxx ),,(),(ρ , =
pR

dtf
m

qt ppxpxJ ),,(),(     (2) 

are the source terms. 
The Vlasov equation together with the Maxwell equations 

constitutes a system of coupled equations called Vlasov-
Maxwell system. This coupled problem is usually solved by 
using Particle-in-Cell (PIC) approaches, in which the electron 
beam is represented by a reasonable number of macro-
particles, subject to the dynamic equations and sources of the 
electromagnetic field. In addition, it is often possible to 
consider a stationary solution for this particle model: in this 
case the self consistent electric field E is the solution of a 
Poisson equation, including the space-charge density as a 
source, while the self-consistent magnetic field B can be 
calculated from the field equations for the magnetic vector 
potential, including the beam current density as a source. In 
particular we use a FE approach to perform the fully 3-D 
steady-state analysis. The resulting discretized problem 
consists of three set of equations: the first is an FE linear 
algebraic system regarding the spatial distribution of the 
unknown potential values originated by a nodal formulation of 
the Poisson equation for the electrical scalar potential, the 
second is an FE linear algebraic system regarding the spatial 
distribution of the unknown magnetic potential vector A 
originated by an edge element discretization of a curl-curl 
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formulation for the magnetostatic problem; the other regards 
the trajectories computation of all the discrete particles used in 
the model. The solution of the whole system is carried out by 
following an iterative scheme which alternates the tracing of 
the electron trajectories and the computation of space charge 
distribution with the solution of the electrostatic and 
magnetostatic problems. These steps are repeated until 
convergence is reached, when the “distance” between two 
consecutive solutions is less than a user-specified end-iteration 
tolerance: in this situation a fixed point for the solution is 
approached and the current flow and electromagnetic field 
distribution can be assumed self-consistent.  

Hereafter, we discuss briefly the aspects concerned with 
the solution of the unbounded magnetic problem, the solution 
of the other problems have been illustrated in [3]. A curl-curl 
formulation for the magnetic vector potential A in an 
unbounded domain is used: 

JA 0µ=×∇×∇                  (3) 

This equation is considered in a bounded domain M delimited 
by a fictitious boundary and enclosing all the magnetic sources 
(that is all particles current-carrying), which might be the same 
domain  of the electrical problem or smaller (M ⊆ ), since 
the electron beam usually does not sit in the whole electron 
gun geometry. In this way the solution of the unbounded 
problem is converted into the iterative solution of a sequence 
of bounded Dirichlet magnetic problems. In M the discretized 
vector potential is expressed inside each mesh element by 
using edge elements, in order to avoid spurious solutions. A 
congruent distribution of 3-D current density is a fundamental 
aspect for the convergence: the source current density is 
obtained directly after tracing the electron trajectories by 
following a suitable deposition and accumulation scheme. As 
regards the boundary conditions on the fictitious boundary, 
they are initially guessed and successively updated according 
to the magnetic vector potential and current density 
distributions obtained in the preceding iteration step. In 
particular the boundary values of magnetic potential field can 
be derived by exploiting its Laplacian behaviour in a region 
not containing sources by means of the Green's function. In 
fact, for a generic harmonic function H in the external 
homogeneous unbounded region one has: 

ds
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where: Γ is an arbitrary surface contained in M enclosing the 
whole electron beam; n is the unit vector normal to Γ, oriented 
toward M; r and rF are point vectors relative to Γ and ∂M, 
respectively and G is the 3-D Green's function for free space. 
Since in the FEM approximation, the surface curve Γ is 
conveniently selected as constituted by finite element sides, 
equation (5) can be rewritten for each boundary “unknown” AF 
in the form: 

AF = RM A                      (5) 
where RM is a rectangular matrix of purely geometrical 
coefficients. The solution of the discretized equations (3) and 
(5) are well suited to be solved iteratively, arbitrarily guessing 
at the beginning the magnetic vector potential on the boundary 
∂M. 

III. AN EXAMPLE OF APPLICATION TEST 

In order to evaluate the accuracy and the computational 
performance of the proposed procedure a test regarding the 
spreading of a relativistic beam is hereafter presented. In 
particular we consider the evolution of an axisymmetric 
relativistic laminar electron beam inside a cylindrical drift tube 
of radius 2m and length 10 m [4]. The self consistent solution 
of this problem has been computed by means of the last 
version of the COLLGUN code [2], including the above 
described computational facility for SCMF. A relativistic beam 
carrying a current of about 170 and having an energy of 212 
kV ( = 1, =v/c,  = 1/(1-2)1/2 was injected at one end of the 
drift tube. Three unstructured tetrahedral meshes have been 
employed for this problem, generated by imposing a constraint 
to the maximum element volume (less than 21/2h3/12, where h 
assumes the values 0.5m, 0.25m and 0.125m respectively): the 
rough mesh has about 16k elements, the fined one has about 
1M elements. The beam having a radius of 1m was discretized 
according to mesh size by spacing the particles of about h/5 
(about 300, 1300 and 5500 particles respectively for the three 
setup problems). In all the three tests performed 4 iterations 
were needed to reach the desired accuracy of 0.1 %. The 
obtained results show a very good agreement with the 
analytical ones available in literature [5]. Fig. 1 shows the 
axisymmetric relativistic beam expanding in the cylindrical 
drift tube (for the intermediate mesh) and the computed 
magnetic field surrounding the electrons.  

 
Fig.1. The relativistic beam expanding in the drift tube and the compute 

magnetic field surrounding the electrons  
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Abstract — This paper deals with an inverse problem 
methodology devoted to the automated definition and design of 
electromagnetic structures. Then, using a statistical approach, a 
discussion on the existence and the uniqueness of the problem 
solution is led. The last part focuses on the behaviour of the 
solving algorithm for several case studies.  

I. INTRODUCTION

Optimal electromagnetic systems design can nowadays be 
understood and formulated as an inverse problem, i.e., from 
characteristic values given by the specifications, obtaining the 
dimensions and material for a previously chosen structure.  

Optimal design procedures are often based on analytical 
modelling considering an idealized structure.  It gives 
satisfying results thanks various optimization methods [1]. 
Whatever the character stochastic [2]  or deterministic [3] of 
the employed algorithm, the available solutions field is 
seriously limited by the preliminary choice of a given 
structure. 

This paper presents an inverse problem methodology 
devoted to the automated definition and design of 
electromagnetic structures, in the context of quasi-static fields. 
The ability to reproduce a prescribed 2D magnetic field pattern 
with a distribution of out of plane conductors is analysed. Such 
a problem is ill-posed according to Hadamard's definition [4]. 
Indeed, existence and uniqueness of the obtained solution, 
which are not guaranteed, is taken into account in the paper. 

II. PROBLEM STATEMENT

A. Assumptions 

The aim of the proposed inverse problem methodology 
consists in finding a current distribution which generates a 
given magnetic field map in free space of 0 permeability. The 
current distribution will be defined by a set of infinite parallel 
to the z axis conductors and the field map will be described by 
tests points on xOy plane. Consequently the resulting system is 
invariant by translation along the z axis and the analytical 
calculation can be carried on the xOy plane.      

B. Magnetostatic equations 

To solve the inverse problem, the field at the test points 
will be analytically calculated thanks to Biot-Savart's law (1) 
[3] : 
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So, considering a set of current elements oriented along z 

axis, the magnetic flux density ( )MBW  produced by a single 

conductor located in W (in the xOy plane), and carrying a 
current I, at a given point M in the plane perpendicular to z 
axis is given by (2) : 
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Consequently, the global problem to solve can be 
formulated as a coupled matrix system (3) : 
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  Components of I vector corresponds to the various 
current elements. 

Bx and By are the vectors of the expected magnetic flux 
density values on each test point, projected on x and y axes. 
The inverse electromagnetic problem can be linear or not 

depending on the investigated quantities (conductor position, 
and current value). So the problem is linear only when the 
conductor position is fixed.

III. DISCUSSION ON EXISTENCE AND UNIQUENESS OF THE 

SOLUTION

A. Existence 

The linear and non-linear problems are solved by a least-
square optimization method. Existence and uniqueness of 
solution are analysed by statistic approach on test cases 
depending on number of test points and conductors. 
Concerning the existence of solution we can observe that: 

Using a direct field calculation method to solve 
magnetostatic design inverse problem
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- In a linear case (position fixed), a configuration in which 
the test points number is twice conductors number leads to a 
well-posed problem according to Hadamard's definition.  

- In the non-linear case (position and current value are not 
fixed), the solutions domain is significantly increased (as 
illustrated in Fig.1).  

A more precise sensitive analysis on bounded values of 
investigated quantities will be described in the final paper.    

B. Uniqueness 

The magnetostatic inverse problem methodology can be 
applied on underdetermined or overdetermined systems. In the 
case of underdetermined systems, it is interesting to determine 
the initial conditions (i.e. number and bounded values of 
conductors and test points) which guarantee a set of available 
solutions. This set must be wide enough to allow an 
optimization procedure. In this context, from a given field map 
generated by a known conductors distribution, the convergence 
of the solving inverse problem is studied. It can be observed 
for example on Fig.2 that when the number of conductors is 
sufficient, this method does not only converge on the initial 
known conductors distribution.  

Fig 1 Fig 2 
Fig. 1. Convergence rate on a solution (100 resolutions per case).  

Random B field value on test points.  
3 degrees of freedom per conductor (coordinates and current value) 

Fig. 2. Convergence rate on the initial solution (100 resolutions per case). 

IV. CASE STUDIES

The final paper will present several cases in order to study 
the behaviour of the resolution algorithm and the resulting 
solution for a strongly constrained problem (conductors 
excluded from domain of test points, and/or bounded current 
value). As example, the Fig.3 shows a linear case with a very 
high number of conductors. The comparison between the 
initial magnetic field test point and the magnetic field resulting 
from inverse problem solving gives satisfying results with a 
difference lower than 0.7% (cf. Fig.4).  

Let us underline that from Fig.3 it is possible to easily 
characterize patterns in the current distribution. Those patterns 
could be used in a postprocessing inverse problem solving for 
the design of a magnetic structure.  

Fig. 3. Example of current values distribution obtained after resolution.  
12 test points, 840 current values.  

Fig. 4. Comparison of B values on the test points for the same example.  

V. CONCLUSION

The authors have presented an inverse problem 
methodology devoted to the optimal design of electromagnetic 
structures. This methodology is based on an analytical 
description of the static fields thanks to Biot and Savart 
equation. Considering a generic multi-conductor distribution 
makes it possible to discuss existence and uniqueness of the 
solution by using a statistical approach. This analysis led to a 
rational definition of the required conductor number 
considering the number of test points. Case studies have been 
done to explore the limits of the solving method. The results 
presented in this last part open a new field of investigation in 
the magnetostatic inverse problem methodology.   
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Abstract－ The dual-channel switched reluctance machine (SRM) 
is driven by two independent sets of power electronic circuits 
with dual control channels, so a fault tolerated operation mode 
can be used in this system for high reliability. This paper 
presents a magnetic analysis of a 12/8 dual channel SRM in order 
to compute the nonlinear magnetization curves including mutual 
coupling. The proposed analysis implements the magneto-motive 
force (mmf) sources and consists of the equivalent magnetic 
circuit, the analytical saturable airgap permeanes and nonlinear 
yoke permeanes. Then the performance of this dual channel 
SRM including self flux and mutual flux have been determined 
using the two-dimensional finite-element (2D-FE) method under 
different rotor positions (fully aligned to fully unaligned) for 
varying exciting current conditions. The effectiveness of this 
proposed magnetic circuit analysis is verified by comparing with 
2D-FE method in terms of the analytical accuracy. 

I.  INTRODUCTION 
With the development of the power electric and control 

technology, the switched reluctance machine (SRM) is 
becoming more and more attractive for many applications. 
However, it is rather difficult to design the machine and 
develop the drive performance because of the magnetic 
nonlinearity of the motor [1]-[2]. The 12/8 novel dual-channel 
SRM is a dual three phase motor and its configuration is 
shown in Fig.1. Dual channel SRM control system can work 
as dual channel mode or single channel mode. When a power 
circuit is failure, the system is transferred into single channel 
mode which is called fault- tolerant operation.  

Channel 1

Channel 2

Airgap 1

  
• A11 C21 B11 A21B21C11A22

Stator

Rotor

uP wP vP uPwPvPuP  

Fig.1 Structure of dual-channel SRM         Fig.2 Flux paths (θ=0º) 

This paper presents a magnetic circuit model for calculating 
the self and mutual flux linkage of a 12/8 dual channel SRM 
including saturation effects. The model determines the flux 
linkage of one channel in each phase for any geometry, phase 
count, rotor position, and combination of phase current. The 
model presented in this paper does not require time 
consuming data entry and meshing. And the results presented 
can be obtained in a matter of minutes. Then the results of this 
modeling method are verified against the Ansoft/Maxwell 2D 
finite element solver. 

II. THE MAGNETIC CIRCUIT MODEL 

As the channel one of A-phase is only excited, the equivalent 
magnetic circuit and flux path diagram are shown in Fig.2. 
The rotor angular position θ is defined as θ = 0º at the aligned 
position and θ = 22.5º at the unaligned position.  

III.  AIRGAP PERMEANCES 

There are three different permeances which are included 
in the airgap model: overlap; fringing; and nonoverlapping.  
A. Overlap and fringing permeance 

Fig.3 shows the case of overlap and fringing flux path in 
airgap 1. In this paper, the stator and rotor pole arcs are 
assumed π/12 respectively. 
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stator pole

/12θ π−

 

Fig.3 Partially overlapping poles         Fig.4 Nonoverlapping poles 

The overlap and fringing permeance Pa of airgap 1 can be 
divided into three parts of permeances P1 ~ P3.  
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B．Nonoverlapping permeance 
Fig.4 shows the situation being considered and outlines the 

appropriate flux tubes to approximate the path.  
The nonoverlapping permeance Pa of airgap can be divided 

into three parts of permeances P11 ~ P22.  
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IV.  YOKE PERMEANCES 
Fig.5 shows the flux path in the stator yoke, the permeance of 
stator yoke between adjacent poles 

37

pa1.15



 12
( )

r sydr
sy

sy s sy

u L hu AP
L r r π

= =
+

              (3) 

where ur is steel permeability. 
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Fig.5 Flux paths at stator yoke          Fig.6 Flux paths at rotor yoke 

Fig.6 shows the flux path in the rotor yoke, similarly the 
permeance of rotor yoke between adjacent poles can be 
derived as 

8
( )

r ryd
sy

r ry

u L h
P

r r π
=

+
                (4) 

V.  NONLINEAR SOLUTION 
To obtain the static characteristics of the SRM, the rotor 
position should be changed in small decrements to cover half 
an inductance cycle. With a change in rotor position, the flux 
pattern in the poles and airgap changes. Once all of the 
various airgap permeances have been determined for a give 
rotor position, they must be incorporated into the model. The 
complete set of closed loops equations is a system which can 
be represented in matrix form 

R FΦ[ ][ ]=[ ]                (5) 
Where Φ is the vector of branch fluxes, F is the vector of 
magneto motive forces and R is matrix of magneto resistance.  
Gauss-Siedel method with an accelerating factor for faster 
convergence has been used to solve the nonlinear problem. 
Once the fluxes have been calculated form (5), the flux 
linkage can be calculated.  

V.  FINITE ELEMENT ANALYSIS 
In this section, a finite element analysis using 

Ansoft/Maxwell 2D is performed to obtain the magnetic 
characteristics of the machine, considering the saturation and 
mutual coupling effects. 
1) Flux lines: One and two channels of A-phase are excited in 
the aligned and unaligned positions. Flux contours at these 
two positions are shown in Fig.7, respectively.  

        
(a)                             (b) 

Fig.7 Magnetic field distribution of dual-channel SRM: (a) one channel is 
excited; (b) two channels are excited. 
2) Self flux linkage and inductance: The self flux linkage 
and inductance in channel one of A-phase as a function of 
rotor position and excitation current as obtained by finite 

element method analysis are shown in Fig.8 along with the 
magnetic circuit analysis results.  
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(a)                                    (b) 
Fig.8 Comparison of self flux linkage and inductance computed by the 
analytical and FE methods: (a) flux linkage, (b) inductance 
3) Mutual flux linkage: In Fig.9-10, the mutual magnetic flux 
linkage obtained by FE method is compared with the results 
of the analytical model.  

-22.5 -15 -7.5 0 7.5 15 22.522.5

-1.0

-0.8

-0.6

-0.4

-0.2

 0 

0.2 

Position(°)
F

lu
xl

in
ka

g
e

(W
b

)

2D-FEA

Analytical model

I=2A

I=8A

 
-22.5 -15 -7.5 0 7.5 15 22.522.5

-0.2

0

0.2

0.4

0.6

0.8

1

1.21.2

Position(°)

F
lu

xl
in

ka
ge

(W
b)

2D-FEA

Analytical model

I=2A
I=8A

 
(a)                                     (b) 

Fig.9 Mutual flux linkage in (a) B1 and (b) B2 when A1 is excited 
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(a)                                   (b) 

Fig.10 Mutual flux linkage in (a) C1 and (b) C2 when A1 is excited  

               VI. CONCLUSION 
This paper has described the electromagnetic characteristics 

including mutual coupling and saturation for a dual-channel 
12/8 switched reluctance machine (SRM) from its magnetic 
circuit model analysis and compares the two-dimensional 
finite element method (2D-FE) analysis results by using 
Ansoft/Maxwell. The magnetic circuit model presented airgap 
permeance including the stator and rotor poles overlap and 
nonoverlapping and the nonlinear yoke permeance. The 
magnetic characteristics results show that the self flux linkage 
and mutual flux linkage in the two channels of the same phase 
are not the same. The magnitude of mutual coupling in 
neighboring channels is almost identical but the direction is 
not the same. The model approach presented here is also 
suitable for conventional SRM geometries that require 
consideration of mutual coupling effects. Additional 
numerical algorithms can translate model flux solutions to 
motor torque predictions. 
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I. INTRODUCTION 
Rotary magnetic bearing, like other electric motors and 

generators, is a composite of interacting subsystems: stators 
and rotors [1], [3]. Each stator is assembled from horseshoe 
electromagnets, which form a multipole system (Fig.1). So far, 
rotor and stator magnetic cores were stacked from siliconsteel 
sheets. We simulated parameters of the bearing with magnetic 
core made of amorphous magnetic alloy, as well [1], [2]. 

Magnetic field, arisen in the stator, is passing to the rotor 
and generates forces supporting rotating shaft of a drive 
without any mechanical suspension [3]. They are produced by 
the bias and control currents which supply the stator coils 
(Fig.1) in response to the signals from sensors [4]. Disturbing 
of the balance in the control currents brings that the rotor is 
attracted (along a radius) towards the stator. It indicatives of 
the stator and rotor axes are out of alignment [5]. The 
magnetic forces depend not only on the stator currents, but the 
magnetic material characteristics, as well. 

II. GEOMETRY OF THE BEARING AND THE FIELD PROBLEM 
The eightpole magnetic bearing, pictured in Fig.1, has 

been considered. The laminated stator and rotor stacks are 10 
and 20 mm in thickness, respectively. We supposed thin 
(0.35mm) sheets, which are made from silicon steel M55 in 
our prototype. Small air gap between the rotor lamination and 
the set of stator teeth is amount of 0.2 mm. 

The considered bearing has basic and control windings. 
They are situated so that four, horseshoe electromagnets are 
created. The 1=40 turn basic coil and 2=100 turn control 
one are situated on each pole of the magnets. The b and s 
currents are forced in the coils, respectively. Both, bias and 
control windings are located separately, and generate the flux 
crossing two stator poles.  

The simplified shapes of the coils in Fig.1 slightly differ 
from the physical object ones [6]. It is due to limiting the 
number of elements in the field simulation with FEM [7]. One 
should add that more exact approximation does not change the 
resulting field significantly. 



 
Fig. 1. Magnetic bearing outline with stator cutting out 

 
Fig. 2. Permeability curves r(H) of silicon steel and amorphous alloy 
 
Including, in the field analyses, the nonlinearity of the 

magnetization curves(Fig.2),   method has been used for 
the solutions of the boundary problems [4]. 
 


γ=∇2  (1) 

 ( ) 0)( =∇•∇    (2) 

The electric vector potential  is used, in Eq. (1) for regions 
contain currents. The field intensitys, excited by currents is 
governed by BiotSavart law. In other regions, e.g. occupied 
by the magnetic material, the equation (2) governs the field 
distribution. After solution of the nonlinear equations above, 
magnetic flux density distribution has been calculated for the 
conducting and other regions, respectively: 
 [ ]∇−=  


0)(  (3) 

 ∇−= 0)( 


 (4) 
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Bearing Parameters 
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III. COMPUTATIONAL RESULTS OF THE FIELD ANALYSIS 

 

 
Fig. 3. Flux density distribution under the bias current excitation of =0.8A 

 
 
a)           b) 

 
 

Fig. 4. Dynamic inductances vs. control current and shaft position for: 
a) M55 steel    b) amorphous material 

 
The flux distribution in the prototype of the bearing under 

bias excitation is shown in Fig. 3.. In this case, the shaft was 
centrally positioned. Although the prototype magnetic circuit 
is made of M55 steel [8], we also considered other modern 
materials. We see from Fig. 2 that at H<200 A/m the 
permeability curves are strongly nonlinear, for both considered 
materials. Due to brevity we did not present the distributions 
of the magnetic flux densities for other materials. 

 
TAB. 1. STATIC INDUCTANCE OF THE WINDING FOR TWO MATERIALS 

OF THE CORE 
Material s [mH] 
Amorphous 16,4 
M55 calculations 3,72 
M55 measurements 3,7 

The field distribution is used to estimate the 
electromagnetic force, which acts on the moving bearing shaft, 
as well as to determine the dynamic  (Fig.4) and static  
(Tab.1) inductances of the stator winding.  

In the calculation model the control current has been 
superposed on the bias excitation. Its magnitude varied from 
up to 2 A, and the shaft center was moved from the middle 
position by =0.05mm. For calculation of the static inductance, 
the bias current =0.8A has been assumed. 

We presented the force values for the shaft extracted from 
the central position up to |=0.05 mm. The control current 
magnitude altered up to 2 A, (Fig. 5). 

 
Fig. 5. Magnetic force vs. the shaft center locus 

 
The variation of the magnetic forces is slightly nonlinear 
respect to the rotor position  (Fig. 5). However, the force 
generated by the interaction between rotor and stator, strongly 
depends on the rotor position and sense of the control current, 
which is opposite to the bias current direction. Thus, the force 
value is greater when the bias current b is lower (Fig. 5). 
Differences between calculated and measured parameters are 
attributed to the simplifications of the field modeling and the 
measurement errors, as well. 

IV. CONCLUSIONS 

Bearings with the core laminations which are made up of 
different materials have been considered in 3D field analyses. 
Small airgap between the stator and rotor as well as slight 
displacement of the shaft was included. Additional benefits of 
the computer simulations, is that different coils and their 
dimensions can be tried.  

The integral parameters of the magnetic field were 
calculated and compared with the measured ones. The 
calculated errors occur also due to eddy currents and 
anisotropy neglecting. Estimation with their including is very 
difficult. However, they are not as profitable as expected. 
Despite the simplifications in the mathematical modeling, the 
measured results confirm acceptability of the computer 
simulations.  
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Abstract—This paper applies optimization techniques to design
electromagnetically feasible optimal micromotors, considering
torque characteristics and electrical breakdown. Furthermore,
it tries to bring the non-linear interior point method to the
optimization of electromagnetic devices.

I. INTRODUCTION

Microtechnology and nanotechnology have become new
important fields of research with wide range of applications,
including medicine and electronics. In very small scales,
simple geometries are highly desirable due to fabrication
constraints. Under this conditions, electrostatic motors are
truly competitive.

Unfortunately, the torque ripple of an electrostatic micro-
motor is typically large [1]. Another important issue about
micromotors is the electrical breakdown due to high electric
field magnitudes. Much effort has been devoted to improve
feasibility of micromotors, since the very beginning [2], which
is closely related to materials science and development of new
technologies. Some micromotors have also been optimized,
specially with the objective of minimizing the torque ripple
[1]. This paper investigates the optimization of electromagnet-
ically feasible micromotors, considering torque and electrical
breakdown.

The optimization algorithm in focus at this paper is the
interior point method in its non-linear version. Despite it
has been largely applied to many real-world problems [3],
[4], there are few works on optimization of electromagnetic
devices. The most constraining feature seems to be the need
of second order derivatives from the objective and constraint
functions. This paper proposes to take this information from
iterative techniques.

II. ELECTROSTATIC MICROMOTOR

The electrostatic micromotor is formed by electric conduct-
ing rotor and stator, as shown in its geometry in Fig. 1. The
rotor is a contiguous piece tied to ground. The stator teeth
are mutually electrically isolated, so that each one can be tied
to arbitrary electric potentials. The electrostatic micromotor is
typically build on a dielectric board and surrounded by air.

In this work, the electrostatic micromotor is analyzed with
a finite element method (FEM) derived from a bi-dimensional

This work was supported by FAPEMIG under grants 13180 and 13348,
Brazil.
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Fig. 1. Geometry of the micromotor and its parameters.

electrostatic formulation. The rotor and stator are modeled
as perfect electric conductors, so that only their boundaries
are considered. The FEM is then applied to the meshed air
region between rotor and stator, where the electric potential
is known in some nodes, from where the torque is calculated
using Maxwell stress tensor.

The torque is calculated for each rotor position. In order to
reduce the computational cost, it is considered the electrical
symmetry of the problem, leaving natural boundary conditions
at split interfaces. For instance, only a quarter of a motor with
8 rotor teeth and 12 stator teeth, as shown in Fig. 1, can answer
for the whole motor. Furthermore, a uniform segmentation at
the middle gap region is guaranteed by the mesh generator,
so that the mesh can be split into two and doubled nodes
are reconnected by boundary conditions. Hence, every rotor
position can be simulated using the same mesh.

III. INTERIOR POINT METHOD

The primal-dual interior point method used in this work [3],
[4], [5] considers optimization problems in the form

min
x

f(x)

s.t. g(x) ≤ 0

Ax = b

(1)
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where x ∈ R
n is the vector of parameters, f(x) : R

n �→ R is
a twice continuously differentiable objective function, g(x) :
R
n �→ R

m is the vectorial twice continuously differentiable
constraint function, A ∈ R

p×n is a full row rank equality
constraint matrix, and b ∈ R

p is the equality constraint vector.
The interior point method then approximate, in the neighbor-
hood of point xk at iteration k, the non-linear objective and
constraint functions by quadratic functions in the form

f̃(x) = f(xk) + ∇T
f(xk)x +

1

2
x
THf(xk)x (2)

where ∇f(xk) ∈ R
n denotes the gradient vector of f

at xk, and Hf(xk) ∈ R
n×n denotes the Hessian matrix

of f at xk. To avoid calculating second order derivatives
of a numerical evaluated problem, the Hessian of objective
and constraint functions are iteratively approximated by the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) method.

The primal-dual search direction dk is given by

dk = −H−1
k rk (3)

where

rk =




∇f(xk) + ∇g(xk)λk +AT

νk

− diag(λk)g(xk) − 1/tk
Axk − b



 (4)

is the residual, ηk = −λTk g(xk) is the dual gap, tk = (µm)/ηk
is the barrier parameter, µ is an algorithm parameter (typically
10), λk and νk are Lagrange multipliers, and

Hk =




Lk ∇g(xk) A

T

− diag(λk)∇T
g(xk) − diag(g(xk)) 0

A 0 0



 (5)

where

Lk = Hf(xk) +

m�

j=1

λkjHgj(xk) (6)

A backtracking line search algorithm is then applied to find
a step αk ∈ (0, 1) towards dk such that λ > 0 and g(x) < 0.
The iterative update is then given by



xk+1

λk+1

νk+1


 =



xk

λk

νk


 + αkdk (7)

IV. OPTIMIZATION

The optimization problem is to minimize the torque ripple
constrained to a maximum electric field to prevent breakdown.
It can be written as

min
x

maxθ(τ(θ, x)) − minθ(τ(θ, x))

meanθ(τ(θ, x))

s.t. max
θ

(Emax(θ, x)) ≤ 75V/µm

xmin ≤ x ≤ xmax

(8)

where x ∈ R
n is the vector of variables, θ is the rotor position,

τ(θ, x) is the torque, Emax(θ, x) is maximum electric field in
the air. The stator teeth potentials switch between 0 and 100V.

Two parameters of the electrostatic micromotor (see Fig.
1) are variables of the optimization problem: the rotor wr

and stator ws teeth width. The remaining parameters are set

constant: gap radius rgap = 50.75µm, rotor to stator gap
gap = 1.5µm, stator teeth height hs = 40µm, rotor teeth
height hr = 20µm, and rounding radius rc = 1µm. As a
preliminary result, the optimal parameters for problem (8),
with constraints not yet considered, are shown in Table I. The
respective optimal torque is shown in Fig. 2, with optimal
ripple of about 20%.

TABLE I
LOWER BOUND, UPPER BOUND AND OPTIMAL PARAMETERS.

parameter min max optimal
wr (◦) 4.50 40.50 21.23
ws (◦) 3.00 27.00 19.79
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Fig. 2. Optimal torque.

Results considering more parameters of the electrostatic
micromotor as variables, as well as more optimal solutions of
variations of problem (8), will be shown in the final paper.
Further details about the primal-dual interior point method
used in this work will also be given.
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Abstract  — This paper presents a modified version of the 
hybrid FEM-DBCI method to solve static and quasi-static 
electromagnetic field problems in open boundary domains. The 
modification consists of overlapping the fictitious truncation 
boundary with the integration one, as in the FEM-BEM 
method. The global algebraic system obtained is solved 
iteratively by means of the GMRES solver, applied virtually to 
a reduced system in which the unknowns are those relative to 
the potential on the truncation boundary only. Some validation 
examples are provided. 

Index Terms— Finite element method, boundary element 
method, integral equations, electrostatic field. 

I.  INTRODUCTION 

 The well-known hybrid FEM/BEM (Finite Element 
Method - Boundary Element Method) method [1], [2] is 
probably the most widely used numerical method to solve 
static and quasi-static electromagnetic field problems in 
open-boundary domains. Recently the authors have devised 
another hybrid method, called FEM-DBCI (Dirichlet 
Boundary Condition Iteration), to solve electrostatic [3], [4], 
time-harmonic skin effect [5], [6] and eddy current [7] 
problems. 
 Both FEM-BEM and FEM-DBCI couple a differential 
equation, which governs the interior problem, with an 
integral one which makes use of the free-space Green 
function and expresses the unknown boundary condition on 
the fictitious truncation boundary.  
 The differences between the two methods are the 
following. 
 In FEM-BEM the integration surface coincides with the 
truncation one, whereas in FEM-DBCI the integration 
surface is another surface strictly enclosed by the truncation 
boundary; note that this characteristic allows us to avoid 
singularities in the integral equation and to obtain it in 
explicit form with respect to the potential values in the nodes 
of the truncation boundary. Nevertheless FEM-BEM 
requires less mesh than FEM-DBCI (typically one or two 
layers of elements are inserted between the integration 
surface and the truncation one); 
 In FEM-BEM the normal derivative of the potential on 
the truncation boundary is introduced and treated as an 
independent unknown, so that the interior problem is very 
often a pure Neumann one. In FEM-DBCI the normal 
derivative is not explicitly defined, but a numerical 
derivative is performed in the integral equation, so that the 
interior problem is a Dirichlet one; 
  Both the resulting global algebraic systems are partly 
sparse and partly dense. The FEM-DBCI system can be
efficiently solved in an iterative way: assuming an initial 
guess for the Dirichlet condition on the truncation boundary, 
the sparse FEM equation is solved by means of the 

conjugate gradient (CG) solver; the explicit dense equation 
is then used to improve the Dirichlet condition; the 
procedure is iterated until convergence is reached; this 
solution strategy is efficient because the CG is applied to the 
sparse equation only, and the dense equation is used only a 
few times. An improvement on this solving method is 
obtained by means of the Generalized Minimal Residual 
(GMRES) method, as described in [4]. Recently the authors 
have shown that a similar GMRES-based solving strategy 
can also be used for the solution of FEM-BEM algebraic 
systems [8]. 

A comparison was made in [9] between the two methods, 
concluding that FEM-BEM is more accurate than FEM-
DBCI, but requires more computing time: FEM-DBCI 
appears more appropriate for applications which require a 
shorter computing time, for example in the stochastic 
optimization of electrical devices, where some thousands of 
analyses must be performed to obtain satisfactory results. 
Conversely, FEM-BEM is more appropriate in cases in 
which a high level of precision is required in a single 
computation. 

This paper presents a modified version of the FEM-DBCI 
method in order to alleviate its major drawback, that is, the 
insertion of some meshes between the integration and 
truncation surfaces. The paper is organized as follows: in 
Sect. II the modified FEM-DBCI formulation is described 
for a simple- electrostatic problem; in Sect. III the iterative 
solution of the resulting global system is outlined; in Sect. 
IV a numerical example is given which validates the method. 

II. THE MODIFIED FEM-DBCI FOR ELECTROSTATICS

Consider a system of voltaged conductors, dielectric 
bodies and charges embedded in an unbounded vacuum. A 
fictitious truncation boundary ΓF is introduced, enclosing all 
the conductors and dielectric bodies, but possibly leaving 
out some (lumped or distributed) charges. In the bounded 
domain D thus obtained, the Poisson equation holds:
       ( ) ρ=∇ε⋅∇ε− vr0                           (1) 

where ε0 is the vacuum electric permittivity, εr the relative 
permittivity and ρ the charge density. Equation (1) is subject 
to Dirichlet conditions on the conductors, whereas an 
unknown Dirichlet condition is assumed on ΓF. 
 Discretizing the domain D by means of simplex finite 
elements, (1) is rewritten in matrix form as: 
       0FF bvAAv =+               (2) 

where: v and vF are the vectors of the unknown values of the 
potential v in the nodes inside the domain and on the 
boundary ΓF, respectively, A and AF are sparse matrices of 
geometrical coefficients, b0 is due to the conductor 
potentials and internal (distributed) charges. 
 The integral equation at node Pi on ΓF is: 

A Modified FEM-DBCI Method for Static and 
Quasi-Static Electromagnetic Field Problems 
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where G=1/4πr is the free-space Green function, vext is due 
to the external (lumped or distributed) charges, and the 
normal derivative is evaluated internally to D. In numerical 
form, equation (3) reads  
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where Tk is the triangular face of tetrahedron Ek lying on ΓF; 
index n refers to the nodes of the tetrahedron Ek, αn are the 
nodal shape functions, εk is the relative permittivity of Ek, ci

is the normalized solid angle of the domain at Pi.In matrix 
form we obtain: 
       extF vGvvH +=                         (5) 

where H and G are dense matrices of geometrical 
coefficients. Note that H is square by construction, whereas 
G may be rectangular. Note also that null columns appear in 
G for the nodes of the tetrahedra not lying on ΓF. 

III.  SOLUTION OF THE GLOBAL SYSTEM 

 In order to solve the global system (2)-(5): 
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− ext

0

F

F

v

b

v

v

HG

AA
            (6) 

a simple approach is the direct use of an iterative CG-like 
solver for non-symmetric systems of  linear algebraic 
equations. This approach suffers from the fact that in each 
step of the solver the matrix-by-vector multiplication is very 
costly, due to the presence of dense parts in the global 
matrix, and the number of steps is high (typically several 
hundreds).  

Now consider the reduced system:  
       kvM =F                            (7) 

where formally: 

  F
1 AGAHM −+=              ext0

1 vbAGk += −             

(8) 
The matrix M and vector k are not directly available. 
However, the vector k is simply built as follows: 1) assume a 
zero initial guess vF=0; 2) solve (2) by means of the CG 
solver to obtain v; 3) compute k=Gv+vext. Similarly, matrix 
M can be used to perform matrix-vector multiplications 
MvF, as follows: 1) given the vector vF ;2) solve (2) with 
b0=0 by means of the CG solver to obtain v; 3) compute 
MvF=HvF−Gv.  

Then several  non-stationary  CG-like  solvers for non-
sym- 
metric matrices, such as BiCG (BiConjugate Gradient), 
QMR (Quasi Minimal Residual), CGS (Conjugate Gradient 
Squared), BiCGstab (BiCG stabilized) and GMRES could 
be used to solve (7). However, GMRES should be preferred 
because it performs a true minimization of the residual and 
thus minimizes the number of matrix-vector multiplications. 

IV. A VALIDATION EXAMPLE 

In order to validate the modified FEM-DBCI method a 

simple two-wire transmission line is considered. The line is 
constituted by two parallel conducting circular cylinders of 
radius R whose centers are separated by a distance of 
D=2.4R, voltaged with opposite potentials V0/2 and –V0/2. 
This problem exhibits a well-known analytical solution va

[10]. A FEM-DBCI solution is pursued in this paper by 
selecting the truncation boundary as constituted by two 
circumferences of radius 1.1R centered at the cylinder 
centers. For symmetry reasons the analysis is restricted to 
the first quadrant only. The domain is filled with 2 layers of 
elements (a total of 360 triangles). An accuracy indicator is 
defined as: 

   ( ) ∫∫∫∫ −=ζ
D

2
a

2

D a dxdyvdxdyvv100 /          (9) 

where D is the domain of the FEM analysis. The end-
iteration tolerances are set to 10−2 per cent for the GMRES 
and 10−4 per cent for the CG. Three analyses are performed 
using triangular elements of orders 1, 2 and 3. Curved 
elements are used at the conductor surface for orders 2 and 
3. The accuracy indicators are 5.05⋅10−1, 3.17⋅10−1 and 
2.85⋅10−1, for the three analyses, respectively.  

More details will be provided in the full paper. 
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9. Numerical Techniques

Abstract — A method to simulate the surge corona of power 
transmission line is introduced. The charge simulation method 
(CSM) and the finite element method (FEM) are applied to 
calculate the electric field, while a time-dependent upwind 
difference (TDUD) algorithm is applied to calculate the 
migration of space charges. The Q-V (charge-voltage) curves of 
impulses applying on bundle conductors in a cage having a 
square cross-sectional shape are calculated. The simulation 
results are supported by the published experiments.  

I. INTRODUCTION

Corona on overhead transmission lines is one of the key 
factors for the propagation characteristics of overvoltage 
occurring in electric power systems. When the applied voltage 
exceeds a certain value, corona discharge occurs and space 
charges are formed in the vicinity of transmission lines. Then, 
the space charges migrate with the electric field force and in 
turn affect the electric field. In the case of surge overvoltage, 
the corona discharge process appears as a dynamic 
capacitance of the transmission lines and is usually 
investigated by the Q-V (charge-voltage) diagrams which 
indicate the derivative of the charge towards the voltage.  

Several computer simulation models have been proposed 
to reproduce the dynamic process of surge corona. Most of the 
models are constructed in 1-D. Menegozzi and Feldman [1] 
simulated a single ionizing burst in the wire-cylinder geometry. 
Sekar [2] used the idea of charge shells to simulate the pulsed 
corona discharges in the wire-cylinder geometry. Jesus [3] 
introduced dynamic radius of the ionization layer to explain 
the delay effect. In sum, the applicability of 1-D models is 
restricted in coaxial geometries. 2-D models are needed to 
deal with the practical complex geometries. 

Rajanikanth [4] and Buccella [5] reported 2-D methods 
with uniform meshing. However, the uniform meshing leads 
to a huge amount of calculation with large scale geometry as 
line-to-ground geometry. Zhang and Adamiak [6] presented a 
new numerical algorithm for the simulation of the dynamic 
corona discharge in the 2-D point-to-plane geometry. The 
space charge distribution was considered as a steady state in 
each time step. However, the steady state is hardly reached in 
the transient process of surge corona. 

In this work, the process of surge corona of transmission 
line is simulated in 2-D. The charge simulation method (CSM) 
and the finite element method (FEM) are applied to calculate 
the electric field, while a time-dependent upwind difference 
(TDUD) algorithm is applied to calculate the migration of 
space charges. The space charge distribution is calculated in a 
dynamic process rather than a steady state. 

II. CALCULATION METHOD

A. Overview of the method 

The computational process of surge corona is separated in 
several parts. Firstly, the corona onset field Ec is calculated 
with Peek’s formula. Secondly, the time lag t0 of the surge 
corona is calculated with the critical volume theory proposed 
in [7]. Then, corona inception time tc is decided with Ec and t0

for the given surge waveform. Thirdly, mesh of triangular 
elements is generated. After that, at each time step, the 
Laplacian field is solved with CSM; the space charge density 
is calculated with TDUD; the field caused by space charges is 
calculated with FEM; the space charge density boundary 
condition in the vicinity of conductor surfaces is calculated as 
Clade [8] suggested. These processes are executed iteratively 
until the last time step has been solved. 

B. The governing equations 

The equations that constitute the mathematical description 
of the surge corona are as follows. Overvoltage of positive 
polar is presented as example here.  

Poisson’s equation: 

                           2
0( )= ( )/t tΦ ρ ε+∇ −                            (1) 

The positive and negative current density vectors: 

                     ( ) ( ) ( )t k t tρ Φ+ +⋅= − ⋅∇J                      (2) 

The current continuity condition: 

                            
( )

( )
t

t
t

ρ+∂
= −∇ ⋅

∂
J                             (3) 

where, ( )tΦ  is the total electric potential (V); ( )tρ+  is the 

positive charge density (C/m2); 0ε  is the permittivity of air; 

k +  is the positive ion motility (m2/Vs); ( )tJ  is the ion 
current density vector (A/m2). 
 CSM and FEM are applied to solve the Laplacian field and 
the field caused by the space charges. The space charge 

density ( )tρ+  is calculated with TDUD method described as 

follows. 

C. Time-dependent upwind difference method 

 By combining the equations (1) to (3), equation for solving 
the space charge density is obtained  

          2

0

( )
( ) ( ) ( ( ))

t k
k t t t

t

ρ
Φ ρ ρ

ε

+ +
+ + +∂

= − ∇ ⋅∇ −
∂

           (4) 
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9. Numerical Techniques

 In (4), the migration of space charge is solved dynamically, 
which is different from the stationary solution proposed in [6]. 
 Triangular meshes are applied to discrete the calculating 
region. Fig. 1 illustrates the node i and the triangular mesh 
elements around it.  

j

k i

Vi
+

Fig. 1. Triangular mesh elements around node i. 

    In Fig. 1, ( ) ( )i it k tΦ+ += − ∇V . ( )i t+V  serves as the 

kinematic velocity of the positive charges. The field caused 
migration dominates the motion of the charges. So, the charge 
density of node i is mainly decided in the element opposite to 
the velocity direction of the positive charge. This element is 
called upwind element. The upwind element of node i is ijkΔ
in Fig. 1. Then, the first-order discretized form of (4) based on 
upwind scheme is derived as (5).  
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(5)      

Where, nt  and 1nt +  are two adjacent points in time, tΔ  is the 

time interval between them; ( )ijk ntΦΔ  is the electric potential 

in ijkΔ  on time nt ; ( )ijk ntρ+
Δ  is the charge density in ijkΔ  on 

time nt .

III. APPLICATION ON CONDUCTOR BUNDLES 

The simplification of equivalent sectional radius is usually 
employed to deal with the conductor bundles. This may 
produce errors because of the change of the actual geometric 
boundary. Subconductors can be considered in the simulation 
with the method in this work. Q-V curves for positive surge 
corona of 4×15.25 mm radius conductor bundle in a 5.5 m 
square cage were presented in [9]. Impulses of 260/2300 μs
with peak voltage of 520, 610, and 700 kV were applied. The 
experimental and calculating results are illustrated in Fig. 2. 
The time step is 1μs. The total calculation time is 10 ms. 

Fig. 2 shows that the simulation reproduces the 
experimental results well for voltage of 700 kV and 610 kV. 
However, the simulated charge quantity is lower than the 
experiment for voltage of 520 kV because of the overvalued 
inception voltage. 

The meshes and the charge density distribution on the 
moment of 10 ms under voltage of 610 kV are illustrated in 
Fig. 3. It can be seen that the space charges are forced to 
migrate in the direction departs from the bundle center. And 
the migration distance of the space charges is very limited. 
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Fig. 2. Q-V curves of surge corona on conductor bundle. 

Fig. 3. Meshes and charge density distribution on the moment of 10 ms under 
voltage of 610 kV. 
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Using Neumann Series for Reduction of
Computational Effort of Quasistatic EM-Simulations

Carsten Potratz, Daniel Kluess, Robert Souffrant, Hartmut Ewald, Ursula van Rienen

Abstract—In this paper we present an approach using magne-
tostatic simulations and a generalized geometric series to solve a
low-frequency quasistatic problem. This is applicable for systems
of inductively coupled coils within the simulation domain. With
this approach the discretization may be coarsened significantly
thus reducing the simulation time significantly. Consequently,
setups which might be beyond computational equipment at hand
get computable. This proposal describes the basic theory. The
final paper will furthermore include a comparison of results
obtained by this approach and conventional simulations. We will
also give an analysis of possible deviations.

Index Terms—Inductive coupling, simulation, reduction, nu-
merical effort

I. INTRODUCTION

THE simulation of systems of coils in time-harmonic
low frequency magnetic fields is accompanied by an

increased computational effort. Especially for coils with many
turns and small volumes compared to the computation do-
main’s volume, the discretization effort and the simulation
time increase significantly. In 2008 we proposed [1] the usage
of an intracorporeal system of electrodes embedded in a total
hip revision endoprosthesis to stimulate the growth of new
bone after a failed total hip endoprosthesis has been replaced.
Different studies suggested that this treatment with a low
frequency electric field increases the bone proliferation rate.
Aaron et al. [2] analyzed different preclinical and clinical elec-
trostimulation studies. Most of these attest the improvement
of bone healing during an electrostimulation therapy. This is
applicable for different bone healing dysfunctions, especially
for large bone defects caused by osteolysis around a loose,
failed implant. The proposed revision cup system is equipped
with numerous stimulation electrodes with embedded coils.
By applying an extracorporal oscillating magnetic field an
electric field is generated in the vicinity of the endoprosthesis.
However, the inherent complexity of both the acetabular region
and the endoprosthesis require numerical simulations to com-
pute the generated electric field distribution for a subsequent
optimization process. Due to the low stimulation frequency
(Kraus [3], 20 Hz) and small volumes of the stimulation
electrodes, several hundred turns are needed for the secondary
coils to induce a suitable voltage. For numerical reasons the
total volume of the computational domain inhibits appropri-
ately fine discretization of the coils unless a very powerful
computer system is at hand. Therefore we developed an
approach to circumvent the discretization problems and reduce
the complexity by replacing the secondary coils by current
sources. The amplitudes have to be modeled according to the
induced voltage under consideration of the self and mutual
induction effects. By applying a generalized geometric series

known as Neumann’s series a reaction matrix, incorporating
the induction effects, can be created. This matrix maps flux
vectors from static simulations to their quasistatic counterparts.
Based on these mapped fluxes, suitable current sources and
short circuited induction rings are calculated. This results in
the reduction of discretization effort by several magnitudes
and allows for the quasistatic simulation of a problem that
otherwise would be hardly computable. We present the theory
as well as practical modeling examples and conclude with
a comparison of results of conventional modeling and our
approach under aspects of accuracy and necessary simula-
tion/preparation time.

A. Methods

The coils within the stimulation electrodes are comprised
of several hundred turns wrapped upon a ferromagnetic core.
Therefore, the scattering flux of the secondary coils is minimal.
The flux in the ith coil generated by the primary coil is:

Ψi(t) = Ψ̂icos(ωt) =


Ai

B(t) ·da, (1)

with B denoting the primary magnetic flux density. By ne-
glecting the reaction field of the induced current, the amplitude
of the induced voltage is given by the induction law:

ûi = Ψ̂iωn. (2)

Here n denotes the number of coils turns and ω denotes the
circular frequency. The induced current îi generates a reaction
flux in the coil proportional to n and îi:

Ψ̂re,i = αîin, (3)

with a scaling factor α representing the coils geometry. For
identical secondary coils α has the same value for all coils.
The ratio of the induced voltage and current is given by Ohm’s
law:

|Zi +Rwn+ jωL| = ûi

îi
(4)

with Zi denoting the outer impedance created by the conduc-
tive tissue. Rw and jwL denote the coils ohmic resistance
and self inductance respectively. The self inductance is pro-
portional to n2 with the proportionality factor l depending on
the geometry of the coil:

L = ln2. (5)

A ratio expressing the reaction of the coil to a primary flux
can be derived from (2) and (3):

cii :=
Ψ̂re,i

Ψ̂i

=
αωn2

|Zi +Rwn+ jωln2|
. (6)
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(a) Entire simulation model consisting of the
acetabular bone with the embedden implant; the
structure of the acetabular bone is based on high
resolution CT-scans; entire structure is embedded
in a material with electric properties similar to
human fat/muscle tissue

(b) Endoprosthesis with the attached stimulation
electrodes

(c) Endoprosthesis embedded within the acetab-
ular bone (shown as wire model)

Fig. 1. Simulation model for the optimzation process

Similarly a mutual reaction factor can be defined using the ith

coil for magnetic excitation:

cji :=
Ψre,j

Ψi
. (7)

This ratio describes the reaction of the jth coil to the current
flowing through the ith coil . All reaction factors defined above
form a matrix:

C =



c11 . . . c1N

...
. . .

...
cN1 . . . cNN


 . (8)

With this matrix the self and mutual induction effects can be
expressed as infinite series:

ΨS :=



ΨS1

...
ΨSn


 ΨQ :=



ΨQ1

...
ΨQn


 (9)

ΨQ = Ψ −CΨS + C2ΨS − . . .+ =
∞

i=0

(−1)iCiΨS

with ΨS and ΨQ denoting the fluxes through the secondary
coils extracted from a magnetostatic simulation and the ex-
pected fluxes of a quasistatic simulation respectively.

Due to conservation of energy the norm of C has to be less
then one. Therefore partial sum of eq. (9) is given as:

∞
i=0

(−1)iCi = (I−C)−1 while  C < 1 (10)

The resulting fluxes ΨQ are given by:

ΨQ = (I−C)−1ΨS (11)

Based on the flux vector ΨQ and eq. (2), the secondary coils
in the simulation model are replaced by current sources. They
generate the same current density in the electrode’s vicinity
while the discretization effort is highly reduced.

The secondary coils cannot be omitted entirely. The dis-
tortion of the primary magnetic field due to the secondary

coils and the generated eddy current distribution has also
to be accounted for. Equation (3) states that the reaction
flux is proportional to the current flow and the number of
turns. Therefore, the turns wrapped around the ferromagnetic
core were replaced by a conductive hollow cylinder. The
conductivity of the used material has to be adapted, such that
the induced eddy currents equals n times the current of the
equivalent current sources. This guarantees that the distortion
of the primary magnetic field is similar to that of the original
problem.

II. CONCLUSION

The presented approach requires a series of simulations
to extract the necessary geometric parameters and reaction
ratios. Yet, the discretization of the simulation model may be
rather coarse and the overall numerical effort is acceptable.
Main advantage of this procedure is that the whole setup
of the endoprosthesis within the acetabular bone and the
surrounding tissue may be simulated without the need for a
high-perormance supercomputer.
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Abstract—Reference values of exposure for working population
at extremely low frequency electromagnetic fields have been
stated in ICNIRP Guidelines of 1998, and accepted by European
Parliament in 2004. Nevertheless, quantification of coupling
mechanism under pulsed field conditions is still an open question.
The effect of complex non-sinuosidal or non-periodic waveforms
is not univocally defined and several ways of estimating it have
been proposed. This paper compares different ways of assessing
effects of pulsed electromagnetic fields with frequency spectrum
below 100 kHz and compare them to the eddy currents induced
in one realistic model of human body by a resistance spot welding
system supplied by in pulsed medium frequency direct current
mode.

I. INTRODUCTION

Protection of working population against the possible effects
of extremely low frequency (ELF) electromagnetic fields is
a concern of European Community which has published in
2004 Directive 2004/40/EC [1]. The Directive refers to the risk
to the health and safety of workers due to known short-term
adverse effects in the human body caused by the circulation
of induced currents and by energy absorption as well as by
contact currents. One of the most important points stated in
the Directive is the rationale of exposure at low frequency
which is defined in accordance with ICNIRP 1998 guidelines
[2]. These Guidelines report that in the ELF frequency range,
the risk to the health and safety of workers is due to known
short-term adverse effects caused by the circulation of induced
currents in the human body. The evaluation of eddy currents
is not an easy task, involving the electromagnetic study of a
complex system like the human body.

While continuos wave mode of exposure is strictly defined
in ICNIRP guidelines, the evaluation of eddy currents induced
in human body by pulsed or non-sinusoidal magnetic field
waveforms is still an open question. In 1998 ICNIRP guide-
lines, the problem of non-sinusoidal waveforms was tackled
by means of superposition of harmonic values. This approach,
even if possible, has been highly criticized afterwards because
of an excessive conservative estimates of exposure levels.
Due to the increasing importance of non-sinusoidal sources
of magnetic fields, in 2003 ICNIRP has published a new
guideline for pulsed and complex non-sinusoidal waveforms
[5]. This document addresses the exposure evaluation in non-
sinusoidal conditions by means of proper weighting factors to
be applied to different harmonic components of the waveform

spectrum and by focusing more precisely the time derivative of
magnetic flux density as the most important cause of biological
interaction. Notwithstanding this correction to the previous
1998 Guidelines, also this approach has been considered
not particularly effective for the representation of the real
interaction mechanism with nervous stimulation caused by
induced eddy currents. In 2007 Heinrich [3], in fact proposes
a new set of weighting coefficients more strictly related to the
process of electrostimulation of nervous tissues. By resorting
to a biomedical equation which states the inverse relation
between duration of eddy currents and cell membrane exci-
tation, very short pulses, even with relatively high amplitudes,
are considered less effective in causing dangerous nervous
excitations.

Even if all these techniques address in depth the interac-
tion between source magnetic flux density and tissues, they
consider only very rough models of the human body. All
considerations are infact related to simple circular loops rep-
resenting the path of eddy currents inside the body, considered
as homogeneous in electrical conductivity.

The use of electromagnetic analysis tools for assessing the
exposure levels is possible and this fact opens an opportu-
nity of application to this topic of numerical tools. Several
difficulties are present at this stage: modelling of external
magnetic fields and of the human body are not an easy task.
In the following the main simplification hypotheses that can
be adopted in the computation of eddy currents are described
and then the application of numerical evaluation tools to an
industrial case of resistance spot welding, which is working
in a pulsed way, is presented and discussed.

II. EVALUATION OF INDUCED EDDY CURRENTS IN HUMAN
BODY

The Scalar-Potential Finite-Differences (SPFD) method for
the calculation of induced current densities inside the human
body has been introduced in [6]. This approximated approach
is valid when the magnetic field created by induced currents is
small with respect to the one created by source currents. Under
this hypothesis, the magnetic field distribution is not perturbed
by eddy currents and so it can be computed independently
on the conducting body. By making reference to the standard
notation for discrete operators introduced in [7] the problem
can be formulated in algebraic form as follows.
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Solenoidality of eddy currents (since displacement currents
are neglected) imposes that:

D̃i = 0 (1)

where D̃ is the discrete expression of divergence operator
and i is the vector of induced eddy currents. Electromagnetic
induction law can be expressed in terms of magnetic vector
potential:

u = −Gϕ− da
dt

(2)

where G is the discrete expression of gradient operator, u
are induced electro-motive forces, ϕ is the vector of electric
scalar potential and a is the array of magnetic vector potential.
Electrical constitutive equation can be written as:

i = Mσu (3)

where Mσ is the discrete expression of Ohm’s law. By
inserting (3) in (1) and using (2) together with duality relations
D̃ = −GT [7]:

GTMσGϕ−GTMσ
da
dt

= 0 (4)

Finally, by exploiting the hypothesis that magnetic flux would
not be modified by eddy currents, magnetic part of (4) is a
known term so that previous equation can be rewritten as:

GTMσGϕ = −GTMσ
das
dt

(5)

where as is the magnetic vector potential due to imposed
current sources.

Under sinusoidal steady-state (with angular frequency ω),
previously defined variables become phasors and (5) becomes:

GTMσGϕ̂ = −jωGTMσâs (6)

III. HUMAN BODY MODEL

The choice of a suitable human model is not a standardized
task. In fact, possible 3D models may have different spatial
resolutions and tissue properties are not well assessed. A
realistic model is the “Hugo” 3D anatomical data set which
is a discretization of the body of a 38 year old man of
about 180 cm height [8]. Many resolutions are available from
8× 8× 8 mm down to 1× 1× 1 mm voxels and 31 tissues
with their electrical properties are defined.

IV. RESISTANCE SPOT WELDING SYSTEM

Welding systems are characterised by high values of cur-
rents and by non-sinusoidal waveforms, thus their effects of
exposure must be evaluated by means of particular techniques
[4]. Resistance spot welding system supply system is often
based on medium frequency direct current (MFDC). In MFDC
technique, the primary current is regulated by a three phase
inverter and the secondary current is rectified by a diode
bridge.

The welding gun was placed at a distance of 1.5 m from
the body. Supply current value was set to a maximum value
of 20 kA rms with the waveform shown in Fig. 1. Evaluation

Fig. 1. Behavior of the secondary transformer current with MFDC supply:
abscissas in seconds and normalized.

Fig. 2. Detail of induced eddy currents in Hugo model using the 4 mm
voxel model.

of eddy currents has been performed by means of harmonic
summation, as proposed in [2], using its frequency spectrum
and by means of time-stepping technique as previously pro-
posed in (5). In Fig. 2, the color map of induced eddy currents
at the highest value of eddy current is shown. An accurate
comparison of results will be presented in the full paper.
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Abstract—A novel method to analyze the energy transfer 
efficiency of the HV transmission lines is presented in the paper 
based on the Poynting Vector (PV) distribution around the 
transmission lines, which can avoid the calculation of the circuit 
parameters of the transmission lines. The charge simulation 
method and current simulation method were used to compute the 
distribution of the PV distribution around the transmission lines, 
and the influence on the PV distribution caused by the distance of 
the phase conductors was investigated.  

I. INTRODUCTION

With the installed capacity of electric power system 
around the world, many new techniques have been 
investigated for the transmission lines [1], such as compact 
transmission lines, FACTS, and UHV DC transmission lines. 
In the investigation of new type transmission lines, analysis on 
the energy transfer efficiency is necessary, and all the analysis 
on the energy transfer efficiency were carried out from the 
view of circuit at present, which need to compute the circuit 
characteristics parameters, and the load of the transmission 
lines should be given. 

The Poynting Theory indicates that the energy is 
transferred by the electromagnetic field around the 
transmission lines, and the transmission lines only determine 
the direction of the energy transfer [2]. In addition thermal 
loss rises up inside the transmission lines. 

In the paper a novel method to analyze the energy transfer 
efficiency of the transmission lines is presented based on the 
PV distribution around the transmission lines, and the charge 
simulation method and current simulation method were used 
to compute the distribution of the PV around the transmission 
lines. In addition, the influence on the PV distribution caused 
by the distance of the phase conductors was investigated. 

The numerical calculation on the PV distribution around a 
500 kV double-circuits was carried out firstly, and results 
indicate that the PV distribution changes with the distance 
between the phase conductors. When the distance between the 
phase conductors reduces to a certain degree, the average 
longitudinal component of the PV reduced from 2.347×103 to 
2.196×103 W/m2, even the maximum value change from 
2.59×105 W/m2 to 3.23×105W/m2. Therefore for the design of 
HV transmission lines, the PV distribution around the 
transmission lines can be computed to analyze the energy 
transfer efficiency, based on which measures to increase the 
energy transfer efficiency can be obtained. 

II. COMPUTATIONAL METHOD

According to the definition of PV, S=E×H, the PV S can 
be computed in the following way: Firstly in the Cartesian 
coordinate system, the three components Ex, Ey, Ez of the 
electric field strength E and the three components Hx, Hy, Hz

of the magnetic field strength H around the transmission lines 
can be computed, then with the calculated Ex, Ey, Ez and Hx,
Hy, Hz, S can be calculated. 

For the calculation of Ex, Ey, Ez and Hx, Hy, Hz, the charge 
simulation method can current simulation method were 
adopted respectively. 

According to the charge simulation method and the 
geometry characteristics of transmission lines, the electric 
field strength in the vicinity of them can be calculated 
according to equation (1). 

[ ][ ] [ ]
[ ] [ ][ ]

[ ]
[ ] [ ][ ]
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z z
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=

   (1) 

Where [P] is potential coefficient of matching points; 
[Q]is size of the simulation charges; [U] is potential at 
matching points; [fx], [fy] and [fz] are electric field strength 
coefficient along x, y, z axis. [Ex], [Ey] and [Ez] are the 
corresponding electric field strength. 

According to the current simulation method, the 
magnetic field strength around the transmission lines can be 
computed according to equation (2). 
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     (2) 

Where [β ] is the magnetic coefficient, [Am] is the 
magnetic vector at the matching points, and [A] is the 
magnetic vector at measuring points. 

III. RESULT AND ANALYSIS 

A 500kV double-circuits transmission lines as shown in 
Fig.1 was taken as an example for the calculation of the PV 
distribution firstly, then the influence on the PV distribution 
around the transmission lines caused by the distance between 
the phase conductors was investigated.  

Calculation of Poynting Vector and Analysis on 
the Energy Transfer of Transmission Line 
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Fig.1 Cross section of a 500kV double-circuits transmission lines 

The parameters of the model in Fig.1 are as follows: D1,
D2, D3 are the distance between the phase conductors and y-
axis, and D1=4.5m, D2=5.5m, D3=11.5m. H1 and H2 are the 
height of the phase conductor, and H1=20m, H2=25m. For 
each phase conductor, 4 bundle conductors were used, and the 
radius of the sub-conductor r=0.0148m, the split radius 
R'=0.323m, and the radius of the lightening conductor
R'L=0.0054m. To simply the calculation, the influence caused 
by the arc sag was ignored, hence the electric field and 
magnetic field produced by the transmission lines can be 
solved as two dimensional field.  

Firstly the PV distribution around the transmission lines 
when the y-coordinate of each phase conductor are 20m, 25m, 
20m, 20m, 25m, 20 m, 30m, 30m respectively. As mentioned 
above, the Ex, Ey, Ez and Hx, Hy, Hz were calculated firstly, 
then PV S was computed, and Fig.2 shows the longitudinal 
component of PV Sz around the transmission lines, it can be 
seen that the main power energy is transferred near the 
transmission lines. The maximum value of the Sz is 2.59×105

W/m2, and with the increase of the distance of the measuring 
points between the transmission lines, the value of Sz

decreases. 

Fig.2 Distribution of Sz  when the y-coordinate of each phase conductor are 
20m, 25m, 20m, 20m, 25m, 20 m, 30m, 30m 

To investigate the influence on the PV distribution and 
energy transfer efficiency caused by the change of the 
distance between the phase conductors, the PV distribution 
around the transmission lines were calculated when the 
distance between the phase conductors was changed, for 
which the y-coordinates of each phase conductors are 20m, 
22.5m, 20m, 20m, 22.5m, 20m, 30m, 30m, and Fig.3 shows 

the distribution of the Sz, and the maximum value of the 
3.23×105W/m2.

Fig.3 Distribution of Sz when the y-coordinate of each phase conductor was 
changed 

To evaluate the energy transfer efficiency of the 
transmission lines, an average value of the longitudinal 
component is set as Szav, which is the average value of 10201 
points in the vicinity of the transmission lines shown in Fig.1, 
and the Szav1=2.347×103 W/m2 for the first case, and Szav2=
2.196×103 W/m2 for the second case, which means that the 
energy density around the transmission lines decreases, even 
though the maximum value of longitudinal component of PV 
Sz increases from 2.59×105 W/m2 to 3.23×105W/m2.
Therefore the energy transfer efficiency of the transmission 
lines decreases. Therefore for the design of the HV 
transmission lines, to increase the energy transfer efficiency, 
the distance between the phase conductors can be analyzed 
according to the PV distribution around the transmission 
lines. 

IV. CONCLUSION

A novel method to analyze the energy transfer efficiency 
of the HV transmission lines is presented in this paper based 
on the PV distribution around the transmission lines, which 
can avoid the calculation of the circuit parameters of the 
transmission lines. The PV distribution around a 500 kV 
double-circuits was computed, and results indicate that the 
PV distribution changes with the distance between the phase 
conductors. When the distance between the phase conductors 
reduces to a certain degree, the average longitudinal 
component of the PV reduced from 2.347×103 to 2.196×103

W/m2, which means that the energy transfer efficiency 
decreases. 
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9. NUMERICAL TECHNIQUES

Abstract — Today’s computer hardware	developments	offer	a
complete	 and	 powerful	 parallel	 shared	 memory	 system	 (multi	
core	 CPUs) for	 a	 price	 of	 a	 home	 office system.	 	 To	 deliberate
these developments on compression	 techniques	 for numerical	
applications using	 a	 Boundary	 Element	 Method	 (BEM),
techniques	 are	 of	 first	 choices	 which	 are easy	 to	 parallelize	 by
offering state	of	the	art	compression	rates.	The	latest development	
of	 our	 Wavelet	 based	 compression	 technique	 fulfills these	
requirements.	 Its	 efficiency should	 be	 presented,	 discussed, and	
proven	 by numerical	 examples	 investigating	 the	 numerical	
accuracy	related	to	different	compression	rates.

I. INTRODUCTION

To compute numerical applications using a BEM, one has 
to establish a compression technique for the fully populated 
system matrix (SM) of the system of linear equations (SLE). If 
a compression technique is not used, even nowadays available 
hardware capacities are rapidly limited, due to the fact of 
quadratic memory consumption while applying a BEM.

Several widely used compression techniques, like the well-
known Fast Multipole Method, the Adaptive Cross 
Approximation (ACA) and algorithms working with a Singular 
Value Decomposition, reduce this memory consumption to a
nearly linear dependency. All those techniques are established 
and selected by their advantages relying on the chosen 
numerical BEM application.

Furthermore, following in aspects of computer hardware 
developments a compressions technique offering an easy to 
handle parallelization becomes more and more important. This 
highlights techniques, like the ACA, that are exclusively
dealing with the SM for compression. Whereas, the ACA uses 
a block structure for splitting the system matrix into several 
parallel computable blocks.

These blocks represent by their different sizes the 
importance of the expectant entries for the numerical accuracy 
of the BEM SLE. So, it is a good idea to pick up such a useful 
block structure called Hierarchical Matrices (HM) and bases a
new development called Hierarchical Block Wavelet 
Compression (HWC) on it.

II. FAST WAVELET TRANSFORM AND COMPRESSION

Another well-know compression technique for BEM SMs
of different formulations is based on the Fast Wavelet 
Transform (FWT). This technique applies a 2-D FWT to the 
SM for a selected wavelet, e. g. the Haar wavelet or one of the 
Daubechie wavelet family.

If only one dimension is considered, a 1-D FWT can be 
represented as a recursively applied filter bank:

Fig. 1. 1-D FWT displayed as a recursively applied filter bank

By Fig. 1 all data are split into half parts by every filter 
level; low pass (energy) coefficients and band pass (detail) 
coefficients. To receive the requested 2-D FWT, two 1-D
FWTs can be applied horizontal and vertical over all entries.

For a compression of the BEM SM one has to thin out 
smaller detail coefficients by artless setting those to zero, e. g. 
using the average magnitude of all detail coefficients. Finally, 
not storing those zeros, normally around 60% percent, by a
Compressed Row Storage fulfills the physical compression in 
memory. An advantage for orthogonal wavelets is that the right 
hand side (RHS) of the BEM SLE can also be transformed by 
a 1-D FWT and the matrix vector operation (MVO) can be 
directly applied at compressed state. The found solution vector
(SV) has to be reverse transformed by a 1-D FWT and
discloses the requested solution of the BEM SLE.

But an enormous disadvantage is the applicability of the 
described compression technique. It claims that data are
always of length to the power of two while splitting it into 
halves by each transform level. Assigning this fact to a BEM 

SM, the dimension N subjects to 02 pN p= ∈ . Whereas,

the FWT is not applicable for other dimensions without 
extending the BEM SM by empty entries to the next possible 
dimension 11 2 pN ++ ⇒ . For common numerical applications 
this is a knock-out criterion due to the fact of a growing to

1 12 2p p+ +× .

III. BLOCK WAVELET COMPRESSION

The basis technique to overcome this knock-out criterion 
was introduced by setting up a Block Wavelet Transform [1].

A. Block structure for selected dimensions

Therefore, the BEM SM is split into blocks of the same 
size allowing for still the same procedure of compression as 
described above, but now applied block by block.

The dimension N extends to ( ) 02 ,pN k k p= ⋅ ∈ for 

the number of 2k blocks picturing the BEM SM. Reapplying 
the example from above, the overhead reduces to 

Hierarchical Block Wavelet Compression
for BEM Problems of Arbitrary Dimension

Christian Scheiblich, Remus Banucu, Jan Albert, Veronika Reinauer, and Wolfgang M. Rucker
Institute for Theory of Electrical Engineering

Pfaffenwaldring 47, 70569 Stuttgart, Germany
christian.scheiblich@ite.uni-stuttgart.de
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( )1 1 2 pN k+ ⇒ + and results in 2 1k⋅ − nearly zero filled

blocks as a necessary extension of the BEM SM [1].

B. Block structure for arbitrary dimensions

To finally tackle an arbitrary dimension N by absolutely 
no overhead, our achievement was to apply an adaptive block 
structure [2] combined with a modification of the used wavelet
coefficients (Haar, Daubechie, Coiflet coefficients) [3].

Fig. 2. SM at compressed state for an adaptive block structure

Fig. 2 displays these modifications; a calculated, 
transformed and compressed BEM SM of worst case 
dimension 511N = split by an adaptive block structure.

C. Modification of the 2-D FWT for arbitrary dimension

To handle stretched or squeezed blocks, each dimension of 
the 2-D FWT has to be matched to each dimension of a treated

block. For example, a block of size ( ) 02 2 ,p q p q× ∈ claims 

a 2-D FWT of p recursive steps in vertical and q recursive 

steps in horizontal dimension (see Fig. 2).
Another indispensable modification regards the 

coefficients of the mandatory orthogonal wavelet. Those have 
to be normalized concerning the energy to allow for a block by 
block MVO at compressed state. Therefore, the MVO can be 
fulfilled by the matching and transformed parts of the RHS and 
the SV for each block multiplied by a selectable solver. In our 
case a GMRES or a BICG solver [2][3] is used.

The given example of 1N + is tackled in mathematical
manner by absolutely no overhead and results in a dimension 
of 01 2 2pN k+ ⇒ ⋅ + for the BEM SM.

IV. HIERARCHICAL BLOCK WAVELET COMPRESSION

Within this work, our aim is to present an innovation of the 
already established [2] and parallelized BWC [3] towards 
Hierarchical Matrices.

A. Renumbering Degree of Freedom

For using HM in an efficient way, it is necessary to 
renumber the Degree of Freedom (DoF) to achieve a 
bandwidth minimization of the BEM SM. This is done by a
kd-tree using a bounding box based algorithm in 3-D [2].

B. Hierarchical Matrices

Afterwards, an estimator function, derived from the kernel 
function of the BEM problem, splits the base structure of 2k
blocks into smaller hierarchical blocks. Fig. 3 was directly 

generated from data output of our software ELFE++ and 
displays HM by a comprehensible example:

Fig. 3. HM of an applied HWC for an example of dimension 2 pN k= ⋅

C. Modified Wavelet Packet Transform for tackling HM

To attain the same advantages as described within the 
BWC, a MVO at compressed state, a modified 2-D Wavelet 
Packet Transform (WPT) [3] instead of a 2-D FWT has to be 
applied. A normal 1-D WPT displays an extension of the 
filtering scheme of the FWT (Fig. 1) by also recursively
filtering details of each level. Our modification of the WPT
interchanges the filtering scheme completely and, therefore,
matches to the zoning of hierarchical blocks as shown (Fig. 3).

D. Push and pull functions for MVO

For a MVO at compressed state with no overhead, so 
called push and pull functions were particular developed for 
the HWC. Those functions change the hierarchical 
representation of the matching parts of the RHS and the SV for 
a hierarchical block. Both functions can be seen as a single 
matching transform step to lower (push) or higher (pull) 
hierarchy. For example, two smaller parts of the RHS of length 

12 p− are combined to match a block vertical length 2 p by only 
one call to the pull function with negligible linear effort of 
2 p multiplications and 12 p− additions.

V. NUMERICAL APPLICATIONS

In general, the HWC is applicable to any compressible 
SLE. Therefore, typical numerical applications demanding an
electrostatic BEM problem in 3-D will be investigated for an 
arbitrary number of DoFs. The applications will be presented 
in detail and proven by numerical accuracy for different 
compression rates.
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1. StaticFields 

Abstract — The paper describes a quick method to calculate 

the radial flux density in the air gap of a superconducting 

inductor. This original topology uses superconducting bulks to 

shield the magnetic field created by two solenoids. Hence, the 

obtained airgap field is multipolar as in conventional AC 

machines. We propose a simple method based on the 

determination of the modulating function associated with the 

radial flux density distribution resulting from the introduction of 

the superconducting bulks. In a first step, a 2D magnetostatic 

finite element (FE) analysis allows the calculation of the 

modulating function. The later is used in a second step together 

with the field produced by the two solenoids to calculate the 

radial flux density distribution in the airgap of the considered 

inductor. Comparisons to 3D FE results show the validity of the 

proposed approach. 

I. INTRODUCTION 

In some types of electrical machines (claw pole, Lyndell 

machines…) ferromagnetic materials are used to modulate and 

concentrate the magnetic field to obtain a multipolar wave in 

the airgap from a constant excitation. In superconducting (SC) 

applications, ferromagnetic materials are heavily saturated 

since they are subjected to high magnetic fields. Hence, they 

can not be used for modulation purposes. 

 

The use of the shielding properties of superconducting bulks 

allows flux concentration. An original topology of inductor, 

Fig.1, has been proposed [1] and a SC synchronous motor has 

been designed, built and successfully tested [2]. 

 

Fundamental to the operation of this inductor is the 

modulation of the magnetic field produced by two solenoids 

supplied by dc currents in contra-direction. In so doing, the 

radial flux density in a circle of the airgap is multipolar as in 

conventional ac machines. This flux density is minimal above 

the SC bulk and maximal above the bulks interspace.  

 

Three dimensional finite elements as well as Monte Carlo 

methods [3, 4] can be used to compute the magnetic field 

distribution but this leads to high computation time.  

In this study, we propose a simple and quick method based on 

the determination of the modulating functions associated with 

the radial flux density distribution resulting from the 

introduction of the superconducting bulks. 

SC solenoids

SC bulks

Magnetic

field

SC solenoids

SC bulks

Magnetic

field

 
 

Fig. 1. Schematic of the flux concentration superconducting inductor  

II. PRINCIPLE OF THE METHOD 

At a given axial position in the air above the SC bulks, the 

radial flux density distribution at a radial distance r produced 

by the two solenoids can be written in the following form: 

 

),r().r(B),r(B r0rr θΛ=θ              (1) 

 

where θ is the angular position, Br0 is the radial flux density 

created by the solenoids without the SC bulks and r is the 

modulating function. Because of axial symmetry, Br0 has no 

azimuthal component and it can be computed analytically 

using the Biot-Savart law.  

 

It has to be noticed that the modulating function only 

depends on the geometry and the magnetic permeability of the 

system as far as the linearity of the materials is assumed. In the 

present work, the superconducting materials are considered 

almost diamagnetic so their relative permeability is much 

smaller than unity (a value of 10
-3

 is found to be enough for the 

numerical simulations). 

 

The modulating function can be written as follows: 

 


=

θΛ+Λ=θΛ
...3,2,1k

brk0rr )kNcos()r()r(),r(        (2) 

 

where rk are the Fourier coefficients for the modulating 

function and Nb is the number of the superconducting bulks. 

From (1) and (2): 

 


=

θΛ+Λ=θ
...3,2,1k

brk0r0r0rr )kNcos()r()r(B)r()r(B),r(B   (3) 
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1. StaticFields 

From (3), it can be seen that the radial flux density exhibits 

a dc component which doesn’t create any emf.  

Since the highest space harmonic is obtained for k=1, the 

number of pole pairs of the device is p = Nb. 

 

A. Determination of the modulating function 

To calculate the rk coefficients, we consider a 2D domain 

corresponding to the median cross section of Fig.1 where the 

radial flux density distribution is maximal. 

We proceed in two steps: 

 

Firstly, at a radius R0, Fig. 2.a, we impose a radial flux 

density by imposing a magnetic vector potential (mvp) of the 

form: 

 

)pcos(A),R(a 00 θ=θ             (4) 

 

The mvp A0 can take any value and the magnetic field 

distribution can be computed analytically in this configuration 

where the SC bulks are removed. From this computation, the 

radial flux density at a radius R has the following form: 

 

)psin(B),R(B 0ra θ=θ             (5) 

 

In a second step, the SC bulks are introduced, Fig.2.b. A 2D 

magnetostatic FE analysis is carried out with the same 

condition on R0 as in (4). The radial flux density resulting from 

the introduction of the SC bulks is called Brb(R,θ). 

 

The modulating function can be obtained by simply dividing 

Brb(R,θ) by Bra(R,θ). This straightforward method leads to 

some indeterminations due to divisions per zero in some 

points. The preferred method is to proceed to a Fourier series 

expansion of Brb(R,θ), then to use (2) and (5) to obtain the rk 

coefficients. Indeed, the harmonic analysis allows a better 

understanding of the modulation process. 

III. APPLICATION EXAMPLE 

The dimensions of the considered inductor [2] are given in 

Table I. We have tested the proposed method to determine the 

radial flux density on a circle of the airgap. 

 

 
raB rbB

0R0R

R
R

( )θpcosA 0(a) (b) 
 

Fig. 2. Studied domains for the determination of the modulating function 

(a) without SC bulks     (b) including SC bulks 

 

TABLE I 

PARAMETERS OF THE SUPERCONDUCTING INDUCTOR 

Solenoid SC material (wires) NbTi  

Number of solenoids 2 

Inner radius of solenoid, mm 75 

Outer radius of solenoid, mm 105 

Axial length of solenoid, mm 50 

Bulk SC material YBCO 

Number of bulks (Nb = p) 4 

Bulk thickness, mm 5 

Bulk axial length, mm 50 

Bulk angular opening, deg. 45 

 

Because of the cryostat wall, the magnetic airgap is large in 

SC machines (typically 15 to 20 mm).  Hence, for a radius 

r=124 mm and a current density in the solenoids of about 70 

A/mm², we have compared, Fig.3, the results obtained by the 

presented method and these issued from a 3D FE analysis. The 

results are in good accordance. Furthermore, the computation 

time is about 5 minutes when using the FE method whereas it 

is only 5 seconds for the proposed approach. 
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Fig. 3. Comparison of radial flux densities at r = 124 mm 

IV. CONCLUSION 

A simple and quick method to compute the radial flux 

density created by an original topology of a superconducting 

inductor has been presented. Comparisons to 3D finite element 

calculations show the validity of the proposed approach with 

the benefit of huge savings in computation time. 
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°Abstract — The solution of stochastic PDEs using the 
Stochastic Finite Element Method (SSFEM) can lead to a very 
large linear system. If the random input data are independent, it 
can be shown that the initial linear system can be split into 
smaller independent linear systems by using double orthogonal 
polynomials. In this paper, we propose to apply this approach in 
the case of the dual potential formulations in electrokinetics and 
to compare the two.      

I. INTRODUCTION 
The Spectral Stochastic Finite Element Method can be used to 
solve the stochastic static electromagnetics problem. This 
method has been proposed originally in mechanics by 
Ghanem [1] in the early 90’s and has recently been applied to 
solve stochastic static electromagnetics problems [2][3]. This 
method is very accurate but requires the solution of a large 
linear system. The number of unknowns in the system is equal 
to the product of the number of Degrees of Freedom (DoFs), 
N required to discretise the spatial dimension (spatial mesh) 
and the number of DoFs, Pout required to discretise the random 
dimension. Even though the system to solve has special 
properties, its solution can be tricky when the number of 
random input variables is greater than about a dozen. If the 
randomness is in the behaviour laws and the input random 
variables are independent it has been shown by Babuska et al. 
[4], that using special polynomials (so called double 
orthogonal polynomials) as basis to discretise the random 
dimension, the SSFEM yields Pout independent equation 
systems of size N. The double orthogonal polynomials have 
been previously used to solve the scalar potential formulation 
in static electromagnetics [5]. Here, we propose to solve the 
two dual potential formulations using double orthogonal 
polynomials and to compare them on an example. 

II. DESCRIPTION OF THE STOCHASTIC PROBLEM 
On a contractible domain D with a boundary S, the 
electrokinetic problem can be written as: 

div J = 0                (1) 
curl E = 0                (2) 

Boundary conditions are imposed on S. To simplify the 
problem, we will assume that we have only two disjoint 
surfaces SE1 and SE2 (SE=SE1∪SE2) on which: 

Exn=0                 (3) 
 
This work is supported by the IAP IPOLFE (Belgium government) and also 
by the French American Commission (Fulbright Program) 

with n the outward unit vector on S. On the complement of  
SE, denoted SJ, we have: 

J.n=0                  (4) 
The behaviour law can be written on D as: 

J = σ(x,θ) E                (5)  
σ(x,θ) is the random field conductivity. We will assume that 
the conductivity is equal to a random variable σq(θ) on M 
disjoint subdomains Dq of D: 

( ) ( ) ( )∑
=

θσ=θσ
M

1q
qq xI,x           (6) 

With Iq(x) is the function that is equal to 1 on the subdomain 
Dq and 0 elsewhere. Since the conductivity is random, E and J 
are random fields. To solve the previous problem, two 
potential formulations can be used. Since, E(x,θ) is curl free, 
it can be written as the gradient of a scalar function ϕ(x,θ). 
The equation to solve is then: 

div[σ(x,θ) grad ϕ(x,θ)]= 0         (7) 
We have Neumann boundary conditions on SJ and Dirichlet 
type on SE with: 

ϕ(x,θ)=0 on SE1  ϕ(x,θ)=V on SE2      (8) 
To obtain an unknown with homogeneous boundary 
conditions, we consider a function β(x) on D such that β(x) 
satisfies (2), (3) and such that the circulation of β(x) from SE1 
to SE2 is equal to 1. We now consider the new problem with 
the scalar potential ϕ’(x,θ) and with homogenous boundary 
conditions on SE: 

div [σ(x,θ) grad ϕ’ (x,θ) ]= - V div σ β(x)   (9) 
If we denote I the current flowing through SE1 and SE2, this 
current can be calculated as: 
     ( ) ∫−=

D
dD)x().θ,x(θI βJ           (10) 

Since J(x,θ) is divergence free, J(x,θ) can be written as the 
curl of the vector potential T(x,θ). The equation to solve is 
then: 

curl[σ− (x,θ)curl T(x,θ)] = 0         (11) 
T(x,θ) has nonhomogenous boundary conditions on SJ. We 
therefore introduce a field N(x) satisfying (1) and (4) such that 
the flux of N(x) through the surface SE2 is equal to 1. It can be 
shown that the problem to solve is then: 

curl [σ−1(x,θ) curl Τ’ (x,θ)] = - I curl[σ(x,θ) N(x)]   (12) 
With T’ the unknown with homogeneous boundary 
conditions. The voltage V(θ) can be calculated using the 
following equation: 

Solution of Dual Stochastic Static Formulations 
Using Double Orthogonal Polynomials 
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 ( ) ∫−=
D

dD)x().θ,x(θV NE          (13) 

III. APPROXIMATION OF THE POTENTIALS USING DOUBLE 
ORTHOGONAL POLYNOMIALS 

In the following, we detail the solution of the vector potential 
formulation. In the deterministic case, the vector potential T’ 
is approximated using edge shape functions. Let us denote N1 
the set of edges, N1

0 the sets of edges not located on SJ, wa(x) 
the function associated with the edge a. The cardinal of the set 
N1

0 will also be denoted N1
0. We will denote W1

0(D) the space 
generated by the functions associated with the edges 
belonging to N1

0. Functions in W1
0(D) have naturally 

homogeneous boundary conditions (3) on SE.  
Let us denote Ω the space of outcomes θ, consider the space 
of functions X depending on the random variables σ1(θ), 
…..,σM(θ) such that the variance exists. To approximate this 
space, we will consider a set of Pout orthogonal polynomials 
(Hi(σ1(θ),….σM(θ)))1≤i≤Pout (these polynomials will be denoted 
Hi(θ) to simplify the notations in the following): 

E[Hi(θ)Hj(θ)]=0 if i≠j             (14) 
With E[] the expectation. We will denote WPout(Ω) the space 
generated by this set of polynomials. Various methods have 
been proposed to define these polynomials. The most common 
polynomials used are the multivariate polynomial based on the 
Askey Scheme.  We are looking for an approximation of the 
vector potential T’ in the space W0

0(D)⊗WPout(Ω), so that T’ 
can be written as: 

( ) ( )∑ ∑
= =

θ=θ

0
1N

1a

Pout

1j
jaij )(Hx'T,x' wT        (15) 

where T’ij are the degrees of freedom we need to determine. 
Applying the Galerkin method to a weak form of (11) leads to 
Nn

0xPout linear equations: 
S T’ = F                (16) 

where S is a (N1
0xPout)x(N1

0xPout) square matrix and F a 
(N1

0xPout) vector. The vector T’ is the vector of  DoFs T’ij.  
Using the expression Erreur ! Source du renvoi 
introuvable. for the conductivity allows us to rewrite the 
equation system in a different way [3]. We denote the matrices 
Sq and Dq  , the vectors Fq and the Σq with the coefficients: 

( )( ) [ ] ( ) [ ]
( ) ( ) ( )[ ] [ ] ( ) [ ]

( )( ) [ ] [ ]
( ) ( )[ ] [ ] [ ]outmq

1q
m

0
1Dnq

q
n

2
outmjq

1q
mj

20
1Dniq

q
ni

P,1mM,1qHE

N,1nM,1q)x(),x(xIIf

P,1m,jM,1qHHEd

N,1n,iM,1q)x(),x(xIs

∈∈θθσ=Σ

∈∈=

∈∈θθθσ=

∈∈=

−

−

curlwN

curlwcurlw

Then, using the Kronecker product ⊗, the system (16) can be 
written in the form [3]: 

∑∑
==

⊗=⊗=
M

1q
qq

M

1q
qq FΣFSDS      (17) 

The size of the linear system (17) can become very large even 
with a coarse mesh. If the random variables σq(θ) are 
independent, we can take advantage of this property by using 
double orthogonal polynomials Hi(θ) which enables us to get a 

diagonal matrix Dq. In that case, we have to solve Pout linear 
systems of size N1

0xN1
0 instead of the whole system (16). The 

multivariate double orthogonal polynomial Hi(θ) are 
constructed from (pout+1) monovariate polynomials hq

n(θ) of 
order pout that satisfy the following relations: 

E[hq
n(σq[θ)hq

m(σq[θ])]=δnm          (6.a) 

E[σq[θ]hq
n(σq[θ])hq

m(σq[θ])]=0 if m≠n      (6.b) 

The polynomials are orthogonal to each other according to the 
first relation and the second relation is related to their double 
orthogonality property. 

IV. APPLICATION 
We consider a device with three subdomains where the 
conductivity is assumed to be random. We calculate the 
expectation of energy for both formulations and for 4 meshes 
(M1, M2, M3, M3). We consider an approximation of the 
first, second, third and fourth order (pout=1,2,3 and 4) for the 
multivariate polynomials Hi(θ) which lead to the calculation 
of Pout=8, 27, 64, 225 “deterministic” problems. The evolution 
of the energy expectation as a function of the number of 
elements is given figure 1. The difference between the energy 
expectation given by both formulations is an image of the 
numerical error. Therefore, the closer the energies are, the 
more accurate the model. According to that statement, we can 
see that whatever the order of interpolation the error decreases 
with the number of elements. But we can see also that up to an 
order two the accuracy does not improve much. 
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Figure 1: Evolution of the energy expectation for both formulations and for 
different order of approximation and different meshes. 
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Abstract — Nonlinear eddy currents induced in a steel plate 
are formulated with the help of the boundary integral equations 
of minimum order for the calculation of three-dimensional eddy 
current problems. The integral equations for the nonlinear 
analysis are derived by considering nonlinear terms as fictitious 
sources. Since the periodic electromagnetic fields in the steel are 
distorted, these fields are expressed with the help of Fourier 
series, whose fundamental and harmonic fields are determined 
by solving the corresponding integral equations with the surface 
magnetic fields given as the boundary values. The internal and 
surface electromagnetic fields are obtained numerically one after 
the other until convergence by a simple iterative method. 

I. INTRODUCTION 
Nonlinear eddy current is formulated by considering 

nonlinear terms as fictitious sources in BEM. Recently an 
efficient nonlinear analysis by BEM has been proposed [1]. 
With the help of the rapid attenuation of the electromagnetic 
field in the conductor, the nonlinear eddy current is analyzed 
with negligible few additional computer-memory.  Mayergoyz 
has proposed minimum order eddy current formulation [2]. 
Since the minimum order formulation gives the magnetic field 
in the conductor with only the surface electric current, the 
nonlinear eddy current may be formulated easily. Hence, 
employing the minimum order formulation and utilizing the 
procedure given in [1], we derive boundary integral equations 
to solve the nonlinear problems and check effectiveness. 

II. FORMULATION OF EDDY CURRENT 

A. Electromagnetic fields in steel 

The electromagnetic fields in the steel with the conductivity 
σ satisfy Maxwell’s equations as: 

0=∂∂+×∇ tii BE ,                                       (1) 

0=−×∇ ii EH σ ,                       (2) 
0=⋅∇ iB ,                                                           (3) 

0=⋅∇ iEσ ,                                                        (4) 

where Ei is the electric field, Hi is the magnetic field and Bi is 
the magnetic flux density. The permeability is affected by the 
magnetic field. Thus, in order to apply Green’s theorem, we 
introduce a fictitious permeability μf, and with the help of 
Fourier series we rewrite (1)-(4) for the k-th harmonic 
electromagnetic fields as: 

)( kfkkkfkk jj HBHE μωμω −−=+×∇ ,        (5) 

0=−×∇ kk EH σ ,                                                (6) 

)( kfkkf HBH μμ −⋅−∇=⋅∇ ,                             (7) 

0=⋅∇ kEσ .                                                           (8) 

where ωk is the k-th angular frequency of the fundamental one 
ω, and the subscript k denotes the k-th harmonic. Hence, (5)-
(8) are regarded as linear equations by considering the right 
sides of (5) and (7) to be fictitious magnetic current Kk and 
charge mk sources, which are defined as: 

)( kfkkk j HBK μω −= , ( )kkk jm ωK⋅∇= .        (9) 

B. Magnetic field given by minimum order formulation 
Following the minimum order formulation [2], we derive 

the integral equation for the nonlinear magnetic field inside 
the steel.  From (5) and (6), we get 

kkfkk j KHH σσμω =−×∇×∇ .                         (10) 

Green’s theorem gives the integral representation of Hk with 
the subscript p denoting an observation point Po as:  

∫ ∇×−=
S ksfkepkp dSGJHH                                (11) 

where S is the surface of the steel, Jsf is the fictitious surface 
electric current, Gk is fundamental solution of (10) defined as 

( ) ( )rrG kk πγ 4exp −=  with σμωγ fkk j= and the distance 

r from an integration point on S to Po, and Hkep is the magnetic 
field produced by Kk at Po defined as: 

dVG
j

G
V k

fk

k
kkkep ∫

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∇

⋅∇
−−=

μω
σ K

KH                               (12) 

where V is the volume of the steel. 

C. Nonlinear eddy current formulation 
The magnetic field Ho at an observation point Po in the free 

space is given from scalar potential Φ produced by the 
fictitious surface magnetic charge msf, see [2]:  

∫ ∇+=Φ−∇=
S o

sf
epop dSG

m

0μ
HH                          (13) 

where Go=1/(4πr) and Hep is the exciting magnetic field at Po. 
The boundary integral equations for nonlinear eddy current 

analysis are derived as follows. Firstly, we shall obtain the 
magnetic fields, Hi and Ho, at an observation point Po on the 
surface of the inside and outside steel by employing (11) and 
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(13), respectively. Next, we obtain the tangential magnetic 
fields, Hit and Hot, and also the normal magnetic flux densities, 
B

 

Js2
Ks2

n2

Js1Ks1

n1

d 

S2

S1 

 

Bin and BonB . Applying the boundary conditions, we get the 
surface integral equations to analyze the nonlinear eddy 
current. From the continuity of the tangential magnetic fields, 
Hit=Hot, we get 

[ ]kepoeppS o
sf

ksfp
sfp dSG

m
G HHnJn

J
+×−=⎥

⎦

⎤
⎢
⎣

⎡
∇+∇××+− ∫

02 μ
      (14) 

Fig. 1. Actual surface electric and magnetic currents defined respectively as 
Js=nxHs and Ks=-nxEs with surface magnetic and electric fields Hs and Es. and from the continuity of the normal magnetic flux densities, 

BBin=BonB , we get 
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00002 μ
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(15) 

III. NONLINEAR EDDY CURRENT ANALYSIS 

We shall solve the eddy current induced in a steel plate 
when the plate is placed in the uniform magnetic field. The 
plate dimension is much larger than the skin depth and its 
thickness is 0.5 cm. The conductivity is σ=64850 S/cm and the 
relation between B

Fig.2. Computed results of magnetic flux density in steel plate 
 

Bi and Hi is given as: 
ps

d z
k

k

dffps dzee kk
10 1

21

222
JKn

JJ s =×+− ∫ −− γγ

γ
σ                (21) 

io
i

i H
HB μ

0734.0194.0
1000
+

=       [Wb/cm2].       (16) 
( )

ps

d zd
k

k

dffps dzee kk
20 2

12

222
JKn

JJ s =×+− ∫ −−− γγ

γ
σ             (22) 

The strength of uniform magnetic field parallel to the plate 
surface is given as function of time t [s] as: where Js with the subscript 1 or 2 is the actual surface electric 

current shown in Fig.1 defined with the magnetic field Hs as: 
( tHoep π100sin220= )                  [A/cm].         (17) 

⎥
⎦

⎤
⎢
⎣

⎡
∇+×=×= ∫S o

sf
oeppsppsp dSG

m

0μ
HnHnJ .             (23) 

As the electromagnetic fields are attenuated rapidly in 
conductive materials such as steel, (14) is rewritten by taking 
the same procedure given in [1] as: 

In the numerical analysis, the plate thickness is divided 
into 20 virtual volume elements (layers). Fig.2 shows the 
computed results of the magnetic flux density inside the steel 
plate at 0.5 mm (shown by ○) and 1 mm (shown by ∆) from 
the surface with the solid lines obtained by the method given 
in [1]. The magnetic flux density obtained from sinusoidal 
magnetic filed on the surface is shown also by the solid line. 

poep

d z
kp

k

dffps dzee kk

11

0 1
21

222
Hn

Kn
JJ s

×−=

×−+− ∫ −− γγ

γ
σ

              (18) 

( )

poep

d zd
kp

k

dffps dzee kk

22

0 2
12

222
Hn

Kn
JJ s

×−=

×−+− ∫ −−− γγ

γ
σ

          (19) 
IV. CONCLUSIONS 

Following the minimum order eddy current formulation, we 
have derived the boundary integral equations and solved the 
eddy current induced in the thin steel plate to check adequacy 
of the nonlinear formulation. The computed results are almost 
the same as those by the formulation given in [1], which have 
been confirmed to give adequate solutions. The analysis of the 
full model is given in the full paper. 

where the subscripts 1 and 2 denote the face-to-face plate 
surfaces shown in Fig.1, z is the distance from S1 and d is the 
plate thickness. Substitution of (12) into (11) leads to: 

)(2211

0

22

2
pkpk

pk

zdfszfs

d zz
k

k
kp

ee

dze

−−−

−−

×
+

×
=

− ∫
γγ

γ

γ
σ

nJnJ

KH
 .       (20) 
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Abstract—A perturbation method for the T − Ω geometric
formulation to solve eddy–current problems is introduced. The
proposed formulation is applied to the feasibility design of
a non–destructive evaluation device suitable to detect “long”
longitudinal flaws in hot steel bars.

Index Terms—Cell Method (CM), Finite Integration Technique
(FIT), Discrete Geometric Approach (DGA), eddy–currents.

I. INTRODUCTION

The so called “Discrete Geometric Approach” (DGA) [1],
similarly to the Finite Integration Technique (FIT) [2] or the
Cell Method [3], allows to solve Maxwell equations in an
alternative way with respect to the classical Galerkin method
in Finite Elements.

The domain of interest D of the eddy–current problem, has
been partitioned into a source region Ds and in a passive
conductive region Dc. The complement of Dc


Ds in D

represents the air region Da.
We cover the domain D with a tetrahedral mesh represented

by the simplicial complex K. The barycentric subdivision is
used to obtain the interlocked dual complex B [1]. For the
simplicial complex K, we denote by G the incidence matrix
between edges e and nodes n, by C between faces f and
edges e and by D between cells v and faces f . The matrices
GB = DT , CB = CT and DB = −GT describe the mutual
interconnections of the dual barycentric complex B.

Next, we consider the integrals of the field quantities
with respect to the oriented geometric elements of the mesh,
yielding the Degrees of Freedom (DoF) arrays [3]:

• Φ is the array of magnetic induction fluxes associated
with fB ∈ D; F is the array of magnetomotive forces
(m.m.f.s) associated with e ∈ D; I is the array of induced
electric currents associated with f ∈ Dc; In Ds the array
Is of known source currents is defined; U is the array of
e.m.f.s on edges eB ∈ D.

• T is the array of the circulations of the electric vector
potential T along e ∈ Dc. In Ds the array Ts of
impressed electric vector potential is introduced; Ω is
the array of magnetic scalar potential Ω associated to the
nodes n ∈ D.

Using the incidence matrices, Maxwell’s laws can be written
exactly as balance equations between Dofs arrays as

GTΦ = 0 (a), CTU = −iωΦ (b), (1)

where (1a) is the Gauss’ magnetic law at discrete level and
(1b) is the Faraday’s Law. The array T is defined such that
the Ampere’s balance law (CF)f = (I)f , ∀f ∈ Dc, holds

(F)e = (GΩ)e ∀e ∈ Da,
(F)e = (GΩ)e + (Ts)e ∀e ∈ Ds,
(F)e = (GΩ)e + (T)e ∀e ∈ Dc − ∂Dc.

(2)

In fact one has CcT = I and CsTs = Is, where the subscripts
c and s refer to the corresponding sub–array or sub–matrix
relative to geometric elements in Dc and Ds respectively. This
implies that the continuity law DcI = 0, where Dc is the
sub–matrix of D relative to the volumes and faces in Dc, is
identically satisfied, since DC = 0. The interface conditions
that avoid the current flow outside the region Dc are taken
into account by considering T = 0, ∀e ∈ ∂Dc. In this way, in
fact, (I)f = 0,∀f ∈ ∂Dc holds.

The discrete counterpart of the constitutive laws can be
written using the constitutive matrices [3]

Φ = µF in D (a), Uc = ρI in Dc (b). (3)

The square matrices µ and ρ can be efficiently calculated in
a pure geometric way for a mesh composed by tetrahedra as
described in [6].

For sake of simplicity, Dc is considered as a union of
simply–connected conductive regions. In case of multiply–
connected regions, the m.m.f.s along cycles contained in
Da cannot be described completely by the magnetic scalar
potential alone. In this case the thick cuts [5] have to be found
and for each thick cut a non–local Faraday’ law [5] has to be
written. One additional unknown per thick cut is added and
all of them represent a set of linearly independent currents in
Dc.

By substituting (3a), (3b) and (2) in (1a), the algebraic
equations corresponding to the nodes in D are obtained. By
substituting (3a), (3b) and (2) in (1b) the algebraic equations
corresponding to edges in Dc are derived. The final algebraic
system, having T and Ω as unknowns DoFs arrays, can be
written as

(GTµGΩ)n = 0 ∀n ∈ Da,
(GTµGΩ)n = −(GT

s µsTs)n ∀n ∈ Ds,
(GTµGΩ)n + (GT

c µcT)n = 0 ∀n ∈ Dc,
(CT

c ρCcT)e + iω (µc(T+GcΩc))e = 0 ∀e ∈ Dc.
(4)
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The system (4) is singular and, to solve it, a conjugate gradient
method without gauge condition is used.

II. DISCRETE PERTURBATION METHOD FOR T − Ω
Let us suppose that the resistivity of a tetrahedron vk ∈ Dc

is perturbed from ρ to ρ + ρp, where ρp is a perturbation of
the resistivity due to for example a defect in the conductive
domain Dc; this configuration is the defected configuration
denoted with a superscript d. From (3b), the e.m.f. associated
with edge e ∈ vk in the unperturbed configuration is (Uc)e =
(ρI)e, where I is the array of eddy currents in Dc in the
unperturbed configuration; it can be equivalently written as

(Uc)e = ((ρ+ ρp)I− ρpI)e = ((ρ+ ρp)I+Ug)e, (5)

where the term Ug = −ρpI = −ρpCcT can be interpreted as
an array of compensation e.m.f. generators connected in series
to each primal edge e of vk. By applying the superposition of
effects, we consider the following configurations, see Fig. 1:

• Is is active, Ug is switched off. This is the defected
configuration, where the resistivity is ρ+ρp and the eddy
currents Id account for the presence of the defect; we
have that Ud

c = (ρ+ρ
p)Id holds, where Ud

c is the array
of e.m.f.s in this configuration.

• Is is switched off, Ug is active. This is the perturbed
configuration, where Up

c = (ρ + ρp)Ip + Ug holds,
where Up

c , Ip are the corresponding arrays of e.m.f.s and
currents in this configuration.

ρ

=I

ρ+ρp

+Id

Is Is
Is = 0Ug=0

ρ+ρp

Ip

Superposition of effects

Ug

Fig. 1. Superposition of effects for the tetrahedron vk .

A. Analysis of the perturbed configuration

From the above described superposition of effects, an eddy–
current analysis of the perturbed configuration, yields e.m.f.s
or currents arrays which are opposite to the difference of
e.m.f.s or currents arrays between the defected and the un-
perturbed configuration. For edges belonging to tetrahedra vk
where resistivity has been changed, we introduce the e.m.f.
generators Ug = ρpCT in the equations in (4) associated
with those edges, obtaining

CT (ρ+ ρp)CTp + iω µ (Tp +GΩp) = CT ρpCT. (6)

III. APPLICATION TO NON–DESTRUCTIVE TESTING

The application concerns the design of a device for the
detection of long longitudinal defects that can be present
during the hot mill rolling process of the steel bars with
circular cross–section [7].

The geometry of the problem, depicted in Fig. 2 and
described in detail in [7], consists of a conducting steel bar,
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receiving
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long
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x 10
−4

CARIDDI
T-Ω perturbation method

Fig. 2. Geometry of the problem and the comparison on the perturbation
in the induced e.m.f. due to the defect over the receiving coils between the
proposed formulation and an integral formulation.

modeled as a conducting cylinder Dc. A longitudinal perfectly
insulating defect is assumed, 0.5 mm deep from the surface
of the cylinder and 0.2 mm thick.

A mesh consisting of about 1 million of tetrahedra is used
for the computations. The value of the perturbation in the
induced voltages over the receiving coils due to the defect
calculated with the proposed formulation is compared to the
ones computed with the CARIDDI code [8], which implement
an integral formulation.

IV. CONCLUSIONS

The perturbation method, reducing the cancelation error,
produces accurate results also for small variations in the
solution. This is especially required when the tool is used as a
forward solver for an inverse problem. Moreover the method
yields also a considerable speed–up: The mesh used in the
perturbed problem can in fact be reduced [9], considering only
a limited region surrounding the defect, at a small fraction of
the initial mesh.
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Abstract	—	Steel	tubes	are	used	in	the	heat	exchanger	in	the	
petrochemical	 plant.	 Since	 these	 steel	 tubes	 are	 grouped	 in	 a	
bundle	by	 the	 support	 steel	plate	 (the	baffle),	 it	 is	necessary	 to	
inspect	 the	existence	of	defects	 from	the	 inside	of	each	 tube.	 In	
these	 steel	 tubes,	 the	 corrosion	or	 the	defects	 are	 generated	by	
the	friction	with	baffle	at	the	outer	side	of	steel	tube.		
In	this	paper,	problems	in	applying	the	ac	flux	leakage	testing	

method	 using	 an	 inner	 coil	 of	 low	 exciting	 frequency	 (about	
60Hz)	 for	 the	 inspection	 of	 the	 outer	 side	 defect	 on	 steel	 tube	
with	baffle	are	examined	using	3-D	nonlinear	FEM.	Moreover,	
the	detecting	property	of	the	magnetic	noise	is	investigated	by	3-
D	FEM	considering	the	non-uniformity	of	the	permeability	and	
conductivity	in	the	steel	tube	and	the	baffle.	

I. INTRODUCTION 
The steel tubes of heat exchanger in petrochemical plant 

etc. are stored as a bundle. Moreover, these steel tubes are 
covered with the steel plates (baffle). In a heat exchanger, a 
large friction is generated between the baffle and the steel 
tube by the flow of the fluid inside or outside of the tube. 
Therefore, the corrosions or the defects are generated on the 
outer side of the steel tubes. It is necessary to inspect outer 
side defects on these tubes from the inside of the tube.  

In this paper, the ac flux leakage testing method using an 
inner coil at a low frequency for detecting outer side defects 
on steel tube with baffle is proposed [1]. Since the 
permeability and conductivity of the steel tube and the baffle 
are usually non-uniform, the signal of the electromagnetic 
inspection may contain a large magnetic noise [2]. Then, the 
property of the inspection method of the outer side defect on 
the steel tube with baffle, and the effect of the non-uniformity 
of the permeability and conductivity on the large magnetic 
noise are investigated using the 3-D nonlinear FEM. In 
addition, the experimental verification is also carried out. 

II. NON-UNIFORMITY OF PERMEABILITY AND CONDUCTIVITY 
IN STEEL TUBE AND BAFFLE    

The non-uniformity of permeability and conductivity in the 
steel tube (SUS430) and baffle (SS400) were measured. Fig.1 
shows the maximum non-uniformity of permeability in the 
steels of SUS430 and SS400, respectively. The dispersion 
rate εµ of relative permeability µr is defined by 

100
(average)

(average)position)(each   

r

rr ×=
µ

µµεµ
• •     (%).                              (1) 

The figure denotes that the non-uniformity (εµ) of 
permeability is increased when the magnetic field is small. 
When the magnetic field is increased, both εµs are decreased, 
because the direction of each magnetic moment becomes 
nearly the same. The non-uniformity of conductivity in 
SUS430 and SS400 is measured using two column specimens 
(diameter: 9mm, length: 2m) by the double bridge circuit. 
The conductivity of the column specimen between two points 
of 10cm distance was measured. The dispersion rate εσ of 
conductivity σ is defined by 

100
(average)

(average)position)(each  
×=

σ
σσε σ

• •
(%).     (2) 

Fig.2 shows the non-uniformity of conductivity at each 
steel position, respectively. The figure denotes that the non-
uniformities of conductivity of SUS430 and SS400 are within 
about 1.5%, respectively.  

III. MODELS AND METHOD OF ANALYSIS 
Fig.3 shows the inspection model for outer side defect of 

steel tube with baffle. The proposed inner inspection probe is 
also shown in the figure. The inspection probe is composed 
of a yoke, an exciting coil and a search coil for detecting the 
perpendicular component |Bx| of leakage flux due to the outer 
side defect. The outer diameter of the inspection steel tube is 
25mm, and the thickness is 1.5mm. B-H curves of steel tube 
(SUS430) and baffle (SS400) are shown in Fig.4. These 
curves are the average of non-uniform curves of which the 
non- uniformity of permeability is shown in Fig.1. The outer 

 
 
 
 
 
 
 
 
 

 
Fig.1. Dispersion rate εµ of permeability in steels  (SUS430 and SS400). 
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2. Quasi-Static Fields

 
 
 
 
 
 

 
Fig.2. Dispersion rate εσ of conductivity in steels (SUS430 and SS400). 
 

side defect is a circumferential one. The defect width (z-
direction, Dw) and the defect depth (x-direction, Dd) of the 
steel tube are 2mm and 0.5mm, respectively. The distance 
(Lift-off, Lo) between the search coil and the inner surface of 
steel tube is 0.2mm. The frequency is chosen as 60Hz. The 
exciting current is 5A(rms).  The magnetization curve and the 
conductivity of steel tube and baffle are used in the 3-D  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3. Inspection model for outer side defect of steel tube with the baffle 
(60Hz, 5A(rms)). 

 
 
 
 
 
 
 
 
 
 
 
 

Fig.4. B-H curves of baffle (SS400) and steel tube (SUS430). 
 
 
 
 
 
 
 
 
 

 

                             Fig.5. Dispersion of µr-H curves (SUS430). 

 
 
 
 

 
 
 
 
 
 
 

Fig.6. Detected |Bx| (60Hz,5A). 
 
nonlinear FEM using the 1st order hexahedral edge element. 
The example of non-uniformity of magnetic characteristic of 
steel tube (SUS430) is shown in µr-H curve of Fig.5. As for 
the dispersion εµ of the steel tube (within ±21%) and the 
baffle (within ±47%), twenty curves with initial permeability 
are created, respectively. A curve is chosen at random among 
twenty µr-H curves following the normal random number 
(standard deviation: 5.0), and the selected curve is given to 
each finite element in the steel tube region. Similarly, the 
conductivity is generated according to a normal random 
number (standard deviation : 0.5 (x106 )).  

Fig.6 shows the distribution of the calculated value of |Bx| 
in a search coil when there is the steel tube with baffle. 
Moreover, the experimental investigation is also carried out. 
|Bx| is obtained by moving the inspection probe in the z-
direction inside the steel tube. The calculated result is in 
agreement with measurement. The figure shows that each 
peak value is obtained near two edges of an outer side defect. 
Moreover, the magnetic noise from non-uniformity of 
permeability and conductivity is generated about 1x10-4 T. 
Since the signal from the outer side defect is larger than the 
magnetic noise about 10 times, the outer side defect in the 
steel tube with baffle is detectable using this proposed 
inspection method. In the full paper, the optimal 
magnetization condition for the inspection is examined using 
the 3-D edge-based hexahedral FEM. In addition, the 
experimental verification is also carried out. 

IV. CONCLUSIONS  
The results obtained are summarized as follows:  

(1) The ac flux leakage testing method using an inner coil at 
the low frequency (about 60Hz) is possible for detecting 
the outer side defect in steel tube with support steel plate 
(baffle). 

(2) In this inspection method, the magnetic noise due to the 
non-uniformity of permeability and conductivity in the 
steel tube and the existence of baffle is negligible. 

V.  REFERENCES  
[1] N.Kasai • •K.Sekine, and H.Maruyama, ” Non-destructive evaluation 

method for far-side corrosion type flaws in oil storage tank bottom floors 
using the magnetic flux leakage technique", J. Jpn. Petrol. Inst., vol.46, 
no.2, pp.126-132, 2003. 

[3]Y.Gotoh and N.Takahashi, "3D FEM analysis of electromagnetic 
inspection of outer side defects on steel tube using inner coil–", IEEE 
Trans. Magn., vol.43, no.4., pp. 1733-1736, 2007.

0

2

4

6

8

10

-6 -4 -2 0 2 4 6
position z [mm] 

measured

calculated

position of outer
side defectDw=2

Bw=10 (domain of the baffle)

B
x

[x
10

-4
T]

magnetic 
noise

ε •
•[%

]

-1.5

-1

-0.5

0

0.5

1

1.5

0 4 8 12 16
position [x0.1m] 

SS400
SUS430

average of σ
SS400    : 7.51x106 S/m
SUS430 : 1.82x106 S/m 

0

0.5

1

1.5

2

0 2000 4000 6000 8000
H[A/m] 

SS400

SUS430B
[T

]

0

250

500

0 1000 2000 3000 4000 5000
H[A/m] 

re
la

tiv
e 

pe
rm

ea
bi

lit
y 

+21%

0%

-21%

µ r

x

z

y x

z

y

steel tube 
(SUS430)

exciting coil

yoke 
(SS400)

outer side defect
(Dw=2, Dd=0.5)

steel tube

B
w

=1
0

Bl=27.5

air gap=0.1

support steel 
plate
(baffle, SS400)

support steel plate
(baffle, SS400)

x

z

Sw
=3

Sl=2.56 Sh=1.65

50turns

Sw
=3

Sl=2.56 Sh=1.65

50turns

(SUS430)

x
z

y

search coil (Bx)

(202turns, 
60Hz, 5A)

exciting coil

yoke 
(SS400)

(202turns, 60Hz, 5A)

D
w

=2

Dd=0.5

68

 



Discontinuous Galerkin method with
T, Φ-Φ Formulation for 3D eddy current problems
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Abstract—In this paper a method is proposed where discon-
tinuous shape functions are used in eddy current problems to
describe the quantities in the conducting region. Using these
shape functions, the application of Galerkin’s method leads to a
block-diagonal mass-matrix. Hence, if an explicit time stepping
method is used, the solution of the first-order differential equation
system can be solved with minimal computational effort. In the
non-conducting region traditional continuous basis functions are
used. The eddy current problem is formulated with the current
vector potential T and the reduced magnetic scalar potential Φ.
In the two domains different time steps are used whereas the time
steps in the conducting region have to be chosen small enough
to ensure stability.

Index Terms—Discontinuous Galerkin method, Explicit time
stepping, Time domain analysis, Eddy currents

I. INTRODUCTION

Discontinuous shape functions are used for several appli-
cations in technical science. One motivation for using these
basis functions is the ease of handling non-matching meshes
(e.g. [1]) and another reason is the ease of solving large
algebraic equation systems if an explicit time stepping is used
(e.g. [2]). Since the mass matrix becomes block-diagonal in
the latter case, only small blocks of the mass-matrix have to be
inverted which needs less computational effort. In [3] and [4]
the Discontinuous Galerkin Method was introduced for two
dimensional eddy current problems using the magnetic vector
potential A.
In this paper, the method is applied to the T,Φ-Φ for-

mulation and similarly to [3] and [4], discontinuous shape
functions are used in the conducting region only because
this is the region with a diffusion equation. The support
of the basis functions belonging to a finite element in the
conducting region is limited to this element only. Therefore,
the mass-matrix in the eddy current region becomes block-
diagonal and, to take advantage of this structure, explicit time
stepping is used. This avoids having to solve the notoriously
ill-conditioned system resulting from the discretization of the
diffusion equation valid in eddy current regions. Due to the
explicit time stepping, the time steps have to be chosen small
enough to avoid instability.
In the eddy current free domain, where the fields are static,

traditional basis functions are used which leads to a well-
conditioned equation system. The time step in this region
can be chosen higher compared to the time step in the

conducting domain. The combination of the two methods leads
to potentially fast solutions for eddy current problems.

II. T,Φ-Φ FORMULATION AND GALERKIN’S EQUATIONS
The problem is split up into two regions whereas the

conducting region is denoted by Ωc with boundary ∂Ωc and
the non-conducting region is denoted by Ωn with boundary
∂Ωn. The interface between the two regions is Γnc.

A. Conducting region Ωc

Multiplying Faraday’s law by Ni and multiplying the time
derivative of divB = 0 by fi, integrating over the kth finite
element and summing over all k yield:

�

k

�

Ωk

curlNi · ρJdΩ−

−
�

k

�

∂Ωk

(Ni × ρJ) · ndΓ = −
�

k

�

Ωk

∂μH
∂t

dΩ , (1)

−
�

k

�

Ωk

gradfi · ∂μH
∂t

dΩ+
�

k

�

∂Ωk

fi
∂μH
∂t

· ndΓ = 0 . (2)

In (1) and (2) the material equations E = ρJ and B = μH
have been used, where ρ is the resistivity and μ is the
permeability of the conductive material. Ni and fi in (1) and
(2) denote the basis functions to approximate the potentials T
and Φ:

T ≈ Tn =
�

j

tjNj , (3)

Φ ≈ Φn =
�

j

φjfj . (4)

Since divJ = 0 and curlH = J, these two potentials can be
introduced as

J = curl (T + T0) and (5)

H = T + T0 − grad (Φ) , (6)

where J0 = curlT0 represents the imposed current density
and, therefore, T0 is known.
From (1) and (2), a first-order differential equation system

can be obtained if J and H are replaced by (5) and (6) and if
the approximations (3) and (4) are used:

M ·
�

ṫi
φ̇i

�
+ S ·

�
ti
φi

�
= f . (7)
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In (7), M is the mass-matrix, S is the stiffness-matrix and f
includes terms with the known quantity T0. Using appropriate
basis functions (see Section III), the mass-matrix can be made
block-diagonal.

B. Non-conducting region Ωn

In the non-conducting region there are no induced currents
and, therefore, only the known vector potential T0 and the
unknown scalar potential Φ need to be introduced:

J0 = curlT0 , (8)

H = T0 − grad (Φ) . (9)

As a differential equation, the time derivative of div B = 0 is
used. The unknown scalar potential Φ in Ωn is approximated
by traditional continuous basis functions fj (see Section III).

III. BASIS FUNCTIONS Nj AND fj

A. Conducting region Ωc

The basis functions Nj and fj in Ωc are chosen so that
each of the basis functions is non-zero in one finite element
only and zero in all other elements:

Nk
j (r) = 0 if r /∈ Ωk for j = 1, . . . , Nk , (10)

fk
j (r) = 0 if r /∈ Ωk for j = 1, . . . ,Mk . (11)

In (10) Nk is the number of edge basis functions Nk
j for

the kth finite element Ωk and in (11) Mk is the number of
node basis functions fk

j for the finite element Ωk. Using these
functions, the mass-matrix in (7) becomes block-diagonal with
one block for each finite element. The finite elements are
coupled by the surface integrals in (1).

B. Non-conducting region Ωn

In Ωn traditional continuous basis functions are used, i.e.
each basis function fj belonging to a global node is non-zero
in all elements sharing this node and zero in all other elements.

IV. TIME DISCRETIZATION AND COUPLING

For the two regions Ωc and Ωn, two different time steps are
used. The time step in Ωc is denoted by Δtc and in Ωn the
time step is Δtn. To discretize the differential equation system
in Ωc an explicit time scheme is used:

ẋ ≈ xk+1 − xk

Δtc
, (12)

M · xk+1 − xk

Δtc
+ S · xk = f . (13)

The index k in (12) and (13) refers to the kth time step and
x stands for the vector of the unknown variables ti and φi in
(3) and (4). In (13) the solution at step k + 1 can be obtained
from the previous solution at time step k by inverting M. As
a consequence of the block structure of M, this can be easily
done. However, the explicit scheme requires smaller time steps
Δtc in order to ensure stability. The time step in Ωn can be
chosen larger since the fields in the non-conducting region
have a static character. The two time steps have been chosen

so, that the condition Δtn = LΔtc holds. This means that the
time step Δtn is subdivided into L smaller time steps Δtc.
For the coupling of the two domains it is assumed that the

boundary conditions on Γnc for the differential equation in Ωc

are given by the boundary values obtained from the solution
in Ωn. The solution in Ωn and hence the boundary values on
Γnc are available at the time steps:

t = rnΔtn (rn = 1, 2, 3, . . .) . (14)

To calculate the solution in Ωc for the time instant

t = rnΔtn + rcΔtc (rc = 0, . . . , L) , (15)

the boundary values from the solution in Ωn at the time step
t = rnΔtn are used.
The conditions on the surface Γnc are the continuity of the

normal component of B and the continuity of the tangential
component of H:

Bc · nc + Bn · nn = 0, (16)
Hc × nc + Hn × nn = 0. (17)

In (16) and (17), nc and nn denote the normal vector out of
the region Ωc and Ωn.

V. CONCLUSION

The combination of using discontinuous basis functions
in the conducting region and continuous ones in the non-
conducting region leads to potentially fast solutions for eddy
current problems. The advantage of having a block-diagonally
structured mass-matrix and using an explicit time stepping
permits to solve the equation system very fast because only
small blocks of the mass-matrix have to be inverted. The
disadvantage of the method is the higher number of degrees
of freedom in the eddy current domain and the higher number
of time steps.
A possibility to improve the stability of the method is

to introduce a term which penalizes the continuity of the
potentials on the interface between finite elements in the
conducting domain. This approach will be described in the
full paper.
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2. QUASI-STATIC FIELDS 

Abstract — A numerical model to include the effect of eddy-
currents and associated losses into time-discretized 2D finite-
element analysis of ferromagnetic laminations is presented. The 
flux-density distribution in the lamination is approximated by a 
truncated Fourier cosine series, and the corresponding 
components for the 2D nodal values of the vector potential are 
solved at each time step from the resulting system of equations. 
The eddy-current losses obtained with the model are compared 
with losses calculated by solving the 1D diffusion equation for the 
flux density in the lamination. 

I. INTRODUCTION 
2D finite-element (FE) analysis is commonly used in the 

design and analysis of electrical machines with laminated iron 
cores. One of the major simplifying assumptions of the 2D 
model is that the eddy-currents in the core regions are assumed 
to be zero and have thus no effect on the magnetic field to be 
solved. Although this assumption may be reasonable for the 
axial component of the currents in thin laminations, the 
currents flowing parallel to the cross-sectional plane of the 
machine may have a damping effect on the inducing field, 
especially at higher frequencies. Thus a method to include the 
eddy-current effects into the field analysis is needed for 
accurate loss calculation of variable-speed drives in which 
high-frequency flux-density harmonics commonly occur. 

The in-plane eddy-currents in the laminations can be 
included into the 2D field calculation by coupling the 2D 
model to a 1D FE model of the lamination [1]. However, this 
approach may encounter convergence problems, especially if 
Newton-Raphson iteration is used, since analytical 
formulation of the equations needed in the iteration is difficult. 

Another method to include eddy currents in laminations 
into the field calculation was presented in [2]. Originally 
implemented for homogenization of lamination stacks in 3D 
FE calculation, the method was based on approximating the 
flux-density distribution in the lamination by orthogonal 
polynomial basis functions, without actually discretizing the 
lamination. The coefficients of these functions were solved 
from a system of equations resulting from the error between 
the actual and approximated magnetic field strengths. These 
equations are relatively easy to form analytically and should 
thus lead to better convergence. 

In this paper, a modified version of the latter method is 
applied to include the effect of eddy-currents in non-hysteretic 
ferromagnetic laminations into 2D FE calculation. The 
lamination model and the 2D model are presented, and the 
results of calculation are compared with a 1D FE lamination 
model. 

II. THE LAMINATION MODEL 
The mesh-free model of the flux-density distribution in a 

lamination with thickness d and conductivity σ is developed in 
detail in [1]. The time-dependent behavior of the magnetic 
field is described by the system of NF equations 

 
( )

( )
( )
( )

( )
( )

s 0 0
2

1 1 2 10
h t b t b t

b t d b t
t

ν σ
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

∂⎢ ⎥ ⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥∂
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

C C , (1) 

where hs(t) is the magnetic field strength on the lamination 
surface and bn(t) with n = 0,…,NF – 1 are coefficients of 
selected basis functions αn(z) used to approximate the flux-
density distribution in the lamination depth [ ]2, 2z d d∈ −  
as 

 ( ) ( ) ( )
F 1

0

,
N

n n
n

b z t b t zα
−

=

= ∑ . (2) 

The matrix coefficients are obtained by integration over the 
lamination thickness as 

 ( ) ( ) ( ) ( )
/ 2

1, 1 1
/ 2

1 d

lm l m
d

C z z z dz
d

ν ν α α− −
−

= ∫  (3) 

 ( ) ( )
/ 2

2, 1 1
/ 2

1 d

lm l m
d

C z z dz
d

α β− −
−

= ∫ , (4) 

where ( )bν ν= is the reluctivity of the material and functions 
( )n zβ  are defined so that ( 2) 0n dβ ± =  and  

 ( ) ( )2
2

2
n

n

z
z d

z
β

α
∂

= −
∂

. (5) 

Here, instead of polynomial basis functions, the flux-
density is approximated by a truncated Fourier cosine series 
with ( ) cos( ),n z nkzα = 2 /k dπ= . These Fourier terms fulfill 
the orthogonality requirement of the basis functions by 
definition, and make it possible to integrate coefficients (3) 
analytically also in nonlinear cases, if a discrete Fourier 
transform is first performed for the reluctivity in the 
lamination. Linear cases and integrations (4) can be fully 
handled analytically. 

The eddy-current loss density in the lamination can be 
calculated from the time-varying flux-density distribution as 

 ( ) ( ) 2

0

,
,

z b z t
p z t dz

t
σ

∂⎡ ⎤
= ⎢ ⎥∂⎣ ⎦

∫ . (6) 
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2. QUASI-STATIC FIELDS 

III. THE 2D MODEL 
The 2D finite-element electrical machine model used in 

this work solves the Ampere’s circuital law 

 ( )ν∇× = ∇× ∇× =H A J  (7) 

combined with required circuit equations in the cross-sectional 
xy-plane of the machine using the axial magnetic vector 
potential z( , , )A x y t=A u  as the variable [3]. In the core 
regions, the axial component of the current density J is 
assumed to be zero, and (7) reduces to 

 ( ) 0Aν−∇ ⋅ ∇ = . (8) 

Discretizing the cross-section into elements with N nodes in 
total and applying the Galerkin weighted residual method 
results into a system of N equations for the nodal values 

1( ... )Na a=a  of the vector potential. 
The effect of the in-plane eddy-currents can be accounted 

for in the model by requiring the magnetic field strength H in 
(7) to be equal to the surface field strength s sx x sy yh h= +h u u  
obtained from the lamination model (1) and (2) for both x and 
y components of the magnetic field strength and flux density. 
This is equivalent with expressing the dependency of the 
vector potential on the axial coordinate z as 

 ( ) ( ) ( )
F 1

0

, , , , ,
N

n n
n

A x y z t A x y t zα
−

=

= ∑ . (9) 

Now, instead of one single equation as in (7) and (8), a system 
of NF equations is obtained for the vector potential coefficients 
An. The spatial discretization of each equation is performed as 
before, and the time derivatives can be discretized using e.g. 
the Crank-Nicolson approximation. The resulting system 
consists of NFN equations for the nodal values of the vector 
potential coefficients ,1 ,( ... )n n n Na a=a , with n = 0,…,NF – 1. 
These equations can be solved by using a suitable linear 
system solver and Newton-Raphson iteration in case of 
nonlinear materials. 

IV. APPLICATION AND RESULTS 
The presented model was applied to calculate eddy-current 

losses in a rectangular homogeneous steel lamination with a 
thickness of 2 mm, area of 0.06 m2 and conductivity of 8 MS / 
m supplied by an alternating average flux density 

( )0 y0m ysin(2 )t B ftπ=B u . Using NF = 10 cosine terms to 
approximate the flux density distribution, the eddy-current 
losses at each time step were calculated from (6) by 
integrating over the volume of the lamination. 

For comparison, the eddy-current losses and flux-density 
profiles in the lamination were calculated by a 1D FE 
lamination model similar to the ones presented in [1] and [4]. 
The magnetic vector potential in one half of the lamination 
was approximated by 20 linear shape functions. 

Eddy-current losses obtained from the two models for a 
frequency range of f = 50…5000 Hz and amplitudes of 

y0m 0.5, 1.0 and 1.5 TB =  are presented in Fig. 1. Flux-density 

profiles in the lamination at 1.5 T, 1000 Hz excitation are 
presented in Fig. 2. The results show good agreement. 

 
Fig. 1.  Comparison of eddy-current losses from the two models 

 
Fig. 2.  Comparison of flux-density profiles from the two models with 

y0m 1.5 TB = , 1000 Hzf =  (period T = 1 ms) 

V. CONCLUSION 
A mesh-free eddy-current loss model of ferromagnetic 

laminations for 2D field analysis was presented. The model is 
able to approximate the eddy-current losses equally to a FE 
model. In the upcoming paper, the power balance of the model 
is studied and the model is applied to calculate losses in a 
synchronous machine. 
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2. QUASI-STATIC FIELDS

Abstract — This work deals with the efficient computation of 
per-unit-length impedances of a railway line. Under the quasi-
TEM approximation, valid in a frequency range up to some 
MHz, in this paper a boundary element formulation based on the 
magnetic vector potential is proposed, which leads to a 
straightforward calculation of the per-unit-length impedance 
matrix. The computational burden is dramatically reduced by 
implementing appropriate impedance boundary conditions on 
the rails and on the aerial lines and by substituting in the 
boundary integral equations the fundamental solution with a 
Green’s function satisfying the boundary conditions at the air-
earth interface, avoiding the discretization of the lossy ground. 

I. INTRODUCTION

In order to increase the level of accuracy of multiconductor 
transmission line (MTL) models of railway lines, a key issue 
is the correct computation of per-unit-lenght (p.u.l.) 
impedances, taking into account the real geometry of the rail 
track and the property of the earth. Under the quasi-TEM 
approximation, which for typical values of the earth 
conductivity and geometrical dimensions of the railway track 
system holds in a frequency range up to 1 MHz [1], the 
computation of p.u.l. parameters of the rail track equivalent 
MTL can be carried out using different approaches. 

The classical analytical method is based on the Carson’s 
formula, that is valid under the assumption of filamentary 
conductors and homogeneous earth [2]. In order to take into 
account the real geometry of the rails and the multilayer nature 
of the earth, in [3] the finite element method (FEM) was 
applied. The FEM model of the ground must be sufficiently 
large to enclose all the eddy current distribution, which means 
that the current density must be reduced to practically zero 
before reaching the boundaries. Since the earth is 
characterized by low conductivity, the FEM model of the 
ground must have a characteristic linear dimension some 
orders of magnitude higher than the typical dimensions of the 
conductors, because it must be equal to some skin depths (in 
the order of 102 m at 50 Hz and in the order of 10 m at 100 
kHz). Hence, the computational problem has a multiscale 
nature and the FEM model requires a mesh of a very large 
number of elements (of the order of 104). Furthermore, the 
presence of contact lines, some meters far from the earth, 
requires that a large area of the open space must also be 
meshed.  

In this paper a different numerical approach is proposed, 
based on the boundary element method (BEM). The adopted 

BEM formulation uses the magnetic vector potential (MVP). 
Following [4], a source component is introduced for the MVP 
which leads to a straightforward calculation of the p.u.l. 
impedance matrix of the MTL under analysis. The formulation 
taken from [4] is enriched by the implementation of the 
surface impedance boundary condition (SIBC) with the 
Leontovich approximation [5] on the rails and with its exact 
expression for circular wires [6] on the aereal lines, 
dramatically reducing the computational burden. The 
formulation is also further improved substituting in the 
boundary integral equations the fundamental solution with a 
Green’s function satisfying the boundary conditions at the air-
earth interface: in this way discretizing the lossy ground is not 
needed any more. 

II. BOUNDARY ELEMENT FORMULATION

For the sake of simplicity and without loss of generality, the 
BEM formulation will be presented here referring to the 
geometry of Fig. 1, consisting of a MTL constituted by the 
two rails, the contact line, and the earth. 

Under the hypothesis of a time-harmonic regime with 
angular frequency ω, vector fields are represented using 
phasors: from here on all field quantities are assumed to be 
complex. We also assume that displacement currents can be 
neglected. 

Introducing the magnetic vector potential (MVP) as in [4] 
and expressing it as the sum of a “source” and an “eddy” 
components ������ �� � ������� �� � ������� ��, the electric field in 
the conductors can be expressed as ��� � ������.

A Cartesian coordinate system is introduced, with the z-axis 
parallel to the conductor’s axis. Currents flowing in the 
conductors are z-directed. Under the hypothesis that the 
problem is two-dimensional in the plane of the conductor’s 
cross sections, the vectors ������� ���� ��� ���� ��� can be written as 
���� � ����� � �����, ��� � ����, �� � ����, ��� � �����, and 

��� � �����.
Application of the  Coulomb’s gauge �·A=0 to MVP leads 

to the Laplace equation for the MVP in air 

          ��� � �.         (1) 
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2. QUASI-STATIC FIELDS

Fig. 1. The geometry of the system: conductor 1 and 2 are the rails, conductor 
3 is the contact line. The geometrical dimensions are: c =0.1 m, d =6 m, e = 

1.435 m, and rc = 6 mm.

The boundary integral equation method yields the following 
integral equations 

    
�
�

� � � �� ��
��

� � ��
��

�� �� � ��
�

��
� � ��

� � ��
����

�� �

��
� � ��

����
�� � ��

� � ��
����

��� � �,           (2) 

where C1, C2, and C3 are the conductors contours and � �
� ��

�
��� .

The function g is the Green’s function of an infinite line 
current over the earth 

���� �� ��� ��� � � �
��

��o�����������������

��������������� � � ���������

������
cosλ�� ���

��

������,                      (3) 

where the first term represents the presence of a perfectly 
conductive plane and the second term takes into account the 
presence of the earth. The complex function ���� can have 
different expressions, depending on the chosen model, which 
can assume the earth as homogeneous or made of two or three 
layers [7]. Thanks to the adopted Green’s function (3), only 
the surface integral equations on the contours of the 
conductors have to be solved, without the need of discretizing 
the ground. 

The entries of the impedance matrix can be computed by 
means of the following formulas 

��� � ����
�

��
� ������

���, (4a) ��� � ����
�

��
� ������

���, (4b) 

where ������
��� and Re����

��� are the contribution to the self 
and mutual resistances from the ground return path, that can 
be calculated using the convenient analytical expressions of a 
filamentary current over a homogeneous or multilayer earth 
[7].

III. COMPARISON WITH FEM AND ANALYTICAL RESULTS 

Numerical results given by the BEM formulation are 
compared with analytical solutions and with FEM simulations 
obtained with the help of a commercial software [8]. The 
contact line and the ground are considered of unitary relative 
permeability, while the rails have ��� �  ��� = 20. The 
following values of conductivities are used: σ1=σ2=4.44·106

S/m, σ3=5·106 S/m. In preliminary simulations a homogeneous 
earth has been considered, so that σg1=σg2=σg3 =0.01 S/m. The 
rails are discretized using 40 constant elements per rail, while 
the contact line is discretized with 30 constant elements. The 
integral in (3) is calculated as suggested in [7]. 

Taking as the reference values those provided by Vance’s 
formula [9], that is an approximation of Carson’s formula [2], 
the maximum relative error of BEM simulations of p.u.l. self-
resistance is 4% and of p.u.l. self-inductance is 1%, in a 
frequency range between 10 kHz and 1 MHz. On the other 
hand, the maximum relative error of FEM simulations of p.u.l. 
self-resistance is 15% and of p.u.l. self-inductance is 4.5 % in 
the same frequency range. The errors of FEM results are 
mainly attributed to the finite size of the earth model and the 
BEM model gives more accurate results. 

The analytical computation of p.u.l. self and mutual 
impedances of the rails is not possible, since Carson’s 
formulae and their approximations are valid only for 
filamentary conductors. Anyway, BEM results are in good 
agreement with FEM results. 
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2. QUASI-STATIC FIELDS 12. DEVICES AND APPLICATIONS 

Abstract — A method for reconstruction of defects, buried deep 

under material surface, using pulse eddy currents, is proposed. 

Both an integral-FEM method for simulation of transient eddy-

currents and genetic algorithms, as a model-free inversion 

technique are proposed. Numerical results for the inversion of the 

eddy-currents signals, using genetic algorithms, are shown. 

I. INTRODUCTION 

Pulse eddy currents technique is proposed as a method to 

detect cracks in conductive materials with large thickness. For 

thin structures, Eddy Currents Testing (ECT) using harmonic 

mode was used extensively in the past for detection of cracks 

in steam generator (SG) tubing of pressurized water reactors 

(PWR) of nuclear power plants. Although its advantages, as 

high speed and reliability for the routine inspections, skin 

effect limits this method only to thin and nonmagnetic 

structures. Pulse eddy currents has multiple advantages: its 

rectangular pulse profile accounts for a multi-frequency 

analysis, the lower harmonics penetrating deeper in the 

material, while limiting the heating exposure of the coil-probe 

system to only the short duration of a signal allows an increase 

in the power  [1], [2]. Multiple industrial applications were 

reported, such as detection of cracks in multiple layered plates 

around fasteners for aeronautics industry [3], crack detection 

and thickness and conductivity evaluation in structural steels 

[4]. Current study investigates the possibility to reconstruct 

defects geometry using simulated pulse eddy currents signals. 

For the inverse problem, we apply genetic algorithms. 

II. FORMULATION FOR THE FORWARD PROBLEM 

The proposed method is based on application of T- electric 

vector potential to the integral equation of eddy currents, like 

in [5].  Starting from Maxwell equations in quasi-stationary 

form and the constitutive relationship: 

 

JE ⋅ρ= ,            (1) 

 

where J is the current density, E is the electrical field and ρ is 

the resistivity in the conductive domain Ωc. We suppose that 

the field sources motion relative to the conductive domain is 

slow and therefore the component of the induced field through 

motion is very small and negligible. In the laboratory frame, 

the electrical field is: 

V
t

∇−
∂

∂
−=

A
E ,        (2) 

 

where V is the electric scalar potential and A is magnetic 

vector potential. The magnetic vector potential can be 

calculated using Biot-Savart formula: 

0

0 d
4

A
J

A += 
Ω

v
rπ

µ
,        (3) 

 

with A0 being the magnetic vector potential due to the 

impressed current sources: 

v
r

d
4
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00
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Ω

=
J

A
π

µ
           (4) 

and Ω0  being the air. Only conductive media are meshed. The 

current density is expressed in terms of shape functions 

associated to the edges in the inner co-tree [5] [6]: 

.
1

k

n

k

k TNJ ×∇=
=

           (5) 

Applying Galerkin approach, the following equation system 

is obtained: 

[ ] }{ [ ]
}{

}{U
t

I
LIR =+

d

d
,          (6) 

where the terms of matrices [R] and [L] and the right-hand 

term {U} are detailed in [5], [6]. 

In order to model 2D, zero-thickness defects, from the set of 

inner co-tree edges are eliminated those edges placed in the 

defect surface. The procedure is equivalent to zeroing the 

circulation of scalar electric potential T on those co-tree edges 

[6].   

All the coefficients in the system matrix are unchanged 

through time integration and, therefore, the resulting matrix 

system is formed and inverted only once. This results in 

considerable speed-up of overall computational process. The 

time step is adapted to each particular problem, in order to 

simulate accurately the fast variable transient regime of pulse 

eddy currents. Also, the rich harmonic components of a pulse 

impose adaptation of mesh size to the smallest skin depth, 

corresponding to the largest harmonic component to be taken 

into account [4]. 
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2. QUASI-STATIC FIELDS 12. DEVICES AND APPLICATIONS 

III. INVERSION PROCEDURE USING GENETIC ALGORITHMS  

A genetic algorithm first presented in [7] is used to solve the 

inverse problem of inferring the geometry and position of a 

zero-thickness outer defect. In order to speed-up the numerical 

solution, the parallel version, using Message Passing Interface 

(MPI), available at [8] is adopted. The optimization problem 

consists in finding the extreme of a fitness function, describing 

how accurate the simulation using the set of the actual 

estimated parameters approximate the original signal.  Each 

chromosome corresponds to one parameter to be evaluated, 

like in [9]. The chromosome length is correlated to the 

parameters variation space. In our implementation, the 

maximum chromosome dimension is set to 7, to describe a 

maximum of 128 discrete values, while in a first set of tests its 

dimension is limited to 4. We set the following options for the 

genetic algorithm: variable mutation mode, mutation rate 

varying between 0.001 and 0.25, evolution plan: steady state 

with replace worst, elitism being allowed. 

IV. NUMERICAL RESULTS AND CONCLUSIONS 

The simulation setup for the test problem consists in a 

conductive plate, a pancake coil used to energize the specimen 

and a Hall sensor to pick-up the signal. The pancake coil – 

Hall sensor system is less sensitive to frequency variation than 

the classical auto-induction pancake used in AC testing, which 

in turn can be optimized for a single frequency; for pulse 

excitation, such an optimization is not possible [1][2][9]. The 

plate is 16 cm × 16 cm, with 10 mm thickness and having 

conductivity σ = 10
6
 S/m. Coil dimensions are inner radius 

Rmin = 2 mm, outer radius Rmax = 5 mm, axial length lz = 4 mm, 

liftoff z = 0.4 mm. The pickup sensor measures the magnetic 

flux density and is placed in the coil axis, at z = 0.4 mm. The 

coil signal used is a 70 µs, trapezoidal shaped pulse, and with 

additional rise and fall intervals of 10 µs each, with amplitude 

Imax = 2000 AT, and with a repetition frequency of 50 Hz. 55 

time steps are simulated for a single pulse.  

In Fig. 1 we show the difference between signal with crack 

and signal without crack (difference signal) of z-component of 

magnetic flux density, measured at x = 0, y = 0, z = 0.4 mm 

(centered over the plate) for a 12 mm length, 40%, 60% and 

80% outer, 0-thickness defect.  The peak of the difference 

signal is obtained earlier for larger defects (80%) and at a later 

moment for the smaller defects (40%). Selecting the sampling 

moment according to this observation, we can increase the 

method sensitivity to one specific class of defects [9]. 

The difference signals are used as input in the inverse 

problem, for estimation of the defect geometry. In the first set 

of experiments, we aim to reconstruct the position, length and 

depth of a rectangular, with zero-thickness, longitudinal outer 

defect. The sampling moment used is t = 30 µs. The three 

parameters to reconstruct are set as following: defect length: 

0.4 from maximum 10 mm or 4 mm, defect thickness 60% or 6 

mm, from maximum of 10 mm and defect position 0.8 or 4 

mm from maximum or 5 mm.  

 
Fig. 1. Difference signals plotted against time. Defects are with zero-

thickness, 12 mm long, open on outer side, ranged from 40% to 80%. The 

signal is the z-component of magnetic flux density, at 0.4 mm over the plate. 

 

In this set of tests, each individual in the population is 

modeled with 3 chromosomes (one for each parameter to 

reconstruct), with a dimension of 4 bits per chromosome (to 

model discrete values from 0 to 1 with a 0.1 resolution). A 

population with 25 individuals evolves over a maximum of 

120 generations. The parallel implementation for genetic 

algorithm described in [8] was used. The final estimation for 

the three parameters of (0.4, 0.6, 0.8) is approximated as (0.5, 

0.6, 0.7). In the full paper we will extend the results for more 

complex defect geometries reconstructions, using a matrix-like 

representation of the defect zone, each cell corresponding to 

one chromosome.  
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Abstract — The coupling strategy between linear MHD solvers 
and 3D electromagnetic codes based on the control surface 
concept, initially developed for the analysis of the non-
axisymmetric resistive wall modes in air core fusion devices, is 
extended to the problem of shape and position control in the JET 
tokamak. This case is characterized by the presence of a 
ferromagnetic iron core, and the main objective of the study is 
the axisymmetric component of the plasma motion. 

I. INTRODUCTION

 The design and operation of effective control 
systems requires predictive models of the evolution 
of the plasma in the presence of complex 3D 
conducting structures. In [1] a linearized, non-rigid, 
MHD consistent model of the plasma vertical 
displacements is presented. It is in practice a 
perturbed equilibrium model, which is accurate and 
can be used for open loop analysis, sensor location 
optimization and controller design. Similar models 
have been proposed for the analysis of non-
axisymmetric resistive wall modes [2]. For the 
modelling of the complex 3D structures, an integral 
formulation of the eddy current problem [3] was 
developed and successfully applied to the analysis of 
several cases of interest. A challenging problem is 
still related to a self consistent description of the 
MHD plasma models coupled to a detailed 
description of the passive structures. Although in 
some cases this coupling has been already efficiently 
modelled [4], this complex interaction still require a 
deeper analysis not only in future devices but also in 
the present tokamak experiments like the Joint 
European Torus (JET) tokamak, for which the effect 
of the bellows in the vacuum vessel has been already 
analyzed in a previous paper [5]. This effect is 
enhanced by the presence of the vacuum vessel 
ports and should be carefully analyzed since the 
time constant of the saddle currents, due to the 
presence of the ports, could be significant. Another 
important source of 3D field perturbation is 
represented by the combined influence of the in-

vessel components, the mechanical structure and 
the iron core.
 The method proposed in this paper uses the 
coupling strategy between linear MHD solvers and 
3D electromagnetic codes based on the control 
surface concept, initially developed for the analysis 
of the non-axisymmetric resistive wall modes in air 
core fusion devices [2, 6]. This technique is 
extended to the problem of shape and position 
control in the JET tokamak, characterized by the 
presence of a ferromagnetic iron core, for which 
the main objective of the study is to provide a 
linearized response model of the axisymmetric 
plasma motion in the presence of 3D structures. 

II. THE COUPLING PROCEDURE

 The coupling procedure used for the derivation of 
a linearized plasma response model in the presence 
of 3D magnetic and conducting structures requires 
the solution of three auxiliary problems. A suitable 
coupling surface, the virtual ideal wall (VIW), is 
chosen. This closed surface divides the domain Ω
in two parts, namely the internal domain Ωmhd,
where the plasma dynamics is described by the 
ideal MHD model, and the external region Ωem, in 
which the 3D eddy current model is used for the 
description of circuits, 3D magnetic media, and 3D 
conducting structures.

Problem 1
 The first problem is defined in Ωmhd, where the 
ideal MHD equations hold. The terms related to 
plasma mass are neglected [1-2]. Being interested 
to magnetic axisymmetric control, we solve: 

⎪
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⎧
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where  is the linearized form of the left hand side 
of the axisymmetric Grad-Shafranov equation: 
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where μ is the magnetic permeability, ψ the 
poloidal flux per radian, Jϕ the toroidal component 
of the current density, and s a set of plasma 
parameters, e.g. total plasma current, poloidal beta 
and internal inductance. Due to the lack of 
continuity of the tangential field, an artificial 
surface current distribution Js1 arises on the VIW. 

Problem 2
 The second problem is defined in the external 
domain Ωem. In the presence of an iron core the 
problem is non-linear and a linearization procedure 
is needed. We use the formulation described in [5], 
i.e., the standard eddy currents equations in the 
time domain with the assumption that the 
magnetization M is nonlinearly related to the 
magnetic flux B:

( ) (BMMHB G=+= ,0 )μ (3)

 We solve the above stated problem using an 
integral formulation, well established for the 
analysis of the complex 3D structures. The 
solenoidality of the current density is warranted by 
the introduction of the electric vector potential T
(such that J=∇×T) with a two-component gauge 
condition [5] to guarantee its uniqueness. We give 
a finite element discretization of iron and 
conductors, using edge elements Nk to approximate 
T, so that:

T = ∑k Ik Nk ⇒ J = ∑k Ik ∇×Nk (4)
while the magnetization vector is supposed to be 
piecewise constant (Pk’s are unit vector pulse 
functions):

M = ∑k Mk Pk (5)
The degrees of freedom in problem 2 are the 
coefficients Ik.. The average axisymmetric 
component of the poloidal magnetic flux on the 
VIW is set to zero by adding a magnetostatic field 
in the whole domain generated by suitable 
axisymmetric surface currents Js2 located on the 
VIW. Suitable distributions of non axisymmetric 
surface currents can also be added to cancel other 
harmonic n>0 components of the field on the VIW 
[2]. The resulting field inside Ωmhd is then zero. 

Problem 3
 The last step is needed to restore continuity of the 
tangential field on the VIW. For each degree of 
freedom of the linearized problem, i.e., δs and δI,
we superpose the contribution due to a surface 
current density opposite to the previous ones 
computed in steps 1 and 2:  
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Dynamic model
 The superposition of the three contributions can 
be used to derive the plasma response model by 
calculating the flux linked with each voltage driven 
circuit as well as the magnetic vector potential in 
the eddy current region, obtaining:

dt

sd
LVIR

dt

Id
L

s

δδδδ ** −=+    (7) 

where *L  is the modified inductance matrix taking 
account of plasma contribution [1-2, 6], *

s
 is a 

similar term related to the plasma parameters, and 
L

V  is the set of applied voltages. 
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Abstract — A magnetodynamic formulation is developed within 
the Finite Volume Method to address specific multiphysic issues 
involved in circuit breaker modeling. The coupling of various 
methods is described. Attention is paid on the non-linear 
magnetostatic problem. It is shown that the magnetic saturation 
effects have to be taken into account to correctly assess the force 
acting on the electric arc and, henceforth, not to jeopardize the 
modeling of the breaking process. 

I. COUPLED ELECTROMAGNETISM AND FLUID DYNAMICAL 

MODELING

Various multi-physic modeling, and more particularly the 
current breaking modeling, requires fluid dynamics and 
electromagnetic models [1]. Whereas conventional Finite 
Volume Method (FVM) is usually dedicated to Computational 
Fluid Dynamics (CFD) and enforces the local conservation of 
mass, momentum and energy [2]; low-frequency 
electromagnetic resolutions minimize global energy 
functionals from which is derived the Finite Element Method 
(FEM) [3]. Hence, magneto-hydrodynamics problems are 
currently resolved using either: 

• a FE dedicated-CFD code, which is not competitive 
for compressible flow with high Mach Number; or 

• a hybrid method combining a FVM and a FEM, 
thereby sacrificing the high level of integration and 
the accuracy achieved with a single mesh [4]. 

Thus, the search for a common, effective and integrated model 
calls for a single numerical method for the two phenomena. In 
this work, an electromagnetic model based on the FVM is 
adopted to keep both numerical efficiency and accuracy for the 
CFD side. 

II. ELECTROMAGNETISM WITH THE FINITE VOLUME METHOD

Previous studies established the finite volume method 
capabilities to (i) model the stationary current flow; (ii) 
determine the field in the vacuum; and (iii) characterize the 
field deformation around ferromagnetic pieces [5]. In order to 
progress towards a fully electromagnetic FVM package, a 
specific formulation should be developed to take into account 
non-linear magnetostatic properties. 

A. Formulation 

For 3D magnetostatics using a T-φ formulation, the 
magnetic field reads H=T0−∇∇∇∇φ, and the magnetic flux density 
divergence-free is expressed as a diffusion equation with a 
source term resulting from the field T0 obtained in the vacuum 
case: 

0

sourcediffusive
termterm

div( ) div( )r rµ φ µ− ∇ = − T
 

 (1) 

where µr is the non-linear magnetic permeability. 
Among the various choices to describe the non-linearity [6], an 
“arctang” law with two parameters is used. After the vacuum 
magnetostatic resolution and the set-up of the relative 
magnetic permeability µr – typically the half-value of the 
relative magnetic permeability at the origin µr_init –, the 
computation is performed with an updating of µr at each 
iteration. To avoid the oscillation around the solution, an over-
relaxation on µr is used. 

µ(n)=(1−α) µ(n−1)+α µ(H)

µ(0) =µr_init/2

H= T0− ∇∇∇∇φ

T0 resolution

Compute ∇φ

Convergence? 
∑c| divB |<ξ

div(−µ(n) ∇φ) = div(−µ(n) T0) 

Set-up

Fig. 1. Algorithm chart for the resolution of a non-linear magnetostatic 
problem. 

The inspection of the flux density conservation provides a 
criterion to check the convergence. 

B. Application to saturation modeling 

The previous formulation is used in a 2D case where two 
circulars conductors supplied by steady opposite currents 
excite a non-linear ferromagnetic plate (Fig. 2). 

non-linear 
magnetic 

plate

conductors 
supplied by 
a current

Fig. 2. Refraction of the H-lines around a non-linear ferromagnetic plate 
excited by two conductors supplied in opposition. 
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The saturation is observed qualitatively and the numerical 
comparison with finite element computations – achieved with 
Flux2D software – show that the relative error in energy 
deviates less than 5% (Fig. 2). 
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Fig. 3. Energy and co-energy curves reduced by squared current (left) and the 
maximum relative error computed with FEM (right) vs. supplied current. 

Hence, the extension of the T-φ formulation in 3D is quite 
straightforward [7]. 

III. CIRCUIT BREAKER MODELING

In the breaking process, the transient effects can be 
neglected in a first approach [8]. Therefore it is possible to 
model the whole breaking process within the previous FV 
electromagnetic developments. 

A. The framework of the resolution procedure 

The figure 4 describes the resolution procedure for each 
iteration. The previous formulation was implemented within 
the plasma physics-dedicated Schneider Electric software [9]. 

T,P

Fluid Dynamical 
model

Emag 
model

J,B

σ

T,PElectrical 
Properties

Energy
source terms

Momentum
source terms

Radiation 
model

Arc root 
model

Radiation
losses

Roots
losses

Arc roots drop
Voltage

Lorentz
force

Joule
losses

T,P

J ×B 2ρJ

Fig. 4. Chart of the resolution procedure for the breaking process modeling (T
temperature, P pressure, σ electrical conductivity)

All the models (real gas, radiation, root model and 
electromagnetism) are driven by the fluid dynamic based core 
[10]. These models are the inputs of source terms in energy 
and momentum. In the case of electromagnetism, the Lorentz 
forces and the Joule losses are introduced in fluid dynamical 
solver (Fig. 4). 

This resolution with the CFD Fluent code is achieved 
thanks to its explicit solver, which uses a Gauss-Seidel method 
with a multi-grid resolution. 

B. Circuit Breaker Modeling 

The figure 5 shows an experimental mock-up, composed of 
two feeders, three ferromagnetic splitters plates, and a far 

pressure outlet. The mesh has 400.000 cells and the unknown 
solving are (ρ,v,H,V,T0,φ), respectively density, velocity, 
Gibbs’ energy, electrical potential, field in the vacuum and 
magnetic scalar potential. The computational time for a 
breaking process modeling is about 3 weeks on Pentium Xeon 
2 GHz -2Go RAM. 

The figure 5 also provides three iso-values of the current 
density when the arc enforces the ferromagnetic splitter plates. 

saturation of the 
splitter plates

µr

I

feeders

Fig. 5. Modeling of the breaking process: While the electric arc is displayed 
with three iso-values of the current density (1.5⋅107; 8.0⋅106; 5⋅106 A⋅m−2), the 
saturation of the splitter plates is effective and represented with the relative 
magnetic permeability µr. 

As a result, the saturation of the splitter plates is effective 
during the breaking process, showing that a non-linear 
treatment of the field is required to avoid an over-estimation of 
the driving force acting on the electric arc [11]. 
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Abstract — A weak coupling technique for an electromagnetic 
and a structural dynamic model for the finite element method 
(FEM) is presented. The algorithm fits the needs for acoustic 
simulations of electrical machines, and additionally offers an 
interface to any analytical treatment of the electromagnetic part. 
The algorithm will be applied to simulate vibrations of a skewed 
induction machine using FEM. 

I. INTRODUCTION

For the numerical calculation of audible noise generated by 
electrical machines, it is necessary to simulate the mechanical 
vibrations of the stator. Based on the results of an 
electromagnetic simulation, the periodic reaction forces acting 
on the stator core stack at the air gap of the machine are 
estimated first. In a second step, the mechanical displacements 
caused by these forces on the surface of the stator are 
calculated by a FEM structural analysis. Displacements 
obtained in this way present one of the main sources of the 
audible noise in electrical machines. An example for this 
procedure can be found in [1]. 

Normally, the electromagnetic simulation has to be 
performed in the time domain for taking into account the rotor 
movement, and therewith the force- and field harmonics, 
relevant for the acoustic computation. Depending on the 
machine type, 2D, so called multi slice or if necessary also 3D 
models are conceivable.  

For the mechanical part, the steady state vibrations are of 
interest, therefore, the structural simulation is usually done in 
the frequency domain by a linear time harmonic FEM 
computation. For the consideration of the often complex 
structural behaviour and boundary conditions, a 3D model is 
usually needed. In this case, 2D models represent quite a 
simplification and are therefore seldom used. 

So the two models for the electromagnetic and structural 
simulation take care of quite different aspects and hence, apart 
from the underlying geometry, they have few common 
features. Especially the very small element size of the 
electromagnetic mesh near the air gap is inappropriate for a 
direct adoption into the structural model. As a result, the 
meshes of the two models are generally nonconforming with 
respect to each other and a coupling algorithm accounting for 
this has to be implemented. Usually, for acoustic concerns, the 
structural and the electromagnetic part can be handled 
independently (so called weak coupling), since the very small 
vibrations compared to the air gap length cause only a 
negligible fluctuation of the magnetic fields.  

The coupling task consists mainly of a transformation of 
the electromagnetic forces from one mesh to the other. An 
important special case is the mapping from a 2D 
electromagnetic model to a 3D structural one. The procedure 
will be outlined for this case first, and then extended for multi 
slice and 3D electromagnetic models in the final paper.  

II. EXPRESSION OF DISTRIBUTED SURFACE LOADS BY THE 

MEANS OF EQUIVALENT NODAL FORCES

The force output of the electromagnetic simulation is 
usually given in form of an electromagnetic surface force 
density σ (N/m2), acting on the iron core stack. From a 
mechanical point of view, σ is therefore a distributed force 
load on the surface of the structure. 

The displacement based FEM formulation for a linear 
undamped structural dynamic problem can be stated as (see 
e.g. [2]) 

2

2

d

d
+ = NuM K u f

t
, (1) 

where M denotes the mass matrix, K the stiffness matrix, and 
u as well as d2u/dt2 represent the unknown displacements 
respectively their second time derivate. f N on the right hand 
side corresponds to the input load vector of equivalent 
concentrated nodal forces. To apply distributed surface force 
loads to this formulation, they need to be expressed in form of 
such equivalent concentrated nodal forces. Using the principle 
of virtual displacements (see [2]) this can be accomplished by 
the term 

) d= ∫i i i

i

N T sf
m,Γ m,Γ m,Γ

Γ

f ΓH f( , (2) 

stated for a single element m with a distributed force 
i

sf
m,Γf  

acting on the surface Γi of the element. Hm,Γi denotes the part 
of the elemental displacement interpolation matrix 
contributing to any displacements on the element surface Γi.
Therewith,

i

N
m,Γf  corresponds to the vector of equivalent 

concentrated nodal forces representing the surface load on the 
element m.

III. TRANSFORMATION OF THE ELECTROMAGNETIC FORCES 

As the electromagnetic computation has to be performed in 
the time domain, σ(tn,x)  is given in dependence of the time 
instant tn and the position vector x on the iron surface. On the 
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other hand, the structural steady state computation is done by 
a time harmonic simulation and σ(tn,x) has to be expressed 
therefore by its equivalent (see e.g. [3]) 

max

21 ( )

0

1
( , ) ( )

π
ωσ ω σ

− −

=
= ∑

kω

m m

N j n

nk
n

x
N

t ,x e  (3) 

in the continuous frequency domain. With the indices n and k,
for the time- respective frequency index, the time period T and 
the total number of time samples per period N, the discrete 
angular frequency ωk in (3) can be expressed as 

2
, 0

π
== …k k k N

T
ω 1− . (4) 

Furthermore, ωmax corresponds to 

max

2πω = N
T

 (5) 

in this case. Equation (3) basically results from the standard 
discrete Fourier transform (DFT) algorithm which is mapped 
into the continuous frequency domain used for the time 
harmonic computation of the structure. The factor 1/N
therefore accounts for the fact that the DFT algorithm weights 
the resulting spectral lines with the number of time samples N.

For the transformation of the electromagnetic forces from 
one mesh to the other, an interpolation of the force density 
over the position coordinates is helpful, since it delivers a 
mesh independent description of the force distribution for the 
integral in (2). Due to the very fine mesh near the air gap, 
there are usually enough sample points to get a smooth 
function. Although this would be already sufficient for the 
force mapping onto the structural mesh, for acoustic 
computations, an additional step accounting for the periodicity 
of the angular position coordinate of a rotating machine, is 
often useful. In consequence of this periodicity, a second 
transformation of the forces into the spatial frequency domain 
is possible. Considering a 2D electromagnetic model with, 
apart from the slotting, constant radius of the iron - air gap 
interface, the general force density σ(tn,rm,φm,zm), given in a 
cylindrical coordinate system, reduces to a description of the 
form σ(tn,φm), neglecting any forces in the slots. The index m
denotes the interpolated equidistant spatial sample points. 
Given this, a second DFT can be applied, leading to  

21 ( )

0

1
, 0e

π− −

=
== ϕ∑ …

l m

l l

pM j
M

mk k
m

p M
M

σ(ω , p ) σ(ω , ) 1,−  (6) 

where M denotes the number of spatial samples. Thus σ(ωk,pl),
besides the angular frequency ωk, is now given also in 
dependence of a spatial frequency pl. For acoustic 
computations, this form is more intuitive than the form given 
in (3), as it is very close to the formulation an analytical 
treatment of the acoustic computation for the electrical 
machine would deliver (e.g. [4]). Additionally, only a small 
part of the information present in σ(ωk,φ) respective σ(ωk,pl),
in particular the parts with small spatial frequencies, produces 
any noise relevant mechanical vibrations. So, for an acoustic 

analysis, the force description (6) depicts more clearly the 
source and cause of any audible noise. Furthermore it offers 
the possibility to investigate single spatial spectral lines, 
delivering in this way a better insight into the structural 
reaction due to specific parts of the entire excitation.  

Fig. 1. Vector plot of the resulting equivalent nodal forces f N on the 
cylindrical surface of an iron ring. On the surface, a radial directed, 
distributed force with a single spatial frequency of pl = 3, constant along the 
z-axis, was applied. As the surface elements are not equally distributed and 
are varying in size, the amplitude of the nodal forces is varying too, along 
the axial direction. 

As already indicated, the description with spatial 
frequencies is really near to the analytical description of the 
machine, so it offers also a simple interface to any analytical 
force calculations. On the other hand, due to the totally 
decoupled meshes, the force distribution can be applied not 
only to the real structure, but also to more or less arbitrary 
simplifications of it, like e.g. iron rings used for analytical 
computations, see [4].  

If due to more complex electromagnetic models, the 
surface forces are not constant along the axial direction, as it 
is the case for multi slice or 3D models, the axial force 
behavior has to be interpolated, too.  

IV. PRELIMINARY RESULTS

The procedure has been implemented so far for a 2D 
electromagnetic model of an induction machine. The force 
transformation onto the structural mesh has been tested on a 
freely meshed 3D iron ring structure. Fig. 1 shows a vector 
plot of the estimated nodal forces for a radial surface force 
density with a single spatial frequency of 3 and constant 
behavior along the axial z-axis. For the final paper, the 
coupling mechanism will be implemented in order to compute 
vibrations of a skewed induction machine for a multi slice 
electromagnetic and a 3D structural machine model. 
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Abstract_The aim of this paper is to compare strong and weak 
coupling of the PEEC and MoM methods applied to the 
modeling of magnetodynamic problem, and to generalize the 
weak coupling approach. MoM and PEEC are dedicated to 
the modeling of specific parts of the overall device. As an 
example of validation, we chose the modeling of a simple 
transformer. Resolutions of several weak couplings are 
compared to the strong coupling approach. Both linear and 
non-linear problems are treated.  

Index terms_PEEC method, MoM method, weak/strong 
coupling, iterative methods. 

I. INTRODUCTION 

The PEEC (Partial Elements Equivalent Circuit) approach 
can model many ranges of cabling and interconnections in 
electric structures. The MoM method (Method of Moments) 
is employed to solve ferromagnetic materials interactions. 
Couplings have been developed [1]-[2] to take into 
consideration the influence of electric circuits and magnetic 
regions to the modeling of electric devices. This study 
compares coupling strategies. 

II. PEEC AND MOM METHODS 

A. The PEEC method 
The principle of the PEEC method is to decompose a closed 
circuit into several parts, then calculate the mutual between 
them also the contribution of each of these elementary 
circuits to the total inductance. Inductance formulas (1) can 
be solved for different geometries [1]  

∫=
C

tot ldA
I

l


.
1

                          (1) 

A  is the vector potential obtained with  Biot-Savart’s law, 
c  is the whole contour of the conductor circuit which can 
decomposed in N segments, and I  the electric current in 
the conductor. We can also express the global inductance as 
follows (2) 

∑∑
= =

=
N

n

N

m
nmtot MpL

1 1

                     (2) 

nmMp is the mutual partial between segment n and 

segment m calculated taken into account the shape, 

disposition and distance of the N conductors between them. 

B. The MoM method 
The MoM is an integral approach. It is well adapted to the 
modeling of radiating devices with simple geometries [3]
The global elements magnetic field is given by (3) 

redext HHH +=                        (3) 

The discretization of the material gives us the magnetic field in 
any point P of the material (4) 

dv
r
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r
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35π

      (4)                    

extH  and redH  are respectively the excitation  magnetic field 

and the reaction of the material to the source field, and M  is 
elements magnetizations.  

III. PEEC-MOM COUPLING 

The coupling of PEEC and MoM method can be carried out 
strongly by the expression of a unique linear system to solve 
[2], or weakly by iterations over both the two methods. 

A. Strong PEEC-MoM  
The strong PEEC-MoM coupling developed in [2] aimed at 
grouping in one global matrix the overall modeling (5), 

[ ]TV
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AA
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2221

1211 =






×






                     (5) 

 ][ 11A is the MoM interaction matrix,  ][ 12A  gives the 

influence of conductors on magnetic region with Biot-Savart’s 

law. The opposite influence is given by  ][ 21A  using Maxwell-

Faraday’s law, and finely [ 22A ] is the impedance matrix 

obtained from PEEC method. 
The resolution of the system (5) gives [M I]T vector composed 
by magnetizations of the material elements and the electric 
current in the conductors, according to the sources [0 V]T. 

B. Weak PEEC-MoM couling 
Each method is available separately; the coupling proposed is 
then based on iterative methods. The First weak coupling uses 
a linear system solving method for both PEEC and MoM as 
presents the algorithm in Fig. 1.  

Fig.  1. Algorithm of weak coupling iterative approach 

The Second and Third weak couplings use iterative methods 
(Jacobi or Gauss-Seidel) in order to solve linear systems, 
taking advantage of the existing loop.  

Currents linear solving (Ohm + PEEC)

External field = f(I)  (Biot & Savart)

Magnetization linear solving (MoM)

M and I 
convergence

Induced voltage = f(M) (Faraday)

inputs : V 
initializations : M, I 

no

yes 
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C. Influence of non linear effects 
Here we try to introduce the effect on the coupling of a non 
linear magnetic material. Reader must be aware that only 
MoM magnetization maximal value is affected by our basic 
non-linear modeling, PEEC solving has been kept with pure 
sinusoidal currents. The main idea is to linearize 
ferromagnetic material to solve iteratively linear systems 
with an equivalent permeability, taking advantage of the 
existing loop. Then we will see convergence properties of 
the coupling, even with temporary approximated currents. 

IV. APPLICATION 

The application example is the modeling of a simple 
transformer (Fig. 2). Two square conductors are placed on 
two parallel planes and a magnetic core is placed through 
their centers. The first conductor is powered by an 
alternative source voltage (1V, 1kHz). The second 
conductor is short-circuited. 

Fig. 2.  Geometry of the test device 

For the same results of currents and magnetizations, the 
resolution time between the strong and weak couplings are 
compared. 

A. Results 
Three comparisons have been made on system solving time, 
iterations number, computer memory, regarding the number 
of unknowns; one for a linear modeling, and two with non-
linear iterations with and without saturation.
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B. Comments 

- linear case (Fig.3): the strong coupling reaches the result 
without iterations since it is a pure linear solving method, but 
time for high number of unknown is greater than weak coupling 
using GS. The case of weak coupling with direct linear solving is 
particular here since oscillations appear during convergence.  

- non-linear material without saturation (Fig. 4): iterations of non 
linear solving are totally hidden by weak coupling solving. Only 
strong coupling results change compared to Fig. 3 to reach non 
linear convergence. It can be noticed that memory limitations 
have been compared with a limit about two times greater for 
weak coupling GS comparing to strong coupling. 

- non-linear material with saturation (Fig. 5): weak coupling 
using iterative method shows slow convergence surely due to the 
interaction between iterative linear solving with approximated 
permeability. Here weak coupling with direct linear solving is 
the best (approximated permeability seems to act as a relaxation). 

V. CONCLUSION 

Different strategies of weak coupling of the PEEC and MoM 
methods have been compared with the strong coupling. It 
appears that weak coupling is better in term of time resolution 
and memory saving but for different method depending cases. 
An interesting improvement can be realized for both GS method 
in the case of saturated material, and direct linear solving in non 
saturated case to respectively speed up and relax convergence. 
Adding to the gain on time and memory, the weak coupling 
presents other advantages like, easy understanding because it 
repeats faithfully the evolution of physical phenomena in system, 
more flexible and parallelizable tasks, and also reusability of the 
codes developed. 
Perspectives are the modeling of more realistic non linear MoM-
PEEC coupling. And then we try to establish interface 
specifications on MoM and PEEC methods to be easily coupled. 
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Abstract — The paper presents the thermal and fluid dynamics
prediction of a distribution transformer. The model is based on 
the solution of the Navier-Stokes equations and the Maxwell
equations which are solved sequentially. The thermal-fluid
equations are solved using first-order finite elements and the
characteristic-based-split scheme was used. The model results
are compared against those obtained with commercial CFD
software.

I. INTRODUCTION 
In the design of electrical equipment, i.e., motors, 

generators and transformers, one design aim of the engineers 
is the minimization of the losses to increase efficiency and to 
avoid high temperatures within it. Thermal prediction is 
important because it allows assessing the dissipation of losses 
in the equipment. In addition, the insulation damage is directly 
linked to the hot-spot winding temperature; most of the 
transformers are immersed in mineral oil which has the 
functions of acting as a coolant and as an insulator. The 
cooling of transformers can be achieved by force-air (dry-
type), natural and forced convection (oil-filled) or a 
combination of them. Conduction, convection and radiation 
are the forms of heat transfer in the transformer. The Navier-
Stokes equations can model the thermal and fluid dynamics of 
oil-filled transformers [1]. In this paper, two-dimensional (2D) 
Finite Elements (FE) are used to solve the Maxwell and 
Navier-Stokes partial differential equations. The loss density 
in a distribution transformer are computed under no-load and 
load conditions using two FE models; the loss density is then 
employed in the Navier-Stokes equations which are solved 
using the Characteristic-Based-Split (CBS) scheme to 
compute the transient behavior of temperature and velocity 
fields within the transformer. The mathematical formulation 
was coded in C and the thermal results were validated using 
commercial software. The paper presents initial results of a 
project to couple the fluid dynamics and electromagnetic 
phenomenon in order to have a model for the integral analysis 
of transformers. 

II. ELECTROMAGNETIC FIELD MODEL 
The electrical losses generated within a transformer are: 

winding (dc and eddy), core and stray losses; the latter are 
neglected because its small numerical values. A 1500 kVA, 
13200/220 V, delta-wye transformer was used in this paper 
[2]. The induced eddy current loss was calculated simulating 

the load test, and its governing equation for the axi-symmetric 
model is [3] 

( ) ( ) ( )
s
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∂
∂
∂ ωσνν  (1) 

where ν represents the reluctivity, ω is the angular frequency, 
σ is the electric conductivity, A is the complex magnetic 
vector potential, Js is the source complex current and r is 
radius. 
The winding eddy current loss is calculated with 

ww d
BbfJ

P
w

Ω⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= ∫∫∫

Ω 6

22222 σπ
σ

 (2) 

where Pw stands for the winding losses, f is the rated 
frequency, b is the dimension of copper strip in the flux 
density B directions (x and y), J is the current density and Ωw 
is the winding region volume. 

The no-load core-loss is computed with the 2D Cartesian 
expression for the non-linear Poisson equation coupled to an 
external voltage source and after discretizing it using first 
order finite elements, it can be expressed as 
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where S is the FE stiffness matrix, P and Q are weighting 
winding matrices, R is the external resistance, L external 
inductance, Iw a vector of winding currents, Ve denotes the 
external potential sources and A represents a vector of 
complex potentials. 

The core loss is calculated using the computed flux density 
with (3) and the core-loss information given by the core 
manufacturer as 
 

( )∫∫∫
Ω

Ω=
c

cccfe dBfmP ρ  (4)

where f(B) is the specific iron loss, mc denotes the core 
weight, ρc is the density of core oriented steel and Ωc is the 
core volume. 

III. THERMAL FIELD MODEL 

The fluid and thermal behavior for oil-filled transformers 
with natural cooling are described by the continuity, 
momentum and energy equations, they are also known as the 
Navier-Stokes equations [4]. For incompressible fluids and 
constant density, the set of equations are: 
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a) Continuity equation (or mass conservation) 

0=
∂
∂

i

i

x

U
 (5) 

where i=1,2 denotes the components of Ui in 2D, Ui=ρui, u 
denotes the velocity, ρ is the mass density and xi are space 
variables. 
b) Momentum equation 
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and i=1,2;  j=1,2, P is the pressure, µ represents the 
kinematics viscosity, g is the gravity, τ is the viscosity tensor, 
and t represents time. 
c) Energy equation 
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where E is the stored energy per unit mass, T denotes the 
absolute temperature and k is the thermal conductivity. 

After applying the characteristic Galerkin procedure to the 
discretization of (5-7), and applying the Characteristic-Based-
Split scheme, where in the first step, the pressure term is 
dropped and an intermediate velocity is calculated. In the 
second step, the pressure is calculated and at step 3, the 
velocities are corrected [4]. The set of discrete equations to 
solve are, 
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where M, C, Ks, Km and Kt are matrices that contain material 
properties and domain geometry. U1

* and U2
* denote velocity 

related terms in the first step of the CBS scheme. T is the 
temperature, Cp is the specific heat, A is area, q is the heat 
source, represents the distance between nodes at a 
boundary and 

ℑ
q denotes power density dissipated in a surface 

boundary. The parameter θ2 are related to the time 
discretization of the equations. The identity vectors I and I1 
are used for the heat source and boundary regions. 

IV. SIMULATION RESULTS 

A first order FE mesh was constructed to compute the 
transformer losses [5]. Using the same mesh, with the proper 
classification of regions (solid and fluid), the Navier-Stokes 
equations were solved. The thermal distribution obtained with 
the formulation presented here and from the commercial 
software are shown in figs. 1-2 [6]. Good results were also 
achieved for the velocity field of the transformer oil. Dirichlet 
boundary condition was used, but the model can handle 
convective and radiation boundary conditions. More results 
will be presented in the full paper version. 
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Fig. 1 Temperature distribution (°K) calculated at 60s using the model. 

 
Fig. 2 Temperature distribution (°K) at 60s using the commercial software. 
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Abstract —A fully coupled magneto-mechanical model is 
proposed for simulating the effect of the magnetostrictive and
magnetic forces in iron and applied to electrical machines. The
model is based on the general balance laws of electromagnetism,
mechanics, and continuum thermodynamics and it is 
implemented in 2D by using a conforming finite element method
for the magnetic vector potential and the displacement field.  The
simulated results are in accordance with measurements on a test
device.

I. INTRODUCTION

In non-linear magnetic media, the magnetic permeability
depends on the magnetic, mechanical and thermal behavior.
The magnetostriction depends on the field and on the stress
state of the material. Previous research mainly treats the
magneto-mechanical coupling problem as an indirect strongly
or weakly coupled problem [1], [2]. In the weak coupled
problem, local magnetic forces and local forces due to 
magnetostriction are calculated and the displacement is
evaluated from those. The magnetic flux density updating is
realized through measured permeability curves dependent on 
stress as in [3]. However, the more complex direct coupling
requires a formulation of the interaction of different factors on
the behavior of the material. This paper reports on a numerical
implementation of a model for isochoric magneto-elastic
deformation describing the coupled behavior of magnetic and
mechanical properties of the material.

II. MODELING MAGNETOELASTIC DEFORMATION

The constitutive equations coupling the magnetic and 
elastic properties of the material are derived from a suitable 
form of the Helmholtz free energy presented in [4]. The 
material is supposed to be isotropic and isochoric. The model
is extensively justified in [4] and [5].  The magnetic field
strength vector H is related to the total strain tensor εtot and 
flux density vector B by

( ) (1
tot 0 tot, = ,µ− +H B B M B )ε ε .                     (1) 

The total stress tensor, τ for iron is defined as the contribution
of the Cauchy stress tensor�� and the electromagnetic stress
tensor τem

( ) ( ) ( )tot tot em tot, = , ,+B B Bτ ε � ε τ ε .                (2) 

The necessary 6 parameters of the model are identified from
unidirectional magnetostrictive stress measurements from a 

modified Epstein frame [5]. Figure 1 shows the measured
magnetostrictive strain and corresponding results from the
model for both cases of compressive (curves 2-4) and tensile
(curves 5-9) mechanical pre-stresses. The best fitted curve
(curve 1) corresponds to no mechanical pre-stress.

Fig. 1.  Magnetostrictive strain vs. magnetic flux density in the presence of 
tensile and compressive pre-stresses. 

III. PROPOSED FINITE ELEMENT METHOD

The magnetic flux density and the displacements are 
solved at the element level by a coupled 2-D FEM approach 
and the Galerkin weighted residual weak form is 
implemented.  The first order linearization of H and τ  for the 
Newton’s iteration are written as 

( ) ( )0= δ δ+ ∂ + ∂BH H H B Hε ε                        (3) 

( ) ( )0= δ δ+ ∂ + ∂B Bετ τ τ ε τ .                           (4) 

The iterative changes of the magnetic flux density, magnetic
vector potential, strain, and displacements are denoted asδB ,
δ A ,δε  and δu , and they are related by:

=δ δ∇×B A                                          (5) 

( T1

2
=δ δ δ∇ ∇u + uε ) .                               (6) 

The nodal displacements ui and vi in x and y directions and the
nodal values of the magnetic vector potential ai are the 
quantities solved according to (5) and (6). The Jacobian 
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matrix for the system of equation is expressed from (3) and
(4). Through this formulation, the effect of the magnetic field
on the elastic field is accounted for as well as the effect of the
elastic field on the magnetic field. The procedure is outlined in
Figure 2. 

Fig. 2.  Simplified flowchart illustrating the magneto-mechanical directly 
coupled finite element method.

IV. RESULTS AND VERIFICATIONS

The method is applied to a 4-pole 15 kW induction
machine and also validated by comparing measurements and
simulations from a test device. In the first case, the 
displacements in the rotor shaft are set to be zero in all 
directions. The outer surface of the stator can move in the 
radial direction only and all the other nodes are free. The
contribution of magnetostriction and magnetic forces in iron,
only, tends to expand the shape of the machine as seen in 
Figure 3. The simulation was performed under the rated
voltage of 380 V and a slip of 3.2%. The amplitude of the
maximum magnetic flux density in some parts of the machine
(in some of the stator and rotor teeth, for instance) was 2 T.
The distribution of the magnetic flux density is presented in
Figure 4. 

Fig. 3.  Deformation of 15 kW induction motor due to magnetos ction and tri

ui = 0
v i = 0
a i = 0

magnetic forces in iron, (Scale x 500 000)

Fig. 4.  Geometry of the studied machine for the non-defor

V. CONCLUSION

This study focuses f a coupled magneto-
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Abstract —Thermo-inductive testing is a new technique used 
for health investigations on different components of automotive 
and aeronautic industries. In this technique, eddy current 
deviation around the default creates local heating which can be 
detected by an infrared camera. The purpose of this work is to 
develop an original 3D finite element model as a support tool and 
to study the reliability of the technique. To reduce the number of 
unknowns, shell elements are introduced to model the defects. 
Inspected materials are classified into magnetic, non-magnetic 
and composites. Investigations on various parameters of the 
technique and crack dimensions are performed in order to 
optimize the method. Experimental and simulation results show 
that the method is well suited. 

I. INTRODUCTION

Cracks constitute one of the major problems threatening the 
security of systems subjected to mechanical, thermal or 
chemical constraints. In order to detect and characterize these 
defects, many methods of NDT are used and they are in a 
constant development according to applications and 
investigation fields. In this context, we propose a new method 
called thermo-inductive technique which combines the 
advantages of both eddy current and infrared thermography 
techniques. The relevance and the feasibility of the technique 
have been shown in previous papers [1-2].  

Numerical modeling of cracks involves difficulties due to 
their small thickness compared to other dimensions. This is 
expressed by mesh problems such as high density or deformed 
elements leading to a prohibitive computing time or ill-
conditioned matrix systems. In literature, many researches 
have been carried out to model thin regions. Among the 
various proposed methods, the shell elements one which 
derives from degeneration of Whitney prism elements is well 
suited for our problem [3]. 

The ability of thermo-inductive method to detect the defects 
depends on electromagnetic and thermal properties of the 
material under investigation. In automotive and aeronautic 
industry, three principal groups of material are used: 
ferromagnetic metals, non magnetic metals and carbon fibre 
composites. The first group has a non linear magnetic 
permeability and a typical small electromagnetic skin depth 
compared to the thermal depth. The second group has linear 
characteristics but the same constraint on electromagnetic and 
thermal penetration and the third group has non isotropic 
physical properties but a high skin depth. 

To consider all these constraints, we have developed a 3D 
finite element method based on Whitney’s elements under 
Matlab environment as a support tool to model the different 
phenomena involved in this technique. This model takes into 

account the anisotropy, the non-linearity of materials and 
cracks modeled by the shell elements.  

The new technique is applied to defects detection in typical 
pieces used in automotive and aeronautic industries. Due to 
their anisotropic properties and scale factor, composite 
materials are modeled after a preliminary homogenization 
stage. Investigations on various parameters such as inductor 
geometry, defect characteristics and field and thermal 
frequencies have been carried out for each material in order to 
optimize the defect detection.

II. PROBLEM DESCRIPTION

A typical measurement installation for the thermo-inductive 
method is shown in Figure 1. In this technique, the 
electromagnetic and thermal penetrations have a great 
influence on the defect detection. These two parameters 
depend on the field and thermal frequencies as well as the 
material physical properties. This is why the optimal field and 
thermal frequencies depend on the material under 
investigation. The induction frequency may vary from 50 Hz 
to 2 MHz and the thermal frequency from 0.1 Hz to 20 Hz. 

Fig. 1. Schematic of experimental system 

A numerical modeling allows a good understanding of the 
influence of these properties on the current flow and the 
temperature distribution, and therefore on the defect detection. 

III. NUMERICAL MODELING 

The electromagnetic problem defined by Maxwell’s 
equations is solved with the 3D finite element method. Using 
T- Φ  formulation, the weak formulation T- Φ  used in the 
harmonic state is [4]: 
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WhereΤ  is the electric vector potential, Φ is magnetic 
scalar potential, [ ]  represents the tensor of equivalent 

magnetic permeabilities, and [ ]σ  the tensor of electric 

conductivities and 0Τ  is the source field. 
ieW and

inW  are 

the edge  and nodal shape functions respectively. Ω  and 

CΩ are respectively the whole and the conducting domains. 

In order to take into account of the nonlinearity of magnetic 
materials, the iterative calculation using the Newton-Raphson 
method is adopted. Different algorithms to obtain optimal 
relaxation factor are introduced in our model to get faster and 
stable convergence [5]. 

In the thin regions like defects, similar elements to the 
prismatic elements are introduced. In the discrete formulation 
of the problem, the volume integrals are replaced by surface 
integrals using shell elements. The scalar and vector fields are 
approximated by nodal and edge elements which are 
developed specifically for thin regions. The formulation will 
be detailed in the full paper. 

The thermal problem is defined by heat transfer equation: 

       [ ]( ) Ω⋅⋅=Ω⋅⋅



 ⋅λ−

∂
Τ∂

∫∫
ΩΩ

dWΡdWΤdiv
t

ρC nnp grad        (3)             

Where ρ , Cp , λ , P are respectively, the specific mass, the 
specific heat, the thermal conductivity, and the electromagnetic 
induced power density. Ω is the studied domain. 
 Both electric and thermal formulations have been solved 
using finite element method based on Whitney’s elements. 

In order to study the defect detection and the influence of 
various parameters of the system on the characterization of the 
cracks, thermal and phase contrast are introduced as a 
discriminating parameter. They provide a good indication of 
the defect characteristics. The thermal contrast consists to 
compute the relative surface temperature difference between 
regions with and without defect. The phase contrast is 
calculated from the discrete Fourier’s transform of the surface 
temperature s(t) [2, 6]: 

           ( ) ( ) ( ) ( )fjIfRπfnt2jexptstF(f)
1Ν

0n

+=−⋅⋅= ∑
−

=
          (4) 

Where t  is the sampling time step. ( )fR  and ( )fI  are 
respectively, the real and imaginary components of ( )fF . 

IV. APPLICATIONS AND RESULTS

Numerical models developed for NDT by thermo-inductive 
technique allow the prediction of the defect detection 
depending on the parameters of the method and the physical 
properties of inspected materials. The validation of the finite 
element model by comparison with experimental data will be 
detailed in the extended paper.   

The investigations show that depending on the nature of 
material, the induction and thermal frequencies and defect 
dimensions, the defects are more or less detectable.   

Figure 2.b shows the cartography of the thermal contrast of 
a ferromagnetic material. The calculated temperature is more 
contrasted around the crack. The defect is appearing as a line 
with two hot spots in extremities. In the extended paper, the 

behavior of the other groups of materials will be detailed and 
will be explained as function as the physical properties. 

20mm 100mm

0.1mm

40mm

 40mm

Fig. 2. (a) Modeled piece with crack and (b) Image of thermal contrast 
distribution (fr=100kHz) 

 Figures 3(a) and 3(b) present the thermal and phase 
contrasts for ferromagnetic materials calculated from the 
numerical model. The thermal contrast is inversely 
proportional to the heating duration. There is also an optimal 
induction frequency (27 kHz in this case) which corresponds 
to the maximum of both thermal and phase contrast. The 
results show that the use of both thermal and phase contrast 
allow a good and reliable detection of defects.  

  
Fig. 3. (a) Thermal contrast as function of the heating period and (b) Phase 
contrast versus the thermal frequency for different induction frequencies 

V. CONCLUSION

The results have demonstrated the relevance of the thermo-
inductive technique and the efficiency of 3D model which 
takes into account the nonlinearity, the anisotropy of and 
introduces the shell elements for modeling defects.   

In the full paper, the FEM models using shell elements will 
be detailed. Classification of materials according their 
properties will be specified. Investigation on various 
parameters of the method using optimization algorithms will 
be proposed with a goal function based on the contrast.
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Abstract—A three-dimensional numerical method for solving
mechanical-electrical-thermal coupled problems and suitable for
analyzing electric connectors is presented. The analysis of electric
connector performance is a typical multiphysics problem involv-
ing mechanical, electrical, and thermal coupled effects. In the
proposed approach contact interfaces are analytically modeled
in order to account for the surface roughness causing a random
distribution of conducting spots. According to the Cell Method
mechanical, electrical, and thermal problems in the bulk regions
are directly expressed in terms of integral variables allowing for
an easily coupling with the analytical contact interface model.

I. INTRODUCTION

Separable connectors are among the most widely used
electric components, in a wide range of appliances, starting
from signal applications (e.g. micro-connectors and fast-on) up
to power applications (e.g. switch-gears). These components
ensure the electric continuity between different circuits. The
performance of electrical connectors relies on both mechanical
and electrical properties of contact materials in order to ensure
low and stable contact resistance over the expected service life.
Connectors must fulfill tight requirements in terms of main-
tenance, reliability, and stability of material properties. Other
desirable properties are: compact size, rugged construction,
durability (capable of many connect/disconnect cycles), rapid
assembly, simple tooling, and low cost.

Cost minimization is based on proper numerical design
tools which should take care of multiple physics phenomena
occurring in connectors. Mechanical, electrical, and thermal
effect have to be coupled for a realistic modeling of the
electric connector. The contact strength depends either on the
applied stress or on the mechanical material response, which is
affected by the local temperature distribution. A non-uniform
distribution of current density around the contact may lead
to hot spot formation, causing a thermal aging of materials.
Moreover, the heat generated by Joule’s losses determines
a local flattening of the contact area and a contact pressure
reduction [1].

II. NUMERICAL MODEL

In the following a three-dimensional numerical model ac-
counting for multiple coupled physics phenomena related to
electric contacts is discussed.

The analytical contact interface model is used for coupling
the discrete models of the bulk connector domains. Bulk

regions are discretized according to the Cell Method (CM),
which can be used effectively for coupling different formu-
lations [2] [3]. The electro-thermal model is based on the
discrete formulation presented in [4] and coupled to a non-
linear elastic discrete formulation for analyzing the effects of
the beam deformation on the connector performance.

Fig. 1 shows the reference geometry taken into account
in the analysis: a hemisphere (1.2 mm radius, brass) is
compressed with a 2 N applied load; the contact beam (0.4
mm thick, 1.4 mm width, iron and brass) is constrained to a
hexaedron (1.5 mm edge).

Fig. 1. Three-dimensional model of the electric connector (the brass region
is shaded in gray, while the iron region is shaded in orange).

A. Contact interface model

The electric contact is established in correspondence of the
mechanical contact surface, which depends on the applied
force and the surface roughness. It is assumed that flux lines
of the electric current density are concentrated on separated
micro contact spots (a-spots). The conventional treatment
of electrically heated contacts assumes that Joule’s losses,
concentrated at the a-spots, are dissipated only by conduction
through bulk conductors [5]. In these conditions, according to
Kohlraush’s theory, the voltage drop at the contact interface
can be expressed as a function of the maximum temperature
Tm at the contact interface as:

Uc =

�
2

� Tm

T1

λ1ρ1 dT

�1/2

+

�
2

� Tm

T2

λ2ρ2 dT

�1/2

(1)

where λ and ρ are respectively the thermal conductivity and
the electrical resistivity of two contact elements, the subscripts
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refers to the materials in contact, and T1 and T2 are the tem-
peratures in bulk conductors. The coupling interface area can
be estimated according to Hertz’s theory. The contact surface
is approximated locally as a discoidal region, accounting on
average for the random distribution of a-spots. In the case of
purely elastic deformation and a sphere-plane geometry, the
a-spot radius can be approximated as:

ae =

�
3

4
F R

�
1 − σ21
E1

+
1 − σ22
E2

��1/3

(2)

where F is the contact force, R is the sphere radius, E1 and
E2 are the Young’s elasticity modulus, and σ1 and σ2 are
the Poisson’s ratios. A similar empirical expression holds for
plastic deformation [6].

B. Discrete conduction problem

In CM-based formulations field problem domains are dis-
cretized into primal and dual staggered cell complexes, where
arrays of degrees of freedom (DoFs) are defined. For a steady
state conduction problem the DoFs are voltages u defined
on primal edges and the electric currents j defined on dual
faces. Electric currents include both impressed and ohmic
contributions computed by the discrete Ohm’s law:

j = js + Mσu. (3)

where Mσ is the electric constitutive operator. This operator
can be constructed positive definite by a proper choice of shape
functions [4]. The array of currents must comply with the div
free condition:

�Dj = 0. (4)

where D is the discrete div operator and the tilde indicates the
dual operator. The source current distribution js is constructed
in such a way that �Djs = 0 is automatically enforced.

In steady state conditions the electric scalar potential v can
be introduced, i.e., u = −Gv, where G is the discrete gradient
operator. By using the topological relationship �D = −GT and
by taking into account (3) and (4), the following semi-definite
system of linear algebraic equations is obtained:

GTMσGv = 0. (5)

C. Discrete thermal problem

The transient thermal problem can be modeled by using the
discrete Fourier equation [4]:

GTMλGt + Mρcp
ṫ = w (6)

where t is the array of temperatures on primal nodes, Mλ

is the discrete thermal conductivity operator, Mρcp
is the

mass matrix, w is the array of electric powers generated in
dual volumes, and the dot indicates the time derivative. This
system of linear differential-algebraic equations describing the
propagation of heat in time and space can be integrated by
the θ-method, which ensures both accuracy and stability with
a proper choice of the parameter θ.

Fig. 2. Stress map σ [N m2] in proximity of the contact region.

D. Discrete non-linear elastic problem

The connector deformation due to thermal and mechanical
effects is analyzed in the discrete non-linear elastic problem.
By using a small strain approach the total strain array ǫ can be
decomposed into elastic ǫe and plastic ǫp arrays [7]. Discrete
Hooke’s law accounts for mechanical properties of materials:

σ = Me (ǫ − ǫp) (7)

where Me is elastic constitutive operator. By using the Von
Mises criterion the yield domain is defined by the plasticity
function f(σ, k) =

√
3σ̄ − Y (k) ≤ 0 (k is the kinematic

hardening parameter, σ̄ is the Von Mises equivalent stress)
and the material behaves elastically when f < 0.

Fig. 2 shows the Von Mises equivalent stress distribution
around the contact interface.

III. DISCUSSION

The electro-thermo-mechanical coupling of previous equa-
tions is realized through constitutive matrices and the right
hand sides (e.g., the array w). For instance constitutive ma-
trices depend on the temperature distribution and the node
displacements obtained from the non-linear elastic problem. A
more detailed description of the model and simulation results
for the main physical quantities will be reported in the paper.
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Abstract —	 The	 finite	 element	 solution	 of	 electromagnetic	
problems	 often	 requires	 coupling	 into	 electric	 circuit	 equations.	
These	 circuits	 are	 often	 coupled	 to	 power	 electronic	 or	 control	
systems,	 where	 non-linear	 components,	 such	 as	 diodes	 are	
regularly	 used.	The	 standard	non-linear	 techniques	used	within	
finite	 element	 solutions	 are	 applicable	 to	 the	 coupled	 equation	
system,	but	tend	to	struggle	to	converge	to	the	required	accuracy	
due	 to	 the	 extreme	 nature	 of	 the	 non-linearity	 of	 these	
components.	 This	 paper	 describes	 an	 improvement	 to	 the	 non-
linear	 solution	 of	 circuit	 equations	 containing	 diodes,	 using	 the	
Opera-3d	finite	element	analysis	software,	though	the	method	 is	
equally	applicable	to	other	non-linear	components.	

I. INTRODUCTION 
The use of finite element solutions for non-linear problems 

is common. A formulation for the electromagnetic solution 
can be found using the magnetic vector potential such that 

 

JA =×∇×∇ .1
μ

 (1) 

 
The permeability, µ, is a non-linear function of the local 

magnetic flux density. The standard technique used is an 
iterative solution process, where the best solution available at 
the present time is used to update the estimate of the non-
linear permeability. For simple cases this technique will 
converge, but slowly.  

Highly nonlinear material characteristics will cause simple 
update methods to oscillate wildly. The addition of over/under 
relaxation to the iterative process can be used to control these 
oscillations and ensure convergence. Typically, the matrix 
solution requires a significant solution time. By scaling the 
change in solution vector by a relaxation factor, it is possible 
to test and select a better estimate of solution. Finding a 
suitable relaxation factor is still a problem. This can be a 
particular problem when the current solution lies close to a 
local minimum. In this case it may be necessary to move away 
from this area before the convergence can find the true 
solution.  

The use of a Newton-Raphson update is also a common 
technique for improving solution convergence. By using 
derivative information representing the change in non-linear 
property with terms in the solution vector, the equation 
solution matrix is augmented to give improved convergence 
properties. Within the capture radius this technique will 
converge quadratically; however with strong nonlinearities the 
capture radius is small and the use of Newton-Raphson 
techniques can slow convergence.  

 
The application of both of these techniques [1,2] within 

the same system provides a robust solution. 

II. COUPLED CIRCUIT EQUATIONS 
When solving for the time variation of magnetic fields in a 

model domain, the use of a time varying current provides the 
standard input to drive the finite element formulation. 

For many applications, the drive is provided by a voltage 
source rather than a prescribed current. Additionally, such a 
voltage will operate as part of an electric circuit. The use of a 
voltage drive requires a close coupling to be modeled as the 
voltage, current and magnetic fields are all tightly linked.  

This can be achieved by including extra equations in the 
finite element matrix [3] to give a solution for the currents 
within the electric circuit.  

 0.1 =−−×∇×∇ IAA
dt
dσ

μ
 (2) 

VI =+∫ R
dt
dAn.  (3) 

Using Galerkin integration over the finite element mesh, and 
applying suitable scaling to equations, gives a symmetric 
matrix of the form 

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
V
J

I
A

MM
MM

IIIA

AIAA  (4) 

 
For most problems rank(MAA) >> rank(MII).  

III. DIODE MODELLING 
A typical non-linear characteristic of the diode can be seen 

in the Shockley description 
( )( )1/ −= TD nVV

s eII  (5) 
where 

I is the diode current, 
IS is the reverse bias saturation current, 
VD is the voltage across the diode, 
VT is the thermal voltage, 

 
The diode can be represented as a non-linear resistor or 

using equivalent circuits to represent an approximate model at 
its current operating point. However, the non-linearity is 
extreme, as can be seen by the exponential variation of current 
through the diode.  

Improvements to convergence of coupled  
non-linear circuit modelling 

 S.Taylor, N.Robertson and J.Simkin 
Cobham Technical Services, Vector Fields Software 

24 Bankside, Kidlington, OX5 1JE, UK 
VectorFields.Info@cobham.com 
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A nonlinear circuit equation must be solved to determine 
the operating point of the diode. The same techniques used in 
the non-linear permeability updates can be applied. 

IV. IMPROVED DIODE MODELLING 
The method proposed uses a sub domain iterative solution of  
the circuit equations, as part of the relaxation procedure used 
to improve the convergence of the full solution. Rather than 
relax the solution to the circuit equations through the use of a 
single relaxation factor, an approximate solution to the circuit 
matrix, MII, can be found, given an updated relaxed magnetic 
vector potential. 

( ) ⎟
⎠
⎞

⎜
⎝
⎛ −= −

dt
d

IAII
AMVMI 1  (6) 

 
 

(1) Solve for full matrix using current estimate. 
(2) Calculate error in solution:  

• If the error is low, convergence has been 
achieved, exit. 

• If the error is reduced significantly, repeat (1).  
(3) Relax change in magnetic vector solution by new 
relaxation factor σ.  
(4) Converge the non-linear solution for equation (6). 
(5) Repeat from (2) 

 
The relative rank of the circuit current sub matrix, MII, means 
that the independent solution to this sub matrix is very 
inexpensive compared to the full matrix solution and non-
linear updates. By reducing the number of non-linear 
iterations, (1) in the loop above, we can achieve a reduced 
overall solution time. 

V. RESULTS 
The method has been implemented within the Opera-3d finite 
element module, ELEKTRA.  
A model of a transformer and full wave rectifier has been 
created. Fig. 1 shows a quarter model of the device. Fig. 2 
shows the circuit used to drive the model including the full 
wave rectifier. 
 

 
Fig. 1.  Quarter model of transformer 

 
The total CPU time for analysis using the standard non-linear 
updates and using the implemented method are detailed in 
Table I. 

 
Fig. 2.  Circuit of transformer and full wave rectifier 

 
The CPU time as a function of simulation time is shown in 

Fig. 3. It can be seen that using the standard ELEKTRA, the 
analysis was successful, but as the voltages driving the 
rectifier switched sign, the analysis struggled to converge the 
non-linear solution. Using the updated method, the non-linear 
convergence characteristics are significantly improved as the 
solution at the switch positions. 

TABLE I 
CPU Time for analyses 

Standard ELEKTRA 1713 s 
Updated ELEKTRA 963 s 

 

 
Fig. 3.  CPU time required for analysis time,  

and resulting rectified current 

VI. CONCLUSION 
The updated method has been described and implemented 
within Opera-3d. A significant improvement for the solution 
of a transformer with full-wave rectifier can be seen. The 
application of the improved non-linear update algorithm will 
be tested further on more complex models. 
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Abstract — Precise permanent magnet generator modeling 
requires a complex electromagnetic field analysis in order to 
account for motor eccentricity and end zone leakage field. The 
paper presents a particular technique enabling to consider such 
phenomena through convenient 2D and 3D finite element models 
and incorporate the respective electromotive force distributions 
including space harmonics in real time control systems. The 
proposed methodology has been validated by measurements on a 
permanent magnet generator prototype. 

I. INTRODUCTION 
 In wind generator (WG) systems, the generator holds a key 
role, both actual, in sense of efficiency as well as insubstantial, 
in sense of modeling and simulation [1]-[5]. This paper 
focuses on appropriate modeling of the characteristics of 
permanent magnet generator (PMG) by employing results of 
particular FEM analysis and producing harmonic 
representation of electromotive force and electromagnetic 
torque with loading and rotor speed. Such a model enables 
efficient real time generator representation for control 
purposes. The proposed methodology’s accuracy has been 
verified by measurements on a prototype shown in Fig. 1, 
under transients as well as under three different control 
techniques which aim at maximizing the WG’s output power 
through load variation. 

 
Fig. 1. Typical permanent magnet variable speed wind turbine system 

 
II. GENERATOR MODELING 

 
A. Permanent Magnet Material Optimization 
 Due to large cost of permanent magnets, it is necessary to 
minimize magnet material, given the output effective voltage. 
A 2D FEM is used to choose the best values for permanent 
magnet dimensions, in conjunction with sensitivity analysis 
technique [1] – [3]. In the above analysis it is important to 
account for rotor eccentricity, simulated through air gap 
variation as shown in Fig. 2. Eccentricity effects in 
conjunction with appropriate modeling of the end zone 
machine parts are then represented by using a convenient 
hybrid 2D-3D FEM model shown in Figs. 2 and 3. 

 In order to predict and accurately simulate the voltage 
waveforms and equivalent circuit components of the generator 
the 3D representation as well as the eccentricity consideration 
are necessary. The computed electromotive force waveforms 
for different eccentricities are shown in Fig. 4. 

  
        (a)             (b) 
Fig. 2. 2D FEM model a) Region of reduced air-gap in b) region of increased 
air-gap 

 
Fig. 3. 3D FEM model 
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Fig. 4. Induced voltage variation for different air gap eccentricity values Δε 

 

  
B. Non-linear system behavior 
 The FEM analysis enables to compute the electromotive 
force waveforms, varying with the loading and rotor speed as 
well as the equivalent circuit parameters of the generator. 
Such an analysis can be easily incorporated in the control 
algorithm of the system by calculating the electromotive 
forces en shown in Fig. 4 and electromagnetic torque Tel.  
Using these values it is possible to both simulate transient 
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response and calculate steady-state operation. Since the 
generator is used with a rectifier, average values sufficiently 
describe most interesting parameters, such as the rectified 
current that is charging the DC bus capacitor as well as the 
electromagnetic torque. In practice look-up tables have been 
used including a number of points adequate to interpolate the 
data without significant error, as shown in Fig. 5. 

 
Fig. 5. Generator electromagnetic torque versus electrical frequency and load 

voltage 
 

III. RESULTS AND DISCUSSION 
 

A. Steady State Operation 
 When accurate data of voltage and current waveforms are 
available, it is possible to calculate power, the electromagnetic 
torque and associated losses with little error, therefore predict 
and fine tune the system behavior. Figures 6a,b show the 
computed and experimental phase voltages of the generator, 
respectively. The waveforms are in very good agreement, in 
both form and amplitude. 
 

 
(a) 

 
(b) 

 Fig. 6. Generator phase voltage waveform a) Simulation result b) 
Experimental result. 

 

B. Dynamic Operation 
 Accurate prediction of operating points allows fine tuning of 
control parameters, which in turn results in optimal dynamic 
performance. Fig. 7a shows the simulation result for the 
rectified generator current for a nearly instant change of input 
mechanical torque from 4.9 Nt.m to 39.2 Nt.m, while Fig. 7b 

shows the measured current for the same input. A good 
agreement is observed. 

 
(a)  

 
(b) 

Fig. 7. Rectified generator current for input mechanical step torque variation 
from 4.9Nt.m to 39.2Nt.m a) Simulation results b) Experimental results  

 

C. Operation under Variable Wind Speed 
 Further validation of the proposed model calls for operation 
under realistic stresses. The prototype system is tested under a 
specific measured wind time variation. Simulated and 
measured WG output power Pg are in conformity as can be 
seen in Fig. 8. 

 
Fig. 8. Simulated and measured WG output power time variation, Pg . 

 

          IV. CONCLUSION 
 A new methodology has been proposed providing an 
appropriate model for the PMG representation. The method is 
based on particular field analysis considering higher 
harmonics of electromotive forces and taking into account 
both rotor eccentricity and winding end zone parts. It gives 
very good accuracy for both steady state and transient system 
response. Experimental validation on a prototype illustrated 
the method suitability for wind power applications. 
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Abstract — The proton exchange membrane is a key 
component in presently widely studied Proton Exchange 
Membrane Fuel Cells. In this paper a fully coupled three-
dimensional dynamic numerical model of the membrane 
including ion transport, hydration-dependent conductivity and 
thermal effects is presented. The highly non-linear model is 
discretized by means of the Finite Element Method. 

I. INTRODUCTION

Fuel Cells (FCs) are considered a very promising energy 
source for a number of different applications, ranging from 
small units for portable electronic devices to mid-size 
generators for the automotive industry and to large stationary 
power supply systems. The proton exchange membrane 
(PEM) is a key component in all so-called Proton Exchange 
Membrane Fuel Cells (PEMFCs). It is the component where 
most Ohmic losses occur, since ionic conduction is orders of 
magnitude lower than electron conduction in the anode and 
cathode current collectors. It also limits the operational 
temperature of the FC and presents fuel cross-over effects, 
which reduce fuel efficiency, increase electrochemical kinetics 
losses and causes cathode catalyst poisoning. An accurate 
modeling of the membrane is therefore needed for studying its 
electrical and physical behaviour. In this paper a three-
dimensional model which includes all the most relevant 
physical phenomena (ion transport, hydration-dependent 
conductivity and thermal dependency) is developed and 
discretized with the help of the Finite Element Method. 

II. COUPLED MODEL 

A thorough description of the derivation of all equations is 
beyond the scope if this paper, further details can be found in 
[1]. All units are S.I. unless otherwise stated.  

A. Polymeric conductivity model 

The polymeric conductivity σ can reach values as high as 
20 S/m at 100 °C, but strongly depends on the temperature T
and on the membrane hydration λ, which varies from point to 
point being the ratio between the water concentration cw and 
the sulfonic acid concentration csa=1970 mol/m3, according to 
the following semi-empirical expression: 

,  = 1.3  
 (1) 

with Wa the activation energy and k the Boltzmann’s constant. 

In our case Wa/k = 1268 K. Measurements show that λ is in 

the  range [0,0.22]. Unfortunately, λ cannot be measured 
directly at the membrane’s surface and therefore must be 

expressed as a function of more readily measurable quantities. 
This can be achieved by following empirical relationship:  

 = 4 ∙ 10 + 0.1 − 0.4 + 0.4  ∈ [0,1]
0.14 + 1.4 − 1  ∈ [1,3] (2) 

where aw is the relative humidity, i.e. is the ratio between the 

partial water steam pressure pw and the saturation value pws
[bar] which depends on the temperature T according to: 

 = 
..∙.∙ (3) 

  
The partial water steam pressure pw, which can be 

measured at the membrane interface, is determined at the 
catalyst layers according to the electrochemical semi-reactions 
(fuel oxidation at the anode and oxygen reduction at the 
cathode) and the mass transport in the diffusion layers. The 
distribution of λ inside the membrane thickness depends on 
two effects, namely electro-osmotic drag and back-diffusion. 
The water molar flow due to the former effect can be 
expressed as: 

   =  = 
  (4) 

where νw = rw = 2.5 is the electro-osmotic drag coefficient 

and F is Farady’s constant. Based on Fick’s first law, water 
molar flow due to the back-diffusion effect is: 

 = − (5) 
  
where Dw is the water diffusivity in the membrane which can 

be expressed by following semi-empirical expression: 

,  = . − 33 + 4 − 1 
 (6) 

The total water molar flow Nw across the membrane is 
therefore: 

 =  +  = 
 −   (7) 

Its dynamic behavior conforms Fick’s second law, expressed 
in terms of λ:  ∙  +  ∂ = 0 (8) 

that, together with (7), gives the following diffusion equation: 

 ∙  − ∂ −  ∙ 
  = 0 (9) 
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The current density J of (9) is the same one appearing in 
Maxwell’s equations so that, introducing the electric scalar 
potential V, (9) can be rewritten as: 

∇  λ, T∇    ∇  
 , ∇ = 0 (10) 

B. Current flow model 

The electric scalar potential of (10) must obey the charge 
conservation equation: 

∇  , ∇V = 0 (11) 

where the conductivity σ depends upon the temperature 
and the hydration according to (1). This equation allows to 
eliminate the last term in (10). 

C. Thermal model 

Since most quantities appearing in the polymeric 
conductivity model and the current flow model depend on the 
temperature it is also necessary to solve the transient heat 
equation 

  ∇  ∇T  , ∇ = 0 (12) 

where the last term on the left hand side represents the 
Joule losses. It has been shown in [3] that the thermal 
conductivity in (12) can be represented by  = 0  0.   

D. Coupled multi-physics model 

The complete model to be solved is assembled from (10), 
(11) and (12) together with nonlinearities (1) and (6) and with 
appropriate boundary (time-dependent Dirichlet and 
homogeneous Neumann) and initial conditions. The 
peculiarities of the set of equations and the very small 
thickness of the membrane with respect to its planar extension 
result in a very badly conditioned system of equations which 
is one side too large to be handled with a direct solver and on 
the other hand very difficult to precondition. Furthermore, the 
kind of nonlinearities in the model are such that the Newton-
Raphson algorithm does not converge without strong 
underrelaxation. All these difficulties make it unadvisable to 
try and solve the full problem with naïve tools and call for the 
use of extremely robust nonlinear and linear solvers. Therefore 
the coupled model has been implemented with the help of the 
COMSOL Multiphysics environment [4]. 

III. RESULTS

The coupled model has been used to study a typical laboratory 
2cm x 2cm x 200µm membrane. Fig. 1 shows the relative 
magnitude of the electro-osmotic and back-diffusion flows, 
while Fig.2 shows the behavior of the electrical conductivity 
across the membrane during a 10 minute transient (one line 
per minute). 

Fig .1: Electro-osmotic drag (red cones) and back-diffusion (blue cones) 

Fig .2: σ across the membrane during transient

IV. CONCLUSIONS 

The presented fully coupled three-dimensional dynamic model 
of polymeric membranes for fuel cells has been used to 
simulate the transient behavior of a PEMFC membrane under 
realistic operating conditions. In ongoing work the model will 
be coupled with other fuel cell components and will be used to 
study the influence of localized defects on the membrane’s 
performance and. In the full paper more details regarding the 
model and its numerical implementation will be presented. 
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Abstract —Thermal performance in oil-immersed power 
transformers is governed by the flow of oil, acting both as an 
electrical insulator as well as a medium for the transport of heat 
generated in the core and windings towards the tank and the 
surrounding air. In our previous work, a two-dimensional hybrid 
analytical-numerical technique for ONAN transformer thermal 
analysis was presented, able to predict thermal performance at a 
low computational cost for optimization purposes. The present 
work expands thermal analysis in three dimensions, taking into 
account detailed transformer geometrical parameters and 
coupling with fluid flow dynamics. The proposed methodology 
provides an integrated tool for thermal simulation, able to 
predict detailed thermal distribution in a specific transformer, 
without requiring prior knowledge of nodal temperature or 
temperature gradient values. 

I. PROPOSED METHODOLOGY

Thermal finite element method (FEM), as well as other 
numerical methods, has been extensively applied in thermal 
analysis of electric machines and transformers, providing 
enhanced representation of the geometrical configuration of 
the considered devices, in an effort to replace semi-empirical 
methods involving analytical formulas and constants deriving 
through experimental results. However, such an analysis 
requires correct definition of heat convection coefficient 
constants and boundary conditions [1], which are influenced 
by the oil flow in the transformer tank. For the accurate 
calculation of these parameters, the coolant flow distribution 
must be modeled, therefore necessitating the incorporation of 
computational fluid dynamics (CFD) tools to the analysis [2] 
[3]. The proposed methodology combines three-dimensional 
(3D) thermal and fluid flow FEM analysis, for the derivation 
of the transformer temperature distribution under different 
loading conditions. The coupling of fluid flow equations with 
heat equations is necessary in order to model the oil flow 
within the transformer tank. Therefore, the thermal conditions 
at the boundaries between the transformer active part and tank 
components and the cooling medium are calculated by the 
proposed method and there is no need to externally predefine 
them in the thermal finite element model.    

Apart the aforementioned methodology, accurate prediction 
of transformer thermal performance is enhanced by: 

- Detailed geometry representation of transformer active 

part and tank: special consideration is given to the 
representation of design details of particular importance to 
thermal analysis, such as the existence of cooling ducts in the 
coils and the tank corrugated panels geometry.  

- Accurate estimation of the transformer heat sources, i.e. 
the core and coils loss density, which are determined through 
an appropriate design methodology [4]. 

A. Thermal FEM Equations 

The 3D thermal transformer analysis is governed by the 
equation: 

2 2 2

2 2 2x y z

T T T
K K K q

x y z

∂ ∂ ∂
⋅ + ⋅ + ⋅ =
∂ ∂ ∂

                   (1) 

where T is the temperature at each point of the considered 
domain (oC), Kx, Ky and Kz are the materials thermal 
conductivity in the x-, y- and z- direction (W/(m.°C)) and q is 
the heat source in the transformer conductors and cores 
(W/m3), corresponding to the respective loss density. The 
proper solution of (1) involves correct definition of the 
boundary conditions between the transformer active part and 
tank components and oil (heat convection conditions).  

B. CFD FEM Equations 

In solid and liquid materials, heat transfer and viscous fluid 
flow are governed by Navier-Stokes equations, deriving from 
the basic principles of conservation of mass, momentum and 
energy: 

( ) (2 )

0

u
u u p g

t

u

ρ μ ε ρ∂⎛ ⎞+ ⋅∇ ⋅ −∇ ⋅ ⋅ ⋅ +∇ = ⋅⎜ ⎟∂⎝ ⎠
∇ ⋅ =

           (2) 

where ρ stands for the fluid mass density (kg/m3), u is the 

fluid velocity (m/s), ε  is the strain rate tensor, p denotes the 
pressure (N/m2) and g is the gravitational acceleration (m/s2).

The thermal flow of incompressible fluids is governed by 
the Boussinesq approximation, i.e. that the density of the fluid 
depends linearly on temperature, through the equation: 

(1 ( ))T Tο ορ ρ β= ⋅ − ⋅ −                              (3) 

where β is the thermal expansion coefficient (1/oC), while 

ορ and To represent reference values of mass density (kg/m3)
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and temperature (oC), respectively. 

C. Coupled 3D Fluid Flow-Thermal FEM model 

Fig. 1 illustrates the transformer 3D FEM model, consisting 
of the one fourth of its real geometry, i.e. half of the 
transformer width and length, due to symmetry, which is taken 
into account by the imposition of appropriate Dirichlet as well 
as Neumann conditions. For the derivation of the transformer 
thermal distribution, the thermal and fluid flow equations (1) 
and (2) are solved iteratively, for a prescribed loss density in 
the transformer core and windings, derived by the loss values 
of the considered design. Fig. 2 illustrates the flowchart of the 
proposed method, describing the coupling of the thermal and 
fluid flow equations. Only an initial guess for the transformer 
temperature and oil velocity has to be defined, providing the 
initial condition for the coupled FEM solver. 

(a)  (b)
Fig. 1. Perspective view of 3D transformer FEM  model: (a) active part, 

(b) oil tank. 

Fig. 2. Flowchart of the proposed coupled method. 

II. RESULTS AND DISCUSSION

Figs. 3 and 4 illustrate the results of the method in a 400 
kVA, 20-0.4 kV transformer, operating under nominal load, at 
an ambient temperature equal to 30oC. Fig. 3 comprises the 
thermal distribution results inside the active part and the tank 
walls in half of the FEM model (the rest of the wireframe 
model edges are kept in the figure for better representation 
purposes) Fig. 4 shows the arrow plot of the transformer oil 
velocity around the transformer active part, providing an 
aspect of the oil flow around the winding cooling ducts. These 
results are in good agreement with the measured ones and 
show the proposed methodology suitability for hot spots 
investigation in power transformers.  

Fig. 3. Temperature distribution at the 400 kVA transformer active part and 
tank walls. 

Fig. 4. Arrow plot of oil velocity around the the 400kVA transformer active 
part. 

III. REFERENCES 

[1] M. A. Tsili, E. I. Amoiralis, A. G. Kladas, A. T. Souflaris, “Hybrid 
Numerical-Analytical Technique for Power Transformer Thermal 
Modeling,” IEEE Trans.  on Magnetics, 45(3): 1408-1411, 2009. 

[2] E. J. Kranenborg, C. O. Olsson, B. R. Samuelsson, L-Å. Lundin, R. M. 
Missing, “Numerical Study on Mixed Convection and Thermal 
Streaking in Power Transformer Windings,” in Proc. 5th European 
Thermal-Sciences Conference, The Netherlands, 2008. 

[3] J. M. Mufuta, E. van den Bulck, “Modelling of the mixed convection in 
the windings of a disc-type power transformer,” Applied Thermal 
Engineering, 20: 417-437, 2000.  

[4] E. I. Amoiralis, P. S. Georgilakis, M. A. Tsili, A. G. Kladas, “Global 
Transformer Optimization Method Using Evolutionary Design and 
Numerical Field Computation'', IEEE Trans. on Magnetics, 45(3): 1720-
1723, 2009. 

100

 



Abstract – A novel computer model of inductively heated in-
compressible flow of electrically conductive liquid in a pipe is 
presented. The numerical solution of this multiply coupled prob-
lem is realized by a higher-order finite element method using the 
code Hermes2d developed and written by the authors that con-
tains a number of original features (i.e., hanging nodes of any 
order or dynamically changing mutually independent meshes for 
the evaluation of particular time-dependent field quantities). The 
methodology is illustrated by an example whose results are dis-
cussed.   
 

I. INTRODUCTION 
Numerous industrial technologies working with electri-

cally conductive liquids (e.g., molten metals, acids, or solu-
tions of salts) are based on the force and thermal effects of 
electromagnetic field. We can mention pumping, dosing, stir-
ring, heating, and other similar processes.  

The computer modeling of such processes is still a chal-
lenge. These tasks represent multiply coupled nonstationary 
and often nonlinear problems, characterized by interaction of 
several physical fields. Even when a considerable attention is 
paid to the topic (the books and papers in the domain abound, 
see, e.g., [1], [2]), a lot of tasks still remain unresolved. 

The paper deals with the problem of heating a conductive 
liquid flowing slowly in a ceramic pipe. Its numerical solution 
is carried out (unlike former classical FEM and FVM-based 
algorithms) by our own code Hermes [3], [4] based on the hp-
FEM.   

II. FORMULATION OF THE PROBLEM 
Consider the arrangement depicted in Fig. 1. It shows a ce-

ramic pipe with electrically conductive liquid that flows from 
the left to the right and is warmed up by a time-variable mag-
netic field generated by a harmonic current carrying inductor. 
The arrangement is considered axisymmetric.  

0.
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0.
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10

 
Fig.1. The investigated arrangement 

The task is to map the time evolution of all relevant physi-
cal fields in the system, namely magnetic field, temperature 
field, field of the radial and axial velocities of flow, and field 
of pressure. The physical parameters of the liquid, pipe and 
inductor are known as well as the initial and boundary condi-
tions of the problem, and also the parameters of the field cur-
rent (its amplitude I  and frequency f ). 

III. MATHEMATICAL MODEL AND ITS SOLUTION 
The mathematical model of the problem is given by three 

partial differential equations describing the distribution of the 
magnetic field, the temperature field and the field of flow.  

The magnetic field is expressed in terms of the magnetic 
vector potential A . Since the system contains no nonlineari-
ties, its distribution may be described in terms of its phasor A  
that is governed by the Helmholtz equation     

extcurlcurl j ωγμ μ+ ⋅ =A A J ,                        (1) 
where μ  denotes the magnetic permeability, γ  is the electric 
conductivity, ω  is the angular frequency, and extJ  stands for 
the phasor of the external harmonic current density in the in-
ductor. The axis of the arrangement and sufficiently distant 
artificial boundary are characterized by the Dirichlet condition 

= 0A  
The heat transfer equation in the liquid continuum reads: 

( ) Jdiv grad gradT
T c T p

t
λ ρ ∂⎛ ⎞⋅ = ⋅ + ⋅ −⎜ ⎟∂⎝ ⎠

v ,          (2) 

where λ  is the thermal conductivity, ρ  is the specific mass, 
c  denotes the specific heat, and v stands for the velocity. Fi-
nally, the symbol Jp  denotes the time average internal 
sources of heat (the specific Joule losses) determined from the 
formula 22

Jp ω γ= A . The temperature field is calculated 
only in the liquid and also in the pipe, where the term 

gradT⋅v  vanishes. The boundary condition along the external 
surface of the pipe only respects the convection (basalt is a 
poor thermal conductor, thus the temperature of this surface is 
low and radiation from it can be neglected). The temperature 
of the liquid at the inlet of the pipe is supposed to be known.  

The field of incompressible flow obeys the Navier-Stokes 
equation   
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 ( )grad grad Δp
t

ρ η ρ∂⎡ ⎤⋅ + ⋅ = − + ⋅ + +⎢ ⎥∂⎣ ⎦

v
v v v g f       (3) 

together with the equation of continuity 
div 0.=v  

Here v  denotes the velocity, p  is the pressure, η  is the 
dynamic viscosity, and f stands for the internal volume Lor-
entz forces (produced by the time variable magnetic field). For 
practical computations, we neglected term ρg  in (4) in order 
to preserve the axial symmetry of the flow. The boundary con-
ditions are classical–the velocity along the internal wall of the 
pipe vanishes, due to symmetry its radial component vanishes 
along the z -axis and the derivative of its axial component 
with respect to the radius r  vanishes here, too.  

After transforming (1)–(4) into cylindrical coordinates (re-
specting the axisymmetry), the numerical solution of the 
model was realized by a higher-order finite element method. 
Computation of the electromagnetic field was carried out once 
at the beginning and independently of the temperature and 
flow fields. Magnetic vector potential was solved on an auto-
matically adapted higher-order finite element mesh. The ob-
tained solution was subsequently used in a time-dependent 
computation of fluid-temperature interaction, where the Lor-
entz forces acted on the fluid flow and average Joule losses 
caused heating. In the fluid flow, the underlying meshes can 
generally be different from the hp-mesh used for the electro-
magnetic field, since they can differ both in polynomial orders 
and in geometry. Computation of the time-dependent fluid 
flow was carried out on dynamically changing meshes, where 
meshes for time level nt  are obtained automatically by our 
adaptive algorithm and, moreover, the mesh for temperature 
T  can be different from the meshes for the flow fields–radial 
and axial velocities ( ,r zv v ) and the pressure p . This ap-
proach leads to a significant reduction of the size of the dis-
crete problem; therefore it speeds up the whole computation. 
Our own numerical software Hermes2d was used for the com-
putation. It is capable of all the features mentioned above, 
such as the higher-order finite element method, automatic 
adaptivity on hp-meshes or assembling of the stiffness matrix 
on geometrically different meshes. 

IV. ILLUSTRATIVE EXAMPLE 
For an illustration, the following figures present a few in-

teresting results obtained for molten sodium (for geometry of 
the pipe see Fig. 1). The inlet velocity of sodium is 

i 0.02v = ms–1 and the temperature i 150T = °C. The parame-

ters of the field current are 6
ext 8 10J = × Am–2 and 50f = Hz. 

Fig. 2 shows the convergence for the magnetic vector poten-
tial A  (our hp-adaptivity versus the classical h-adaptivity) 
and Fig. 3 depicts the corresponding hp-mesh. Fig. 4 shows 
the distribution of the module of magnetic flux density B , 
particularly in melt. Finally, Fig. 5 shows the distribution of 
temperature T  in melt after 0.4t = s and Fig. 6 depicts the 
distribution of the module of velocity v (and the visible vor-
tices at the places where the pipe is getting narrow) for the 
same time. 

 
Fig.2. Comparison of the convergence for magnetic vector potential A  

 

Fig.3. Adaptive hp-mesh for computation of magnetic vector potential A  
(white–elements of the 1st order, black–elements of the 7th order) 

 

Fig.4. Distribution of the module of magnetic flux density B   
in the arrangement (white color – 0 T, black color – 0.3 T) 

 
Fig.5. Distribution of temperature T  (in °C) in melt for 0.4t = s 

(grey color – 150 °C, black color – 200 °C) 

 

Fig.6. Distribution of the module of velocity v  in melt for 0.4t = s 
(white color – 0 ms–1, black color – 2 ms–1) 
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Abstract—A main limitation of most models describing the
effect of stress on the magnetic behavior is that they are restricted
to uniaxial, tensile or compressive, stress. An idea to overcome
this strong limitation is to define a fictive uniaxial stress, the
equivalent stress that would change the magnetic behavior in
a similar manner than a multiaxial one. Several authors have
tried to define such a criterion. We propose in this paper to
compare several equivalent stress definitions, and to apply them
in the case of uniaxial and biaxial mechanical loadings for which
experimental results are available.

Index Terms—Magneto-elasticity, effect of stress, equivalent
stress, multiaxiality

I. INTRODUCTION

In most of practical electromagnetic applications, magnetic
materials are submitted to multiaxial stress inherited from
forming process or appearing in use. These stress states
can change significantly the magnetic behavior of materials
[1]. However, the few available models describing the effect
of stress on the magnetic behavior are usually restricted to
uniaxial (tensile or compressive) stress. A solution to introduce
the multiaxiality of stress into modeling tools is the definition
of an equivalent stress criterion. An equivalent stress for the
magnetic behavior is a (fictive) uniaxial stress that would
change the magnetic behavior in a similar manner than the
multiaxial one. Some authors proposed such an approach in
the past years [2]–[6]. We propose in this paper to compare
these proposals. Experimental results carried out under biaxial
mechanical loading will help to validate these criteria.

II. SEVERAL EQUIVALENT STRESS DEFINITIONS

Several authors tried to define an equivalent stress
for magneto-elastic behavior, usually thanks to energetic
considerations and experimental observations of magnetic
behavior of materials submitted to biaxial mechanical
loadings.

Kashiwaya (K) [2] proposed the following definition for the
equivalent stress σK

eq:

σ
K
eq = K(σ1 − σmax) (1)

with K a constant, σ1 the eigenstress aligned with the
magnetic field direction and σmax the maximal value of the

stress tensor eigenvalues. This equivalent stress is always
negative or null. Iso-values are parallel lines in the (σ1, σ2)
plane. If the magnetic field is applied along the direction of
the maximum eigenstress, the equivalent stress is zero, so
that a tensile stress or an equi-biaxial tension or compression
are supposed to have no effect on the magnetic behavior.

Schneider and Richardson (SR) [3] proposed the following
definition for the equivalent stress σSR

eq:

σ
SR
eq = σ1 − σ2 (2)

σ1 and σ2 are the eigenstresses in the sheet plane, the
magnetic loading being aligned in the direction of σ1. The
main difference with K definition is that the area of the stress
plane where σ1 > 0 and σ2 < 0 defines a positive equivalent
stress. But an equibiaxial stress is still supposed to have no
effect on the magnetic behavior.

Sablik and co-workers (S) [4] proposed the following defini-
tion for the equivalent stress σS

eq, based on previous magneto-
mechanical measurements by Langman [7]:

�
σ

S
eq = 1

3
(2σ1 − σ2) for σ1 < 0

σ
S
eq = 1

3
(σ1 − 2σ2) for σ1 ≥ 0

(3)

σ1 is still the stress aligned with the magnetic field.
Equi-bitraction and equi-bicompression do not lead to the
same result, that is a significant difference with K and SR
approaches. But S model is discontinuous for σ1 = 0.

Pearson and co-workers [5] also proposed an equivalent
stress for a biaxial mechanical loading. In its simplest
form this equivalent stress corresponds to SR proposal. The
more refined form is a polynomial interpolation that reveals
complicated to use because the parameter identification is
sample dependent.

Daniel and Hubert (DH) [6] proposed the following defini-
tion σDH

eq , based on an equivalence in magneto-elastic energy:

σ
DH
eq =

3

2
t�h s�h (4)
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�h is the direction parallel to the applied magnetic field and s

is the deviatoric part of the stress tensor σ (s = σ− 1

3
tr(σ)I).

It can be noticed that the equivalent stress is zero when the
stress is hydrostatic, meaning that a hydrostatic pressure has
no effect on the magnetic behavior. A main advantage of
this criterion is that it can be applied to a fully multiaxial
mechanical loading, whereas the previous proposals only
refer to biaxial stress state.

As a first analysis, these equivalent stress criteria can
be compared in the case of a uniaxial mechanical loading
(intensity σ0). The result is presented in figure 1.
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Fig. 1. Equivalent stress σeq/σo in the case of a uniaxial stress σo applied
in a direction θ ∈ [0, π] with respect to the magnetic field (direction 0o).

K, SR and S criteria can only be applied in the case when
the direction of the magnetic field is a principal direction for
the stress. DH criterion can be applied whatever the relative
orientation between stress and magnetic field. In the uniaxial
case, σDH

eq can be written :

σ
DH
eq (θ) =

3

2
σo

�
cos2θ −

1

3

�
(5)

It can be noticed that in the case of an uniaxial stress applied in
the direction of the magnetic field, the equivalent stress is the
applied stress only for SR and DH proposals. The discontinuity
of S model for θ=π/2 (σ1=0) is highlighted.

III. APPLICATION IN THE CASE OF BIAXIAL MECHANICAL

LOADINGS

Experiments have been performed on iron-cobalt
laminations [8]. They consist in anhysteretic magnetic
measurements carried out under biaxial mechanical stress in
homogeneous magnetic and mechanical conditions, for stress
levels varying from -60MPa to +60MPa.

The expected susceptibility according to K, SR, S and
DH criteria has been estimated (the experimental data for
the susceptibility under uniaxial mechanical loading have
been extracted from the measurements with σ2 = 0). The
experimental conditions correspond to biaxial stress (σ1, σ2)
with the magnetic field applied along eigendirection 1 (DH
equivalent stress is then defined by σeq = σ1 − 1

2
σ2). Figure

2 shows a map of the relative error between predicted χp
and measured χe susceptibilities (e = 100 × |χp − χe|/χe).
For all criteria, the errors observed in equibicompression (-
60 MPa, -60 MPa) for H=2500 A/m are very high, with a
level of 635% for K and SR, 371% for S and 238% for DH.
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Fig. 2. Relative error (percent) for the predicted susceptibility (H=250 A/m)
according to several equivalent stress proposals. (a) K (K=1), (b) SR, (c) S,
(d) DH.

In Figure 2, the error values have been truncated at 50% for
reading convenience. DH criterion appears to be closest to
experimental results.

IV. CONCLUSION

Several equivalent stress for magneto-mechanical behavior
are compared. The main weakness of these models is their
inability to describe the effect of a bicompression stress on
the magnetic behavior. Only one equivalent stress (DH) can
describe fully multiaxial stress state, without any hypothesis
concerning the relative orientation of the magnetic field di-
rection in the principal stress coordinate system. This latter
proposal is also the closest to experimental results obtained in
biaxial configurations. A detailed comparison to experimental
results will be discussed in the full paper.
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8. COUPLED PROBLEMS 

Abstract — This paper presents a numerical method for 
calculating shape of ferrofluid droplet that undergoes three 
influences: external magnetic field, gravitational force and 
surface tension. The shape is calculated using an equilibrium 
energy condition in the coupled system of electromagnetic field 
and ferrofluid in the presence of gravity and surface tension on 
the ferrofluid boundary. The shape of the ferrofluid is traced 
using level set method(LSM), where the continuum shape 
sensitivity of the material derivative concept is used for the 
velocity field on the boundary. The presented algorithm is 
implemented with standard finite element procedure and tested 
in a shape problem of ferrofluid droplet placed above an 
electromagnet.  

I. INTRODUCTION 
In this paper we present a method of numerical simulation 

for calculating shape of ferrofluid with considering the effects 
of external magnetic field, surface tension and gravitational 
field. The different physical phenomena have mutual 
influence and they are put together to set a nonlinear-coupled 
system. This paper aims to analyze the coupled system 
equation and calculate the ferrofluid shape. The numerical 
algorithm for shape calculation is developed by using an 
equilibrium energy condition of the coupled system of 
electromagnetic fields and surface tension in the presence of 
gravitational field. It is too difficult to calculate the shape 
using fluid dynamics driven by magnetic force, gravity and 
surface tension. Thus in this work we make use of the energy 
equilibrium condition at the final shape. We also employ level 
set method(LSM) to easily capture varying interface between 
the ferrofluid and the surrounding air. The physical model 
consists of magnetostatic equations, surface tension condition 
and an advection equation for the level set function. Each 
model is numerically implemented and coupled using a 
standard finite element procedure. The shape derivative of 
continuum sensitivity by the material derivative concept is 
used for the velocity field that is required for the level set 
technique. The proposed method is numerically tested and 
validated in a shaping problem of ferrofluid droplet placed 
above a DC electromagnet. 

II. LEVEL SET METHOD 
The basic idea of the level set method is to represent 

domains and their boundaries not via parameterization, but as 
level sets of a continuous function, the so-called level set 
function. It is expressed in an implicit form of a high 
dimensional function, and then the boundary changes are 
traced by the deformation of this function [1], [2]. In this 

shape problem, the interface boundaries are varied in order to 
minimizing or maximizing the total system energy.  

III. ALGORITHM FOR SHAPE FORMATION OF FERROFLUID 

A. System Energies of Ferrofluid Droplet 
The energy functions of magnetic, gravitational systems 

and surface tension are respectively expressed as 

∫Ω Ω⋅= dWm )()(
2
1 φφ HB  (1) 

∫Ω Ω= dygWg ρ  (2) 

∫Γ Γ= dHWs σ2  (3) 

where, ρ  is material density, g  is material density and y  is 
position of surface. σ  and H denote coefficient of surface 
tension and curvature of boundary. 

In magnetic system with current source the shape of 
ferrofluid varies to maximize its field energy 

mW . On the 
contrary, in the gravitational system its shape varies to 
minimize its potential energy 

gW . Surface tension changes 

also the shape to minimize the surface tension energy 
sW . 

Therefore, this shape problem can be formulated as a kind of 
optimization problem with an objective function of energy 
functional as 

Maximize : sgm WWW −−  

subject to two equality constraints of magnetostatic field 
equation and constant area as 

JA )(2 φμ−=∇   (4) 
*)( SdH =Ω∫Ω φ  (5) 

where the design variable is represented by Ω .   

B. Velocity Fields and Constraint of Constant volume 
Design variables are the movable boundary between 

ferrofluid and free space. The design boundary Ω∂  is 
represented using the level set function such that 0),( =txφ     
for any time. Since the level set function holds at any time t , 
its total derivative is expressed by using an Eulerian 
formulation of the boundary variation as 

0|| =∇+
∂
∂

= φφφ
nV

tdt
d  (6) 

where the velocity field determines shape variation, that also 
causes change the objective function. Thus, calculation of 
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8. COUPLED PROBLEMS 

appropriate velocity field for increasing the energy functional 
is an important part for the shape problem. 

When the constraint of constant area is imposed on the 
shape problem, the velocity field is modified from  nV  to nV̂  
using Lagrange multiplier technique as 

 

0321 )(ˆ VVVVV nnnn −++=  (7) 

∫
∫

Γ

Γ++
=

γ

γ

d

dVVV
V

nnn )( 321

0
 (8) 

where 
1nV , 

2nV  and 
3nV are the normal components of the 

velocity field vectors in the magnetic system, the gravitational 
system and surface tension condition, respectively. 

C. Continuum Sensitivity Analysis for Velocity Fields 
The total derivative of objective function in electromagnetic 

systems can be derived using the material derivative concept 
of continuum mechanics and an adjoint variable technique. 
Here we call it continuum sensitivity for shape derivative. The 
continuum sensitivity formula in magnetostatic systems is 
represented as   

∫ Γ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
=

γ μμμ
μ dVBB

dt
dW

nt
r

n
r

rm
1

22

0

11
2
1  (9) 

where, 
1nV  the normal component of the velocity field vector, 

γ  design boundary [3]. 
The sensitivity formula is the relation of the objective 

function and the velocity field in (9). If the velocity field is 
taken as 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
= 22
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11
2
1

t
r

n
r

r
n BBV

μμμ
μ     on γ , (10) 

the objective function is increased.  
The potential energy of gravitational system depends on 

only the y-coordinate position and the fluid shape varies to 
minimize the gravitational potential energy. According to 
Reynolds’ transport theorem for differentiating a volume 
integral, the material derivative of the potential energy is 
given by  

∫∫ +
∂
∂

=
s nv

g dsVygdvyg
tdt

dW
2)()( ρρ  (11) 

where 
2nV  is the normal component of the velocity field vector 

and the integrand in the second term is zero since 

0|)( .=∂
∂

=
∂
∂

=constyt
ygyg

t
ρρ  (12) 

That is, the gravitational sensitivity has only surface 
integration. If the velocity field is taken as 

ygVn ρ−=2    on γ , (13) 
the objective function of gravitational system is decreased on 
the contrary to the magnetostatic system.  

The surface tension energy depends on the radius of 
curvature at the material surface. The derivative of surface 
tension energy is expressed as 

∫ Γ+⋅∇=
γ

σ dVHH
dt

dW
n

s
3

2 )(2 n  (14) 

where 
3nV  is the normal component of velocity field vector 

and the second term is zero. Thus, the sensitivity of surface 
tension energy is taken in order to decrease the energy as 

HVn σ23 =     on  γ .  (15) 
 

 
The velocity field of sum of the magnetic velocity, the 

gravitational velocity and surface tension with constant area 
constraint is inserted into the level set equation of Hamilton-
Jacobi equation in order to obtain shape evolution for 
maximization of the objective function. 

0||)( 321 =∇+++
∂
∂ φφ

nnn VVV
t

 (16) 

The iterative procedure for optimization is transformed 
into a time domain problem of a Hamilton-Jacobi equation. 
The time in the partial differential equation(PDE) has no 
physical meaning. Thus, it is called "pseudo time" for 
optimization procedure. 

IV. NUMERICAL TEST 
To validate the algorithm, we tested a shape problem of 

Fig. 2. Its numerical results showed that the level set method 
coupled with physical systems of magnetic field, gravitational 
force and surface tension is feasible and effective for 
capturing its shape variation. 

 

V. REFERENCES 
[1] Osher, S. and Fedkiw, R., Level Set Methods and Dynamic Implicit 

Surfaces, Springer, New York, 2003. 
[2] Young Sun Kim, Se-Hee Lee, Hong Soon Choi, and Il Han Park “Shape 

formation of ferrofluid under external magnetic fields using level set 
method'', Journal of Applied Physics 105, 07D539,  2009. 

[3] Il-han Park, Jean Louis Coulomb and Song-yop Hahn, “Design 
Sensitivity Analysis for Nonlinear Magnetostatic Problems by 
Continuum Approach,” Journal de Physique III, Vol.2, No.11, 
November 1992, pp.2045-2053.  

 
Fig. 1. Schematic of surface tension on ferrofluid surface. 

        
                    (a)                                 (b)  

 
                        (c)                              (d) 

Fig. 2. Shape variation of ferrofluid droplet. (a) only with surface 
tension, (b) gravitational force added, (c) magnetic fields added and 
(d) distribution of magnetic field 
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Abstract — This paper is a contribution to the 
electromagnetic field evaluation due to underground power 
cables. Open boundary 2D problems may be treated combining 
the finite element method (FEM) inside a region surrounded by a 
regular (cylindrical) fictitious surface with a semi-analytical 
boundary element method (BEM) to describe the field outside 
this region. For the outside region, a generalization of Pollaczek´s 
solution is applied, taking into account eddy currents in the soil 
and the proximity effect between the soil/air plane surface and 
the cylinder fictitious surface with finite radius. The method is 
validated by using typical underground power cables where 
analytical methods may be applied accurately.

I. INTRODUCTION

Spreading of urban centres, and ever increasing demand 
for electrical power within them, is leading to the use of 
underground cable systems at high voltage. The growing use 
of cable systems makes the analysis of wave propagation 
characteristics and transients an important task. On the other 
hand, danger to human health has been a matter of concern 
and controversy particularly for magnetic fields produced by 
underground power transmission systems. 

All these aspects have demanded great efforts in the 
research on methods to evaluate accurately magnetic field 
quantities, either related to the constitutive parameters, namely 
the series-impedance, or even to the magnetic induction field, 
particularly on the soil surface. 

In the past, analytical methods [1]-[5] have been 
experimented to evaluate magnetic field quantities due to 
underground power cables. However, analytical methods can 
not be used always accurately. Those are the cases, for 
instance, where cables are buried inside underground pipes or 
galleries with irregular cross sections. 

This paper is a contribution to the electromagnetic field 
evaluation of open boundary problems combining the finite 
element method (FEM) inside a region surrounded by a 
regular fictitious surface with a semi-analytical boundary 
element method (BEM) to describe the field outside this 
region. Hybrids methods have already been applied [6], [7] in 
order to adapt the FEM to treat open boundary flied problems. 
In this paper, a two-dimensional (2D) periodic time-harmonic 
electromagnetic field problem is considered for the 
underground transmission system in which eddy currents 
inside phase conductors, sheaths and the soil are taken into 
account. A fictitious cylindrical surface located in the soil is 
considered in a way that the open space is partitioned into two 
regions: the inner region containing power cables and other 
apparatus eventually with irregular shapes; and, the outer 

region composed by the soil and air separated by a surface 
taken as a plane. 

A FEM formulation is used for the inner region [8]-[9]. 
For the outside region, a generalization of Pollaczek´s 

solution [5] is applied, like the one described in [1], taking 
into account eddy currents in the soil and the proximity effect 
between the soil/air plane surface and the cylinder fictitious 
surface with finite radius. In this way, the outside field 
description is based on a Fourier series development over the 
cylinder fictitious surface for the potential and for its normal 
derivative values. These quantities, discretized and organized 
into finite dimension vectors, are related by using formulae 
derived analytically and expressed as a square coefficient 
matrix. A Discrete Fourier Transform (DFT) is then used to 
transform the relationship to the space domain where it 
assumes the form of another coefficient matrix relating the 
actual potential values with their normal derivatives over a set 
of discrete nodes on the fictitious separating surface. These 
nodes are coincident with the discrete nodes of the FEM mesh 
taken for the inner region. 

Finally, the method is validated by using typical 
underground power cables where analytical methods may be 
applied accurately [1], [2]. Series-impedance as well as 
magnetic induction field values are evaluated and compared 
with results obtained by using those analytical methods. 
Excellent accuracy is found for the set of considered 
configurations and examples. 

II. FIELD FORMULATION

The magnetic field for the internal region may be 
established, as described in [6], [8], by using an appropriate 
variational formulation where the magnetic vector potential 
appears as the primary quantity. The FEM is the adequate 
method for the corresponding numerical solution. The FEM 
formulation may be expressed, as done in [6], involving both 
the unknown potential values of the FEM nodal points as well 
as the potential normal derivative values on the nodes of the 
fictitious surface. The relationship allows boundary conditions 
on the above referred surface to be matched with the field 
formulation for the outer region. 

For the outer region an analytical formulation is used 
based on the development presented in [1]. In this way, the 
matrix relating the actual phasor values over a finite set of 
points over the fictitious boundary of the magnetic vector 
potential with those of its normal derivative, similarly as done 
in [6], may be derived. 
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III. MAGNETIC INDUCTION FIELD

The magnetic induction field, x x yB u B u= +B y , at any 

point (x,y) in the air, over the soil, originated by an 
underground cable involved by a fictitious cylindrical surface 
buried at the depth h, is given by 

( ) , ( )jax jax
x yB a U a e da B jaU a e da

+∞ +∞

−∞ −∞

= − = −∫ ∫  (1) 

where

2 2
2 2

2 2

1 2
( )

m

h a q
m

mr

a a qj
U a  (2) e G

jqa a qπ μ

+∞
− −

=−∞

⎛ ⎞− −
⎜ ⎟=
⎜ ⎟+ − ⎝ ⎠

∑

with 
2

0rq jωμ μ σ= −  (3) 

(a)

(b) 

ω being the angular frequency, where rμ , σ are the relative 

permeability and the conductivity, respectively, of the soil, 
and are the coefficients, adopted in the development 

presented in [1], determined from the magnetic vector 
potential at the FEM nodal points over the fictitious surface 
whose values are obtained from the numerical solution of the 
matrix equation built by using the FEM/BEM hybrid method. 

mG

IV. NUMERICAL RESULTS

Numerical results were obtained for two problems with 
analytical solution. The purpose is to compare results obtained 
with the FEM/BEM hybrid method used in this paper with 
analytical results obtained with the method described in [1]. 
The first problem, indicated in Fig. 1-a), considered in [2], 
consists in a 50 Hz underground cable buried at a depth 1,5 m 
in a soil with conductivity σ =0,01 S/m where rc=36 mm, 
rbi=65 mm, rbe=67,6 mm, re=74 mm taking the conductivity of 
the conductor and the sheath respectively equal to 5,8x107

S/m and 4,76x106 S/m. For this problem the fictitious surface 
coincides with the cable outer surface. The second problem, 
Fig. 1-b), considered in [1], consists in a underground cable 
buried at a depth 112,5 mm in a soil with conductivity σ=1
S/m for a working frequency 10 MHz, assuming the phase 
conductor as a perfect conductor where rc=45 mm and 
re=56,25 mm. In this problem the fictitious surface located in 
the soil with radius r0=73,08 mm and the cable are not coaxial 
where the distance between their axes is equal to 5,91 mm. 

Fig. 2 shows results for the normalized r.m.s. value of the 
magnetic induction field at the soil/air plane, taking μ0Ir.m.s./h
as the normalizing factor, Ir.m.s. representing the r.m.s. value of 
the cable current. These results mean that, comparing with 
analytical results, a deviation less than 1% is obtained for the 
first problem (Fig.1-a)) and a deviation less than 2% is 
obtained for the second problem (Fig. 1-b)). Results were 
derived for 5M ≤ , where M is the truncation order of the 
series development in (2). 

Series-impedance elements per unit length were also 
obtained for the described cables. Relative deviations less than 
0,3 % were found, again in comparison with analytical results. 

Fig. 2 – Normalized r.m.s. values of the magnetic induction field at the 
soil/air plane surface: (a) for the problem of  Fig. 1-a); (b) for the problem of 

Fig. 1-b). 

                         (a)                                                       (b) 
Fig. 1 – FEM mesh in the plane (x,y) for the inner region corresponding to 
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2Università di Udine, Via delle Scienze 208, 33100 Udine, Italy, ruben.specogna@uniud.it.

Abstract—The aim of the paper is to present an automatic
and general technique, suitable with the A− χ geometric eddy–
current formulation, to impose sources over massive conductors
of any shape. For this purpose, the localized source approach
is used, which does not require the solutions of steady–state
conduction problems in the pre–processing stage. Nevertheless,
this approach needs a thick cut in each active conductor, which
is usually found “by hand”. In this paper, an automatic and
general algorithm to compute such thick cuts is introduced. Some
benchmark problems are presented to demonstrate the generality
and the robustness of the algorithm.

Index Terms—Cell Method, Finite Integration Technique
(FIT), Discrete Geometric Approach (DGA), eddy–currents, cur-
rent and voltage sources, thick cuts.

I. INTRODUCTION

The so-called “Discrete Geometric Approach” (DGA) [1],
similarly to the Finite Integration Technique (FIT) [2] or the
Cell Method [3], allows to solve directly Maxwell’s equations
in an alternative way with respect to the classical Galerkin
method in Finite Elements.

In this paper, an automatic technique to enforce sources
on massive conductors, suitable with the eddy–current A− χ
geometric formulation [4], is introduced. In particular, the
localized source approach [5], [6] is considered here. It
presents many advantages with respect to the distributed
source approach [6]; For example it does not require steady–
state conduction problem solutions in the pre–processing stage.
Furthermore, the localized source approach is based on global
quantities –voltages and currents– which enable a straight-
forward coupling between the eddy–current formulation and
electric circuits.

The domain of interest D of the eddy–current problem has
been partitioned into an active conductive region Ds, a passive
conductive region Dc and a non–conductive region Da. We as-
sume that the region Ds –where sources are enforced– consists
of the union of N disjoint conductors Djs, j = 1, ..., N , which
are homeomorphic1 to a torus and such that Ds =

N
j=1D

j
s;

No assumption are given about the conductors belonging to
Dc.

The domain D is covered by a finite element mesh of tetra-
hedra; The corresponding simplicial complex [3] is denoted as
K. From K, the barycentric dual complex B is also introduced
[3]. The incidence matrix between edges e and nodes n is

1From the topological viewpoint, they are the same. This assumption is not
restrictive, since sources can be imposed only on torus–like conductors. Thus,
the active conductor can also be knotted.

denoted by G, by C is denoted the incidence matrix between
faces f and edges e and by D the incidence matrix between
tetrahedra v and faces f . The matrices G̃ = DT , C̃ = CT

and D̃ = −GT describe the mutual interconnections of the
dual barycentric complex (dual volumes ṽ, dual faces f̃ , dual
edges ẽ, dual nodes ñ) [3].

The localized source approach needs a thick cut [6] for each
active conductor, which is usually found “by hand”. When
dealing with complicated geometries or a big number of active
conductors, an automatic technique to find such thick cuts can
be very useful. This is the reason why we propose a completely
automatic and general topology–based algorithm to construct
thick cuts, which does not require any prior knowledge about
the geometry of the active conductors.

II. THICK CUTS FOR THE TORI

For each edge e belonging to the j−th torus Djs, an integer
is specified. The values are specified in such a way that the
sum (with incidence) of the values of the edges belonging to
a generic cycle is equal to n (or −n) if and only if the cycle
goes n times around the torus, inside it (all trivial cycles go
around the torus zero times)2. The integer values relative to
each edge e ∈ Ds are stored into arrays (cj)e, j = 1, ..., N ,
one for each torus. The array cj is by definition a thick cut3

for Djs.
On the left of Fig. 1, an example of torus–like conductor

is considered. On the right of Fig. 1, the black edges are
the edges e having non–zero value in the thick cut (c1)e.
Considering the union of dual faces one–to–one with edges
belonging to the thick cut, a surface Sj which “cuts” the torus
is obtained on the dual complex4 , see for example on the right
in Fig. 1.

In the full paper, a fast and robust algorithm to automatically
compute the thick cuts in Djs will be described in detail.

2Formally speaking, since the 1−st homology group H1(Kj
s) = Z [7] then

there exists one generator [g] ∈ H1(Kj
s), where Kj

s is the sub–complex of K
containing entities in Dj

s . For a given cycle c the sum of (c)je with incidence
is equal n ∈ Z if c ∈ [ng], where [ng] indicates the homology class of the
cycle ng.

3More precisely, the thick cut is a generator of the 1−st cohomology group
H1(Kj

s) [7].
4Thanks to the Poincaré–Lefschetz duality H1(Kj

s) ∼= H2(Bj
s, ∂Bj

s) [7],
thus the 1−st cohomology group of Kj

s can be reinterpreted as the 2−nd
relative homology group in the dual complex Bj

s . The generator of this
group consist of triangles that form a surface Sj on dual complex having
the boundary on ∂Dj

s and which is not itself boundary of any volume in Dj
s .
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Fig. 1. On the left, an example of torus–like conductor. On the right, a
zoom on a portion of the conductor in the neighborhood of the non–zero
valued edges in the thick cut (the thick black edges). The collection of dual
faces, dual to non–zero valued thick cut edges, form a surface Sj on the dual
complex that “cuts” the conductor.

III. LOCALIZED VOLTAGE SOURCES

The localized voltage source approach [6], also referred
to as “generalized source potential” in [5], is now recalled.
Defining the array Us as

(Us)e =
N

j=1

U jtot (c
j)e,∀e ∈ Ds, (1)

where U jtot is the enforced voltage on the j−th torus. Then
the A− χ formulated eddy–current problem in the frequency
domain becomes [6]

(CTνCA)e = 0 e ∈ Da
(CTνCA)e + iω(σsAs + σsGsχs)e = (i)e e ∈ Ds
(CTνCA)e + iω(σcAc + σcGcχc)e = 0 e ∈ Dc
iω(GTs σsAs)n + iω(GTs σsGsχs)n = (G

T
s i)n n ∈ Ds

iω(GTc σcAc)n + iω(GTc σcGcχc)n = 0 n ∈ Dc,
(2)

where ν, σx, x ∈ {s, c}, are the discrete counterparts of
the constitutive relations [4]; The subscript s, c denote the
sub–arrays or sub–matrices relative respectively to entities
belonging to Ds or Dc. Moreover we set i = σsUs.

The term (GTs i)n, ∀n ∈ Ds, assures that the continuity law
is satisfied, therefore the ungauged A− χ formulation can be
used [4], [6] to solve (2).

Finally, the total current Ijtot flowing in the j−th active
conductor can be easily determined in a post–processing stage
as

Ijtot = −iωcjTσs(As +Gsχs) + (cjTσscj)U jtot. (3)

IV. LOCALIZED CURRENT SOURCES

In the A − χ geometric formulation, Itot can only be
specified using (3), which also gives a relationship between
Itot and Utot. The symmetric algebraic system of equations,
having also Utot as unknown, becomes

(CTνCA)e = 0 e ∈ Da

(CTνCA)e + iωσs(As +Gsχs)e + (v)e = 0 e ∈ Ds

(CTνCA)e + iωσc(Ac +Gcχc)e = 0 e ∈ Dc

iω(GT
s σs(As +Gsχs))n + (w)n = 0 n ∈ Ds

iω(GT
c σc(Ac +Gcχc))n = 0 n ∈ Dc,

−cjTσs(As +Gsχs) + (cjTσsc
j)
U
j
tot
iω

=
I
j
tot
iω

j = 1, ..., N,
(4)

where (v)e = −N
j=1(σsc

j)e U
j
tot and (w)n =

−N
j=1(G

T
s σsc

j)n U
j
tot.

Both the localized voltage sources and the localized current
sources are easily generalized when a general external circuit
is connected to the port of some active conductor. In this
case, both Utot and Itot of that conductor have to be added
as unknowns of (4). Correspondingly, an equation describing
the external circuit has to be written into the linear system of
equations (4).

V. NUMERICAL RESULTS

The localized voltage and current source approach was
tested on many examples of massive conductors. For example,
on the left of Fig. 2, the resulting current density in a planar
inductor is shown. On the right of Fig. 2, another example
consisting of a knotted torus is presented.

Fig. 2. On the left, the current density in a planar inductor. On the right,
the current density in a knotted torus.

In the full paper, a number of benchmark problems will
be presented and the results will be compared with the
ones obtained by both the complementary T − Ω geometric
formulation and with a Finite Element code.

VI. CONCLUSIONS

An automatic and robust algorithm to impose voltage
or current sources on massive conductors suitable with the
A − χ geometric eddy–current formulation was presented.
The algorithm was tested on a number of real–sized three–
dimensional finite element meshes, showing its utility for
practical applications.
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Abstract — The paper presents an efficient method for 
computing the no-load eddy current losses in the soft magnetic 
composite (SMC) stator of high speed slotless permanent magnet 
(PM) machines by using a fast 3D time-harmonic FEA avoiding 
time consuming 3D time-stepping transient FEA. The magnets 
are modeled as equivalent surface current sheets with time-
varying sinusoidal current densities. This method is used to 
perform a correction mechanism that is embedded in the optimal 
CAD process of slotless SMC PM machines to take into account 
the influence of the 3D end effects on the full-load stator eddy 
current losses computed from 2D analysis. The proposed method 
improves the efficiency and convergence of the global design 
optimization process of the machine.  

I. INTRODUCTION 
The stator yoke of high-speed slotless PM machines can be 

made of soft magnetic composite material (SMC) instead of 
conventional laminated steel to minimize the eddy current 
losses due to high operation frequency, and to reduce 
production steps and manufacturing costs for high volume 
applications. If the conductivity of SMC materials is not 
negligible, the distribution of the magnetic losses is not 
independent of the magnetic circuit geometry as in laminated 
iron core, because the eddy currents not only circulate in the 
iron particles but also in the whole SMC core. The design 
methodology of such machines is a complex task because it 
needs an accurate knowledge of the eddy current circulation 
that is influenced by the machine structure, dimensions and 
supply [1]. There are also 3D end-effects on the eddy current 
distribution that become more significant when the axial 
length to pole pitch ratio of the SMC stator yoke is decreasing 
[1]-[2]. In such a case, the 2D assumption does not provide a 
good accuracy of the eddy current losses prediction required 
to perform an optimal motor design. A solution has been 
proposed by the authors in [2] where the 2D analytical design 
model of slotless machines is associated to an optimization 
procedure and an iterative correction mechanism performed 
by 3D Finite Element Analysis (FEA) to take into account the 
influence of the 3D end effects on the full-load stator eddy 
currents losses that are computed from the 2D analytical 
analysis (cf. Fig.1). For each intermediate optimal solution, a 
3D time-stepping FE simulation is performed for no-load 
operation to quantify the 3D effects on the eddy current 
losses. A suitable correction factor that represents the 3D to 
2D no-load eddy current losses ratio is derived and 
implemented in the analytical design model before the next 
optimization step. Because 3D time-stepping transient FEA 
with magnet rotation is time consuming, an alternative is 

proposed in this paper that is based on a fast 3D time-
harmonic FEA. The rotating magnets are modeled as fixed 
equivalent surface current sheets with time-varying sinusoidal 
current densities. The proposed method highly improves the 
efficiency of the iterative 3D correction mechanism. 

 
Fig. 1. Design optimization method with eddy current losses correction 

mechanism [2]  

II. EDDY CURRENT LOSSES COMPUTATION WITH 3D TIME-
HARMONIC FEA 

The stator magnetic losses under full load operation can be 
predicted by an analytical model derived from the distribution 
of the electromagnetic field [1]. The field computation is 
based on the 2D solution of the Maxwell’s equations in the 
magnets/air-gap/windings/stator core regions, for two 
different sources: the rotating magnets and the armature 
currents. The model takes into account the eddy currents 
induced in the conductive homogeneous SMC material and 
the time and space harmonics of the magnetic field. The 
representation of the magnet magnetization vector is 
applicable to radial or parallel magnetized magnets and 
discrete Hallbach arrays. In the radial case, the spatial 
magnetization distribution can be expressed by a complex 
Fourier series: 

   
, ,, sj kp kp t

r rot s r k
k

M t M e 


 



                    (1) 

p is the number of pairs of rotor poles, ,r kM  is the 
complex Fourier coefficient of the magnetization vector and   
is the rotor speed. The no-load eddy current losses in the SMC 
stator yoke can be derived from the integration of the eddy 
current density [1]: 
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Imag is the imaginary part of the complex variable, Rsi and 
Rso are the inner and outer radius of the stator core. I and K 
are modified Bessel functions of the first and second kind of 
order kp, with 2

,m k o rs sjkp      . (4)
,m kA  and (4)

,m kB  
are constants coefficients in the stator core region (i=4) that 
can be determined by using the boundary conditions.  

If one represents the rotating magnets as motionless 
magnets with time-varying sinusoidal magnetization at an 
angular frequency ω=pΩ, the new spatial magnetization 
distribution can be expressed as: 
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              (4) 

Each pulsating magnet field harmonic of order k is 
equivalent to the superposition of two counter rotating field 
harmonics Hd,k and Hi,k with an amplitude proportional to 

, / 2r kM and respective angular speeds  +Ω/k et –Ω/k. The 
stator eddy current losses are then equal to the sum of the 
losses associated to each counter rotating field because there 
are no losses due to their interaction: 
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    (6) 

On can notice from (2) and (5) that for k=1 the stator no-load 
eddy current losses due to the rotating magnets are equal to 
twice the losses due to the equivalent motionless pulsating 
magnets (Pec,rot=2.Pec,st) because (4)

,m kR  et (4)
, ,m d kR  are 

respectively dependant of ,r kM  and , / 2r kM . It is different 
for k≠1 because the field harmonics are rotating at +Ω in the 
case of the real rotating magnets and at ±Ω/k in the case of the 
motionless pulsating magnets ( 2 2

, , ,m k m d k  ). But this 
difference is negligible in the case of slotless machines 
because their relatively large effective magnetic air-gap highly 
limits the contribution of harmonics of order k>1 to the no-
load losses. In such machines, it is then possible to compute 
the eddy current losses due to the real rotation magnets by 
computing twice the losses due to equivalent motionless 
pulsating magnets with time-harmonic FEA. 

III. PM EQUIVALENT MODEL IN 3D TIME-HARMONIC FEA 
The pulsating magnets can be implemented in 3D time-

harmonic FEA by using equivalent surface current sheets with 
time-varying sinusoidal current densities at ω=pΩ [3].  Such a 
representation is illustrated on Fig.2 in the case of radial and 
parallel magnetized magnets. 
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Fig. 2. PM equivalent models with (a) radial and (b) parallel magnetization  

IV. VALIDATION AND COMPARATIVE ANALYSIS 
The method has been applied to the optimal design of a 

500W 20000rpm 3-phase 2 poles slotless PM motor with 
radial magnets. Fig.3 presents the variations of the correction 
factor that represents the 3D to 2D no-load eddy current losses 
ratio computed respectively by 3D time-stepping transient 
FEA as in [2] and by 3D time-harmonic FEA according to the 
proposed method, when the axial length of the motor varies. 
The correction factor obtained with 3D time-harmonic FEA is 
slightly higher but it has no influence on the optimal motor 
design solution. But the efficiency of the global design 
optimization process is highly improved in terms of 
computing time because the evaluation of the 3D losses 
correction factor is much faster. 
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Fig. 3. Variation of correction factors with axial length to pole pitch ratio  

V. CONCLUSION 

The implementation of equivalent motionless pulsating 
magnets modeled as equivalent surface current sheets with 
time-varying sinusoidal current densities in 3D FE solvers is 
an interesting feature to compute eddy current losses in 
slotless SMC PM machines by fast 3D time-harmonic FEA. 
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Abstract — A method is presented to get the steady state 
solution of nonlinear eddy current problems with periodic 
excitation using the T,φ-φ formulation in the time domain. The 
fixed point method is used to linearize the equations. A new 
decoupling technique is introduced for the case of nonequidistant 
time steps. The results are compared to the solution obtained by 
equidistant time steps and by a transient time stepping method in 
a three-dimensional example.  

I. INTRODUCTION 
Obtaining the steady-state solution of nonlinear eddy 

current problems with periodic excitation is very time 
consuming by stepping through transients in the time domain.  
An algorithm based on the fixed point technique has been 
presented in [1] and [2] for decoupling the equations of 
equidistant time steps using the A,v-v formulation both in two 
(2D) and three dimensions (3D). It has been extended in [3] 
for the T,φ-φ method. With this approach, half as many 
complex linear equation systems have to be solved as there are 
steps within a period. The efficiency of the algorithm can be 
improved by decreasing the number of time steps without loss 
of accuracy. This can be achieved by using a nonequidistant 
time discretization which is capable of approximating the 
wave form of the excitation with less time steps. The aim of 
this paper is to generalize the method of [1], [2] and [3] for 
variable time steps. The equations of the T,φ-φ formulation are 
used. The results of the time periodic methods are compared 
to a transient time stepping approach for a 3D problem. 

II.FIXED POINT METHOD USING THE T,φ-φ FORMULATION 
The quasi static Maxwell’s equations using the T,φ-φ 

formulation lead to  

 ( ) ( )0 0t t
ρ μ μ φ ρ μ∂ ∂

∇× ∇× + − ∇ = −∇× ∇× −
∂ ∂

T T T T  (1) 

 ( ) ( )0T
t t

μ μ φ μ∂ ∂
∇ ⋅ − ∇ = − ∇ ⋅

∂ ∂
T  (2) 

where T is the reduced electric vector potential, φ is the 
magnetic scalar potential, T0 is the impressed electric vector 
potential, ρ is the resistivity and μ is the permeability. The 
permeability is non-linear, i.e. it depends on T and φ. The 
excitation is periodic i.e. T0(t)=T0(t+T), and the periodic 
solution has to be determined (T(t)=T(t+T), φ (t)= φ (t+T)), 
with T>0. To achieve symmetry, the time derivative of the 
equation 0∇ ⋅ =B  has been used in (2). 

Introducing the fixed point permeability (μFP), linearizing 
(1) and (2), as shown in [3] and using Galerkin method for 

discretizing the partial differential equations, the following 
iterative method is obtained: 

 ( ) ( ) ( )( ) ( )1 1d d
d d

s s s
FPS x M x f g

t t
ρ μ+ ++ = +

 ( ) ( )( ) ( )d
d

s s s
FPM x

t
μ μ+ − , (3) 

where S(ρ) is the stiffness matrix depending on the resistivity, 
M(μ) is the mass matrix depending on μ, x(s) contains the 
unknowns T and φ in the s-th iteration step. f and g contain the 
excitations, ( )sμ  is the permeability and ( )s

FPμ  is the fixed point 
parameter in the s-th iteration. 

III. THE TIME PERIODIC METHOD 

An ordinary differential equation system with periodic 
conditions has to be solved in all fixed point iterations. These 
equation systems have a general form: 

 ( ) ( ) ( ) ( )d d
d d

Ax t B x t f t g t
t t

+ = + .  (4) 

In contrast to [1]-[3], a time periodic method using the general 
time discretization 0 10 nt t t T= < < < =…  will be employed. 
The time derivatives are discretized by the implicit Euler 
scheme 
 ( ) ( ) ( )1 1d dk k k k kx t t x x t t− −≈ − −  (5) 
where xk is the approximate value of x(tk). With this 
discretization, (4) becomes  

 1 1

1 1

k k k k
k k

k k k k

x x g g
Ax B f

t t t t
− −

− −

− −
+ = +

− −
.  (6) 

The discrete derivative operator in (5) can be represented as a 
multiplication by a matrix D, due to the periodic condition 
(x0=xn). D is a block structured matrix. The entries of the k-th 
block-row of D are I/(tk-tk-1), -I/(tk-tk-1) and zeros, where I is 
the identity matrix with the same size as A or B. Equation (6) 
has a closed form: 
 { } { } { } { }Ax D Bx f D g+ = + ,  (7) 

with the notation { } 1 2:
TT T T T T T

nCx x C x C x C⎡ ⎤= ⎣ ⎦…  and 

{ } 1 2:
TT T T

nx x x x⎡ ⎤= ⎣ ⎦…  where C is an arbitrary matrix. 

The following relationship is a property of these notations: 
 { } { }( ){ }D Bx B D x= .  (8) 

Since all blocks in D are constants times the identity 
matrix, the n n×  matrix D�  can be defined so that its elements 
are the same as the multipliers in the blocks of D. 
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To solve (7) efficiently, an eigenvector decomposition of 
D ( )DV V= Λ  is needed, where the matrix V contains the 
eigenvectors and Λ is a diagonal matrix containing the 
eigenvalues of D, similarly as in [1]. The matrix V and Λ share 
a similar block structure with D, and they can be determined 
from the eigenvectors and eigenvalues of D� . This 
decomposition and the use of the property (8) brings (7) to the 
following form: 
 { } { } { } { }Ay By F G+ Λ = + Λ .  (9) 

where { } { } { }1 1 1, ,y V x F V f G V g− − −= = = . Since Λ is 
diagonal, (9) can be solved decoupled for each time instant: 
 1, 2,...,k k k k k kAy By F G k nλ λ+ = + = ,  (10) 

where λk is the k-th eigenvalue of D� . D being a real matrix, 
all complex eigenvalues of D have a complex conjugate pair, 
so the number of equations to be solved is half as many as 
there are time steps in a period. 

IV. CONVERGENCE ANALYSIS 

With the results of the previous section, the whole fixed 
point iteration can be described as follows: 

 ( ) ( ) ( )( )( ) { }( ) { }( )({ 1
1 1 1s s

k FP kk k
x V S M V f V gρ λ μ λ

−
+ − −= + +  

 ( ) ( )( ) ( ){ }( ) )}1 s s s
k FP l l

k
V M xλ μ μ−+ − , (11) 

where the superscript (s) denotes the value of a variable in the 
s-th iteration step. ( ){ }FP l lM xμ μ−  denotes the vector 

( )( ) ( )( )1 1 , ,
TT TT T

FP n FP nx M x Mμ μ μ μ⎡ ⎤− −⎣ ⎦… . { }( )1

k
V f−  is 

the k-th transformed time step of { }1V f− . The following 
theorem is used to prove the convergence: 

The sequence xk+1=Bxk+c is convergent, if and only if 
ρ(B)<1, where ρ(B) is the spectral radius of B. 

The spectral radius of the linear operator in (11) can be 
estimated as: 

 ( ) ( )cond FP

FP

C Vρ
μ μ

ρ
μ
−

• < . (12) 

where •  represents the operator, ( ) ( ) ( )1cond V V Vρ ρ ρ −=  is 

the spectral condition number (this is not the same as 
( ) 1

2 2 2
cond V V V −= , which is sometimes called spectral 

condition number), i  is a corresponding norm, C is a 
constant independent of μ, μFP and V. It follows from (12) that 
the convergence of the fixed point method strongly depends 
on the transformation V, and the choice of the fixed point 
permeability. The fixed point permeability can be chosen 
similarly as the fixed point parameter in [1].  

V.ANALYSIS OF THE TRANSFORMATION 

The choice of the transformation matrix (V) is an 
important part of this method, since if its condition number is 
higher than one, then the fixed point algorithm will not be able 
to converge. Since V contains the eigenvectors of D, the 

matrix VΓ will contain the eigenvectors also, if Γ is a diagonal 
matrix, because the eigenvectors are unique only up to a 
constant multiplier. Tests with different transformation 
matrices have shown that a simple scaling with a diagonal 
matrix is not enough to get a well conditioned transformation 
matrix. The transformation matrix can be decomposed as a 
product of two matrices as 
 V QW=  (13) 
where Q is a real matrix with the condition number 1, and W 
is an unitary matrix. The transformation can be done in two 
steps: 
 ,y Wx z Qy= = . (14) 
This decomposition will be shown in the full paper. 

VI. RESULT 

The geometry of the 3D example is defined in [3]. The B-
H curve is the same as in [1], the conductivity of the cube is 
106 S/m and the highest value of the current density is 108 
A/m2 in the coil. The excitation has a half period sinusoidal 
form, and a half period zero value (Fig. 1.). 

 
Fig.1. The time function of the excitation. 

  
Fig. 2. a. shows the results of the different methods. Fig. 2. 

b. illustrates the convergence of the nonequidistant time 
periodic method (NEqTPM) with a well conditioned and an ill 
conditioned transformation. 

 
Fig. 2. a.:  Comparing the results of the NEqTPM (blue line, 22 TS/per) with 
an equidistant discretization (red line, 32 TS/per) and a transient time stepping 

method (4-th period, 32 TS/per) (green line). b.: Maximal, and average 
material changes of the NEqTPM with well- (blue) and ill- (red) conditioned 

transformation. 
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Homogenization for periodical electromagnetic 
structure: which formulation? 

Abstract This paper proposes a general approach for the 
frequency-domain homogenization of electromagnetic 
periodical structures. This method allows us to calculate 
macroscopic equivalent properties including local effects. 
Based on a local resolution with adapted formulation we can 
find respectively the equivalent permeability and conductivity. 
An example of the modeling of eddy current losses in windings 
is presented. 

I. CONTEXT 

Eddy current losses can be directly taken into account by a 
finite element resolution. However meshing every 
elementary conductor by respecting the skin effect is 
required. Such modeling is very expensive and generally 
impossible to accomplish in three-dimensional cases. 

In cases of periodical structures (as the windings) a 
methodology of homogenization can be set up. Then 
materials are represented with equivalent magnetic and 
electric properties [1], [2], [3].  

In this paper, we describe our homogenization method 
for periodical structures, in the case of linear problems feed 
by sinusoidal sources (frequency domain). It is based on a 
local finite element resolution taking into account any 
shape of elementary structure. Equivalent complex 
macroscopic reluctivity and conductivity can then be 
computed in order to represent local effects. This technique 
has been applied to compute eddy current losses in 
windings. 

II. METHODOLOGY 

Our method is based on the resolution of local Maxwell 
equations, on an elementary cell of the periodical structure. 
Local fields are linked with macroscopic fields to find 
equivalent properties. 

A. Local and macroscopic fields 

At local level, assuming that properties of materials 
(resistivity ν and reluctivity ρ) are linear, we have: 

jjebbh

jjhcurl

bbcurl

σ
1ρ


1ν

0div

0divjωe

====

==
=−=

 (1) 

At macroscopic level, electric and magnetic fields H and 
E also verify Maxwell equations. Our goal is to determine 
macroscopic equivalent behavior laws from local periodical 

effects. For this, we suppose that the macroscopic field has 
very few variations on a great number of elementary cells. 
So, the calculation at local level can be performed on an 
elementary cell of the periodical structure with periodical 
conditions. In practice, we write local fields as follows: 





jJjeEe

bBbhHh

+=+=

+=+=
 (2) 

where h, b, e and j are periodical fields. We can 
notice that these fields also verify the Maxwell equations, 
without any relationship between h and b or e and j. 
They represent local effects (difference with the 
macroscopic field) and are at the origin of additional losses. 
Since the macroscopic magnetic flux is obtained through 
the integration of local flux on any surface, we can link j
and J, b and B by: 

JjBb =><=><  (3) 

Where <j> represent the average field of j on the cell. It 
is important to notice that it is not possible to express 
directly H and E from their average values <h> and <e> on 
the cell. In practice, local curls of current j can produce a 
macroscopic field <h> ≠ 0. As a result, H differs from 
<h>. 

To find macroscopic behavior we consider uniform field 
B and J at the local level. From Maxwell-Ampere 
Maxwell-Faraday equations, the macroscopic fields H and 
E can then be expressed in the following form: 

c

c

E
x

BE

H
x

JH

+∧−=

+∧=

2
jω

2  (4) 

where the components of x are the coordinates (x,y,z) 
and Hc, resp. Ec, are the value of the macroscopic field at 
x=0, that we can choose at the center of the local domain of 
study. This allows us to define macroscopic equivalent 
properties such as: 

                              
JEE

BHH

c

c

]ρ[

]ν[

eq

eq

==><

==><
  (5) 
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B. Local fields resolution 

The first and natural way consists of applying J and B on 
the cell to solve the problem at the local level [2]. Then, h
and e on the cell are determinate. Unfortunately, we do not 
obtain H and E. The solution for finding equivalent 
properties can be achieved by equalizing electromagnetic 
powers, from the local and macroscopic level. Globally this 
methodology requires some precautions (for applying B
and J) and needs more simulations than the second 
approach presented below. 

The alternative way we propose consists to apply the 
macroscopic field H (resp. E) on the cell. Then the 
knowing of local fields b (resp. j) allows to determine B
(resp. J) from equation (3) and finally to establish 
equivalent properties.  

For example, the tensor of permeability [eq] = [νeq]
-1, 

can be obtained by solving local problem on the cell with a 
t-φ formulation. Starting from (1), we solve the cell 
problem: 

0div

0jω)ρ(
=

=µ+
h

hhcurlcurl
 (6) 

We introduce tµ and φµ from: 









φ0div gradth

trotj

j

jhrot

−=
=

⇒
=
=

 (7) 

 Using equations (2) and (4) with J = 0 we obtain: 

)(div)φ(div

)(jωφjω)ρ(





c

c

Hgradt

Hgradttcurlcurl

=−

−=−µ+
 (8) 

with periodical boundary conditions for t and φ on the 
cell problem. Applying Hc along the three directions of the 
cell allows us to obtain easily [eq]. For example, with an 
applied field Hc = { Hcx, 0, 0 } along the x direction, and 
after calculating B from <µ(h+Hc)> after solving (8), we 
have: 

  
cx

z
xz

cx

y
xy

cx

x
xx H

B
H

B


H

B ===  (9) 

  
We can notice that with the previous tµ-φµ formulation 

the equivalent properties J(E) can not be determined. In 
practice, to apply a field E, we choose an a-v formulation. 
In this case, the following system is solved: 

)(σdiv)vjω(σdiv

)(σω)v(jωσ)ν(





c

c

Egrada

Ejgradacurlacurl

=+

=++
 (10) 

with periodical conditions for a and v. J can be 
obtained after resolution from <σ(e+Ec)>. 

III.  EXAMPLE  

We have applied our method in order to determine 
macroscopic equivalent properties for a coil. Windings are 
the seat of losses due to the presence of eddy currents. 
These have as origin two effects: effect of each conductor 

on itself (skin effect) and proximity effect (influence of the 
magnetic field on the neighboring conductors).  

Fig. 1. Representation of the coil arrangement with associated elementary 
cell. 

To determine the equivalent reluctivity tensor, as 
proposed, a t-φ formulation with periodic condition (8) is 
used. Thanks to the imaginary part of the equivalent 
reluctivity, we can obtain a representation of the local eddy 
current losses due to proximity effects [1], [3]. To validate 
it, we have modeled a coil (with 80 elementary conductors) 
exposed to an external field (Fig. 1.). Then we have 
compared the active and reactive part in the domain of 
study in two cases: 

- when each conductor is described (reference), 
- when the coil is homogenized. 

The obtained results (Fig. 2.) are very satisfactory 
considering the small number of conductors in the winding.  

Fig. 2. Comparison (in %) of the active and reactive power between the 
homogenized model and the reference model. (The frequency which 
correspond to a skin depth equal to the diameter of the wire is represented 
with a vertical line.) 

The method has been used to determine equivalent 
conductivity by solving (10).  In the case of a coil, it allows 
to take into account skin effect. 

IV. CONCLUSION  

A general methodology for determining equivalent 
properties for electromagnetic periodical structure has been 
proposed. The importance of the choice of the formulation 
has been highlighted. The proposed method can be applied 
to any case of electromagnetic periodical structure, in two 
and three dimensions. 
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2. QUASI-STATIC FIELDS

Geometric Interpretation of Frequency-Domain
Surface-Impedance Boundary Conditions
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Abstract— Lowest-order frequency-domain surface-impedance
boundary conditions are reformulated as a finite-element ap-
proach with particular shape functions and as a finite-integration
technique with a particular geometry.

I. INTRODUCTION

When the skin depth is expected to be small compared to the
wire diameter, it may be convenient to model the eddy-current
effect in a wire by a surface-impedance boundary condition
(SIBC), thereby omitting the volumetric discretization of the
inner wire geometry [1]. The relation between the tangential
components Eγ and Hβ of the electric and magnetic field
strengths, assuming an infinite half-plane (α ≥ 0) of material
with permeability μ and conductivity σ is then

Eγ = −1 + j

2
ωμδHβ ; δ =

�
2

ωμσ
(1)

where ω is the angular frequency and δ the skin depth
[2]. Higher-order SIBCs accounting for the curvature of the
boundary and for field variations along the boundary have
been proposed [3] and have been applied to a variety of
problems (e.g. [4]). SIBCs have been combined with the
finite-element (FE) method, the boundary-element method and
the finite-integration technique (FIT) [5], [6] and have been
formulated in frequency and time domain. This paper focuses
on reformulating the SIBC using the typical mechanisms of
the FE method and of the FIT. The idea is to come to
a geometric interpretation for the Leontovich SIBC in the
frequency domain.

II. INTERPRETATION AS A BOUNDARY INTEGRAL TERM

The weak form of the time-harmonic magnetoquasistatic
formulation in terms of the magnetic vector potential A reads

�

Ω

(ν∇× A) · (∇× wi) dV +

�

∂Ω

(H× wi) · dA

+ jω

�

Ω

σA · wi dV =

�

Ω

Js ·wi dV (2)

with ν = 1/μ the reluctivity, wi belonging to an appropriate
set of edge shape functions, Ω the computational domain and
Js the applied current density. The boundary integral term
originates from partial integration and vanishes in the case of
homogeneous Dirichlet or Neumann boundary conditions. In
the case of SIBCs, the boundary integral term combined with
(1) simplifies to �

∂Ω

νξA ·wi dA (3)

�

��

iw

�

ib�

ih

ib�
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Fig. 1. Circuit equivalent of the SIBC for the 3D FE case: Reluctance Λii

perpendicular to edge i and conductance Gii along edge i in function of
reluctivity ν, conductivity σ, skin depth δ, edge length hi and dual edge
length b̃i.

with ξ = (1+j)/δ. With discretization by A =
�

j
�ajwj and

some rearrangement, the boundary integral terms resembles
�

j

�aj

�

∂Ω

ν
wi · wj

δ
dA

� �� �
Λij

+
�

j

jω�aj

�

∂Ω

σ
δ

2
wi · wj dA

� �� �
Gij

.

(4)
Λij has the unit of a reluctance (1/H), whereas Gij has the
unit of a conductance (S). Both add up with already existing
reluctance and conductance terms in the discretized partial
differential equation. The meaning of both becomes very clear
when mass lumping would be applied. Then,

�

∂Ω

wi · wj dA =

�
b̃i

hi
if i = j

0 if i �= j
. (5)

Here hi is the length of edge i and b̃i is the length of a dual
edge lying in ∂Ω and crossing edge i. The entries become

Λij = ν
b̃i

δhi
; (6)

Gij = σ
δb̃i

2hi
. (7)

Hence, Λij is the reluctance of the flux path perpendicular to
edge i with length b̃i and cross-section hiδ, whereas Gij is
the conductance of the current path along edge i with length
hi and cross-section b̃i

δ
2

(Fig. 1). This interpretation becomes
even more clear when considering the 2D case (Fig. 2).

III. INTERPRETATION AS A SPECIAL FE DOMAIN

Another interpretation is obtained by considering the highly
conductive domain Ωc as part of the computational domain
Ω ∪ Ωc. Additional prism elements are constructed by lifting

117

pa4.6



2. QUASI-STATIC FIELDS

the triangles at ∂Ω into Ωc. In theory, these prisms extend
from α = 0 up to α = ∞. Moreover, when ∂Ωc is convex,
the prisms are partially overlapping, whereas when ∂Ω c is
concave, the prisms do not span Ωc completely. For every
edge j incident to ∂Ω, special shape functions are defined.
Inside Ω, wj keeps its useful form whereas inside Ωc, the
complex-valued decaying function ŵje

−ξα with ŵi the trace
of wi at ∂Ω, is used. These functions guarantee the tangential
continuity at ∂Ω. The expressions in (2) have to be integrated
in Ω ∪ Ωc. The Ritz-Galerkin approach consists in using test
functions which are conjugate to the trial functions. Hence,
the test functions in Ωc are ŵie

−ξ∗α where ξ∗ denotes the
conjugate of ξ. The contribution of Ωc is

�

j

�
Λij + Λ̂ij + jωGij

�
�aj (8)

where Λ̂ = ĈTM̂νĈ,

M̂ν,pq =
δ

2

�

∂Ω

νzq · zp dA , (9)

zi are lowest-order face functions and Ĉ is the discrete curl
matrix restricted to ∂Ω. Eq. (9) simplifies to

M̂ν,pq ==

� νδ
2Ap

if p = q

0 if p �= q
(10)

with Ap the cross-section of face p. This extra term does not
appear in the interpretation of the SIBC as a boundary integral
term. Although not relevant for the convergence of the method,
Λ̂ is important to obtain a complete geometric interpretation
of the SIBC.

IV. INTERPRETATION BY THE FINITE INTEGRATION
TECHNIQUE

The finite-integration technique (FIT) considers a staggered
grid pair [7]. The discrete counterparts of the curl, divergence
and gradient operators are incidence matrices and do not
involve any discretisation. The Hodge operators are discretized
into material matrices. The reluctance matrix Mν models
the magnetic paths formed by primary faces and dual edges
whereas the conductance matrix Mσ considers the electric
paths formed by primary edges and dual faces. Closely similar
methodologies are described in [8] and [9]. In the particular
case where an orthogonally intersecting grid pair is considered,
Mν and Mσ are diagonal matrices. The SIBC is easily intro-
duced in FIT by considering an additional layer of primary
grid cells of thickness δ, with conductivity σ and reluctivity
ν (Fig. 2). Dual grid lines are present at a distance δ

2 . The
generic construction of FIT material matrices leads to the
same additional contributions Λij , Λ̂ij and Gij as described in
the previous sections. Here, only the simplest case where the
primary grid resolves the geometry, is considered. The non-
matching case is treated in [6]. An additional difficulty arises
when the SIBC is excited from the outside. In that case, one
additional unknown �as is introduced per SIBC region and
connected with the externally applied voltage [4].

z�
2

�

� h�

h�
�
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��
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Fig. 2. Circuit equivalent of the SIBC for the 2D FIT case: Reluctance Λα

perpendicular to the boundary, reluctance Λβ and conductance Gz parallel to
the boundary, grid fluxes

��
bα and

��
bβ , grid current

��
j z , skin depth δ, primary

grid lengths �z and hβ , dual grid length h̃β , line-integrated magnetic vector
potential �

az .

V. EXAMPLE

As an example, the transmission-line parameters of a wind-
ing are calculated [4]. The convergence of the formulations
with and without Λ̂ are the same, indicating the inferior
importance of Λ̂. The SIBCs replace the volume discretizations
of the individual wires. After assembling, the system matrices
are reduced by algebraic manipulation in order to obtain the
transmission-line impedance matrix.

VI. CONCLUSIONS

The lowest-order frequency-domain SIBC can be interpre-
tated within the framework of the FIT as an additional layer
of primary cells with the skin depth as thickness. The typical
FE formulation of the SIBC as a boundary integral term can
also be found by considering specialized shape functions in
the highly conductive domain.
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2. QUASI-STATIC FIELDS (a) EDDY CURRENT

Abstract — A highly efficient method based on the current 
sheet integral equation is extended to thin metallic shields 
operating in the vicinity of nonlinear magnetic media. The 
polarization fixed point technique is applied, with the magnetic 
media replaced by a linear medium of permeability equal to that 
of free space and a distribution of magnetic polarization which 
depends nonlinearly on the magnetic induction. In a periodic 
regime, the integral equation is solved for each harmonic 
separately. 

I. INTRODUCTION

For thin conducting shields, when their thickness is smaller 
than the depth of penetration corresponding to the harmonics 
involved, the analysis of the periodic electromagnetic field can 
be simplified by considering an equivalent surface distribution 
of the electric current induced in the shields. A surface 
impedance which takes into account the relationship between 
the field quantities on the two sides of the shield was 
introduced in [1]. An original solution for very thin shields 
was proposed in [2], where the surface density of the current 
induced is expressed in terms of unknown scalar quantities 
associated with the nodes of the surface discretization grid. In 
[3], simple vector functions are employed, such that the 
current continuity is preserved everywhere, the unknowns to 
be determined being scalar coefficients associated with the 
interior nodes of the grid and with only one unknown for each 
hole contour in the case of multiply connected shields. These 
unknowns are computed by applying a Galerkin technique to 
the current sheet integral equation.

The computation of the currents induced in the shields is 
drastically complicated when there are ferromagnetic bodies in 
their neighbourhood. A static magnetic permeability that is 
iteratively corrected by various criteria has been used in [4], 
which allows a phasor representation of the field quantities. 
Since the time constants involved in the electromagnetic 
shielding problems are relatively small, only a reduced number 
of harmonics is required and, thus, the harmonic balance 
method [5] could also be applied efficiently. Unfortunately, 
these methods do not allow the construction of an integral 
equation for the current induced in the shield in the presence of
nonhomogenous media that have a permeability that is 
iteratively modified.

In this paper, the solution of the periodic electromagnetic 
field problem is obtained by using a surface integral equation 
for the currents induced in the shield even in the presence of 
nonlinear ferromagnetic materials. As in [6], a model is used
where the nonlinear materials are replaced by a free space, but 
with a fictitious distribution of magnetization. The current 

sheet integral equation is written for each harmonic and, at 
each iteration, we first determine the magnetic induction in the 
ferromagnetic material and, then, the magnetization is 
corrected in time domain in terms of the corresponding 
magnetic induction. The computation process is started by 
only considering the fundamental harmonic, with the results 
being afterwards improved by including higher harmonics. At 
most, three harmonics are sufficient for practical structures.

II. NONLINEARITY TREATMENT BY THE FIXED POINT METHOD 
AND ITERATIVE ALGORITHM

For ferromagnetic media we use the constitutive relation

                                  IHB  0 (1)

where the magnetic polarization I is corrected iteratively in 
terms of the magnetic induction B [7],

                                )F(BBI 0 (2)

)F(BH  being the constitutive relation for the magnetic 
medium.

An initial value of polarization is arbitrary chosen. We use 
the representation

             



,...,

)(")(')(
31n

nn tncostnsint  III (3)

with only the first N harmonics retained. For each harmonic n
of polarization, written in phasor form as

                                    nnn j "' III  (4)

we solve the field problem in the presence of the shield and
determine the harmonic n of magnetic induction,

                                   nnn j "' BBB  . (5)

The time domain expression of B is derived in the form

                



1231 Nn

nn tncostnsint
,...,,

)(")(')(  BBB . (6)

Then, at each time step, (6) is used to correct the magnetic 
polarization. The computational effort is substantially reduced 
if one starts with only the fundamental and, then, the solution 
accuracy is increased by adding a few more harmonics.

III. INTEGRAL EQUATION FOR THE SHIELD CURRENT SHEET 
AND ITS NUMERICAL SOLUTION

For each harmonic n of the surface density of the current 
induced over the surface S of the thin shield we have
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where  /s is the surface resistivity of the shield, with Δ 

the shield thickness, 1j , 20 / nfn  , 'rr R with 
r and 'r , respectively, the position vectors of the observation 
point and of the source point, 0A is the magnetic vector 
potential due to the given sources, and IA is the magnetic 
vector potential due to the harmonic n of polarization in the 
region  occupied by ferromagnetic bodies,

                          IA = 


 '))'('( dS
R

rI
4
1 . (8)

The scalar potential term V in (7) can be ignored. 

i

j
k

(p)
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il
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Fig. 1. Surface elements associated with the node i

Equation (7) is solved numerically as shown in [3]. S is 
approximated by a polyhedral surface with plane triangular 
surface elements. To each node i we associate a surface vector 

function iU , having the value )()( p
i

p

p
i S

lU
2

1
 for each 

element (p) containing the node i (Fig. 1), and a zero value for 
all the surface elements which do not contain the node i. The 
surface current density is written as a linear combination of the 
functions iU as

                                  



N

i
iis

1
)()( rUrJ  . (9)

The unknown coefficients i are determined by taking the 
inner products of the two sides of (7) with nU ,

,,,, Nn 21 over the shield surface.

IV. CORRECTION OF MAGNETIC POLARIZATION

The region  with ferromagnetic material is discretized in 
polyhedral volume elements k of an arbitrary shape. In each 

k the magnetic induction is taken to be constant, namely, 

equal to its average value over the element, 

                      kIJkk k BBBB ~~~~
 0 (10)

where k0B~ is due to the given sources, kJB~ is due to the 
shield’s current sheet,

              kJB~ = ')'(
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with kv being the volume of k , and kIB~ is due to the 
magnetic polarization. Each element m with its polarization 

mI contributes to kIB~ by

kmIB~ = mkm
mkmk
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dSdS
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k m
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(12)

where 1 is the identity dyadic and )( mk nn is the dyad of the 
unit vectors kn and mn normal to the boundaries k and 

m of the elements k and m , respectively. Analytical 
expressions can be obtained for the integrals in (11), (12) over 
the closed surface of one of the volume elements since this 
surface has plane sides. Details regarding the numerical 
computation and illustrative examples will be presented at the 
Conference.
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11F. ELECTRIC MACHINES AND DRIVES 

Abstract —	 When	 a	 Halbach	 rotor	 is	 rotated	 and	
translationally	moved	over	a	flat	conductive	sheet	guideway	eddy	
currents	are	induced	that	can	create	simultaneous	lift	and	thrust	
forces.	 This	 technique	 could	 enable	 Maglev	 cost	 to	 be	 reduced	
significantly	 since	 the	 guideway	 construction	 costs	 would	 be	
minimized.	 This	 paper	 investigates	 different	 flat	 guideway	 and	
rotor	topologies	that	also	create	lateral	re-centering	forces.		

I. INTRODUCTION 
Despite high-speed maglev (magnetic levitation) vehicles 
being commercially available, city and intercity urban planners 
throughout the world continue to balk at the immense capital 
cost associated with installing currently available high-speed 
maglev designs. Rather, high-speed rail or more reliance on 
highways and aircraft continue to be the typical chosen path. 
This is unfortunate because maglev has some unique and 
beneficial characteristics, such as low pollution emissions, low 
maintenance and high-speed.   

If the maglev guideway costs can be brought radically down 
in cost, to that which is typically incurred when constructing 
rail or high-ways, then perhaps maglev would be more 
frequently implemented. In order to reduce construction costs 
to the minimum the maglev guideway needs to be passive 
(non-electrified) and preferably horizontally flat. By using a 
horizontal flat passive guideway maglev could be more easily 
integrated into existing transportation infrastructure. Flat 
guideways can make use of electromagnetic directional 
switching [1] rather than impractical mechanically moving 
guideways. They are also less likely to accumulate debris and 
snow compared to vertically mounted guideways and they 
create less aerodynamic vehicle drag.  However, using a flat 
guideway mandates that the magnetic forces alone create 
sufficient vehicle restorative forces to ensure stability. 

Three possible flat aluminum sheet guideway topologies are 
considered in this paper and are shown in Fig. 1, Fig. 2 and 
Fig. 3. Only one side of the guideway track is shown. Using 
these flat guideways it is proposed that a vehicle could create 
simultaneous suspension and thrust forces by 
electromechanically rotating the magnetic rotors, shown above 
the guideways. The simultaneous thrust, lift and guidance 
forces are created by the induced eddy currents in the 
guideway [2-4].  The thrust is highly dependent on the slip, s  
               m o xs r v  ,                                                     (1)

where m = rotor mechanical angular velocity, or = rotor outer      
radius and xv = translational velocity. The lift force is less 

dependent on slip, especially at high translational velocity [5]. 
All three models use a 4 pole-pair Halbach rotor, with magnets 
arranged as illustrated in Fig. 4. The guideway and rotors are 
configured so that additional lateral re-centering (z-axis) forces 
are created when the magnetic rotors are offset. This re-
centering is dependent on the relative difference between the 
flux impinging on either side of the guideway. 

Numerous magnetic wheels would be needed for a full size 
vehicle and dynamic control would be essential. An onboard 
power source or power transfer to the vehicle will be needed 
and the vehicle will need to run on wheels at low speeds. 
Relatively high efficiency is achieved when using multiple 
wheels in series [3]. This paper focuses on determining which, 
if any, proposed guideway can create sufficient lateral re-
centering guidance forces whilst not seriously deteriorating the 
thrust and lift forces.  
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Fig. 1. A Halbach rotor rotating and 
translationally moving above an 
aluminum split-sheet guideway 

Fig. 2. A dual transverse flux Halbach 
rotor rotating and translationally moving 
above an aluminum split-sheet guideway. 
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Fig. 3. A single guideway sheet with dual angled 
Halbach rotors simultaneously rotating and 
translational moving above an aluminum guideway. 

Fig. 4. A four pole-pair 
Halbach rotor 

II. MODEL FORMULATION SUMMARY 
A novel 3D finite element A-  steady-state convective 
diffusion model presented in [4] was used to calculate the 
forces. The formulation used for the conducting and non-
conducting regions is given in (2) and (3) respectively. The 
boundary conditions and more model details are provided in 
[4,5]. The Halbach rotor’s field Brotor is calculated semi-
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analytically and incorporated into the model formulation via 
the guideway boundary conditions. The x-axis translational 
motion is model using a convective term in (2) while the 
rotation of the rotor(s) is modeled in steady-state using the 
electrical frequency, ωe, term in (2). The, ωe, is related to the 
mechanical rotor frequency by ( / 2)e mP  , where 
P=number of pole pairs. The problem space is illustrated in 
Fig. 5.  

2
0 e xj v

x
        

AA A , in Ωc      (2) 

   2 0  , in Ωnc     (3) 

Conductive Region

Non-conducting Regiond

C

nc0
C

cn

ncn

 
Fig. 5. 2D schematic of the finite element model. 

TABLE I SIMULATION AND EXPERIMENTAL PARAMETERS  
Rotor: Outer radius, ro  50 mm 

Inner radius, ri 34.2 mm 
Width, w 175 mm 
Magnet (NdFeB), Br 1.42    
Magnet relative permeability 1.055 
Pole-pairs, P 4 

Guideway: Conductivity (Al)   2.459107 Sm-1  
Single sheet width 77 mm 
Thickness, d 6.3 mm 
Airgap between rotor and guideway, g 9.5 mm 
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Fig. 6 Lateral restorative forces created by induced current on the left and 
right sides of the split-sheet guideway as the rotor is laterally offset.  Rotor 
width is 175mm.  The lateral forces on either side of the guideway cancel 
out for most of the rotor offset distance. 

III. RESULTS AND DISCUSSION 
The parameters show in Table I have been used in this 
analysis. These parameters were chosen in order to agree with 
future experiment scale model measurements. Initially the 
split-sheet topology shown in Fig. 1 was studied [4,5] 
however, since the lateral forces are dependent on the 
difference between the flux seen on either side of the split-
sheet guideway the lateral restorative forces are relatively 
small; particularly so if the rotor width is large (see Fig. 6).  
However, a large rotor width is necessary in order to create 
sufficient lift force, as shown in Fig. 7.  

In order to improve lateral re-centering forces the guideway 
and dual magnetic rotor designs shown in Fig. 2 and Fig. 3 
have been proposed. The guideway topology shown in Fig. 2 is 
more complex.  Hence, the configuration shown in Fig. 3 may 

be more desirable from a cost perspective. But this design will 
come at the price of a reduced thrust and thrust efficiency.   

An illustration of the induced Az vector potential field on the 
guideway surface is shown in Fig. 8 for the dual rotor design. 
The full paper shows that the dual design creates greater re-
centering guidance force. It does this by utilizing the lateral 
field difference created by the transverse magnetic flux, (Fig 9)  
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Fig. 7 The effect of the rotor width on the lift-to-weight ratio as a function of 
RPM for the case when the Halbach rotor is at the center of the split-sheet 
guideway. A 5ms-1 translational velocity and 9.5mm air gap was used.  
Numerical results calculated using the A- coupled finite element analytic 
model discussed in [4,5]. Experimental results discussed in [4, 5] also shown. 

 

 

Fig. 8 Magnetic vector potential field on the guideway surface when the Dual 
Halbach rotors (175mm total width) are offset and rotated and translationally 
moved. The Halbach rotor is modeled analytically thus not shown in figure. 

-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5

-0.10 -0.08 -0.06 -0.04 -0.02 0.00 0.02 0.04 0.06 0.08 0.10

Guideway Position [m]

B
y 

M
ag

ne
tic

 F
lu

x 
   

. 
D

en
sit

y 
[T

]  
   

  .
   

   
   

   
   

   
 

 

Fig. 9 The Analytically Calculated By magnetic flux density component on the 
guideway surface for the dual Halbach rotor topology (shown in Fig 2). 
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Abstract—Finite element method (FEM) simulations are ana-
lyzed for high voltage equipment featuring resistive field grading.
In such simulations, the order of the used mesh and the polyno-
mial order of the ansatz functions is varied. The resulting effects
on the accuracy and the simulation time is developed. Simulation
results of a simplified benchmark geometry and applications to
large scale 3D high voltage equipment are presented herein.

I. RESISTIVE FIELD GRADING MATERIAL MODELING

Resisitive field grading materials, such as provided with SiC
or ZnO microvaristor polymer compounds, have a modifiable
effect on the electric field both in and close to them [1].
First applications with ZnO µ-varistors can be found in [2],
on the simulation of nonlinear stress grading materials in [3]
and [4]. The effect of higher order elements on the accuracy
of mechanical stress simulations is discussed in [5] and for
electrostatic simulations in [6]. In this paper, it is enhanced
for nonlinear electro-quasistatic simulations.

The electric field in the computational domain Ω is assumed
to be electro-quasistatic [7]. From Maxwell’s equations, the
partial differential equation for the scalar electric potential ϕ
can be derived which reads

div (κ(gradϕ) gradϕ) + ∂t div (ε gradϕ) = 0. (1)

It considers capacitive () and field-dependant i.e. nonlinear
resitive (κ(gradϕ) effects. Equation (1) is discretized in time
via a higher order implicit Runge-Kutta scheme and in space
with the help of a strongly modified Whitney-FEM C++ library
[8].

II. BENCHMARK PROBLEM

A simplified geometry setup described in [6] is employed. It
is a eighth of a sphere capacitor. The mesh with first geometric
order elements is plotted in Fig. 1 and contains 1 400 tetrahe-
dra. Simulations for first and second order polynomial ansatz
functions are performed for geometric elements of first and
second order, respectively. A nonlinear resistive material is
used in such a way that there is a known analytic solution for
a static electric flow field simulation. The difference between
elements of first and second geometric order is shown in Fig. 2.

This work is supported by the “Arbeitsgemeinschaft industrieller
Forschungsvereinigungen e.V.” (AiF) under Grant 15455 N/2.

Fig. 1. Mesh with first order tetrahedra of the CAD model of the eighth
sphere capacitor. It has an inner radius of 0.1 m and an outer radius of 1.0 m.

Fig. 2. Spatial discretization of the boundary surface of a eighth sphere
capacitor. Quadratic triangulars on the right with curved edges allow for better
geometry approximation than linear triangles on the left hand side.
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Fig. 3. Scalar potential ϕ of first and second order element mesh simulations
and analytic solution for the sphere capacitor benchmark.

In Fig. 3, the simulation results using nonlinear resistive
material behavior are plotted against the radial distance for
second order ansatz functions. In the zoomed view it can
clearly be seen that the solution of the second order element
mesh agrees with the known analytic solution, but the solution
of the first order element mesh is off.
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Relative errors of the scalar potential are presented in Fig.
4 and Fig. 5 using geometric elements of both first and second
order. In Fig. 4, first order ansatz functions are used for the
simulations whereas second order ansatz functions are used
for the simulations shown in Fig. 5. The results show that
the geometric element order should not be greater than the
polynomial order of the ansatz functions in order to improve
the accuracy using a higher order mesh.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1st order element mesh

2nd order element mesh

radial distance in m →

re
la

tiv
e

er
ro

r
∆

Si
m

in
%
→

Fig. 4. Relative error of the scalar potential for the sphere capacitor
benchmark with first order ansatz functions. The errors of simulations using
geometric elements of first and second order are shown.
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Fig. 5. Relative error of second polynomial order with first and second order
element mesh for the sphere capacitor benchmark.

The computational times for running electro-quasistatic sim-
ulations are compared in Table I. They confirm the results of
the static electric flow simulation. For ansatz functions of first
and second order (poly. order), the number of degrees of free-
dom (DoF), of linear systemes (lin.sys.) and the computational
times (solver time) are listed for the same mesh with first and
second order elements (geom. order). Since the results with
same order of geometric elements and ansatz functions are
less error-prone, less Newton-iterations have to be performed
and thus less linear systems have to be solved. This results in
less simulation time.

III. LARGE SCALE 3D HIGH VOLTAGE EQUIPMENT

The effects of the use of higher order elements are shown in
the benchmark problem. This is applied to realistic large scale

TABLE I
EFFICIENCY OF TRANSIENT SIMULATIONS FOR THE SPHERE BENCHMARK.

poly. order geom. order # DoF # lin.sys. solver time

1 1 286 474 25 s
2 286 1 207 62 s

2 1 2085 1 057 321 s
2 2085 887 256 s

Fig. 6. Insulator test configuration. The lateral dimensions of the configura-
tion are 2.6 m x 0.17 m x 1.824 m, of its bounding box 5 m x 5 m x 8 m.

Fig. 7. Zoomed view of the stress cone of a high voltage cable terminator.

3D high voltage equipment in the full paper. A composite
insulator example is presented in Fig. 6. Its first shed is made
of silicon filled with field grading material. A cable terminator
example is presented in Fig. 7. The simulation setup and
results for those models will be presented in the full paper.
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Abstract — This paper presents an analytical model for 
prediction of eddy current loss in armature windings of 
permanent magnet brushless AC machines. The developed model 
can either be used in the case of internal or external rotor radial-
field machines topologies. First, a 2D exact analytical solution of 
armature reaction magnetic field distribution in a actual 
geometry of slotted surface mounted PM radial flux synchronous 
machines is established. It involves solution of Maxwell’s 
equations in slots, airgap and PM’s region. Then, magnetic vector 
potential solution in the slots is used for prediction of resistance 
limited eddy current in armature windings. Finally, results from 
this analytical model are compared to corresponding finite 
element analyses. This analytical model is then used to estimate 
eddy current loss in armature windings. 

I. INTRODUCTION 

This paper attempts to provide analytical tools to facilitate 
the analysis and design of a class of radial flux PM 
synchronous machines (fig. 1). The developed model gives 
exact magnetic field distribution due to armature reaction in 
the slots (radial slots) [1]. The developed model embraces 
both internal and external rotor topologies (fig. 1). The 
permanent magnet supporting armature can either be made of 
magnetic or non-magnetic material. The slotted stator has a 
classical configuration with radial teeth. The slots and teeth 
can be equally distributed or not [2], [3]. They can be arranged 
to accommodate any winding configuration (overlapping and 
non overlapping windings). 

The developed model is then used to estimate resistance 
limited eddy current in armature windings and corresponding 
loss. It is also used to quantify the effect of segmenting 
armature windings conductors as means of reducing the loss. 
The validity of the developed model is verified by time-
stepped transient finite element analysis. 

II. ARMATURE REACTION FIELD ANALYTICAL SOLUTION 

In order to establish the exact analytical solution, two 
concentric regions are considered (Fig. 2) (slots (I), airgap, 
permanent magnets and region under magnets (II)) Region 
under magnets is only considered in case of a non-magnetic 
permanent magnets supporting armature. Permeability of all 
ferromagnetic parts is assumed to be infinite. The permeability 
of permanent magnets is assumed to be equal to that of air. 
The governing field equations, in terms of the Coulomb gauge, 

0=×∇ A , are: 







=∇

−=∇

IIregion in 0

Iregion in 
2

0
2

              A

        JA µ
       (1) 

A (the magnetic vector potential) only has Az component 
which is independent of z (infinitely long machine in axial 
direction). J is the current density vector. 

(a) (b) 

Fig. 1. Radial-field PM machines topologies: internal rotor (a) and external 
rotor (b). 

Fig. 2. Polar coordinates system. 

Combining equations (1) with boundary conditions, and 
using separation of variables method, help establish a set of 
linear equations (NH x NH) (where NH is the number of 
considered harmonics), where coefficients of magnetic vector 
potential solution in region II are the unknown. Solving these 
linear equations and using interface conditions give 
coefficients of magnetic vector potential in the slots. Obtained 
linear system is solved using Gaussian elimination method. 
The developed model takes into account rotor movement. 

The general solution of equation (2), in a slot ‘i’, can be 
written as follows: 
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where J(i) is the current density of slot ‘i’. 
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2

III. ANALYTICAL PREDICTION OF EDDY CURRENT 

The time dependence of magnetic vector potential solution 
in a slot ‘i’ is proportional to the time dependence of current 
density in this slot. If the current density is sinusoidal, the time 
harmonic content of induced eddy current will be limited to 
the fundamental component. Since armature windings 
conductors are always designed to have dimensions smaller 
than the skin depth, the induced eddy current density can be 
obtained from the following: 

)(
),,(

),,(
)(

tC
t

trA
trJ

i

e +
∂

∂⋅−= ϕσϕ      (3) 

∑
+∞

=

+=
1

0
m

m )t(C)t(C)t(C        (4) 

where σ is the electric conductivity of the windings material 
(copper). C(t) is a function of time which is introduced to 
insure that the total current flowing in each conductor is equal 
to the source current. 

IV. COMPARISON WITH FINITE ELEMENT ANALYSIS 

Table I presents the machine’s parameters used for the 
exposed results in this digest. A time-stepped transient finite 
element analysis was made to calculate the eddy current 
distribution in the armature windings for frequencies ensuring 
that the conductor dimensions are smaller than the skin depth. 
Figure 3 shows eddy current density distribution along the 
radial direction collinear with a slot axis at a given instant. 
Figure 4 compares the analytically predicted variation of Je

with time and the corresponding finite element results at a 
point situated in the middle of a conductor. It can be seen that, 
in both cases, the analytical predictions agree very well with 
the finite element simulations. Figure 5 shows a slot conductor 
eddy current loss calculated by finite element simulation on 
one hand, and on the other hand, the corresponding limited 
resistance eddy current loss predicted by the developed 
analytical model. It should be noticed that the eddy current 
loss at 35 Hz is about 8% of Joules losses due to source 
current. This comparison clearly shows the accuracy of the 
developed analytical model and validates by the way its 
effectiveness in the adequate frequency domain. 

In the final paper, a study of the effect of segmenting 
armature windings conductors as means of reducing the loss 
will be presented and discussed. 

V.CONCLUSION 

This paper presents a general analytical solution of the 
armature reaction magnetic filed distribution in an actual 
geometry of radial flux permanent magnet brushless AC 
machines. The developed analytical solution of magnetic 
vector potential in the slots is used to predict the resistance 
limited eddy current losses in the armature windings.  

TABLE I – MACHINE’S PARAMETERS

Pole number 6 
Slot number 18 

Number of slots per pole per phase 1 
Number of turns 2 

R0, R1, R2 and R3 (mm) 50, 58, 60 and 84 
w (rad) π / 18 

Fig. 3. Current density along a radius aligned with a slot axis. 

Fig. 4. Current density versus time at a point in the middle of a slot. 

Fig. 5. Eddy current loss in a slot conductor versus frequency. 

The obtained results have been validated by a time-stepped 
transient finite element analysis. 

Developed model capabilities will be more deeply 
presented in the full paper and, in particular, the segmenting 
armature windings conductors effect on the loss reduction. 
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2. QUASI-STATIC FIELDS 

Abstract — A new program solution is presented to analyze the 
transient performance of grounding systems. In contrast to 
recently known numerical procedure based on the finite element 
method (FEM) in frequency domain, in this new methodology for 
the first time the differential equations of the electromagnetic 
field have been solved using the FEM directly in time domain. 
The results of calculations have been verified by comparison with 
the results of measurements found in the literature.  

I. INTRODUCTION 
The primary goal of grounding systems is to ensure the 

safety of personnel and prevent damage of installations while 
their secondary goal is to provide common reference voltage 
for all interconnected electrical and electronic systems. To 
optimize the design of grounding systems, as well as to 
minimize the disturbance level in the protected area, the 
program tool able to simulate the transient performance of 
grounding systems is fundamental. For that very reason, the 
goal of this work was to develop the methodology (the proper 
numerical model) which allows a complete three-dimensional 
(3-D) electromagnetic study of grounding systems by using 
the finite element method (FEM). 

So far, three basic concepts have been used to simulate the 
transient performance of grounding arrangements: the circuit 
approach [1], the transmission line approach [2], and the 
electromagnetic field approach [3]. In this paper, the solution 
to analyze the transient behavior of grounding system is based 
on the electromagnetic field theory and on the implementation 
of the FEM. The validity of the suggested method of analysis 
has been verified by the comparison of obtained results with 
the results found in [4]. 

II. NUMERICAL MODEL OF TRANSIENT ELECTROMAGNETIC 
FIELD BASED ON FEM 

A. Mathematical Background 

The governing partial differential equation for transient 
problems can be derived from Maxwell’s equations. In terms 
of the magnetic vector potential A and the electric scalar 
potential ϕ, it can be formulated as: 

 1 1 0
t

σ σ ϕ
µ µ

∂
∇× ∇× −∇ ∇ + + ∇ =

∂
A

A A , (1) 

where µ is the permeability and σ the electrical conductivity. 
By applying the finite-elements procedure, the soil and the 

air domain of the problem are discretized by the prismatic 
elements of the first order and the conductors of the grounding 
system are discretized by the line elements of the first order. 

Thereby, the unknowns A and ϕ in arbitrary point within the 
prismatic and line finite elements are approximated between 
the computed values of the corresponding potentials in the 
finite element’s nodes (Axi, Ayi, Azi, and ϕi) in terms of 
interpolation functions (polynomials) Ni respectively as: 

 ( )
6 6

x y zxi i yi i zi i i i
=1 =1

1 1 1 ,
i i

A N A N A N Nϕ ϕ= + + =∑ ∑A , (2) 

 ( )
2 2

x y zxi i yi i zi i i i
=1 =1

1 1 1 ,
i i

A N A N A N Nϕ ϕ= + + =∑ ∑A . (3) 

To obtain the symmetry of the finite element’s matrix (as it 
will be shown in the full paper), the special modified electric 
scalar potential V is introduced as: 

 V
V

t
ϕ ∂
= =
∂

. (4) 

Regarding (4), the application of the FEM and the 
Galerkin’s formulation of the weighted residual method to (1) 
result in the following matrix equation: 
 [ ]{ } [ ]{ } { }, ,V V+ =K A C A R  (5) 

where {A, V} is the column vector of the unknown nodal 
potentials; { , VA } is the column vector of the time derivatives 
of {A, V}; [K] is the stiffness matrix which is associated with 
the potentials A and V, and the Laplacian operator ∆; [C] is 
the damping matrix which represents the contribution of the 
induced current term σ ∂A/∂t to the system; whereas {R} is 
the forcing function column vector. 

For the time integration, the Euler’s method is used in 
which the derivative of the potential is substituted by the 
difference of the potentials, as follows: 

 
( ) ( 1)

( )
n n

n

t

−−
=

∆
A A

A , (6) 

 
( ) ( 1)

( ) ( )
n n

n nV V
V

t
ϕ

−−
= =

∆
. (7) 

If we introduce (6) and (7) into (5), the following 
expression for the calculation of the potential in the new time 
step (n), depending on the preceding time step (n-1), is 
obtained: 
 { } { } { }( ) ( ) ( ) ( 1) ( 1), ,n n n n nV V

t t
− −⎡ ⎤ ⎡ ⎤+ = +⎢ ⎥ ⎢ ⎥∆ ∆⎣ ⎦ ⎣ ⎦

C C
K A R A . (8) 

Finally, the obtained set of linear algebraic equations is 
solved by the algebraic multi-grid (AMG) method [5]. 

B. Implementation of the Numerical Model 

The developed program for the 3-D calculation of transient 
electromagnetic field, which has been written in Fortran, 
consists of three modules: the pre-processor, the processor, 
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and the post-processor. In the pre-processor, where first of all 
the 3-D mesh of the prismatic and line finite elements of the 
first order is built by the automatic mesh generator [6], also 
the geometrical and physical input data, as well as the forcing 
(injected) potential function, are defined. In the processor, the 
transient calculation is carried out, as shown in Fig. 1. 

 

No

Yes

t t t= + ∆

t∆

Preparation of data for the 
system matrix formation

Determination of the time step

Determination of the excitation regarding 
the corresponding moment of time

Preparation of the system 
matrix for the calculation

Saving of results

t < tc

Calculation and visualization of 
electromagnetic field quantities

STOP

Input of data and generation of the mesh

START

Calculation of  and ϕA
(AMG method)

 
Fig. 1.  Flow chart of the electromagnetic transient calculation 

 
Finally, the post-processor allows interactive calculation 

and visualization of any desired quantity of electromagnetic 
field (e.g., current I, electric field intensity E, magnetic flux 
density B, etc.). 

III. APPLICATION AND DISCUSSION 

Following up Geri’s research work [4], concerning the 
development of the mathematical model based on a circuit 
approach, in this paper, the program solution (the numerical 
model based on the FEM) is presented to analyze the transient 
behavior of the grounding rod when fed by an injected time 
variable potential function. The steel grounding rod with the 
length of 6 m, the diameter of 20 mm, and the conductivity of 
5,88 × 106 S/m is buried vertically into the uniform soil with 
the resistivity of 40 Ω⋅m, as shown in Fig. 2, where also the 
defined boundary conditions on the outer planes of the 
problem are presented. 

z

y

x

air

ground

Ay = 0
Az = 0

 = 0

Ay = 0
Az = 0

 = 0

Ax = 0
Az = 0

 = 0

Ax = 0
Az = 0

 = 0

Ax = 0 , Ay = 0 ,  = 0

Ax = 0 , Ay = 0 ,  = 0

r = 5.88 MS/m
lr = 6 m
rr = 10 mm

g = 0.025 S/m

 Fig. 2.  Schematic view of the vertical grounding rod under analysis 
 
In order to verify the reliability of the program solution, in 

Fig. 3, the comparison of the current variation, obtained as a 
response to the shape of the injected potential function, with 
the current variation from [4] is presented. 

 

Fig. 3.  The transient voltage and currents of the grounding rod 
 
A detailed description of the actual implementation of the 

model will be given in the full paper where also the 
application of the model to horizontal grounding wire will be 
presented. 
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Abstract — The source-field method is a very effective way to 
treat 3D magnetostatic and magnetodynamic cases for linear and 
non-linear studies. In this work, we propose a variation of this 
method based on the concept of differential permeability. With 
this new approach, it is possible to handle non-linear cases and 
also more complex hysteretic materials. The electric circuit is 
coupled with the magnetic structure and a time stepping 
technique is used.  

I. INTRODUCTION

We have been intensively working with the “source-field” 
method for solving static and dynamic cases. This formulation 
is very effective and robust [1][2]. Additionally, we have good 
experience with the concept of differential permeability. We 
performed some implementations of this latter but it was 
applied to the magnetic vector potential [3][4]. According our 
experience, the hysteresis phenomenon can be adequately 
solved by a differential permeability approach. Non-linear 
cases (non-hysteretic) can be also treated with such an 
approach, with fast convergence. Therefore, in this paper we 
propose the use of this concept in conjunction with the source-
field method. Some preliminary and encouraging results are 
already presented here. 

II. THE SOURCE-FIELD METHOD

Let us recall the basic principles of the source-field 
method. With this formulation, the magnetic field H can be 
divided in two parts, as: 

grad= − ΩsH H         (1) 

where sH  is the field created solely by the imposed currents 

of the exciting coils and Ω  is the reduced scalar magnetic 
potential. This potential is related to the field produced by 
magnet dipoles, induced of permanent. We define now the 
relationship between the imposed current density J and the 

field sH : We have rot =Η J  which can be expressed as  

( ) 0rot rot rot− = − =s sΗ Η H Η       

and we  have 

rot= sJ H           (2) 

Therefore, the “influence” of J is replaced by the magnetic 

field sH  spread in the calculation domain. To do so, sH is

defined through its circulations on the edges of the tetrahedron 
first order finite elements. Having these circulations, shape 
functions of edge elements are used to easily define the vector 

sH . Tree and co-tree technique are necessary to properly find 

the source-field. More detailed text is given in [1][5]. 

III. USING THE DIFFERENTIAL PERMEABILITY

 Using the proposed approach, we have 

d
μΔ = ΔB H          (3) 

where dμ  is the differential permeability and ΔB  and ΔH
are, respectively, the magnetic induction and field variations. 

For linear materials 
d

μ μ= . Using a time stepping 

discretization we consider that t+1 and t are respectively the 
current calculation step and the previous one. Then 

Δ = −t +1 tB B B    and   Δ = −t +1 tH H H       
With (3) 

( )
d

μ− = −t +1 t t +1 tB B H H      (4) 

or 

( )
d

μ= + −t +1 t t +1 tB B H H      (5) 

With (1), equation (5) becomes 
1 1

( )
t t t t

d
grad gradμ + += + − Ω − + Ωt +1 t

s s
B B H H  (6) 

where tB  is known from the previous step. The main 
equation on this development is  

0div =t +1B          (7) 

Applying the Galerkin method on equation (7), we have 

0
V

N div dv =∫ t +1B         (8) 

( )
0

s v VV
N div d grad N dvN dv ⋅⋅ − == ∫ ∫∫ t +1 t +1t +1B BB s  (9) 

where N is the nodal shape function of the finite element. The 
first term of the right hand side of (9) is related to the classical 
boundary conditions for scalar potential [4]. The second one 
will be active to the numerical implementation, and, using (6), 
it becomes: 

1

1

[ ( )

( )] 0

t t

dV

t t

d

grad N

grad grad dv

μ

μ

+

+

⋅ + − +

+ Ω − Ω =

−∫ t

s s
B H H

   (10) 

In order to couple the above equation to the feeding electrical 
circuit we need to define two new quantities K and N as 
follows [1][2]: 

0
I=

s
H K           (11) 

where 0I  is the current flowing in a conductor; K is, therefore 

the corresponding source-field for a unitary current. Using the 
vector N as: 

0
rot I=sH N           (12) 

we have then 
0 0

rot I I=K N  and  
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rot =K N            (13) 

Now we consider the electric circuit equation coupled to the 
magnetic structure.  

m

m m m

d
V R i

dt

Φ
= +         (14) 

where 
m

V , mR , mi  and mΦ  are, respectively, the voltage, the 

resistance, the established current and the magnetic flux 
linkage in a generic electric circuit m.  From [1], it can be 
shown that the magnetic flux can be expressed by: 

1 1

b

t t

V
dv+ +Φ = ⋅∫ B K        (15) 

and for the time step t+1 we have: 

1 1 1

b

t t t

m m m V

d
V R i dv

dt

+ + += + ⋅∫ B K     (16) 

With the derivative time discretization, it gives: 
1 1 1

b

t t t

m m m V
tV t R i dv+ + +Δ = Δ + Δ ⋅∫ B K      

1 1 1( )
b

t t t t

m m m V
tV t R i dv+ + +Δ = Δ + − ⋅∫ B B K   (17) 

Using the equation (6) in (17) we obtain: 
1 1 1

1

( (

))

b

t t t t

m m m dV

t t

t V t R i

grad grad dv

μ+ + +

+
+

Δ = Δ + − +

Ω − Ω ⋅

∫ s sH H

K
     

For alleviating the notations and equations writing, the above 
equation, considering (11), can be expressed as 

1 1

1

1

(

)
d d

d d

t t
m m m

T t T t
m m

T t T t

tV tR i

K M K i K M K i

K M G K M G

μ μ

μ μ

+ +

+

+

Δ = Δ +

+ − −

− Ω + Ω

    (18) 

where the numerical integrations are taken into account. 

Here, tgrad Ω  is written as tGΩ  and 
d

M μ stands for dμ . As 

for the equation (10) we have, with the same notations: 
1

1 0
d d

d d

T t T t T t

T t T t
m m

G B G M G G M G

G M Ki G M Ki

μ μ

μ μ

+

+

− − Ω + Ω

− + =

−
  (19) 

Arranging equations (18) and (19) in matrix form, the 
resulting system is:  

1

1( )

d d

d d

T T t

tT T
mm

G M G G M K

iK M G t R K M K

μ μ

μ μ

+

+

− Ω

− Δ +

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥

⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦
   

1( )

d d

d d

T T t t t

t tT T
m m

G M G G M K G B

i tVK M G K M K

μ μ

μ μ
+

− Ω

Δ−

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ + ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

(20) 

This final system is quite similar to the one obtained for the 
more classical formulation using directly μ . It means that its 

implementation is relatively easy, since it is based in another 
one already known and, in our case, available in our 

calculation system Feecad [5]. Also, the previous tB  act as a 

permanent magnet. Hysteresis can be considered without 

particular difficulties since dμ  is always positive. 

IV. EXAMPLE AND RESULTS

 The magnetic circuit of Fig. 1 is used as an example. At this 
first stage of our development, we just considered a classical 
non-linear material. 

Fig. 1. Magnetic circuit (8247 elements, 1691 nodes) 

A ten time steps field calculation was performed by the 
classical method and the proposed one, using the differential 
permeability. Of course, as first test, the materials were 
considered as linear and we obtained strictly the same result. 
Then, we enforced the non-linearity by a relatively high 
voltage. Here the two methods provide similar results with 
small differences. The relative errors for the magnetic energy 
and co-energy are 0.69% and 0.65%., respectively. The total 
number of iterations (for the ten steps) for the classical 
method is 52 and 41 for the proposed one. The corresponding 
computational times differ on the same proportion.  

V. CONCLUSION

 We presented in this work a new method for 3D field 
evaluation based on the concept of differential permeability 
applied on the source-field method. The magnetic structure is 
coupled with the electrical circuit and a time stepping 
technique is used. This formulation can handle, without 
difficulties, the hysteretic behavior of soft materials, which 
will be more detailed in the extended version of the paper. 
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Abstract— In this paper the authors deal with the FE modelling
of eddy-current effects in form-wound windings of electrical
machines using a previously proposed general homogenization
method. The skin and proximity effect in one stator conductor
is first quantified by means of a simple low-cost FE model,
leading to a complex and frequency-dependent reluctivity for the
homogenized winding. This reluctivity is next adopted in a model
of a single slot. Resistance and inductance values obtained with
the latter model agree well with those obtained with a brute-force
approach (modelling and finely discretizing each conductor).

I. INTRODUCTION

Multi-turn windings in electromagnetic devices may be
subjected to considerable skin and proximity effect, leading
to higher losses and hot spots, and affecting the global
characteristics of the device. In principle these effects can
be taken into account in a FE simulation of the device by
modelling and finely discretising each separate conductor
(with additional electrical circuit equations to connect the so-
called massive conductors [1]). For most real-life applications
the huge computational cost of such a brute-force approach
cannot be justified. Most often the eddy-current effects are thus
simply ignored in the resolution stage of the FE simulation
(considering winding regions with uniform current density, so-
called stranded conductors [1]), after which the eddy-current
losses may be estimated a posteriori.

Accurate frequency and time domain homogenization meth-
ods for windings have recently been proposed in [2], [3]. For
the winding type in hand (e.g., round wires with hexagonal-
like packing or rectangular conductors with rectangular pack-
ing), an elementary FE model is used for determining
frequency-domain coefficients regarding skin and proximity
effect. These frequency-dependant coefficients can next be
straightforwardly translated into constant time-domain coef-
ficients and associated differential equations thanks to the
introduction of additional unknowns for the homogenized
winding (current components for the skin effect, and induction
components for the proximity effect). The number of addi-
tional unknowns required and the computational cost depend
on the frequency content of the application [3].

The above frequency and time domain methods have sofar
been applied to inductor-like devices [2], [3]. In this paper
we consider the form-wound double-layer stator winding of
a 50 Hz 1250 kW three-phase six-pole squirrel-cage induction
machine [4]. Flux and current harmonics in the machine are
due to the stator and rotor slotting, saturation and PWM supply

This work was partly supported by the Belgian Science Policy (IAP
P6/21), F.R.S. – FNRS and the Brazilian National Council for Scientific and
Technological Development (CNPq).

(at 2 kHz switching frequency). Compared to previous applica-
tions, the flux situation is a priori simpler, slot leakage being
essentially governed by a 1D differential equation. However,
the parallel connection and transposition of the conductors, if
any, complicates the analysis. In this digest, a simple series
connection of the conductors is supposed.

II. SKIN AND PROXIMITY EFFECT IN ONE CONDUCTOR

The two-layer stator winding of the machine is distributed
in 72 rectangular and fully-open slots (width ws = 14 mm,
total height 80 mm), each slot comprising 2 × 9 copper bars
of rectangular cross-section (height hc = 3.3 mm, width
wc = 10.6 mm) [4]. The vertical insulation space between
two conductors of the same group is hi = 0.5 mm. The stack
length is l = 810 mm (see Fig. 1). Taking as conductivity
σ = 6 · 107 S/m, the skin depth δ =


2/(ωµσ), at pulsation

ω, varies between 9.2 mm (at 50 Hz) and 1.45 mm (at 2 kHz),
and the conductor height to skin depth ratio, hc/δ, between
0.35 and 2.27.

fine model homogenized model

Fig. 1. FE mesh and flux lines (flux component in phase and in quadrature,
respectively, with the same imposed 50 Hz current in all 18 conductors), fine
model (for brute-force approach) and homogenized model

A. Elementary FE model and frequency-domain calculations

We consider an elementary FE model comprising one cop-
per bar (modelled as a massive conductor) and the insulating
space around it. Frequency-domain calculations are carried out
in terms of the complex single-component magnetic vector
potential a (in bold), with adequate current and boundary
conditions [1].
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The complex power S is then calculated from the local flux
density b and local current density j:

S = P + ıQ =
l

2



Ω

(j2/σ + ıω ν0 b
2) dΩ , (1)

with P and Q the active and reactive power, ı the imaginary
unit, and j2/2 = jj∗/2 and b2/2 = bb∗/2 r.m.s.-values
squared. Equation (1) can be rewritten considering the average
current density jav and flux density bav (averaged over the
complete model, i.e. copper plus insulation):

S =
l

2



Ω

(j2av/σskin + ıω νprox b
2
av) dΩ , (2)

and we thus define the complex skin-effect conductivity σskin
and the complex proximity-effect reluctivity νprox.

B. Proximity effect

Following the approach developed in [2], [3], a pure
proximity-effect excitation is obtained by imposing a unit
horizontal flux (with a = 0 and a = 1 on lower and upper
boundaries, and the implicit Neumann condition ∂a/∂n = 0
on left and right slot walls) and zero net current. See the flux
patterns in Fig. 2.

50 Hz, in phase 10 kHz, in phase

50 Hz, in quadrature 10 kHz, in quadrature

Fig. 2. Proximity-effect flux lines at 50 Hz and 10 kHz, with flux component
in phase and in quadrature with imposed flux

The complex proximity-effect reluctivity νprox can also be
estimated on the basis of the well-known analytical solution of
the 1D diffusion problem (net current or flux in a conducting
sheet of thickness hc [5]) and considering the flux tubes
connected in series or in parallel with the copper bar:

νprox = ν0

 wc
hc

Y +
ws − wc

hc

−1
+

hi
ws

−1
(3)

with Y =
1 + ı

2
hc
δ
cotanh

 1 + ı

2
hc
δ


. (4)

Fig. 3 shows that the analytical approach produces excellent
results thanks to the correction (3) for the insulation on all four
sides of the conductor.
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Fig. 3. Real and imaginary part of the relative permeability νprox,rel =
νprox/ν0 versus hc/δ

C. Skin effect

A pure skin-effect excitation is obtained by imposing a
sinusoidal current (of unit amplitude, e.g.) in the bar, with
condition a = 0 on the complete boundary. The relative

increase in joule losses, i.e. the ratio RAC/RDC minus 1,
is found to vary between 0.01% at 50 Hz (hc/δ = 0.35) and
12% at 2 kHz (hc/δ = 2.27).

III. HOMOGENIZATION OF A COMPLETE SLOT

We now carry out frequency-domain calculations with a FE
model of a complete slot, with either fine discretisation of each
conductor (18 massive conductors) or homogenization of the
two groups of 9 conductors each (two stranded conductors).
See Fig. 1 for the two meshes used (totaling 3618 first-order
triangular elements versus 74). The complex reluctivity νprox
is adopted in the homogenized winding regions, together with
an imposed uniform current density. Two cases are further
considered, the two conductor groups belonging either to the
same phase or to different phases, and with either zero or 120
degree phase shift between the respective currents (of same
unit amplitude, I = 1). See Fig. 1 for some flux patterns
(with all conductors belonging to the same phase).

Using (1) and (2) we obtain the complex power and thus
the equivalent resistance RAC = P/(2I2) and inductance
LAC = Q/(2ωI2) at a given pulsation ω. Fig. 4 shows the
ratios RAC/RDC and LAC/LDC as a function of the hc/δ.
For the one-phase case, e.g. , at 50 Hz the resistance increases
by 34%, and at 2 kHz by a factor of 300. Clearly, the skin-
effect losses are negligible compared to the proximity-effect
losses. Notice in Fig. 4 the excellent agreement between the
results obtained with the brute-force approach and with the
homogenized model.
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Fig. 4. Equivalent resistance and inductance (relative to DC values) versus
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In the full paper the time-domain modelling will be de-
tailed [3], and the parallel connection and transposition of the
conductors considered.
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12. DEVICES AND APPLICATIONS

Abstract — Counterpoise wires improve the reliability of 
overhead power transmission lines. This paper presents an 
electrokinetic model refinement via a perturbation finite 
element (FE) method to calculate the grounding resistance of 
counterpoise wires. The perturbation FE method is herein 
developed for refining the electric field distribution in soil 
starting from simplified models, based on electric field 
distribution from 2-D model, that evolve towards 3-D accurate 
model. The analysis of the distribution of the electric field and 
of the electric potential around the tower footing allows 
accurately determining the tower footing resistance. 
Computational results will be compared with measurements in 
the extended paper. 

I. INTRODUCTION

For evaluating the behaviour of transmission lines in 
case of lighting strike the accurate modelling of tower 
footing resistance is crucial. In particular, the decrease of 
the earth resistance observed for high values of the current 
flowing from the tower to earth has to be accurately 
considered [1]. 

The complete system comprises e.g. four counterpoise 
wires, as shown in Fig. 1. Continuous counterpoise reduces 
the resistance of each tower ground and provides a parallel 
path with the overhead ground wire for the return of fault 
currents. Fig. 1 closely represents some towers used in 
Brazil, especially for 138 kV systems [1]. This problem 
demands a 3-D modelling. However, as the soil dimensions 
are much bigger than counterpoise wire dimensions, the 
problem becomes computationally expensive. 

Fig. 1. Transmission tower, aerial cables, tower-footing and four 
counterpoise wires. 

This paper analyses the behaviour of electric field and 
of electric potential on a counterpoise wire. The purpose of 

this analysis is to calculate the grounding resistance of this 
wire. The electrokinetic model refinement is done via a 
perturbation finite element (FE) method from 2-D to 3-D. 

The perturbation FE method is herein developed for 
refining the electric field distribution in soil starting from 
simplified models, based on electric field distribution from 
2-D model, that evolve towards a 3-D more accurate model. 
It is an extension of the method proposed in [2]-[4]. The 
developments are performed for the electrokinetic scalar 
potential FE electrokinetic formulation, paying special 
attention to the suitable discretisation of the constraints 
involved in each sub-problem. 

II. REFERENCE AND MODIFIED PROBLEMS

A. Canonical electrokinetic problem 

A electrokinetic problem p is defined in a bounded 
domain Ωp, with boundary ∂Ωp = Γe,p ∪ Γj,p, of the two or 
three-dimensional Euclidean space. 

A problem, defined with subscript p, is first considered. 
Its equations and material relations in Ωp are: 

0=pcurl e ,   0=pdiv j , pp ej σ= , (1a-b-c) 

with boundary conditions (BCs) and interface conditions 
(ICs). 

0
,

=× Γ pe
en ,   0.

,
=Γ pj

jn , (1d-e) 

psup ,][ een =× γ , psup ,].[ jjn =γ , (1f-g) 

where e is the electric field, j is the electric current density, 
σ is the electric conductivity and n is the unit normal 
exterior to Ω. The notation [ . ] = . |γ+ − . |γ- refers to the 
discontinuity of a quantity through any interface γ (of both 
sides γ+ and γ−) (see Fig. 3(a)), which is allowed to be non-
zero; the associated surface fields esu,p and jsu,p are usually 
unknown, i.e., parts of the solution [4]. It is intended to 
solve successive problems, the solutions of which being 
added to get the solution of a complete problem [4]. At the 
first step, a simplified problem p is solved with the 2-D FE 
method. Its solution is called reference or source solution. 
In both cases, it is based on particular assumptions that aim 
to simplify its solving but that are to be further corrected. 

Portions of a 3D structure satisfying a translational or 
rotational symmetry can be first studied via 2-D models. 
This consists in neglecting some end effects, zeroing n×e⎜Γ
or n . j⎜Γ. Furthermore, if the field is chosen to be zero out 
of Ωp, a discontinuity of one of its faces is then voluntary 
defined through Γp.

Electrokinetic Model Refinement via a Perturbation Finite Element 
Method – From 2-D to 3-D 

Mauricio V. Ferreira da Luz1, Patrick Dular2,3, Ruth V. Sabariego2, P. Kuo-Peng1 and N. J. Batistela1

1 GRUCAD/EEL/CTC, C.P. 476, 88040-900, Florianópolis, SC, Brazil. 
2 ACE, Dept. of Electrical Engineering and Computer Science, 3 FNRS, University of Liège, Belgium. 

E-mail: mauricio@grucad.ufsc.br 

137

pa4.16



12. DEVICES AND APPLICATIONS

With such assumptions, two sub-problems 1 and 2 with 
adjacent non-overlapping sub-domain Ω1 and Ω2 share a 
connexion interface Γp1 = Γp2 through which a field 
discontinuity occurs. The 3-D problem is used to correct 
the field distribution in a certain neighbourhood Ω2 on both 
sides of the interface γ. This is done via ICs 

[ ] 2,2 sueen =× γ , [ ] 2,2. sujjn =γ , (2a-b) 

where the so-defined volume source esu,2 is obtained from 
the reference solution (2D FE method) as 

[ ] 1,2, susu eene −×= γ .  (3) 

Given that each solution is calculated on a different 
mesh, mesh-to-mesh projections of solutions are required 
[4]. This is a key point of the method for ensuring 
continuity and will be detailed in the extended paper. 

III. APPLICATION 

The experimental example considered for validation of 
the proposed approach is a 10 m length counterpoise wire 
with 0.1 m of diameter. It is embedded in the soil at a depth 
of 1.0 m. 

Fig. 2 shows the 2-D calculation domain and its mesh. 
Fig. 3 shows the 3-D calculation domain and its mesh. 

Fig. 2. The 2-D studied domain (left) and its 2-D mesh (right).

  (a) 

  (b) 
Fig. 3. (a) The 3-D studied domain and (b) The 3-D mesh. 

The wire and the soil are first studied (Fig. 2). Its cross 
section in the XY plane initially defines an initial 2-D 
model, with the solution shown in Fig. 4. This 2-D solution 
is considered to be invariant in the Z direction up to a 
certain distance. Beyond this distance, the electric field is 
chosen to be zero, which results in a particular IC to be 
further corrected. This solution then serves as source for a 
perturbation problem allowing electric leakage flux in 3-D. 
The 3-D model allows accurately calculating the electric 
field in the vicinity of the end of the wire (see Fig. 4), with 

its own adapted mesh. This way, they gain in accuracy for 
the benefit of more accurate grounding footing resistance. 

Fig. 4. (a) Electric scalar potential: solution of the 2-D model in XY plane, 
(b) Electric field: solution of the 3-D model - part of the 3-D correction in 

the region of the counterpoise wire extremity and (c) Interface γ of the 
studied domain. 

Fig. 5 shows the module of electric field along the line 
A depicted in Fig. 2(left).
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Fig. 5. Module of electric field along the line A (see Fig. 2(left)): solution 
of the 2-D model (implicitly extended as a constant up to z = 10 m) and 3-

D solution (in z = 10 m) after correction in the vicinity of the surface γ.

The results on the grounding resistance of the 
counterpoise wire measured and calculated will be 
compared and presented on the extended paper. 
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Abstract —	 Effect	 of	 longitudinal	 magnetic	 field	 on	 natural	
convection	 heat	 transfer	 in	 an	 enclosure	 with	 partially	 active	
vertical	walls	 is	numerically	 investigated.	The	active	part	of	 the	
left	side	wall	is	at	a	higher	temperature	than	the	active	part	of	the	
right	side	wall.	The	top,	bottom	and	the	inactive	parts	of	the	side	
walls	 are	 thermally	 insulated.	 The	 governing	 equations	 are	
discretized	 by	 the	 control	 volume	 method	 with	 Hybrid	 scheme	
and	solved	numerically	by	SIMPLER	algorithm	for	the	pressure–
velocity	 coupling	 together	with	under	 relaxation	 technique.	The	
results	are	obtained	for	Rayleigh	numbers	(Ra)	between	104	and	
106,	 Hartmann	 numbers	 (Ha)	 between	 0	 and	 100	 and	 Prandtl	
number	 0.71.	The	 heat	 transfer	 characteristics	 are	presented	 in	
the	 form	 of	 streamlines	 and	 isotherms.	 Results	 show	 that	 the	
average	 and	 local	 Nusselt	 number	 decreases	 as	 Hartmann	
number	 increases	 because	 Lorentz	 force	 interacts	 with	 the	
buoyancy	 force	 and	 suppresses	 the	 convection	 flow	by	 reducing	
the	velocities.	Also	as	Rayleigh	number	increases	the	temperature	
gradient	and	in	fact	the	Nusselt	number	increases.	In	addition,	it	
is	shown	that	generally	the	local	Nusselt	number	decreases	along	
the	left	side	active	wall.	

I. INTRODUCTION 
The Lorentz force acts against the buoyancy force. This 

phenomenon is used in material manufacturing industry and 
turbine blade casting as a control mechanism. Employment of 
an external magnetic field has increasing applications in 
material manufacturing industry as a control mechanism since 
the Lorentz force suppresses the convection currents by 
reducing the velocities. Study and thorough understanding of 
the momentum and heat transfer in such a process is important 
for the better control and quality of the manufactured 
products. The Garandet et al. [1] proposed an analytical 
solution to the governing equations of magneto 
hydrodynamics to be used to model the effect of a transverse 
magnetic field on natural convection in a two-dimensional 
enclosure. Al-Najem et al. [2] used the power law control 
volume approach to determine the flow and temperature fields 
under a transverse magnetic field in a tilted square enclosure 
with isothermal vertical walls and adiabatic horizontal walls at 
Prandtl number of 0.71 and showed that the suppression effect 
of the magnetic field on convection currents and heat transfer 
is more significant for low inclination angles and high Grashof 
numbers. Recently, Pirmohammadi et al. [3] studied the effect 
of a magnetic field on buoyancy-driven convection in 
differentially heated square enclosure. They showed that the 
heat transfer mechanisms and the flow characteristics inside 
the enclosure depend strongly upon both the strength of the 
magnetic field as well as the Rayleigh number. It was 

concluded that the magnetic field considerably decreases the 
average Nusselt number. 

The present study deals with the natural convection in a 
square enclosure filled with an electrically conductive fluid 
with partially thermally active vertical walls in the presence of 
external magnetic field. The hot and cold regions are located 
at the middle of vertical walls. The results are displayed 
graphically in the form of streamlines and isotherms, which 
show the effect of magnetic field on temperature and flow 
field. 

II. BASIC EQUATIONS 
The geometry and the coordinate system are schematically 

shown in Fig. 1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Fig. 1. Geometry of enclosure configuration with magnetic effect. 
 
The non-dimensional governing equations in this study are 

based on the conservation laws of mass, linear momentum and 
energy are given as:  
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In the above equations, the primary non-dimensional 
parameters, the Rayleigh number and the Prandtl number, are 
defined as: 

α
ν=Pr , 

αν
β 3)( HTTg

Ra Ch −
= ,  

ρν
σ= HBHa 0

                           (5) 

Where, ρ  is the density, g is the gravitational acceleration, 
υ  is the cinematic viscosity, β  is the coefficient of thermal 
expansion, and 0B  is the magnitude of magnetic field and σ  
is the electrical conductivity. Also U, V and θ  are non-
dimensional velocity components and temperature, 
respectively.  

The local Nusselt number 
X

Nu
∂
∂−= θ  is computed at the 

hot wall (Nu). The average Nusselt number is expressed as 

dYNu
H

uN y

H

∫=
3/

0

3 . 

III. RESULTS 

The accuracy of results is verified with that of Rudraiah[4] 
and is presented in Pirmohammadi et al [3]. 

Figure 2 depicts the vertical velocity component for various 
Hartmann number for Ra=105. It is shown that as magnetic 
field (Ha) increases, the vertical velocity component decreases 
so that it approaches zero at about  Ha = 100.  
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Fig.2 Vertical velocity component for various Ha at Ra=105 

Local Nusselt number (Nu) along the thermally active left 
side wall for Rayleigh numbers 104 and 106 and various 
Hartmann numbers is shown in Fig. 3. As shown the Nu varies 
directly with Rayleigh number and inversely with Hartmann 
number. This means that Nu number increases with Rayleigh 
number and decreases as magnetic field (Ha) increases. 

Because Lorentz force interacts with the buoyancy force and 
suppresses the convection flow by reducing the velocities. 
Also as Rayleigh number increases the temperature gradient 
and in fact the Nusselt number increases. In addition, it is 
shown that generally the local Nusselt number decreases along 
the left side active wall. Also it is shown that for low Rayleigh 
and high Hartmann numbers the local Nusselt profile along the 
wall is nearly symmetric and its value decreases. 
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Comparison between BEM + ACA and classical
FEM for 3D low-frequency eddy-current analysis
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Abstract—In this paper we are concerned with eddy-current
analysis based on fast boundary element methods. A novel
compression and preconditioning technique adaptive cross ap-
proximation is used to benefit from several advantages when
computing problems with highly permeable materials. Several
numerical experiments have been performed with the aim to
investigate the performance compared to commercial finite ele-
ment solvers. The results are validated on the TEAM benchmark
problem P21.

I. INTRODUCTION

In many industrial applications the electromagnetic physical
phenomenon of eddy currents is playing an important role.
Following the eddy-current approximation scheme proposed
by Mayergoyz [1] we end up with a reduced Maxwell equa-
tion system which neglects the displacement currents of the
problem. Hence, this leads to Fredholm integral equations
of the second kind on the boundary of the investigated
domain. Moreover, the applied Galerkin discretization yields
a system of matrix equation with four unknowns per node
in the space of complex numbers. In fact, we obtain a
dense system matrix which is a major bottleneck in using
boundary element methods (BEM). In the last decades sev-
eral methods were developed in order to ensure fast BEM,
like the fast multipole technique, hierarchical matrices, panel
clustering or wavelet compression, see e.g. [5], [6], [2]. Since
in industrial applications we are usually faced with a large
number of unknowns, an iterative solution procedure has to
be established. In our case we are using a preconditioned
generalized minimal residual (GMRES) solver due to the non-
symmetry of the system matrix. It turns out, that for bodies
with high permeable materials the application of a proper
preconditioning is essential.

The paper is organized as follows. In Section II we give
a brief explanation of the H − ϕ formulation. A description
of the approximation and preconditioning properties of the
adaptive cross approximation method (ACA) for a Galerkin
discretization is given in Section III. In the last Sections IV
we show numerical results and additional final conclusions.

II. H − ϕ FORMULATION

Let us consider a simply connected conducting domain Ω
with the boundary Γ. Considering the proposed Mayergoyz
[1] formulation we have an integral representation for the
magnetic field Hin in the inner domain and a potential ϕ

representation in the unbounded outer air domain

Hin =
1
4π

curlx



Γ

jv(y)K(x,y)dsy x ∈ Ω (1)

ϕ(x) =
1
4π



Γ

σv(y)G(x,y)dsy x ∈ R3\Ω. (2)

In equations (1) and (2) we are concerned with
the integral kernels G(x,y) = |x− y|−1 and
K(x,y) = exp(−√2πfµσ|x− y|)G(x,y). Among the
frequency f the integral kernel K(x,y) includes also
the material information, both the conductivity σ and the
magnetic permeability µ.

Taking into account the boundary conditions at the interface
(continuity of tangential component of H-field and normal
component of B-field) we finally have to find a solution
(jv, σv) that solves the system of equations:

1
2
jv(x) +

1
4π



Γ

n(x)× [j(y)× gradx K(x,y)]dsy−
1
4π



Γ

σv(y)[n(x)× gradx G(x,y)]dsy = −n(x)×H0(x)

(3)
1
2
σv(x) +

µ

4πµ0



Γ

n(x)[jv(y)× gradx K(x,y)]dsy+

1
4π



Γ

σv(y)[n(x)gradx G(x,y)]dsy = −n(x)H0(x)

(4)

for x ∈ Γ. Note, that H0 is a prescribed excitation field and
n the outward unit normal vector.

III. ADAPTIVE CROSS APPROXIMATION

After Galerkin discretization of (3) and (4) we find the
following discrete matrix equation system


A1 B1
µ
µ0

B2 A2


j
h

σh


=


b1
b2


. (5)

Note, that the system consists of complex submatrices A1, B1

and B2, which becomes dominant for high permeability. It is
well known, the straight forward application of BEM leads
to fully populated matrices, which immediately shows the
bottleneck of the BEM approach: The demand of memory
as well as the evaluation time of a single matrix-times-
vector multiplication will behave O(N2), where N denotes
the number of unknowns in the matrix system (5).

In our calculation we use the adaptive cross approximation
technique [2] which provides a hierarchical matrix (H-matrix).
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Fig. 1. H-matrix structure, red: full blocks, green: low-rank blocks

A rigorous mathematical theory for H-matrices can be found
in [6], a typical structure is sketched in Fig. 1. One advantage
of ACA is that an explicit knowledge of the kernel is not nec-
essary, but only pure algebraic transformations on the matrix
are needed. More precisely, selected matrix entries have to be
evaluated, thus, the algorithm can relatively easy implemented
in an existing software code. The idea to obtain a hierarchical
matrix AH is to split the system matrix into far-field and near-
field contributions depending on geometrical information of
the considered basis functions and test functions

AH = Ah +
NB

i=1

uiv

i . (6)

The near-field blocks accumulate to a sparse matrix Ah, the
separated NB far-field blocks of the matrix are approximated
by low-rank expressions uiv


i up to a certain prescribed

accuracy ε. We are now able to apply an efficient data-sparse
H−LU decomposition which is used as preconditioner for the
ill-conditioned problem (5), see [2], [3]. Another realization
of a preconditioner is a Schur-complement preconditioner, for
more details and numerical results we refer to [7].

IV. NUMERICAL RESULTS

For numerical validation we calculate the TEAM problem
P21a-0, see Fig. 2. The problem specification and measure-

Fig. 2. TEAM benchmark problem P21a-0

ment results can be found in [4]. The first test case considers
non-magnetic steel, for which measurements for the total
power losses as well as the B-field in x-direction exist. In
order to test the BEM approach also for existing magnetic
materials in the model, we replace the non-magnetic steel
plate with magnetic steel, σ = 6.66 106S/m and a relative
permeability µr = 200. Due to the lack of measurements, we
compare our results with a commercial 3D FEM solver for
electromagnetics.

For the non-magnetic steel plate we have a measured
total power loss of 9.17W , see [4]. In comparison to our
simulation, which gives 9.54W on a relatively coarse mesh
(3576 boundary elements).

Furthermore, the results for magnetic steel are shown in
Fig. 3. It can be observed, that for convergence of the total

Fig. 3. Total losses, magnetic steel

power losses we need a fine FEM mesh in order to achieve a
satisfying accuracy. On the other hand, the BEM approach
gives already very good results even for coarser meshes.
Note, that the penetration depth here is δ = 1.95 mm. The
corresponding memory consumption for the system matrix for
both methods are listed in Table I. The second quantities

TABLE I
MEMORY CONSUMPTION

h [mm] BEM-ACA [MB] FEM [MB]
40 25 (58) 134
20 378 (782) 180
10 1523 (10680) 701

in the BEM column are the theoretical memory demands,
which would be needed for fully populated matrices. It is
obvious, that only the usage of compression techniques yields
a reasonable BEM approach.
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2. QUASI-STATIC FIELDS

Abstract — In order to evaluate the accuracy of FEM modeling 
of transient-induced macroscopic eddy-currents in magnetic 
devices, a quadratic energy-based error criterion is proposed. It is 
suitable for 2D and 3D applications, independent of the 
formulation, and supporting the body motion. A validation is 
given on a Thomson effect device. 

I. INTRODUCTION

Eddy currents are at the origin of losses and signal 
distortions in power electrical devices. In order to address their 
considerable impacts on both the energy efficiency and the 
performance requirement, eddy currents modeling and its 
accuracy are discussed from a thermodynamic approach. 
While this approach was successfully used in [1] to derive a 
quadratic energy-based error criterion suitable for magneto-
harmonic cases, an extension to transient regime should be 
investigated. 

While some former attempts, e.g. [2][3], are focused on the 
consistency of the magnetostatic resolution, the proposed error 
criterion is fully dedicated to the evaluation of the dynamic 
aspect in massive conductor where the skin effect occurs. It is 
independent of the formulation, and allows to take body 
motion into account. 

A presentation of the variational approach of 
electromagnetism is first proposed. Then the error criterion is 
naturally derived. Finally, some numerical results obtained by 
Finite Element computation on a Thomson’s effect device are 
presented. 

II. VARIATIONAL FORMULATION

Classically, thermodynamic approaches of 
electromagnetism do not consider any extension towards time-
varying regimes [4][5][6]. Whereas some improvements are 
summarized in [7] for steady states regimes, no general 
contribution is available for transient. For this purpose, the 
magnetodynamic behavior of any electrical system is derived 
from the functional [8]: 

( ) ( ) 
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where the functional in the RHS exhibits: 
• the magnetic field H related to free and displacement 

currents according to the Maxwell-Ampere equation. 
The quasi-static approximation enforces D≡0 in 
conductors; 

• the Joule losses PJ monitored in conductors. This term 
is even to respect invariance of losses with inversion of 
time inversion (σ −1 is the resistivity); 

• the variation with time of the electromagnetic energy 
coupling the field with the generator I and the mass V0; 

• the magnetic B(h) and electrostatic D(e) behavior laws 
derived from thermostatic equilibrium of the Gibbs 
potential 
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Extending the electric field in the conductor according to 
Ohm’s law E = σ −1J − V×B, Faraday’s law rot E = ∂tB may 
be viewed as acting locally to check globally a tendency 
towards reversibility [9]. This striking property provides a 
thermodynamic oriented insight of the variational theory of 
electromagnetism [10]. Hence, the functional (1) balances the 
variations with time of the co-energy (-G) and the mechanical 
power supplied to the whole system Pmech. 

In order to consider sub-systems for design purpose, it is 
convenient to introduce the electrical power 
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After some calculations, it follows 
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where F is the Helmholtz’s potential and [⋅] denotes the 
discontinuity occurring at the interfaces ∂Ωi⊂Ω. 

At the minimum of the functional (1), the Maxwell 
equation set and Ohm’s law are checked so that: 

• the first three residual terms vanish in (4). After some 
tedious calculations on the motion induced-conductor 
interface discontinuities, the two last terms provide the 
mechanical power 
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where the first term denotes a vanishing “impulsion” 
term within the quasi-static approximation; the second 
one is related to the power of the Laplace’s force; and 
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2. QUASI-STATIC FIELDS

the third one gathers the switching reluctance effects 
occurring at the various interfaces of the domain 
Ω.  For conductors with linear magnetic behavior law, 
these three contributions may be lumped in the 
Maxwell’s stress tensor. As a result, the relation (4) 
matches the integral form of the Poynting’s 
conservation equation. Hence, 

• the contribution of Ω to (1) reads 

( ) ( ) ( )Ω−Ω+Ω
td

dG
PP elecmech

 (6) 

The Finite Element Method consists in building an 
approximation of (1),(2) but with a finite number of degrees of 
freedom chosen on a mesh. In the following, an evaluation of 
the local power conservation (4) is assessed to introduce the 
accuracy of any numerical solution. 

III. NUMERICAL RESULTS 

Whereas the stationary conditions expressed on (1),(2) 
provide an approximation of the fields, the consistency of the 
solution with energy conservation may be assessed through the 
local deviation of the Poynting’s equation  

( ) ( ) ( ) ( ) ( )Ω+Ω−Ω−Ω=Ω mechJelec P
d

dε
t

F
PP  (7) 

Strictly enforcing two relations among Maxwell-Ampere or 
Maxwell-Faraday equations and Ohm’s law, the error criterion 
(7) highlights the elements where the third one is ill-checked. 

Fig. 1. Thomson effect actuator excited by a voltage source: 
Left: (a) axisymetric cross-section, (b) initial mesh at the second time step, (c) 
error criteria assessed from (7) in the moving part: notice its confinement in 
the skin depth, (d) mesh enhancement at the second time step: notice the 
refinement in the skin depth and the related decline of (6) in table 1. 

An iterative “bubble” remeshing technique [11] is coupled 
with the criterion (7) and applied to a Thomson’s effect device 
(Fig.7). While the mesh is improved locally, the convergence 
of the global quantities is observed. 

TABLE I. Convergence of the functional (1),(2) under mesh refinement. 
Notice the reduction of the G by I2 to take meshing-induced current variation 

into account. 

∆t (s) 
Number of 
time step 2 

Number of time 
step 3 (before 

remeshing) 

Number of time 
step 3 (after 
remeshing) 

U (V) 3.1·10-1 5.9·10-1 5.9·10-1

I (A) 7.3·10-4 2.1·10-3 1.4·10-3

G (J) -1.61·10-9 -1.34·10-8 -5.89·10-9

G/I² (J.A-2) -3.05·10-3 -3.06·10-3 -3.09·10-3

Pmech−dG/dt+Pelec - 2.5·10-2 9.4·10-3

IV. CONCLUSION

The energy-based error criterion allows to refine the 
conducting regions where the mesh is not enough refined, with 
respect to the skin effect occurring therein. In addition to the 
error criterion, the thermodynamic approach provides the 
functionals from which the global convergence should be 
evaluated. 

Hence an adaptive meshing strategy compliant with energy 
efficiency and performance requirements can be addressed. 
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I. INTRODUCTION 

Magnetic signatures expose all ferromagnetic vessels to risk 
from mines. Given the risk to seamen, the military handicap 
borne when a defense vessel is hit, and the economical costs, 
magnetic signature reduction for warships is essential. 
Deperming methods and degaussing systems are used, but 
may be inefficient for vessels undergoing a high level of 
stresses, such as submarines: because of magnetostriction, 
pressure drastically changes the magnetization.  
In order to investigate such effects, a simplified mockup has 
been built and subjected to internal pressures in a 0100 Bars 
range. Magnetic signature has been measured and analyzed 
under various conditions. 
 
Our aim is to model the magnetic signature variation due to 
pressure to describe magnetization changes due to strain. 
Several models can be found in literature. Nevertheless, the 
magnetostriction model developed by Jiles [1] seems 
particularly well suited to our approach in terms of level of 
stress (high) and of applied field (low field, around 50T). 
This model clearly states that under strains, magnetization 
tends towards the anhysteretic magnetization.  
 
In this paper, we propose to apply this model to a complex 
geometry: a hollow cylinder is used instead of usual rods. In 
order to achieve this, we extend the original Jiles equation, 
describing the evolution of magnetization  inside a 
ferromagnetic material undergoing stresses. We demonstrate 
that this law is applicable to the magnetic induction  
measured by magnetic sensors outside the ferromagnetic body. 
An analytical solution is then found for the cases where the 
inductor magnetic field is vertical. Measurements show a good 
correlation with the expected results (error < 1%). 

II. THE JILES LAW OF APPROACH 

 Jiles [1] postulated a law describing the behavior of 
magnetization  for a ferromagnetic material undergoing 
stresses. This law can be expressed as: 


 | 


     


 |                  (1) 

where σ denotes the stress, ξis a coefficient with dimension of 
energy per unit volume, E the Young modulus, c a unitary 
coefficient, describing the flexibility of the domain walls,  
is the external applied magnetic field, and  the 
anhysteretic magnetization, function of stress. This equation 
requires: 
 
a) The knowledge of coefficients c, ξ (E is usually known)  
b) The law of evolution of the anhysteretic magnetization with 
stress (σ) under the constant applied field .  
This law is given in terms of magnetization , and thus can 
be depicted as an intrinsic law. Using results derived in [2] for 
thin ferromagnetic shells, we show that (1) can be formulated 
as  
 


σ
| 

σ
ξ     


σ

|             (2) 
 
where  is the external measured induction. Equation (2) is 
the expression of the Jiles law, expressed in terms of measured 
external induction, rather than in magnetization.  

III. EXPERIMENTAL PROTOCOL 

Measurements were conducted at the LMMCF (Laboratory 
of Magnetic Metrology in Weak Fields) is located in 
Grenoble, France [3]. The used prototype is a ferromagnetic 
hollow cylinder. The cylinder, filled with hydraulic oil, is 
subjected to an internal pressure up to 100 Bars, driven by an 
external pump. Applied field is generated by a system of 
triaxial coils, in the range of 80T, over a volume of 27x2x2 
m3 Magnetization variations due to stress are measured on 
external magnetic sensors, located under the cylinder. 

Two series of measurements were conducted. The first one 
was dedicated to the determination of the anhysteretic curves 
under a constant stress. Anhysteretic curves were plotted for 
vertical applied inductions  ranging from 20 to 80 T, with 
increasing steps of 20 T, and for internal pressures ranging 
from 0 to 100 Bars, with increasing steps of 20 Bars. Results 
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7. Material Modelling 

show that the anhysteretic inductions for vertical applied fields 
do not depend upon pressure. 

The second series of measurements consisted in recording 
the evolution of the external induction  on the sensors 
while the cylinder was subjected to a stress cycle 0  Pmax  
0 MPa under a given applied vertical inductor . Then, the 
internal pressure was increased to its maximum value, and 
then set back to zero. The whole cycle was recorded, allowing 
plotting of  vs. P curves.  

IV. ANALTICAL SOLUTION TO THE JILES
ATHERTON LAW OF APPROACH FOR A VERTICAL 

APPLIED FIELD 

Given that for a vertical inductor field, measurements 
showed that (σ,)=(), (2) can be simplified and an 
analytical solution to this equation is: 

       
      (3) 

where  is the initial measured induction under zero stress 
in T, () the anhysteretic value obtained from 
anhysteretic induction measurements. The only parameter to 
determine in order to fully explicit the analytical solution is ξ. 
The value ξ is approached to fit a first HPP cycle with a least
square algorithm. Subsequent measured HPP cycles are then 
compared to the analytical solution.  

 
 
 
For fitting, initial magnetization corresponds to the 

following state: the anhysteretic magnetization (at zero stress) 
under a vertical inductor field =41T is achieved. Then, the 
applied field was then set to 40 T. The initial measured 
value of the vertical component of induction on a centered 
magnetic sensor B1 was =42300 nT. The stress was then 
raised to 100 Bars.  
A leastsquare algorithm applied to the curve describing the 
induction variation when stress increases from 0 to 100 Bars 
provides the value ξ=2.55.109 (for P expressed in Bars, and 
E=2.05.1011 Pa). Figure 1 shows the measurements, and the 
fitted curve obtained by using the identified value ξ with the 
analytical solution.   

To test our analytical solution, and the identification of the 
parameter ξ, 3 other cycles were measured under different 
vertical inductor fields. Figure 2 shows comparison between 
the analytical predicted induction and the measured induction 

variation during one of these cycles. The maximum error is 
lower than 0.34%. 

V. CONCLUSION 

In this paper, we demonstrated that the law of approach of 
Jiles could be applicable to model the measured external 
induction created by a magnetic source. For our application, a 
more complex geometry was used that the one usually found 
in literature. A hollow cylinder was tested instead of typical 
rods. The main difference is that with our geometry, shape 
factor is not negligible, especially when the inductor field is 
applied vertically.  
Measurements established that, for vertical inductor fields, the 
anhysteretic curves were not a function of stress, the 
unfavourable shape effect acting like a mitigating factor for 
the effects of pressure. This result leads to a great 
simplification of the Jiles equation, and an analytical solution 
could be derived. In order to fully explicit this solution, the 
knowledge of a physical parameter was required, and a fitting 
method based on a first series of measurements led to 
determination of this constant.  
Comparison between the analytical solution and others series 
of measurements showed the results were excellent, and the 
error between the predicted induction and the measured one 
was lower than 1%. 

The inverse problem, i.e. the determination of 
magnetization in the cylinder by knowledge of the magnetic 
induction measured on the sensors is under work. It will allow 
the determination of the intrinsic law of magnetization of the 
material as a function, not only of the inductor field, but also 
of the stresses the material is undergoing. 
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Fig.  2. Comparison between the analytical solution and the measurements
for a vertical inductor field  =80 T and a given initial magnetic state. 

Fig.  1. Identification of parameter ξ required for analytical solution: a fitting 
method based on least square algorithm is used on vertical component 
variation of induction due to stress, on centered sensor B1. 
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8.COUPLED PROBLEMS 

Abstract — This paper describes the large-scale analysis of 
magnetic beads’ behavior in magnetic fields by developing a 
novel method combining the discrete element method (DEM) and 
the magnetic interaction calculation with the fast multipole 
method (FMM). Some numerical examples of large-scale 
magnetic-bead chain analysis are reported for confirming the 
effectiveness of the proposed method. 

I. INTRODUCTION 
The huge numbers of magnetic beads are utilized in the 

printing process of laser printers, in which the beads form 
chains and play a brush role in toner transfer. Due to the 
difficulties of actual measurement, when comprehending the 
magnetic beads’ behavior in forming chains in magnetic field, 
it is indispensable to carry out the numerical analysis, i.e., a 
coupled magnetic and contact force analysis. However, the 
required computational cost to deal with the beads is of O(N2), 
where N is the number of beads. Therefore, it is also difficult 
to apply the numerical analysis to the large-scale problems of 
magnetic beads. 

With the above background, in this paper, we develop a 
novel method combining the discrete element method (DEM) 
and the magnetic interaction calculation with the fast 
multipole method (FMM) [1]. Some numerical results, which 
demonstrate the effectiveness of the proposed method from 
the viewpoint of CPU-time, are presented. Finally, the large-
scale magnetic-bead chain analysis is also carried out as a 
practical example.  

II. METHOD OF ANALYSIS 

A. Magnetic Force Analysis by Using FMM 
The magnetic flux density B generated by magnetic 

moment mj at the center of particle i is given by  
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where ri and rj are the positions of center of particle i and j, 
respectively, and μ0 is the permeability of vacuum. The 
magnetic moment mi at the center of a magnetic particle i in 
homogeneous magnetic field B is evaluated as follows: 
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where R is the radius of the particle and μr indicates the 
relative permeability. The magnetic moments corresponding 

to each magnetic particle are obtained by updating mi with (1) 
and (2) until they converge to its steady state. 

The magnetic particle with magnetic moment m in the 
homogeneous field B is subject to magnetic force expressed as  

( )BmF ∇⋅= .                 (3) 
On the other hand, B can be written by using the local 
expansion as follows: 

( )∑ ∑
∞

= −=

∇−=
0

0 ),(
4 n

n

nm

nm
n

m
n rYL φθ

π
μ

B ,          (4) 

where Lm
n is the local expansion coefficient, Ym

n is the 
spherical harmonic function of degree n and order m, and (r, θ, 
φ) is its spherical coordinates. The second-order derivative of 

nm
n rY ),( φθ  is necessary for the calculation of magnetic force 

between magnetic beads by (3).  
In order to calculate the second-order derivative of 

nm
n rY ),( φθ  at high speed while maintaining the accuracy in 

the FMM process, we propose the novel formulae derived 
from the local-to-local (L2L) translation in the same cell [2] as 
follows: 
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These formulae have advantages that these equations are quite 
simple and it is not necessary to consider the singularity of Yn

m. 

B. Contact Force Analysis by Using DEM 
In the DEM, all the particles are regarded as elastic body 

to take into account the deformation of the particles due to the 
collision. The equations of motion are set up by assuming the 
dashpots, frictions, and springs at the points of contact. The 
DEM is suitable for the case that a large number of particles 
are tightly-packed because it can treat the contact force from 
several particles at one time. The contact model of the 
particles in the DEM is shown in Fig. 1 and the corresponding 
equations of motion are given by 
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8.COUPLED PROBLEMS 

Here, f is the force, δ is the displacement, μ is the friction 
coefficient, and the subscript means the normal and tangential 
components, respectively. K and η are the spring constant and 
the dashpot, which are derived from the Hertz's elastic theory 
of contact. 

 
Fig. 1. Contact model. 

C. Procedure of Particle Behavior Analysis Taking 
Account of Magnetic Force  

The flowchart of the analysis of magnetic beads’ behavior 
in magnetic field is shown in Fig. 2. In Fig. 2, Δtcon and Δtmag 
indicate the time interval for contact force analysis and 
magnetic force analysis, respectively. The magnetostatic 
interactions are recalculated when the magnetic field around 
the magnetic particles varies to some extent because of their 
displacement. 
 

 

t = t +Δtcon 

End 

Start 

 

Judgement of Contact

no

Calculation of  
Mechanical Contact Force

Setting Up the First Position
t = 0 

Calculation of 
Magnetic Force

Superposition of  
Incremental Displacement

Δtcon 
Δtmag 

t %  = 0 

if(t=Maxstep) 

yes 

 
 

Fig. 2. Flowchart of behavior analysis of magnetic beads taking into account 
magnetic and contact force. 

III. NUMERICAL RESULTS 

Here, we investigate the model of 6125 magnetic beads 
with radius of 100 μm in the gradient magnetic field which is 
applied at t = 0 as a step function. The beads are enclosed in 
the rectangular solid space consisting of the wall with Young's 
modulus and Poisson's ratio of 100 GPa and 0.3, respectively. 
The volume density, relative permeability and Young's 
modulus of beads are 4900 kg/m3, 10.0, and 10 GPa, 
respectively. As for the time intervals, Δtcon =1.0×10-7 s and 
Δtmag= 1.0×10-5 s. 

In this paper, we utilized the FMM based on diagonal 
forms for translation operators [1]. The orders of multipole 
and local expansions are 15 and 16, respectively. The 

maximum order of exponential expansion for diagonal 
translation in the multipole-to-local conversion is 26. 

The computational result at t = 150 ms is shown in Fig. 3 
[3]. The figure indicates the beads’ behavior reaches a steady 
state and the magnetic-bead chains are successfully simulated, 
which demonstrates the validity of the proposed method. 

The comparison of CPU-time between the direct 
calculation and the proposed method with FMM is shown in 
Table I. All the computations were performed on a 
workstation with Xeon5365, 3.0 GHz, and 12 GB of RAM. 
The CPU-time in the table corresponds to the computational 
cost spent on magnetic force calculation for beads in a single 
step. The numerical value in a parenthesis stands for the CPU-
time ratio of the direct calculation to the proposed method. In 
the case of more than about 5800 beads, the CPU-time 
reduction is achieved by using the proposed method, which 
concludes its effectiveness from the viewpoint of large-scale 
analysis of the magnetic beads’ behavior. 
 

 

 

y
z

x  
Fig. 3 Chains of magnetic beads. 

 

TABLE I 
ELAPED TIME FOR BEHAVIOR ANALYSIS 

Number of 
Particles 

Direct Calculation 
(s) 

FMM 
(s) 

1331 0.09 (0.14) 0.66 
4096 0.87 (0.60) 1.45 
4913 1.25 (0.81) 1.54 
5832 1.77 (1.09) 1.62 
9261 4.47 (1.25) 3.57 
29791 56.98 (4.36) 13.07 
68921 423.79 (11.85) 35.77 

 

IV. REFERENCES 

[1] H. Cheng, L. Greengard, and V. Rokhlin, “A Fast Adaptive Multipole 
Algorithm in Three Dimensions,” J. Comput. Phys., Vol. 155, pp. 468-
498 1999. 

[2] S. Hamada, O. Yamamoto, and T. Kobayashi, “Analysis of electric field 
induced by ELF magnetic field utilizing generalized equivalent 
multipole-moment method,” IEEJ Trans. on Fundamentals and Materials, 
Vol. 125, No. 6, pp. 533-543, 2005. 

[3] http://www.photon.t.u-tokyo.ac.jp/~maruyama/pvwin/pvwin.html. 
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8. COUPLED PROBLEMS 

Abstract —	This	paper	proposes	 the	 dynamic	 analysis	method	
of	 a	 linear	 resonance	 actuator	 with	 multi-movers	 under	 PWM	
(Pulse	 Width	 Modulation)	 feedback	 control	 employing	 the	 3-D	
finite	element	method	(FEM).	The	effectiveness	of	this	method	is	
shown	 by	 the	 comparison	 with	 the	 experimental	 results.	
Furthermore,	the	effect	of	a	link-spring	on	each	mover	motion	 is	
clarified.	

I. INTRODUCTION 
Recently, linear resonant actuators (LRA) have been used 

in a wide range of applications because they have a lot of 
advantages; high efficiency, simple structure, easy control, and 
so on, however, they have a problem that the amplitude 
severely decreases in response to an external load. To control 
this, a feedback control is adopted where the back EMF of the 
coil is detected to control the current duty [1]. 

In this paper, we propose the numerical analysis method 
for predicting dynamic characteristics of LRA with two 
movers under PWM feedback control [2] employing the 3-D 
FEM. The effectiveness of the method is confirmed through 
the comparison with the measurement. And, the effect of a 
link-spring on each mover motion is clarified when a single 
mover is operated with load.  

II.  ANALYSIS METHOD 

A.  Magnetic Field Analysis 
The equations of the magnetic field and the electric circuit 

are coupled using the 3-D FEM, which are given by the 
magnetic vector potential A and the exciting current I0 as 
follows: 

MJA rot)rotrot( 00    (1) 

000 



dt
dRIVE  (2) 

s
c

c I
S
n nJ 00   (3) 

Where is the reluctivity, J0 is the exciting current density, 
0 is the reluctivity of the vacuum, M is the magnetization of 
permanent magnet, V0 is the applied voltage, R is the resistance, 
 is the interlinkage flux of exciting coil, nc and Sc are the 
number of turns and the cross-sectional area of the coil	
respectively, ns is the unit vector along with the direction of 
exciting current.  

B. Coupled Analysis with Motion Equation 
This actuator is composed of two movers linked together, 

and the motion equations are given as follows: 

11
1 1

12

2

1 zk FF
dt
dzCdt

zdM   (4) 

22
2

22
2

2

2 zk FF
dt
dzCdt

zdM   (5) 

Where M1 and M2 is the mass of movers, z1 and z2 are the 
displacement of movers, 

1zF  and 
2zF  are thrust, 

1kF  and 
2kF  

are spring force, and C1 and C2 is the viscous damping 
coefficient.  

Two movers are linked by link-springs described later, and 
the spring forces are given as follows: 

)( 2111 zzkzkF lmk   (6) 
)( 1222 zzkzkF lmk   (7) 

Where km is main spring constant, kl is link-spring constant.  
The thrust of each mover is calculated using the Maxwell 

stress tensor method, and is substituted for the equations (4) 
and (5). The position of each mover is calculated by the time 
step. PWM feedback control is taken into consideration in this 
analysis. Fig. 1 shows the flowchart for this coupled analysis. 

III. BASIC STRUCTURE AND OPERATING PRINCIPLE 
The basic structure of the LRA in this study is shown in Fig. 

2. This actuator mainly consists of two movers, a common 

Dynamic Analysis Method of Linear Resonant 
Actuator with Multi-Movers 

Employing 3-D Finite Element Method 
Yasuyoshi Asai1, Katsuhiro Hirata1, and Tomohiro Ota2 
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E-mail: k-hirata@ams.eng.osaka-u.ac.jp 
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Fig. 1  Flowchart for analysis 
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8. COUPLED PROBLEMS 

stator and resonance springs that support the air-gap (0.36mm). 
Two parallelly arranged movers are composed of two opposite 
pole magnets fixed on the back yoke. The common stator is 
composed of E-type laminated yoke with an exciting coil of 68 
turns at its midleg. The resonance spring is composed of main- 

springs and link-springs which link two movers. Two 
movers move to reverse direction by exciting the coil. The 
operation frequency of the LRA is substantially determined by 
the spring constant and the mass of the mover. This actuator is 
operated under PWM feedback control, and excitation time 
(duty) is decided by detecting the back EMF while the coil is 
not excited. 

IV. VERIFICATION OF ANALYSIS METHOD 

A. Analyzed Model and Condition 
Fig. 3 shows the FEM model. The number of tetrahedron 

elements is about 670,000, the number of edges is about 
790,000, and unknown variables are about 770,000. Table I 
shows the analysis conditions. The number of steps is 1,300, 
time division is 10μs, and total CPU time is about 300 hours.  

B.  Comparison Analyzed Results and Measured Results 
Figs. 4 and 5 show the computed and measured waveforms 

of the amplitude, voltage, and current with no load. As can be 
seen, both results are well in good agreement, especially, 
influences of the back EMF and coil inductance on waveforms 
of voltage and current are accurately expressed, respectively. 

V. EFFECT OF LINK-SPRING 
This actuator has two link-springs in additon to main 

resonance springs which protect from the amplitude decreasing 
owing to the motion of the other mover when the amplitude of 
one mover is decreased by an external load. In order to verify 
the effect of link-springs, dynamic analysis is executed under 
the same conditions as no load. The horizontal load of 0.4N is 
applied to a single mover from the unloaded steady-state 
condition. Figs. 6(a) and (b) show the computed amplitude of 
unloaded and loaded movers without link-splings. From these 
figures, it is found that the amplitude of the loaded mover is 
greatly decreased by the load, and current duty is increased by 
the feedback control, and the amplitude of the unloaded mover 
is greatly increased. 

Figs. 7(a) and (b) show the computed amplitude of 
unloaded and loaded movers with link-splings. From these 
figures, on the other hand it is found that a decrease in the 
amplitude of the loaded mover is controlled, and an increase in 
the amplitude of unloaded mover is also well controlled. As 
the results, the amplitude of both movers becomes steady and 
nearly the same.  

From these results, it is clarified that link-springs are very 
effective in this LRA feedback control system. 

VI. CONCLUSION 
In this paper, we proposed the dynamic analysis method of 

a linear resonance actuator with multi-movers under PWM 
control employing the 3-D FEM. The effectiveness of this 
method was shown by the comparison with the measured 

results. Moreover, the effect of link-springs on amplitude 
control was clarified. 

 
TABLE I 

ANALYSIS CONDITIONS 

VII. REFERENCES 
(1) A. Yoshitake, K. Harada, T. Todaka, Y. Ishihara and K. Hirata, “Dynamic 

Analysis of A Linear Oscillatory Actuator Under Feedback Control”, IEEE 
Transaction on Magnetics, VOL.33, No.2, pp.1662-1665,1997  

(2) K. Matsui, K. Hirata, and T. Ota “Dynamic Characteristics Analysis of Linear 
Resonant Actuator under PWM control employing the FEM” , Papers of 
Technical Meeting on Linear Drive, IEE Japan, LD-07-17, pp.81-85,2007. 

Input voltage (V) 3.6 Mass of mover (g) 6.95 
Magnetization of 

magnets (T) 1.42 Viscous dumping 
coefficient (N･s/m) 0.14 

Resistance(on) (mΩ) 350 Resistance(off) (mΩ) 290 
Main-spring constant 

(N/mm) 6.93 Link-spring constant 
(N/mm) 3.22 

Diode voltage (V) 0.5   
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Fig. 6  Computed result (no link-springs) 
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Fig. 7  Computed result (link-springs) 
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Fig. 2  Basic structure of the LRA Fig. 3  FEM model 

-1.5

-1

-0.5

0

0.5

1

1.5

-4

-3

-2

-1

0

1

2

3

4

C
urrent[A

]

St
ro

ke
[m

m
] ,

V
ol

ta
ge

[v
]

Time[sec]

voltage

current

stroke 

 -1.5

-1

-0.5

0

0.5

1

1.5

-4

-3

-2

-1

0

1

2

3

4

St
ro

ke
[m

m
] ,

V
ol

ta
ge

[v
]

C
urrent[A

]

stroke

voltage

current

Time[sec]  
Fig. 4  Measured results Fig. 5  Computed results 

150

 







       
        

        
      
      


         
        


 




       
         

       



         
         
        


        
   

         

       

      
         
      


 



 ∫∫∫∫ ∗∗∗∗∗∗∗∗

Ω
 





 
    



       


 
       


         

        
        

    


 


        


           
 
        
      
         
       
         


 

       
       
       
      
        
      
















151

pa5.3










 
 
 


 

 
            
         
        
      
    
       
      
        
       
      
       



  





















 

 
       

 


        
         



 















 


    
        
         
       
       
       
      
       
        
     


 
 

 


    


 

         


        
 


 














   
   
   
   
   



-5,00E-06

0,00E+00

5,00E-06

1,00E-05

1,50E-05

2,00E-05

2,50E-05

3,00E-05

0,00E+00 5,00E-02 1,00E-01 1,50E-01 2,00E-01

COMSOL

AEQUATIO

AEQUATIO

COMSOL



152

 



8. COUPLED PROBLEMS

Analysis of Transient Eddy Current and Conductor 
Motion in an Electromagnetic Repulsion Mechanism 

with Meshless Collocation Method 

Abstract —This paper applies the radial basis function (RBF) 
collocation method in the moving coordinate systems for the first 
time to analyze the eddy current magnetic fields and conductor 
motion in an electromagnetic repulsion mechanism. The 
magnetic field in the solving domain is considered a superposition 
of two fields created by the excitation current and eddy current 
respectively. The governing equations are decoupled with the 
RBF and solved with time domain iteration. Moving coordinate 
systems in which the separate fields are calculated are 
constructed to avoid the model reconfiguration and simulate the 
motion process. The influence of model parameters to the field 
and motion is analyzed. The numerical result agrees well with the 
experiment data. 

I. INTRODUCTION

Efficient method to solve the eddy current problem with 
moving conductors has attracted much attention in 
engineering applications. This paper presents a novel radial 
basis function (RBF) collocation method in moving coordinate 
systems to compute the transient eddy current magnetic field 
in an electromagnetic repulsion mechanism. Motion process of 
the conductor in the mechanism is also analyzed and 
compared with the experiment data. 

II. ELECTROMAGNETIC REPULSION MECHANISM

The electromagnetic repulsion mechanism could also be 
named as electromagnetic switch system and its rotational 
symmetry structure is shown in Fig. 1. 

The switch is a round aluminium plate which could move 
along an insulated and nonmagnetic shaft. Two hollow 
cylinder-shaped excitation coils are winded with the same 
outer radius on the shaft to drive the motion. The millisecond 
level fast-rising excitation current in the coil is created by the 
discharge of a capacity. The time-variable magnetic field 
generates eddy current in the plate and force the plate to move 

according to Ampere’s force law. There is an initial 3000 (N) 
resisting spring force imposed by the shaft axle on the plate.

Because the upward and downward motions are driven by 
circuits with the same parameters, we only analyze the upward 
motion process excited by the coil below the plate. The 
numerical model could be simplified as a two dimensional 
problem. The model parameters of the solving domain are 
shown in Fig. 2. 

The solving domain Ω  is considered homogeneous and 
isotropic and with a boundary .Ω∂  The cross-section of the 

plate, which is also the eddy current area , is moving with 

a speed

eΩ

yv=v . The initial distance between the plate and the 

coil is 3 (mm) and the required distance is 7 (mm). The vector 

potential A , excitation current density  and eddy current 

density  exist only in the z-direction. Assuming 

that

sJ

eJ

zA A= , zsJ sJ= and , we could get the 

governing equations as:  
zeJ eJ=

sJAL
t
A μσμ =−
∂
∂

)(                          einΩ

(1a)

sJA μ−=∇2                     (1b) hinΩ
0=A Ω∂on                    (1c) 

where σ is the conductivity, μ is the permeability, 

)( eh Ω∩Ω∈Ω and the operator )(⋅L means 

y∂
∂

−∇
(.)

v(.)2 σμ .
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Fig. 1. Cross-section of the electromagnetic repulsion mechanism.

10

Moving Plate

50

20

40

Coil

20

200

200

Y 80

X
Fig. 2. 2D numerical model of the electromagnetic repulsion
mechanism. (Unit: mm)

153

pa5.4



8. COUPLED PROBLEMS

III. RBF COLLOCATION TIME DOMAIN ITERATION IN MOVING

COORDINATE SYSTEMS

The theory of RBF collocation method could be seen in [1]. 

Consider  and establish two coordinate systems es AAA +=

sξ and eξ where the subscript s and e means the excitation 

current field and eddy current field respectively. In each 

coordinate system, collocation nodes are set 

in and on to form the RBF. Specially, we assume that 

nodes  are in . Using RBF to approximate and

 in 

NNN BI =+
Ω Ω∂

Fig. 3. Isopotential lines of eddy current density in the 
PN1 eΩ sA plate section at t=1 (ms).

eA sξ and eξ , we get: We choose four observation points from Fig. 3 as: P1(30,0), 
P2(30,2.5), P3(30,5.0), P4(30,7.5) to analyze the variety of 
eddy current in different parts of the plate. The result is shown 
in Fig. 4. 

)()()()(),( tttA e
T

es
T

s axQaxQx +=                             (2) 

where is the RBF vector and a  is the unknown coefficient 

vector. Time domain iteration is constructed to solve

and . In

Q

sa

ea sξ ,  in satisfies the Poisson equation 

everywhere. With a known , we could solve from:  

sA Ω

sJ sa

)())(( 112
si

k
s

k
ssi

T
s J xaxQ ++ =∇ μ              (3a) IsNi ,1=

0)( 1 =+k
ssi

T
s axQ                               (3b) sIs NNi ,1+=

where means the iteration steps and we have k tkttk Δ+= 0 .

Consider  to be the coordinates of nodes of  inex′ eQ sξ .

Substituting (2) and (3) into (1) and using Crank-Nicolson 
time matching scheme to deal with the time differential, we 
get: 

+
Δ

=−
Δ

+ )(()))((
2
1

)(( 1
ei

T
e

k
eei

T
eei

T
e t

L
t

xQaxQxQ
σμσμ

))()((()))((
2
1 1

ei
k

sei
k

s
k

eei
T

e AA
t

L xxaxQ ′−′
Δ

− +σμ

y
A ei

k
sk

∂
′∂

+
+ )(

v
1 xσμ                                     (4a) PeNi ,1=

0))(( 12 =∇ +k
eei

T
e axQ                     (4b) IePe NNi 1+=

0)( 1 =+k
eei

T
e axQ                               (4c) eIe NNi 1+=
During the motion, the RBF model in each coordinate 

system is unchanged. 

IV. ANALYSIS OF EDDY CURRENT AND MOTION

On the basis of the magnetic field, the distribution of eddy 
current and driving force imposed by the magnetic field could 
be obtained to analyze the motion. The parameter in each 
iteration steps could be solved with kinetic equations. Besides, 
the influence of the eddy current magnetic field to the 

excitation circuit parameters is computed to modify .

Motion processes with different model parameters are also 
analyzed for a further optimization design. Fig. 3 shows the 
distribution of eddy current density in the plate section at time 
t=1 (ms) from which we could see the skin effect clearly. 

v

sJ

Fig. 4. Time-variation curve of the current densities.

The motion process is shown in Fig. 5. 

Fig. 5. Variation curve of the moving displacement of the plate. 

Fig. 6 shows the influence of the initial voltage of the 
capacitor U0 to the electromagnetic force of the plate. 

Fig. 6. Time-variation curves of Electromagnetic force when 
the initial voltage of the capacitor U0 changes. 

V. REFERENCES

[1] C. Franke and R. Schaback, “Solving partial differential equations by 
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1, pp. 73-91, 1998. 
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8. Coupled Problems 

Abstract — Scalar and vector magnetic formulations have 
been applied to solve the current distribution in a 50 Hz direct 
resistance heating system of ferromagnetic tubes. The scalar 
formulation driven via an external circuit has been also applied 
to solve the Time-Harmonic EM part of the problem coupled 
with the thermal transient: the computed warm up curves have 
been compared with experimental data. 

I. INTRODUCTION

Direct resistance heating of steel tubes is industrially 
achieved by supplying strong 50 Hz currents directly to the 
workpiece by means of suitable contact systems. The 
current density distribution inside a straight tube depends 
upon the skin effect, while for bended tube it is influenced 
also by the ring effect. The thermal sources for the heating 
are the Joule losses, which depend on the square of the 
current density: consequently the unbalanced distribution of 
the current density due to the ring effect produces a 
significant overheating in the inner part of the curved zone. 
In previous investigations the possibility of balance the ring 
effect by means of properly designed laminated cores has 
been analyzed [1]. The proposed solution has been realized 
in a laboratory set-up and experimental measurements have 
been used to verify the reliability of the numerical models. 
Numerical models have been developed to solve the 
electromagnetic problem by means of 3D finite element 
solution: because there is only one conductor carrying the 
source current, the A-AV formulation has been 
implemented applying Dirichlet conditions for the scalar 
electric potential on the edges of the conductor. The 
solution of the EM problem has been also implemented by 
means of a magnetic scalar coupled with the electric vector 
potential formulation. This formulation reduces 
substantially the computational requirements so that also the 
3D coupled electromagnetic thermal solution can be 
achieved in reasonable times. Moreover the scalar 
formulation can be more efficiently driven by an external 
electrical circuit, allowing to feed a constant current in the 
model instead of an applied voltage [2, 3]. Some 
comparisons between the results obtained by means of the 
A-AV formulation with the ones made with T-T0-φ are 
presented as well as some comparisons between the 
computed temperature distribution and the experimental 
measurements resulting from some warm up processes 
carried out controlling the current intensity during the 
heating  transients.  

II. COMPUTATION MODELS

The model represents the laboratory set-up built in NSTU 
(Novosibirsk State Technical University) and it is y 
constituted by a ferromagnetic tube, a laminated yoke and a 
thermal insulator that envelops the tube (fig.1).  

Fig. 1. Schematic of the bended tube laboratory set-up. The ferromagnetic 
tube (red region) is surrounded by a thermal insulator (yellow). The C 
yoke, placed to minimize the ring effect, is represented by the green 
region.  

Only a part of the real system has been considered, applying 
tangential magnetic field conditions on the boundaries, 
represented in Fig.2 by the red and green lines. On these 
boundary faces there are also the terminals of the tube 
conductor.  

  
Fig. 2. On the left, the boundaries of the model are represented by the red 
and the green lines; the terminals of the conductive tube are located on the 
same boundaries. On the right the finite element model of the tube has 
been realized with a 3D mapped mesh to  subdivide the skin depth layer. 

As mentioned above, the electromagnetic solution, in 
particular the distribution of the current density inside the 
tube, has been obtained by means of two different numerical 
formulations. The magnetic vector potential A coupled with 
the scalar electric potential V formulation leads to a very 
accurate solution for the current distribution, that can be 
obtained, in the hypothesis of a time harmonic field of  
angular frequency ω,  directly from the solved nodal state 
variables: 

Coupled Magneto-Thermal FEM Model of 
Direct Heating of Ferromagnetic Bended Tubes

M. Forzan1, A.Aliferov2

1University of Padova, Dept. of Electrical Engineering, via Gradenigo 6/a, 35131 Padova, Italy 
2Novosibirsk Technical State University, Novosibirsk, Russia 

E-mail: michele.forzan@unipd.it
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 = -  (j   + grad V)σ ωJ Aɺɺ ɺ      (1) 

where σ is the electrical conductivity and the dot over the 
A, V potentials indicates the phasor representation. The 
model has been solved by applying a constant voltage drop 
between the two terminals of the tube. However, the vector 
formulation has some drawbacks: it requires huge 
computational resources, it badly describes the non linear 
magnetic properties when µr>>1, and finally, when an 
iterative algorithm like Newthon-Raphson is applied to non 
linear models, the computation time becomes very high and 
the convergence is usually poor. For these reasons, the 
electromagnetic solution has been obtained also by means 
of the T-T0-φ formulation with an imposed current driven 
by an electrical circuit directly coupled with the FEM 
solver. The electric vector potential T is defined since in 
quasi-static hypothesis the divergence of the current density 
must be 0; in this situation the current density can be 
computed from: 

0 = rot  rot +J T Tɺ ɺ ɺ      (2) 

and the field H in the conducting region can be described 
as: 

0 =     - grad φ+H T T ɺɺ ɺ ɺ       (3) 

while in the air and the magnetic yoke, the field can be 
computed as the gradient of the scalar magnetic potential 
[3,4].  

III. NUMERICAL AND EXPERIMENTAL RESULTS

The EM solutions obtained with the two different 
formulations have been compared, verifying the resulting 
current density distribution in the bended part of the tube.  
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Fig. 3. Comparison between the current distribution, normalized to the 
average value, as a function of the azimuthal position obtained with the A-
AV formulation (continuous lines) and  the T-T0-φ formulation. The black 
lines represent the solution without yokes while the red curves are with the 
laminated yoke. 

In fig.3 the current distribution is represented as the ratio 
between the averaged value and the actual values along a 
curvilinear path located in the central section of the bended 
zone. The two calculated distributions are in good 
agreement; it can be noticed that the current densities, 
resulting from the curl operation (2) applied on the T values 
as resolved on a 2nd order mesh, presents an oscillation due 
to the derivative operation that is not performed when the 
A-AV formulation is applied.  

The coupled electromagnetic and thermal solution has been 
done taking into account the dependence of the material 
properties, i.e. electric conductivity, magnetic permeability, 
thermal conductivity and specific heat with temperature, 
while the non linear magnetic property of the steel with 
magnetic field intensity has been considered constant to 
avoid the excessive computation time required by the non 
linear solvers. The EM-thermal solution has been performed 
with a classic iterative procedure, where the temperature 
distribution and the joule looses represent the coupling 
terms. The total transient period, 3600 s, has been 
subdivided into 40 time steps of 90 s. The entire solution 
required roughly 20 days of calculation on a Xeon X5355, 
2,66 GHz, with 32 GB of RAM. 
The numerical transient is compared with the experimental 
data in the diagrams of Fig.4. 
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Fig. 3. Comparison between computed thermal transient and experimental 
measurements. Experimental data are obtained from three thermocouples 
placed on the tube, as shown in the sketch in the right part of the figure. 
The same symbols indicate the measured temperature on the diagrams, 
while the numerical results are represented by lines. A fourth measured 
point, indicated with X, is located on the thermal insulator. 

IV. CONCLUSIONS 

The scalar formulation coupled with the circuit equations 
has been proved to be suitable for the solution of the 
electromagnetic part of a coupled magneto thermal problem, 
allowing a faster process in comparison with the one 
achievable by means of A-AV formulation. Nevertheless, 
the 3D coupled MT problem requires still a very long 
computation time: further investigations will be devoted to 
the development of a parallel solver that will allow a 
significant speedup of the calculation process.  
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Abstract—This paper renders a discontinuous Galerkin
method combined with hierarchical reconstruction to simulate
the fluid model of streamer discharges. This method generates
little numerical diffusion and oscillations. It is of high resolution
and high order accuracy and hence suitable to simulate streamer
discharges. A simulation of a parallel-plate discharge using 1.5
dimensional fluid model is presented as an example.

I. INTRODUCTION

Numerical simulations help scientists achieve a better theory
on the physics of the streamer formation and propagation.
The simplest fluid model for streamer discharges consists of
two convection-diffusion-reaction equations coupled with a
Poisson’s equation[1]:

∂ne
∂t
+
∂(neve)
∂x

−De
∂2ne
∂x2

= αne|ve|+ Sph,
∂np
∂t
+
∂(npvp)
∂x

= αne|ve|+ Sph,
∆u = −e


(np − ne), E = −∇u.

where ne and np are the density of electrons and positive ions,
ve and vp are their velocity, respectively. De is the diffusion
coefficient, α is the collision ionization coefficient and Sph
is the photo-ionization. u is the voltage and E is the electric
field.  is the dielectric coefficient and e is the net charge of a
unit electron. ve,vp and α are locally decided by the electric
field[2].

Due to the convection term in the streamer simulation
model, traditional numerical schemes would often gener-
ate much numerical diffusions or oscillations and lead to
non-physical results. Flux-corrected-transport(FCT) technique
combined with finite difference method(FD-FCT) or finite el-
ement method(FEM-FCT) , finite volume method(FVM) with
slope limiters were introduced to overcome this problem[1],
[3], [4]. But on the other hand, FD and FVM cannot handle
complex geometries easily and need wide stencils to construct
high order schemes; FEM does not enforce the local conser-
vation which is preferred for convection problems.

Discontinuous Galerkin method(DG) can overcome these
shortages[5]. It uses a finite element space discretization by
discontinuous approximations and can easily handle com-
plicated geometries. It incorporates the ideas of numerical
fluxes and slope limiters from the high-resolution FD and FV
schemes. The DG methods not only enforce the local conser-
vation, but also are very compact. Combined with hierarchical

reconstruction(HR)[6], which can generate essentially non-
oscillatory solutions while keeping the resolution and desired
order of accuracy for smooth solutions, the resulting DG
scheme is of high resolution and high order accuracy.

II. THE SCHEME

Take the following notations:

n = (ne, np)T , f(n) = (neve, npvp)T , g(n) = (Dene, 0)T ,

q = gx, h(n) = (αne|ve|+ Sph, αne|ve|+ Sph)T .
The convection-diffusion-reaction equations read:

nt + (f − q)x = h, q = gx. (1)

A. Space discretization

Suppose Ij = (xj−1/2, xj+1/2),j = 0, 1, 2, ...N , is a parti-
tion of the computational domain,xj = xj+1/2−xj−1/2.The
finite-dimensional computational space is

V = V k
h = {ψ : ψ|Ij ∈ P k(Ij)},

where P k denotes the polynomials of degree up to k defined
on Ij . We choose Legendry Polynomials as the basis functions
and re-scale them over [-1,+1]:

v
(j)
0 = 1, v(j)1 = ξ, v

(j)
2 = 0.5(3ξ2 − 1),

where ξ = 2x−xjx . The numerical solution can be written as:

nh(x, t) =
2

i=0

n
(j)
i v

(j)
i , for x ∈ Ij .

Multiply equation (1) by a test function ψ ∈ V k
h , integrate

by parts, replace n,q by nh,qh, and choose suitable numerical
flux f̂ ,q̂ at the interface xj+1/2, one gets:


Ij

nht ψdx−


Ij

(f(nh)− qh)ψdx+ (f̂ − q̂)j+1/2ψ
−
j+1/2

−(f̂ − q̂)j−1/2ψ
+
j−1/2 =



Ij

h(nh)ψdx, (2)


Ij

qhψdx = ĝj+1/2ψ
−
j+1/2 − ĝj−1/2ψ

+
j−1/2 −



Ij

g(nh)ψxdx. (3)

where − and + means the left and right side values of the
interface, respectively. Numerical flux f̂ is chosen according
to the upwind principle because the directions of ve and vp are
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easy to obtain. q̂ and ĝ are chosen according to the alternating
principle.

In fact, the solutions are allowed to have jumps at the inter-
face xj+1/2, the cell size xj and degree k can be changed
from element to element, which leads to easy adaptivity.

B. Time discretization

Locally solve the auxiliary variable q in equation (3) from
element to element, and substitute it into equation (2), one
gets an ODE:

dnh

dt
= L(nh) (4)

For most cases, equation (1) is convection dominated,
an explicit Total Variation Diminishing 3-order Runge-Kunta
scheme can be used to solve the ODE[7].

n(1) = nn + L(nn)t,

n(2) =
3
4
nn +

1
4
(n(1) + L(n(1))t),

n(3) =
1
3
nn +

2
3
(n(2) + L(n(2))t),

nn+1 = n(3). (5)

C. Hierarchical reconstruction

HR computes cell averages of various orders of derivatives
of a polynomial, and uses them to reconstruct the non-
oscillatory linear polynomial hierarchically. The coefficients
of the reconstructed polynomial are used to update the corre-
sponding ones of the original polynomial, see [6] for details.
The HR process is applied after every sub-step of the Runge-
Kunta scheme. In this way, the scheme guarantees non-
oscillatory results.

III. APPLICATION

A simulation of a positive streamer was performed in pure
N2 at atmospheric pressure using 1.5D fluid model. Two infi-
nite large parallel plate electrodes are placed perpendicular to
the axis of symmetry. The origin of the cylindrical coordinates
is located at the anode. The applied voltages on the anode(x=0
cm) and cathode(x=1 cm) are 52 kV and 0, respectively.
The charges are assumed to uniformly distributing on a disc
perpendicular to the axis of symmetry[8]. The disc radius is
assumed to be 0.05 cm. The initial charge has a gaussian
shape:

ne(x)t=0 = np(x)t=0 = nb + n0 × exp(−(
x− x0

σx
)2),

where x0 = 0.03cm, σx = 0.027 cm, n0 = 1014 cm−3,
and Sph is simplified by the background preionization nb =
108 cm−3. Neumann boundary conditions are applied for
the convection-diffusion equations. The Poisson’s equation is
solved by the disc method[8].

Fig.1 shows that the electric field in front of a streamer is
severely enhanced and is more than 100kV/cm. The streamer
propagation velocity is about of the order of 108 cm/s. Fig.2
shows that there is a thin layer about 0.1mm thick at the head
of a stream, which has a larger net charge density, and the
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Fig. 1. electric field distribution along the axis
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Fig. 2. net charge distribution along the axis

net charge density is of the order of 10−6C/cm3. The sharp
gradient of charge density profile was caught by the proposed
scheme well.
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8. Coupled Problems 

Abstract — In this paper, the problem of magnetic buoyancy 
force on nonmagnetic solid object submerged in magnetic liquid 
is presented and discussed. It is shown that there are 
contradictions in the understanding and calculation of the 
buoyancy force using only the conventional Maxwell stress. On 
the other hand, the approach of Rosensweig’s ferro-
hydrodynamics was also criticized by Rinaldi. For the calculation 
of buoyancy force of the submerged nonmagnetic object, a new 
approach of hydrostatic equilibrium considering magnetic body 
force is proposed.  

I. INTRODUCTION 
As in Fig. 1, a mutual repulsion force, which is generated 

between a magnet and a nonmagnetic object when they are 
submerged in magnetic liquid, is presented. The mutual force 
is not due to a direct interaction between the two bodies; the 
force arises because of the magnetic fluid attracted into the 
space between them. In the previous work [1] by Rosensweig, 
a magnetic force expression of the nonmagnetic body based 
on ferrohydrodynamics, including the gravitational effect, was 
presented. He recognized, though, the fact that there is an 
arbitrariness of the grouping of magnetic terms in his derived 
expressions [2] and there have been controversies and 
confusions for the magnetic force distribution for a hundred 
years. In a recent research by Rinaldi [3], an assertion, in 
which Maxwell stress is not a true mechanical stress, was 
shown and the Rosensweig’s electromagnetic force 
derivations and applications of those were strongly criticized.  

In Fig. 2, a hydrostatic model is presented for numerical 
study and discussion. In this model, a nonmagnetic solid 
object (solid-A) is submerged in a magnetic liquid subjected 
to non-uniform magneto-static field. Solid-A has a slightly 
bigger mass density than that of the magnetic liquid. Solid-A 
sinks to the bottom of the vessel when there is no permanent 
magnet under the vessel. On the other hand, if a magnet is put 
under the vessel, solid-A soars to the height at which the 
hydrostatic equilibrium is satisfied. Firstly, let’s consider this 
model using only the conventional Maxwell stress. If we 
choose a closed integral surface path inside solid-A, which has 
air permeability, for the magnetic force calculation, the result 
is obviously negligible because there is no magnetic material 
within the closed surface. If we adopt the alternative point of 
view in which the integral path is taken on the magnetic liquid 
surface adjacent to solid-A for the calculation of pushing force, 
the path is, consequently, the same as the previous one except 

the surface-normal direction. This also leads to a meaningless 
force value because the integration of this is just negative to 
that of solid-A. Here, there is another conceptual hole in 
Maxwell stress approach. From a mechanical viewpoint, the 
total magnetic buoyancy force should be the summation of 
solid-A’s force itself and the pushing force of the magnetic 
liquid. As seen above, the summation is simply zero because 
of the opposite integration value. That is, the approach using 
only the Maxwell stress fails in explaining the mechanics of 
the magnetic buoyancy force of solid-A. This conclusion also 
supports the Rinaldi’s assertion.  

For evaluating the buoyancy force, in this paper, a new 
approach of hydrostatic equilibrium with consideration of 
magnetic body force [4] is presented. By using the magnetic 
body force, the above mentioned criticism can be avoided; not 
using the Maxwell stress itself but using an equivalence of 
divergence of the Maxwell stress tensor. For calculating the 
net uprising force, both of gravitational forces of the magnetic 
liquid and the solid-A should be considered as well as 
magnetic body force of the liquid. The proposed hydrostatic 
approach is made relatively simple than that of Rosensweig 
because both gravitational and magnetic body forces are dealt 
with in a same way. If the integration of hydrostatic pressure 
on the surface of solid-A, which makes the upward buoyancy, 
is bigger than gravitational downward force of solid-A, the net 
uprising force can be obtained. As well as detailed 
hydrostatical procedure, experimental and numerical tests will 
be presented in the full paper.  

 

 
 

Fig. 1.  Mutual repulsion of a magnet and a nonmagnetic object when both are 
submerged in a magnetic fluid.  
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8. Coupled Problems 

II. HYDROSTATIC APPROACH WITH BODY FORCE 
The momentum equation of hydrodynamics including 

magnetic body force is as follows, 

mmechDt
D fvgTv

+∇++⋅−∇= 2ηρρ          (1) 

where DtD /  is the substantial or Lagrangian derivative 
which is defined to trace the liquid motion, ρ  is mass density 
of the liquid, v  is velocity of motion, mechT  is mechanical 
stress tensor, g  is acceleration vector of gravity, η  is 
viscosity, and mf  is the magnetic body force. By applying the 
virtual air gap scheme to the Kelvin’s formula [4][5], the 
magnetic body force can be expressed as  

 HMf )(
2

0 ∇⋅
+

=
µµ

m
            (2) 

where M  is magnetization and H  is total field intensity. This 
force density can be regarded as an equivalence of divergence 
of Maxwell stress tensor. When the liquid is in static state, the 
hydrostatic momentum equation is reduced to, 

mp fg +=∇ ρ             (3) 
where p  is the isotropic mechanical pressure with the relation 
of ppmech ∇=⋅∇=⋅∇ IT . From (3), a pressure on the surfaces 
of solid-A can be obtained as follows,  

 00
)( pp

L

L m +⋅+= ∫ dlfgρ        (4) 

where 0L is an arbitrary fixed position on the free surface of 
the liquid, 0p  is the atmospheric pressure, L  is a position on 

the surfaces of solid-A [6]. By integrating the pressures along 
the surfaces of solid-A, total buoyancy force, which is 
generated by the liquid, can be obtained with consideration of 
both gravity and magnetic field. Finally, the net uprising force 
can be obtained by subtracting the weight of solid-A from the 
total buoyancy force. The assumptions used in this model are 
two-dimensional geometry, incompressibility of the liquid, 
neglecting the deformation of the free surface, and material 
linearity.  

By applying the density of the magnetic liquid as 1 3/ cmg , 
that of nonmagnetic object as 1.1 3/ cmg , and the paper 
normal depth as 1 m , the final net uprising force is calculated 
as 2.8 N in the specified height from the bottom of the vessel. 
This resultant value means that the equilibrium height will be 
higher than the specified position. The final floating height 

can be obtained iteratively. At the equilibrium height, the net 
uprising force should be zero. In Fig. 3, the calculated 
magnetic body force distribution in the magnetic liquid is 
shown. 

 
Fig. 2.  A hydrostatical model: non-magnetic solid object submerged in 
magnetic liquid subjected to non-uniform magneto-static field produced by a 
magnet under a vessel. The field was solved by a finite element analysis. 
 

 
Fig. 3.  Magnetic body force distribution using Kelvin’s formula and virtual 
air gap scheme.  
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Abstract – For reactive power compensation of EHV/UHV 
lines, the controllable reactor has more advantages than the fixed 
value reactor. Among various controllable reactors schemes, the 
orthogonal flux type controllable reactor is remarked for its low 
harmonics and fast response time. In this paper, to verify the 
performance of the controllable reactor, we present an efficient 
approach for the field-circuit co-simulation of such controllable 
reactors using Integral Equation Method (IEM) and Simulink. 

The indirect coupling procedure is based on exchanging of 
source variables i.e. current and voltage sources between field 
IEM simulation and Simulink based circuit simulation. With this 
method, the dynamic behavior of the controllable reactor can be 
simulated and analyzed with more accuracy. By using this co-
simulation approach, the more complex system level simulation 
can be applied by using accuracy field model.  

 The field model of the controllable reactor is established firstly 
by IEM method and the circuit model is established in the 
Simulink environment. The simulation results are compared with 
the results obtained by mathematical model of the controllable 
reactor. 

I. CONTROLLABLE REACTORS 

 In most of the existing power system, the switchable low 
voltage reactors/capacitors on tertiary winding of transformer 
or SVC are used to regulate the voltage, and the temporary 
over-voltage suppression widely adopts line shunt reactor, 
which is a fix value reactor. The appearance of controllable 
reactor gives an alternative of normal shunt reactor, as shown 
in Fig. 1. As the substitute of line shunt reactor, the functions 
of controllable reactor are 1) voltage regulation, 2) temporary 
over-voltage suppression and 3) dynamic voltage support.  

 
Fig. 1 The controllable reactor in the power system 

In this paper, the orthogonal flux type controllable 
reactor [1] is employed for the co-simulation, which is a kind of 
saturable reactor with 2 windings: AC winding (main winding), 
and DC winding (control winding). The respective DC flux 
and AC flux of the windings are orthogonal in the iron core of 
the controllable reactor. The equivalent circuit of the 
controllable reactor is as shown in Fig. 2, where ACU  is the 

input AC voltage of the main winding and ACI is the AC 
current; DCU  is input DC voltage of control winding and DCI is 
the DC current. 

 
Fig. 2  The equivalent circuit of the controllable reactor 

In this paper, the field-circuit co-simulation of such 
controllable reactors using Integral Equation Method (IEM) [2] 

is presented. The filed simulation model considers the impact 
of the non-linear magnetizing behavior of the iron core and the 
leakage flux and thus is a closer approximation to the physical 
model. By coupling this field simulation model with the power 
system circuit model, the performance of the controllable 
reactor can be verified with higher accuracy and the 
parameters of the controllable reactor can be optimized. 

II. THE FIELD SIMULATION MODEL OF THE CONTROLLABLE 
REACTOR 

The characteristic of controllable reactor is achieved by the 
control of the saturation level of the “control discs” in the 
reactor’s central limb. Fig. 3(a) shows the structure of 
controllable reactor with air-gaps between the control discs 
and uncontrolled discs. By adding air-gaps, the control range 
can be adjusted and thus decrease the total cost of the 
controllable reactor. The main reactor coil is excited by the 
AC voltage. The control discs are excited by the auxiliary DC 
coils wounded around each of them. The structure of the 
control disc is shown in Fig 3(b). 

 

Reactor coil 

Control coils 

Control disc 1 

Control disc 2 

Control disc 3 

Control disc 4 

    
(a) The structure of controllable reactor             (b) the control disc 

Fig. 3 Structure of the controllable reactor with air-gaps between the discs 

III. COUPLING MECHANISM 

A. The coupling of the softwares 
The circuit model in Simulink is based on the state space 

approach. The transmission line, the generators and the loads 
are described in the circuit model by the SimPowerSystem 
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blocks in the Simulink. The field model described by IEM is 
presented as a function block, in which the currents of the 
main winding and control winding of the controllable reactor 
are the input variables, which are measured from the circuit 
model; the voltage of the main winding and control winding 
(the EMF values) are calculated by the IEM and returned as 
output variables. The structure diagram of the co-simulation is 
shown in Fig. 4. 

ACI DCIACE DCE

AC AC
AC

AC

U E
I

R
−=

DC DC
DC

DC

U E
I

R
−=

ACU

DCU

 
Fig. 4 The structure diagram of co-simulation 

B. The Data Transfer  
The input and output data that transferred between 

Simulink and IEM software are exchanged by ASCII format 
files. The data transfer mechanism can be described as follows: 

At the beginning simulation time 0 0t = , outputs of IEM 

field model are initialized as (0)
AC 0E = and (0)

AC 0E = ; the 
output  variables of the Simulink are initialized as 

(0)
AC 0I = and (0)

DC 0I = . At the time 1 0t t T= + ∆ , where T∆ is 
the simulation time step, the output variables of the Simulink  

(1)
ACI and  (1)

DCI are calculated as: 

 

(1) (0)
AC AC(1)

AC
AC

(1) (0)
DC DC(1)

DC
DC

U E
I

R

U E
I

R

 −=



− =

 (3.1) 

where  ACR and DCR are the resistance of the main winding and 
control winding respectively.   

The output variables (1)
ACE and (1)

DCE of the IEM field 

model at time 1t  are calculated as: 

 

(1) (0)
(1) AC AC

AC AC

(1) (0)
(1) DC DC

DC DC

E n
t

E n
t

 Φ − Φ
= ∆


Φ − Φ = ∆

 (3.2) 

 Where ACn and DCn are the turns number of the main winding 
and control winding respectively; ACΦ and DCΦ are the AC 
flux and DC flux respectively.   

By employing the calculation procedure in (3.1) and (3.2) 
at each time steps, the co-simulation can be carried on. The 
detailed co-simulation diagram is shown in Fig. 5. 

(n) (n-1)
(n) AC AC

AC AC

(n) (n-1)
(n) DC DC

DC DC

E n
t

E n
t

 Φ −Φ= ∆


Φ −Φ = ∆

 
Fig. 5 The detailed co-simulation diagram 

IV. APPLICATION EXAMPLES  

A. The co-simulation results 
The example is a 500kV/50MVA single phase controllable 

reactor with control system. The circuit diagram of the 
controllable reactor for the co-simulation is shown in Fig. 6. 
The breaker will trip the line when fault occurs at the load side, 
and the resulting overvoltage of the line caused by the load 
rejection will be suppressed by the controllable reactor, which 
is simulated by the IEM model.  
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Fig. 6 Circuit diagram of 288kV/50MVA controllable reactor in the 

transmission grid system 
Detailed co-simulation results will be presented in the full 

paper.   
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8. COUPLED PROBLEMS

Abstract — This paper presents a steady and transient analysis 
for magnetic and thermal field of induction machines (IM). The 
electromagnetic performances, such as magnetic field 
distribution, winding current and eddy currents flowing in 
conductor bars, are simulated by using field-circuit coupled 
method.  The losses including of core loss, conducting loss of 
windings and rotor bars are evaluated during startup and steady 
operation. Excited by the losses, the transient and steady thermal 
fields are investigated by using finite volume method (FVM). The 
axial structural meshing is applied to simulate the temperature 
rise under ventilation case. The simulated electromagnetic 
performances and temperature rise are validated by experiment. 
The thermal field distribution of induction machine at both 
startup and steady states are discussed.  

I. INTRODUCTION

The thermal conditions of induction machine (IM) are one 
of the main factors that limit the lifetime and the reliability of 
IM. Thermal analysis is very important for electrical machine 
designing, manufacturing, fault diagnosis and detection. One 
of the most effective methods to estimate the IM heating 
process is with the help of an equivalent thermal circuit, in 
which an IM is simulated as a system of heat sources that are 
interconnected to each other and connected to the environment 
by means of thermal conductivities [1]. A transient 2-D 
thermal analysis of switched reluctance motor by Finite 
Element Method (FEM) has been presented in [2], in which 
some thermal parameters are obtained by measurement.  

The electromagnetic losses play a very important role as the 
sources of the temperature rise of electrical machines. Precise 
electromagnetic analysis of induction machines is necessary 
during steady and startup operation. FEM coupled with drive 
circuit is a powerful method to calculate the electromagnetic 
field distribution and the electromagnetic losses.  

In this paper, the time-step field-circuit coupled method is 
applied to analysis of the electromagnetic filed and current 
distribution of IM during startup and steady operation. The 
transient and steady thermal field is calculated by FVM after 
determination of the conduction and the convective heat 
transfer coefficients.  

II. ELECTROMAGNETIC FILED ANALYSIS OF IM

A two-dimensional (2D) FEM is applied for the IM, where 
the magnetic vector potential has only the z-component.  

The Maxwell’s equations applied to IM can be expressed as  

( ) 0f f f
f bar

ff

d N d aA
v A i u

t N lS ap

σ
σ ∂

∇ ⋅ ∇ − + + =
∂

                        (1) 

where A is the component of magnetic vector potential in the z
axis, ν  is the reluctivity of materials. if is the winding current, 
Sf is the total cross-sectional area of the region occupied by 
this winding in the solution domain, p is the symmetry 
multiplier which is defined as the ratio of the original full 
cross-sectional area to the solution area, df is the polarity to 
represent forward path or return path, a is the number of 
parallel branches, and Nf is the total conductor number. ubar is
the voltage difference between the terminals of solid 
conductor, and l is the model depth in the z axis.  

The branch equations of the stranded windings and solid 
conductors are coupled with field equations. The loop method 
is applied to describe the circuit equations of the stranded 
windings, the solid conductors and the external circuits. The 
currents flowing in stranded winding and solid conductors are 
regarded as branch currents which may be expressed as a 
function of loop currents according to KCL. In loop method, 
the variables are chosen as loop current.  

From above the field-circuit coupled equation can be 
established. The magnetic vector potentials of the nodes and 
the loop currents are chosen as unknowns. 

The air gap of IM is re-meshed at each time step and the 
electromagnetic torque is calculated by using the Maxwell 
stress tensor. The angular speed and the rotor displacement at 
each time interval can be determined.  

Core loss is evaluated by a traditional loss calculation 
approach. Because the current density is not uniform over the 
cross-section of the rotor bar, the loss on the rotor bar is 
expressed as the volume integration of current density of rotor 
bars. 

III. THERMAL FILED ANALYSIS USING FVM

Considering the computational accuracy and complexity of 
thermal field, the thermal model of IM such as end cover, end 
winding, end ring, bearing and shaft, etc., should be simplified. 
Fig. 1 illustrates the axial simplified models of IM. 
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(a) Real model of IM                            (b) Simplified model 

Fig. 1. Axial model of induction model 

The heat conductivity and convective heat transfer 
coefficients are determined by ventilation calculation and the 
bearing losses are evaluated. Those will be presented in detail 
in full paper. 

In cross-section of the IM, the same triangular meshes are 
used in both electromagnetic FEM and thermal FVM. The 
structure grid is constructed in axial direction and an 
equivalent thermal circuit is applied to calculate the axial 
temperature distribution. 

In FVM, the discrete equation is an integration of the 
conversation heat transfer equation over each control volume. 
In this paper, cell-centered method is used. For triangular 
mesh, the control volume is regarded as the element, also 
called the cell. The discrete temperature equation associated 
with one cell is expressed as 

3

1
o o i i o

i

a T a T b
=

= +∑                             (2) 

where, a0 and ai are the convection and diffusion coefficients 
of a cell center and its adjacent points. b0 is the source 
associated with electromagnetic losses. T0 and Ti are 
temperatures of this cell center and its adjacent points. The 
boundary condition will be presented in full paper.  

IV. STEADY AND TRANSIENT ANALYSIS OF 

ELECTROMAGNETIC-THERMAL FIELDS FOR IM

The simulation code of steady and transient coupled 
magnetic and thermal fields for IM is carried out. Due to the 
different time constants between the electromagnetic and the 
thermal systems, during every predefined time interval which 
including several time steps in electromagnetic computation, 
the thermal analysis is executed once.  

A 3-phase four-pole asynchronous generator, a kind of IM, 
is used to evaluate the developed simulation code. The rated 
output power is 750 kW, the output voltage is 690 V and the 
frequency is 50 Hz. The finite element mesh is shown in Fig. 
2. Fig. 3 pictures the current flowing in one rotor bar. The 
magnetic field distribution at startup operation is illustrated in 
Fig. 4 and the steady losses are shown in Fig. 5. Fig. 6 (a) and 
(b) show the temperature rise distributions at both startup and 
steady operations.  

The axial temperature rise distribution is pictured in Fig. 7. 
The simulated temperature rise of stator winding, 106.4˚C, is 
much closed to experimental result, 104.2˚C, at steady 
operation. More simulation results and evaluation of 
developed code will be presented in full paper. 

V. CONCLUSION 

This paper develops a simulation code of electromagnetic-
thermal field for IM. The transient electromagnetic losses are 

calculated by FEM and temperature distribution is computed 
by FVM and equivalent thermal circuit. The simulation 
temperature rise of stator winding is verified by experimental 
ones.  The temperature rise of the rotor bars is great than that 
of other parts at startup operation. At steady operation, the 
stator windings possess the greatest temperature rise. The 
detailed discussion will be presented in full paper. 

0.0 0.5 1.0 1.5 2.0 2.5
-30000

-25000

-20000

-15000

-10000

-5000

0

5000

10000

15000

20000

25000

30000

C
ur

re
nt

 / 
A

Time / s

Fig. 2. FE meshes of IM                Fig.3. Current flowing in rotor bar 

Fig. 4. Magnetic field at startup         Fig. 5. Electromagnetic loss at steady 

(a) Startup operation                            (b) Steady operation 
Fig. 6. Temperature rise distribution of IM 

Fig. 7. Axial temperature rise distribution of IM 
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Abstract— Due to increasing levels of the fault currents, Fault
Current Limiters (FCLs) are expected to play an important role
in protection of future power grids. Inductive saturable FCL are
particularly interesting due to their inherent reaction on the fault.
Many different configurations have been proposed in literature.
Being difficult or impossible to create accurate analytical models
of some FCL configurations, the development of finite element
(FE) FCL models is required. This paper presents 3D transient
FE model of two configurations of inductive FCL: so called
open-core and three-leg FCLs. The model has been validated
by comparing simulation results with lab measurements. Results
show very good agreement. The model is valuable tool for design,
optimization and verification of inductive FCLs.

I. INTRODUCTION

Fault Current Limiters (FCLs) are expected to play an
important role in the protection of future power grids. They
are capable of preventing the fault currents from reaching
too high levels and, therefore, reducing the mechanical and
thermal stress of all power system components.

The FCLs can be classified on passive, solid-state and
hybrid FCLs [1]. Passive FCLs are particularly interesting
due to their merit to inherently react on the fault. Inductive
FCLs based on the core saturation is type of the passive
FCLs. They comprise magnetic cores and windings. Different
configurations of inductive FCL are proposed in literature [1]-
[4]. It is difficult, or in some cases impossible, to derive
accurate analytical model of different FCL designs.

The goal of this paper is to introduce the 3D transient finite
element (FE) model of the inductive FCL. The model presents
a valuable tool for verification and optimization of the induc-
tive FCL. The operation of the designed FCL can be verified
precisely, with the possibility to vary all design parameters.
The experiment with both FCL configurations, three-leg [2]
and open-core [3], is done in lab in order to provide reference
data for verification of the models. The simulation results of
both 2D and 3D FCL models are presented. The 2D model
is not sufficiently good for modeling of the FCL. The 3D
simulation results show good matching with the experimental
results.

II. PRINCIPLE OF OPERATION OF INDUCTIVE FCL
A. Three-Leg Core FCL Configuration

A single core is used per phase, with three vertical legs
[2], see in Fig.1(a). Each outer leg contains one ac and

one dc winding. Dc windings provide circular dc flux flow,
saturating the outer legs. Upon the fault inception, outer
legs are alternately de-saturated, increasing in that way the
impedance of the ac windings. The ac flux closes its path
through the left (in another half cycle right leg) and the middle
core legs.
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(a) Three-leg core FCL (b) Open-core FCL

Fig. 1: FCLs used in the experiment

B. Open-Core FCL Configuration

FCL comprises single core per-phase with one ac and one
dc winding [3], see in Fig.1(b). The dc winding is connected
to a dc current source and saturates the core. The ac winding
is connected in series with line. During a fault, core remains
saturated and the inductance of the ac winding is very low.
In a fault stage, left and right legs of the core are alternately
de-saturated by the fault current, imposing large impedance
into the line.

Detailed explanations of both configuration will be given in
the full paper.

III. MATHEMATICAL BACKGROUND OF THE MODEL

The developed mathematical model consists of a partial
differential equation for the magnetic field in the structure of
the FCL, coupled with an ordinary differential equation for the
current in the ac coil. Both are coupled by the magnetically
induced voltage in the ac coil. We introduce the so-called coil
winding function t, in such a way that the applied current
density in the coils can be written as:

Je =
NwI (t)

S
t, (1)
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8. COUPLED PROBLEMS 2

where I(t), Nw and S are the applied current, the number
of coil turns and the cross-sectional area, respectively. The
magnetic field equation in the magnetic vector potential A
can then be written as [5]:

σ
dA

dt
+∇× µ−10 µ−1r (∇×A) = Je (2)

The circuit relation for the current in the ac coil is an
algebraic relation that ensures that at all times the sum of
resistive and induced voltage Vind is equal to the externally
applied voltage:

(Rload +Rac) I + Vind = Ve (3)

In this relation Vind is computed as the following integral
over the volume of the ac coil:

Vind =
Nw

S



Ωac

EtdΩ (4)

The fault is modeled by allowing Rload(t) to suddenly drop
to a very low value at a particular time instance. The Comsol
Multiphysics package [6] offers an easy to use interface to
implement this field-circuit coupled model.

IV. SIMULATION AND EXPERIMENTAL RESULTS

In this section the representative numerical and experimental
results are presented. Fig.2 shows the close match between the
3D model and the experimental results for the open-core FCL,
indicating that the 3D model can indeed be used to predict the
behavior of the FCL. If a 2D model is used, the results are
considerably different from those obtained in the experiment
(see in Fig.2).
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Fig. 2: Simulation and experimental current waveforms for open-core FCL

Fig.3 presents simulation and experimental results for the
three-leg core FCL. They are derived for two cases: FCL
without a gap in the middle leg and with the 3.5mm gap length.
The shown results are for 2D FE model. In the case when
there is no gap, results match very well. However, difference
between results appears if the gap is inserted in the middle
leg, see in Fig.3(b).

The results of the 3D model will be presented in the final
paper. Just as in the case of the open-core FCL model, it is
expected that 3D results will show much better matching with
the experimental one.

(a) Without gap

(b) With 3.5mm gap

Fig. 3: Simulation and experimental current waveforms for the three-leg
core FCL

V. WHAT WILL BE PRESENTED IN THE FINAL PAPER

All the sections will be further developed. The presented ex-
periments will be described in detail and additional simulation
results for both FCLs will be depicted. The results will clearly
show the operation principles of both FCL configurations.

VI. CONCLUSION

FE modeling is required for accurate design of inductive
saturable FCL. Although 2D model considerably saves simu-
lation time, it cannot provide sufficiently accurate results.

Derived 3D model presents a valuable tool for design,
optimization and verification of inductive FCL. 3D FE model
was verified for two FCL configurations: open-core and three-
leg core FCLs. Simulation results from 3D model match very
well those from the lab experiments.
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Abstract — In this paper an approach to solve the thermal-
electromagnetic problem of microwave heating a thin load 
inside a single mode applicator is presented. A direct problem 
solving methodology that takes into account the temperature 
dependence of the electrical permittivity is very time-
consuming. By using a hybrid analytical finite element method 
we can speed up the determination of the electromagnetic field. 
Also the hybrid method provides an easy way of tuning the 
cavity coupling. To validate the approach the heating of a thin 
ceramic cylinder inside a WR-340 single mode cavity is 
presented.  

I. INTRODUCTION

The single mode cavity is an applicator very common for 
processing small and low loss samples through microwave 
heating, Fig. 1. 

Fig. 1 – Description of single mode cavity. 

The determination of the electromagnetic fields inside 
the cavity using the standard finite elment method, even if 
the electrical permittivity is independent of the temperature, 
is a difficult task [1]. The iris presence makes the modal 
composition of the electromagnetic fields very complex 
leading to a very slow convergence rate to obtain an 
accepted solution. Also the FEM global matrix is usually ill-
conditioning making the inversion very hard. Hence, the 
electromagnetic solution is very time consuming.  

This work presents a methodology to solve the thermal 
electromagnetic problem in the single mode cavity. To 
overcome the drawbacks above a hybrid analytical finite 
element method is used in the computation of the 
electromagnetic fields. The analytical technique is based on 
the scattering matrix theory.  

As a by product of this method, a tuning technique that 
allows the iris aperture and the end short to move during the 
heating process is obtained. It allows analyzing efficient 
working conditions of the highly resonant cavity. 

The thermal problem is solved using the standart FEM in 
time domain with Crank-Nicolson time discretization. 

II. METHODOLOGY

A. Electromagnetic Problem 

 Fig. 2 shows three planes z1, z2 e z3 through which is 
assumed to propagate only TE10 modes. It is a valid 
assumption if evanescent modes excited by the load and the 
iris have negligible amplitudes there. 

Fig. 2 – Top view of the applicator and the propagating modes. 
  
Using the scattering matrix theory the ceramic sample 

region is modeled by the following matrix system 
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where k10 is the propagation constant of TE10 mode, rc and tc

are respectively the reflection and transmission coefficients 
of the load. The superscripts l and r mean that these 
coefficients are calculated considering the TE10 incident 
mode propagating in ẑ+  and ẑ−  direction. This distinction 
must be done since the temperature dependence of the 
permittivity makes the ceramic a non-symmetric load. 

These coefficients are calculated numerically using the 
FEM [2]. Note that to calculate these coefficients we have to 
solve two simple problems as shown in Fig. 3. 

Two other relations are needed for expressing 
analytically the modes amplitudes in the cavity. One to 
define the reflection coefficient (γ) of the structure 
composed by waveguide, load and short and another to 
relate the modes E3 and R3. 

TE γ=1  and 3
2

3
10 ReE wzjk+−=  (2) 

From (1) and (2) we can write the amplitudes of the 
modes R, T and E3 and of the coefficient γ by analytical 
expressions 
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The coefficients r1 and t1 are the reflection and 
transmission coefficients of the iris [3]. 

    (a)                 (b) 
Fig. 3 –Reflection and transmission coefficients for TE10 incidence, (a) 
from left and (b) from right. 

As next step the length zw and the iris aperture d are 
determined by what is called tuning process. 

Finally, the electric field solution in the load region 

32 zzz ≤≤  can be found. It is done by multiplying the field 

distribution in Fig. 3(a) and Fig. 3(b) by T and E3

respectively and then summing the distributions. 

B. Coupled Problem 

The source of heat due to the microwave is given by the 
power density absorption in the material  

( ) 2"
02

1 ETp rεωε=  (6) 

The complex electrical permittivity of the ceramic 
(mullite) changes with the temperature according to Fig. 4. 
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Fig. 4 – Mullite relative electrical permittivity. 

In the simulation process the thermal problem is solved 
during some time steps until the temperature is sufficient to 
produce significant change in the permittivity.  If significant 
changes are detected the heat source is updated by 
computing a new electromagnetic field distribution.

C. Tuning Technique 

Most papers, tuning the cavity means to adjust the 
plunger position. In [4], the authors proposed an experimetal 
device where an adjustable iris aperture is used for optimal 
coupling. This idea is modeled numerically in this work. 

In the tuning process we search the aperture value and 
the plunger position that minimize the energy of the R mode 
every time the electromagnetic problem is solved. 

This tuning technique is easily implemented by the 
methodology presented in this paper. In a standart finite 
element method we would have to re-mesh the problem 
every time that the plunger position or iris aperture changes. 

III. RESULTS 

To validate our approach we analize the microwave 
heating of a mullite ceramic sample inside the heater. It is a 
rod of radius 0.01m. 

The Fig. 5 shows the temperature distribution on the 
external surface of the rod. The total processing time was 
1800s. In this case the electromagnetic problem was solved 
58 times. The time step was 6s and the electrical permittivity 
was corrected when the real part or the imaginary part 
changed more than 5% in relation to the last value.  

Although we have to solve two electromagnetic problems 
they are much simpler than the original one. By using a mesh 
parameter hmax=λ/25, the tetrahedral mesh used in the hybrid 
method has 13727 elements while the original problem 
requires 90854 elements. This is due to the difference in the 
length of the domains. Also the mesh is more uniform in 
hybrid method since the iris is not present once it is taken 
into account in the analytical part. 

Note that since the two electromagnetic problems in the 
hybrid method are independents we can use parallel 
multithreading processing in multi-core computer to 
determine the electric field. Another improvement can be 
obtained by optimizing the number of times the power 
density need to be re-calculated [5]. 

Fig. 5 – Temperature distribution on the external surface. 
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12. DEVICES AND APPLICATIONS 

Abstract — Ethernet transformers are widely used for 

isolation in computer networks in the high frequency range (0.1 

MHz – 1GHz). It turns out that it is the cross-winding 

capacitance that supports the flat pass band of these transformers 

above 50MHz. Size reduction for fabrication of these 

transformers motivates the development of a capacitance coupled 

air-core device. In this paper, novel models of air-core Ethernet 

transformers that take into account the distributed nature of 

cross-winding and intra-winding capacitances will be discussed. 

Differential-mode signal transfer characteristics will be computed 

for different transformer parameters. The computation of cross-

winding capacitance will be discussed as well along with the 

symmetry considerations which appreciably simplify its 

computation. 

 

 Ethernet transformers are widely used as interfaces between 

communication networks and computers. For this reason, these 

transformers are designed to suppress common-mode signals 

(noise), induced as a results of electromagnetic interference, 

and at the same time pass through with minimal distortion 

differential-mode signals, which carry transmitted information. 

To achieve this performance, the primary and secondary 

windings have the same turn numbers and are wound together 

(in bifilar manner) around ferrite cores [1]-[3]. This bifilar 

winding arrangement is done on purpose to minimize leakage 

inductances of these windings in order to get flat transfer 

characteristics of these transformers in the desired high 

frequency range (0.1 MHz – 1GHz). The close proximity of 

the primary and secondary windings results in the appreciable 

cross-winding capacitance. This cross-winding capacitance is 

beneficial to the Ethernet transformers bandwidth. However, 

this capacitance also serves as a channel for common-mode 

signals. To suppress this channel, the midpoints of the primary 

and secondary windings are grounded.  

 It is known (and has been confirmed in our experimental 

research) that magnetic permeability of ferrite cores 

appreciably and rapidly degrades at frequencies above 1MHz. 

This clearly suggests that the differential-mode signal pass 

band of Ethernet transformers for frequencies above 50 MHz 

is by and large supported by the cross-winding capacitance. 

This has prompted the idea that the air-core designs of 

Ethernet transformers must be possible. These designs are 

compatible with the existing silicon fabrication technologies 

and may result in planar miniaturized structures of Ethernet 

transformers. 

Figure 1. Transfer Characteristics of Distributed 

transformer model: varying α ′ . 

 

Figure 2. Transfer characteristics of distributed 

transformer model: varying β . 

 

 

 In the talk, novel distributed models of air-core Ethernet 

transformers will be discussed. These models take into account 

the distributed nature of cross-winding and intra-winding 

capacitances. Mathematically, these models are described by 

boundary value problems for specific differential equations. It 

turns out that separate distributed models are needed for 

differential-mode and common-mode signals. The main 

distinction between these models lies in the boundary 

conditions which are used for differential-mode and common-

mode signals. The main goal of the analysis is the calculation 
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12. DEVICES AND APPLICATIONS 

of the transfer characteristics of air-core transformers. These 

transfer characteristics depend on five variables 

( R , LR , C , C′ , and l ) which can be combined into three 

parameters (α ,α′ , β ) (see below). In other words, these 

transfer characteristics can be fully encoded in terms of α , 

α′  and β . Extensive numerical computations of transfer 

characteristics of air-core Ethernet transformers will be 

presented in the talk. An example of such computations is 

given in Figures 1 and 2. In these figures, the differential-mode 

signal transfer characteristics of Ethernet transformers are 

computed for different values of three parameters 

RC=α ,                                (1)     

2
l

CR ′
=′α ,                                    (2) 

and 

LR

R
=β .                                  (3) 

 Here, R  is the resistance of the primary (or secondary) 

winding, C  and C ′  are cross-winding and inter-winding 

capacitances, respectively, LR  is a load resistance, while l  is 

the length of each winding. It is apparent from Figures 1 and 2 

that various designs of air-core Ethernet transformers encoded 

by the same values of α , α ′ , and β  result in the same (and 

acceptable) differential-mode transfer characteristics. It is 

apparent that the values of cross-winding and intra-winding 

capacitances determine properties of Ethernet transformers. 

For this reason, the computation of these capacitances will be 

discussed in the talk along with the symmetry considerations 

which appreciably simplify the computation of these 

capacitances. These symmetry considerations allow one to 

reduce the calculation of capacitances of line conductors 

placed on dielectric substrate to the calculation of capacitances 

of the same conductors in free space. 
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Abstract—This paper presents the model of an electrome-
chanical energy scavenging device whose energy conversion is
due to the motion of a permanent magnet inside a magnetic
circuit. Magnet acceleration is created by tyre deformation
during car motion along the road. Small dimensions (less than
one cubic centimeter) and relatively high power output (more
than one milliwatt), requires an accurate modeling of the energy
conversion device. A nonlinear magnetic modeling is carried out
and its outcomes are coupled to a dynamic model developed
inside the Simulink environment. A good agreement is found in
the comparison between theoretical model and experiments.

I. INTRODUCTION

A recent concept being implemented to power circuits is us-
ing energy scavenging or energy harvesting. This makes use of
energy diffused in the system to be collected by some energy
conversion devices like solar cells, piezoelectric generators, or
others like electromechanical structures. These devices take
energy from diffuse sources, convert it to electricity, and, by
means of a proper electronic signal conditioning, use it to
supply isolated users, for instance remote wireless controlled
sensors.

Among the main difficulties of the design phase of this
class of devices, there is the need to reach high values of
power densitycell and very high global efficiency of the whole
process since the diffuse power which primarily feeds the
scavenger is usually low. This fact calls for an accurate
simulation of the integrated energy scavenger component made
up of converter and electronic circuit.

In the following, the design process of an electromechanical
energy scavenger, aimed at taking power from tyre deforma-
tion during the movement of a car, is described. The main
design constraints are related to the volume occupied by
the converter which should be less than 1 cm3, by power
which should be more than 1 mW in average over one wheel
revolution and by voltage which should not be lower than 1.3
V and not exceeding 4 V.

II. SCAVENGER MODEL

An accurate model of the energy scavenger requires the
study of different phenomena, in particular:

• magnetic circuit and interaction with magnet movement,
taking into account nonlinearities of materials;

• interaction with external electric load and definition of a
scavenger equivalent circuit;

Fig. 1. Magnetic circuit of the energy scavenger without coils wound on
cores

• dynamic simulation of the moving mass as a response
from external acceleration;

• definition of the energy dissipations present in the system
like dry friction and pneumatic forces arising from mass
motion.

A. Magnetic simulation

The magnetic system is made by two ferromagnetic cores,
with two coils wound on them, and by a brick shaped moving
permanent magnet traveling between them. Ferromagnetic
cores are made by Soft Magnetic Composite (SMC) material.
The reasons for this choice are: the time-varying flux condi-
tions and thus the need to reduce eddy currents and losses and
the good machinability of the material that allows to obtain
complex three dimensional core shapes. Magnetic analysis of
the structure (reported in Fig. 1), should give as results: the
magnetic flux linked with the coils and the forces acting on
the magnet as function of the coordinate of the magnet z.

The nonlinear magnetic analysis is performed by a hybrid
magneto-static code based on the coupling of a cell method
volume discretization technique with a Green function integral
approach [1]. Due to its mesh-less treatment of air, the code
gives accurate results in term of force values computed by
means of integration of the Maxwell stress tensor [2] and
this fact is here very important since reluctance forces, caused
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by ferromagnetic salient poles, largely influence the dynamic
behavior of the moving mass.

B. Circuit model

The lumped parameter model of the converter is used
to interface it with the external load and is made by an
electromotive-force generator depending on magnet velocity
e = e(ż) being z magnet position, by the ohmic resistance
and by the inductance of the winding. The second parameter
is varying because of core saturation and so the value of
inductance is sampled at different magnet positions obtaing
then a L = L(z).

C. Dynamic simulation

The dynamic model is developed in Matlab/Simulink envi-
ronment by means of a block-oriented approach that allows to
interconnect both mechanical and electrical subsystems [3].
It takes into account external forces acting on the moving
permanent magnet due to radial, longitudinal and transversal
accelerations imposed by the tyre dynamic.

For the experimental comparison the electromechanical
energy scavenging device is tested on a shaker. Thus, each
mechanical or electrical subsystem coupled to the magnet is
modelled in a relative system reference in order to transmit
direct or reactive forces proportional to the displacement or
velocity of the structure containing the moving magnet. The
considered mechanical interactions on the moving magnet are
adhesion or friction phenomena (dependent on the relative
magnet velocity) inside the vertical box-runner. At both ends
of the magnet stroke, rubbery bumpers are designed to protect
magnet impacts. Their mechanical effect is a typical dead-
band of the elastic-dissipative characteristic. Their lumped
properties are assumed on a Kelvin-Voight model. Due to
the finite volume of air inside the magnet box-runner, also
pneumatic forces arising from the relative magnet motion
are taken into account. Their effects are modelled with an
equivalent lumped series of spring and damper.

The electromechanical coupling consists of a conservative
elastic magnetic force due to reluctance effects and a dissipa-
tive proportional to the relative velocity between magnet and
coils. Their nonlinear properties are mapped in function of the
relative magnet position and velocity. For the experimental
comparison on the shaker, a simple adapted resistive load
circuit is adopted.

D. Comparison with experiments

In Fig. 2 the electromechanical energy scavenging prototype
is shown. For the experimental tests on shaker or for tyre
applications, the device is consolidated with potting fluid. The
reported comparison between experimental data and simula-
tions of Fig. 3 presents the voltage dynamic behaviour between
the resistive load during impulsive testes related to tyre exci-
tations. The second-order dynamic behaviour of the magnet
has typical dissipative effects due to friction effects coupled
to the desired power flow generated by the electromechanical
energy scavenging device. A good agreement between model

Fig. 2. Magnetic circuit of the energy scavenging prototype.

Fig. 3. Experimental and simulated volatge during impulsive test.

predictions and experimental outcomes is evinced. In the full
paper a complete test of the energy conversion device under
realistic tyre acceleration profiles will be presented.
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Abstract – An alternative possibility of highly accurate control 
of position is suggested, realized by a simple device with a cylin-
drical dilatation element that works on the principle of thermoe-
lasticity produced by induction heating. The paper describes the 
device, presents its complete mathematical model in common 
with the methodology of its numerical solution, and also the algo-
rithm of the control process. The theoretical analysis is illus-
trated by a typical example, whose results are discussed.  

I. INTRODUCTION

 Control of position can be realized on several different 
principles. We can mention, for example, sophisticated me-
chanical or hydraulic systems with 3D kinematic structures, 
devices with pneumatic elements, and also elements working 
on principle of magnetoelasticity. In the above cases, the accu-

racy of control usually reaches 5 410 10− −− m.   
For a unidirectional control (e.g., tuning of the laser head 

for laser cutting or welding or regulation of position of ele-
ments in some optical systems) working with accuracy on the 

order of 6 310 10− −− m, the authors suggest an alternative 
methodology based on the principle of thermoelasticity pro-
duced by induction heating. The corresponding device works 
with a cylindrical element, whose longitudinal dilatation is 
controlled by the appropriate time evolution of the field cur-
rent.  

The papers in the domain are rather rare. Some applications 
based on thermoelasticity produced by induction heating (with 
a very limited possibility of control) were described in [1] and 
[2]. A time-variable magnetic field produced by harmonic 
current carrying field coil induces eddy currents in the dilata-
tion element. These currents generate in it the Joule (and when 
the dilatation element is ferromagnetic, also hysteresis) losses 
that produce heat and, consequently, thermoelastic strains and 
stresses resulting in the corresponding displacements. The task 
is characterized by the interaction of three physical fields 
(electromagnetic field, temperature field, and field of thermoe-
lastic displacements) influencing one another. 

II. FORMULATION OF THE PROBLEM

The basic arrangement of the device (that may be consid-
ered axisymmetric) is depicted in Fig. 1. The dilatation ele-
ment 2 made of a suitable metal is inserted into a harmonic 
current-carrying coil 3 fixed in frame 4. The whole system is 
placed in a Teflon insulating shell 1. The device is clamped by 
its bottom part 5 (Teflon front) in basement 6 that is supposed 
to be perfectly stiff. The time-variable magnetic field gener-
ated by field coil 3 induces in the dilatation element 2 eddy 

currents that produce heat and consequent geometrical 
changes (mainly in its longitudinal direction z ) of the ther-
moelastic origin. 

Fig. 1.The basic arrangement of the device 
1 – Teflon shell, 2 – dilatation element, 3 – field coil, 4 – fixing frame,  

5 – Teflon front, 6 – stiff wall 

Now it is necessary is to reach a prescribed dilatation du  of 

element 2 in the shortest time possible, while the temperature 
of the system must remain within the allowed range. The 
situation is indicated in Fig. 2.  

Fig. 2. Possible time evolutions of amplitudes of the field current I  and 
corresponding time evolutions of the average temperature aT

of the dilatation element 2 and its dilatation zu
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The upper part of Fig. 2 contains three different time evolu-
tions of the amplitude I  of the field current (that is supposed 
to be controlled using the pulse-width modulation). The cen-
tral and lower parts then show the corresponding time evolu-
tions of the average temperatures aT of the dilatation element 

(its initial temperature being 0T ) and displacement zu in the 

direction of the z  axis. For current A the time of reaching the 
prescribed dilatation du  is unacceptably long. A step change 

of the field current (line B) is more favorable, but still the time 
of reaching the steady state could be substantially shorter. 
Further shortening of this time can be achieved by using 
higher current for the first period of the process that is later 
decreased continuously to its steady-state value (line C). The 
main feature of the steady state is the balance between the heat 
produced in the system and heat loss due to convection and 
radiation.   

The aims of the paper are: 
• to optimize the envelope of the field current with respect 

to maximum possible shortening of the time of reaching 
the required dilatation du  and 

• to propose an approximate algorithm that would allow a 
very fast (on-line) and sufficiently accurate computation 
of this multiply coupled problem. 

III. FUNDAMENTAL MODEL AND ITS SOLUTION 

The task represents a nonstationary multiply coupled prob-
lem, combined with the optimization of the time evolution of 
the envelope of the field current. The computations were real-
ized by a combination of the professional code Comsol Mul-
tiphysics and a lot of own procedures and scripts. The algo-
rithm consists of the following items: 
• Computation of the steady-state dilatation ,z tu →∞ as a 

function of the applied field current density J  (for the 

methodology, mathematical model, boundary conditions, 
and other particulars, see [2]). 

• Approximation of this function by a polynomial ( )f J

of a reasonable order using the least square method. The 
steady state field current density dJ  necessary for dilata-

tion du  then follows from the solution of equation  

( )d df u=J .

• The model of dilatation is supposed to have the form 

( )( ), ,z z zu g u u f= J  (but even more complicated forms 

with higher derivatives bring about no serious problems), 
where J  is defined as max for 0,J t τ= ∈J  and 

( ) ( )
d max d e fortJ J J tλ τ τ− −= + − >J  (corresponding to 

line C in Fig. 2 left denoted by 3). For a selected value of 

maxJ  the quantities τ  and λ  are subject to optimization. 

• The objective function respects the demand on the mini-
mum time necessary for obtaining the dilatation du .

• The optimization of parameters τ  and λ  is carried out 
using the Nelder-Mead nonlinear simplex method. 

IV. ILLUSTRATIVE EXAMPLE

The algorithm was tested on several arrangements. The 

computation of function ( ),z tu →∞ J for any particular ar-

rangement takes several hours. But once the results are avail-
able, the approximate determination of the envelope J  for 

any required dilatation du  takes only several seconds.  

Figure 3 shows, for example, two graphs obtained for the 
device in Fig. 1 with zinc dilatation element. The dependence 

( ),z tu →∞ J  was approximated by a polynomial of the second 

order and the model of dilatation had the form 

( )( )z zu u fα= + J . The upper part of Fig. 3 depicts the time 

evolution of the current density optimized in accordance with 
the above algorithm. The lower part contains the correspond-
ing time evolution of the dilatation zu  obtained by the solu-

tion of the coupled problem in Comsol (tens of minutes) and 
by the approximate method proposed by the authors (tens of 
seconds).  

Fig. 3. Optimized time evolution of the field current density J for the ar-

rangement in Fig . 1 (upper part) and time evolution of the corresponding 
dilatation zu obtained by the complete calculation (Comsol) and by approxi-

mate algorithm suggested by the authors 
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Abstract — This paper proposes a physics based high 
frequency transformer model. The model can be used for 
setting edge rates, selecting switching algorithms, predicting 
over voltages at terminals, and predicting transformer 
harmonic behavior. The model is constructed by connecting 
the conventional power frequency transformer model in 
parallel with a frequency dependent branch (FDB). The FDB 
represents the transformer’s high frequency behavior over 
wide frequency range while the power frequency model 
represents the transformer at low frequency. The model 
inductances, resistances, and capacitances were obtained by 
finite element (FE) analysis. The self and mutual capacitances 
of each conductor were calculated by electrostatic FE analysis.  
The order of capacitances is reduced by using a reduction 
technique. The transformer frequency response was obtained 
by coupling the transformer time harmonic FE model and 
external circuit simulations. The frequency response was then 
fitted with rational function approximation.  The rational 
functions are then realized with RLC networks to form the 
FDB.  The model simulation results show the ability of the 
developed model to predict transformer high frequency 
behavior during the design and development stage.   

I. INTRODUCTION

Modeling of power transformer is challenging 
especially at high frequencies. In this case, numerical 
models become complicated and require various levels of 
details in order to include many effects such as core 
saturation, hysteresis, ferroresonance, and insulation issues 
in addition to geometric, and construction features. FE 
modeling can include all of these effects and provide an 
efficient way for analysis, simulation, and optimization for 
transformers. In this paper, the FE analysis has been 
coupled to driving electric circuit simulations in order to 
include the operating conditions of the transformer with the 
real power supply and load connections.  

High-frequency modeling is essential in the design 
stage of transformers to study impulse voltage and 
switching surge distribution. It is also necessary for 
winding integrity and insulation diagnosis and most often 
frequency effects for high-fidelity models in bandwidths up 
to 10 MHz are required for condition monitoring purposes 
[1]. The study of the high-frequency part of the spectra is 
necessary due to the resulting stray capacitances shunting 
the series inductances and dominating the response.  

In this paper, a high frequency model of transformers is 
developed by connecting a high frequency branch in 
parallel with the power frequency transformer model. The 
high frequency branch enables the presentation of the series 
and parallel resonance from mid to high frequency caused 
by winding-to-winding and winding to ground stray 

capacitance. The Low and high frequency parameters of the 
windings were obtained from the FE solutions on a turn-to-
turn basis. The model is then reduced to a lower order by 
using a reduction technique. The transformer frequency 
response was then obtained from coupled circuit-time 
harmonic FE analysis. The frequency response is curve 
fitted using vector fitting (VF). Vector Fitting is a robust 
numerical method for rational approximation in the 
frequency domain.  

The proposed high frequency model and was used to 
demonstrate the primary current harmonic behavior and 
terminal overvoltage when the transformer is connected 
through a long cable to the power source with spikes in the 
current waveforms are present. Therefore, the model 
presented here can be used for evaluating electromagnetic 
interference issues for product development. 

II. THE HIGH FREQUENCY FE MODEL

Simulations were carried out on a 60-Hz single-phase, 
shell type transformer with sandwich coils. The primary 
and the secondary windings were represented by rectangles 
of corresponding materials in the FE domain. The magnetic 
core is an isotropic non-linear magnetic material defined by 
analytic saturation curve. The FE model contains 11254 
second order elements with 22541 nodes.  

The transformer magnetic field is governed by the 
following nonlinear partial differential equations:  

(( ) ) A J  
 

                                                           (1) 

( ) 0
A

V
t

 
  





                                                            (2) 

Where all the symbols have their usual meaning. 
The current in the circuit domain is governed by: 

            1d

dtm m m m m m m mE R I L I C I dt             (3) 

Where, mE , mI , mR , mL , 1
mC  , and m  represent the vector 

of voltage sources in each electric mesh m, the vector of the 
mesh currents, the resistances matrix, inductances matrix  , 
the matrix of the reciprocal of the capacitance, and the 
matrix of the non-linear voltage drop, respectively.  

A. Capacitance Calculation 

The transformer capacitance matrix is obtained from an 
FE electrostatic analysis by energy principles. It is 
assumed, in this paper, that both the electric permittivity of 
the materials and the electric field energy are constant with 
the frequency and, therefore, the value of the transformer 
capacitances are a function of geometry rather than the 
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frequency. The model considers three types of stray 
capacitances, winding to ground, winding to winding, and 
turn-to-turn capacitances.

A distributed parameter winding circuit is formed using 
the high frequency parameters obtained from the FE 
analysis. To reduce the computational burden, the model 
capacitances order needs to be reduced. We move the 
capacitance connected to internal nodes to the external 
nodes. In this technique, all the nodes other than terminal 
nodes are eliminated.    

Fig. 1   the transformer mesh details 

B. Resistance and Inductance Calculation 

The transformer inductance and resistance values will 
change with a change supply frequency. The transformer 
resistances increase with an increase in the supply 
frequency. The inductances value decrease with the supply 
frequency increase. This change in the transformer 
parameters is due to the skin and proximity effects. The 
size of the mesh elements used is selected in coordination 
with the skin depth. Fig.1 shows the mesh details used to 
calculate the transformer frequency response. When the 
supply frequency changes from 60-Hz to 50-kHz, the 
transformer resistance increase by 300%, while the primary 
inductance decreased by 50%  

III. VECTOR FITTING 

The transformer admittance Y(s) frequency response is 
obtained from harmonic coupled circuit- FE analysis by 
varying the primary voltage source frequency while the 
secondary is short circuited. The frequency response is 
curve fitted using vector fitting (VF). VF takes as input a 
column of Y(s) and approximates all of its n elements 
simultaneously using an identical set of N poles. Each 
element, jY , in Y(s) becomes [2]: 

1

( ) ( )                 j=1,...,n
N

ji
j fitj i i

ii

c
Y s Y s d se

s a

   
      (1) 

Where jic  and ia  denote the residues and the poles, 

respectively. The terms id  and ie may be specified as zero, 

if desired. The poles and residues are real or complex 
conjugate, whereas id  and ie  are real. The rational 

functions can then be represented by the electrical network 
shown in Fig.2. 

Fig. 2   Frequency dependent branch equivalent circuit 

IV. IMPLEMENTATION AND SIMULATION RESULTS

The developed high frequency physical phase variable 
model of the transformer is tested with constant frequency 
inverter and cable to study the effect of different switching 
frequencies. The high frequency transformer primary 
current profile is shown in Fig. 3. It can be seen that the 
proposed HF model can reflect the spikes due to the PWM 
excitation. The pulsations in the waveforms are the result of 
PWM action while spikes are the result of high PWM 
switching speeds. The number of spikes within the current 
waveforms is increased with an increase in switching 
frequency. This is obvious as the spikes appear at every 
transition of PWM supply. These results are difficult to 
predict without the proposed model. Further details on the 
simulation and laboratory testing results will be presented 
in the full paper.     

Fig. 3 Primary current profile at different switching frequencies 

V. CONCLUSION

A new technique is described in this paper to obtain a 
high frequency phase variable transformer model from 
coupled circuit-FE analysis. The model has both frequency 
dependence and distributed effects. The model allows the 
analysis of high and low frequency phenomena 
simultaneously. The model takes into account the 
electromagnetic field effects which cause the change in the 
transformer frequency behavior. Thus this model can 
represent the transformer under non-sinusoidal operating 
condition. The model can be used for setting edge rates, 
selecting switching algorithms and predicting overvoltages 
at terminals. The study can be utilized to evaluate various 
transformer designs, diagnose the incompatibilities of the 
transformer with other components, and insulation issues.  
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Abstract —This	paper	develops	a	particular	2D	FEM	model	for	
iron	 loss	 analysis	 in	 permanent	 magnet	 machines	 during	 rotor	
speed	oscillations.	Hysteresis	and	saturation	effects	in	solid	rotor	
iron	parts	are	considered	and	rotor	skew	is	accounted	by	using	a	
particular	 special	 air-gap	 element	 combined	 with	 standard	 2D	
finite	 elements.	 Internal	 and	 surface	 permanent	 magnet	 rotor	
topologies	 are	 compared.	 The	 results	 obtained	 have	 been	
validated	by	measurements	of	rotor	speed	damping,	consisting	an	
important	phenomenon	of	the	respective	drive.	
 

Index Terms—Analytical	 solutions,	 finite	 element	 method,	
permanent	magnets,	rotor	skew,	speed	oscillations.			

I. INTRODUCTION 
Permanent magnet (PM) motors are widely used in variable 

speed drive applications, due to their inherent advantages of 
high efficiency, high reliability and robustness [1]. However, 
the small damping effects of the rotor constitute an important 
constraint requiring adequate control techniques in order to 
avoid speed oscillations [2]. The present paper develops 
particular methodologies enabling to evaluate iron loss [3], [4] 
and the respective damping during oscillatory operation 
through convenient 2D finite element analysis. The method has 
been applied in order to compare damping effects of surface 
(SPM) and internal permanent magnet (IPM) rotor 
configurations.     

II. FORMULATION 
In order to enable a flexible time discretization and rotor 

skew consideration, the air gap of the machine has been 
represented by analytical solutions combined with standard 2D 
FEM techniques for stator and rotor simulation [1].  Such a 
methodology involves a particular coupling of the two 
methods across the boundary, obtained as follows: 

A. 2D Hybrid FEM-Macroelement Formulation 
In the air-gap of electrical machines, the magnetic field 

distribution is governed by Laplace equation as the magnetic 
permeability is constant and there are no current sources. The 
proposed technique involves shape functions αi determination 
based on the general solution of Laplace equation in terms of 
the vector potential in two dimensional cylindrical coordinate 
system.  

Generally the system of equations to be solved can be 
written in matrix form: 

[S] [A] = [F]                                  (1) 
 

where [S] is the stiffness matrix, A is the matrix of unknown 
vector potential nodal values and [F] the source matrix. 

The standard finite element stiffness matrix is band while 
the nodes surrounding the air-gap (macroelement part) form 
locally a full coefficient sub-matrix with terms of the form: 

g
j

i
0

dΓ 
n
α

α
μ
1

g


 


g

ijs                        (2) 

Such a technique enables consideration of rotor skew by 
convenient constitution of the respective integrals as well as 
flexible representation of the rotor rotation. 

B. Coupled Electromagnetic-Mechanical Problem 
The coupled mechanical-electromagnetic problem of rotor 

speed oscillations can be solved [5], by conveniently 
combining the above mentioned formulation for the field 
analysis with the one governing the rotor motion, expressed as 
follows: 

2

el m
d θ dθT - T = J +D + kθ
dt dt

                  (3) 

 For this reason a step by step time discretization is 
employed. The relative movement of the rotor to the stator, in 
a time-transient analysis can be modeled by applying variable 
time step techniques and considering the relative geometry 
variation with rotor rotation. In a first step the 2D FE problem 
is solved and the electromagnetic torque is evaluated. Then, 
electromagnetic torque value, and the value of the rotor angle 
is obtained, providing feedback to the FE model. The problem 
is solved for the new rotor position and the new current values. 
The flowchart of the described algorithm is depicted in Fig. 1.  

 
Fig. 1. Flowchart of the implemented algorithm  

 
The time step is continuously adapted to the variation of 

electromagnetic quantities as the mechanical time constants are 
considerably greater.  

III. RESULTS AND DISCUSSION 
The proposed methodology has been applied in order to 

compare the damping effectiveness of rotor oscillations in case 

Permanent Magnet Motor Damping Analysis by 
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of two different rotor configurations, SPM and IPM, 
respectively. The eddy current losses distributions for the SPM 
machine under maximum oscillation speed for two rotor 
positions are given in Fig. 2. Figure 3 shows the same results 
in case of IPM rotor configuration. The respective iron loss 
density and eddy current density distributions in the radial 
direction are presented in Figs. 4 and 5. These figures equally 
show the respective iron loss density and eddy current density 
distributions in the respective cases involving rotor skew. The 
total iron loss values for the different rotor configurations are 
tabulated in table I, illustrating that the IPM configuration 
provides six times greater damping than the SPM one. It may 
be noted that the calculated damping effects are in good 
agreement with the respective mechanical time constants 
derived by the measured current and speed oscillations shown 
in Fig. 6.   

  
Fig. 2. Eddy losses distribution in the rotor body of the surface pm motor for 

two rotor positions during maximum oscillation speed  
 

 
Fig. 3. Eddy losses distribution in the rotor body of the internal pm motor for 

two rotor positions during maximum oscillation speed 
 

 
Fig. 4. Radial variation of eddy current density and iron loss density 

 (SPM machine,   *  *  *
		: without skew,   _____		: with skew) 

 
Fig. 5. Radial variation of eddy current density and iron loss density 

(IPM machine,   *  *  *
		: without skew,   _____		: with skew) 

 
 

 
Fig. 6. Experimental waveforms of phase current and speed time variations 

(SPM machine) 
 

TABLE I 
TYPES SIZES FOR CAMERA-READY PAPERS 

Type	 Losses	(W)	
Surface (with skew) 0.419 
Surface (without skew) 0.464 
Internal (with skew) 2.5 
Internal (without skew) 2.6 
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Abstract — This paper describes modeling and analysis of 
canned induction motor for coolant pump used in nuclear 
reactor.  The electromagnetic field of a canned motor was 
analyzed by using the time-step finite element method, and the 
eddy loss was obtained. Equivalent circuit considering can loss 
was developed and the equitation to calculate can loss was 
derived from theory of conventional motor.  Using the loss from 
electromagnetic analysis as heat source of temperature field, 
thermal analysis was conducted by using Computational Fluid 
Dynamics (CFD) analysis.  The simulation results show good 
agreement with experiment data, which indicates that this 
method has good accuracy and reliability for dealing with 
thermal behavior of canned motor.

I. INTRODUCTION

The main coolant pump used in system-integrated 
modular advanced reactor is an axial flow type, and it is 
constructed vertically because of the space limitation of 
building of reactor. A 200Kw three phase induction motor 
was designed and analyzed for application. Three journal 
bearings and one thrust bearing are used to hold rotor. The 
materials of bearings are black lead and silicon to endure 
high temperature and high pressure in reactor. For lubrication 
and cooling of bearings, pure water is forced to flow trough 
airgap between stator and rotor.  Therefore, the stator and 
rotor are welded by sealed can to prevent them from the 
lubricating water. The can is made of stainless steel 
SUS316L, which has resistivity of 74 .cmμΩ and relative 

permeability of 1.004. Eddy currents will be produced in the 
can and eddy current loss decreases efficiency of motor.  

II. EQUIVALENT CIRCUIT OF CANNED INDUCTION MOTOR

CONSIDERING CAN LOSS

In canned induction motors, the airgap is usually wider 
compared with conventional induction motors because cans 
are attached to the surfaces of stator and rotor. Eddy currents 
generated in the can also increases iron loss of the motor.  Fig. 
1 shows the characteristics of current produced in can. 
Similar to the currents in rotor bar and end ring of cage, the 
currents are denoted as 'can b

I and can rI , which are the currents 

generated in can bars and ring respectively. The length of can 

bar canl  is same as length of core sl , canl is the total length of 

can bar and can ring.  
The stator can Derived from the calculation of eddy 

current loss in cage at startup [1], the formulas to calculate 
eddy current losses in stator can and rotor can are as follows,

2

21
4

4 22
4

canb can canbar can canbar
can bar canbar

canbar canbar

I l l
P I

A A

ρ ρ⋅ ⋅⎛ ⎞
= ⋅ ⋅ =⎜ ⎟ ⋅⎝ ⎠

      (1) 
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2
2

2
2

can can rcanb
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ρ π

π
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π

⋅ ⋅⎛ ⎞
= ⋅⎜ ⎟⎜ ⎟⋅ ⋅⎝ ⎠

⋅
=

⋅ ⋅

               (2) 

where canρ is the resistivity of can, p is number of poles, 

can rD is average diameter of ring and can ringA is the cross area 

of can ring. The can does not have an inductive effect [2], 
only the resistances of the stator can and rotor can are 
represented in the equivalent circuit as shown in Fig. 2. 
Where 1r is stator winding resistance per phase, 1x is stator 

leakage reactance per phase, Mx is the magnetizing reactance 

per phase, '
1I is rotor current per phase referred to stator, 

2 /r s  is rotor resistance per phase referred to stator, the fer is

the resistance of iron loss, canr is resistance of  can, 1canI is the 

current in can referred to stator 

canl
'canb

I

can rI

canbar sl l=

cant

canbarA

can rI

'canb
I

Fig. 1.  Characteristics of currents in can. 

1x1r

fer Mx

2x

2 /r scanr1V

1I
'
1I

0I 1canI

Fig. 2. Equivalent circuits of induction motor considering can loss  
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8. COUPLES PROBLEMS

III. NUMERICAL SIMULATION

A. Electromagnetic Analysis  

Time-step finite element analysis is used to study the 
performance of motor. Two models with and without can 
were simulated and compared. One model has cans made of 
stainless steel and in the other mode, the can is replaced with 
vacuum. Flux density distribution canned motor is given in 
Fig. 3. The stator can has a much higher current density than 
rotor can. Because magnet field traverses through stator can 
at frequency of f and through rotor at frequency of s f⋅  , 

where f is the frequency of magnetic field and s is slip factor. 

Due to eddy current effect in can, the peak value of phase 
current increases from 130A to 194A at same load condition, 
and the phase is also a little delayed as shown in Fig. 4. 

B. Thermal Analysis Using CFD 

Figure 5 gives the cooling system of canned induction 
motor. Because stator core as well as windings is enclosed by 
the can, the heat caused by core and copper loss was mainly 
conducted to the shell and stator can. The cooling water 
flows through airgap and the rotor rotates at a high speed. 
Conventional thermal analysis can’t simulate this 
phenomenon, thus Computational Fluid Dynamics (CFD) 
was used to simulate fluid flow and heat transfer. Flow 
analysis involves solving of the Navier-Stokes equation using 
numerical tools. Thermal simulation involves solving of 
energy equations and can simulate distribution patterns of 
variables like temperature, heat loss/gain, thermal energy etc.  
The 3-D model of prototype is shown in Fig. 6, and the 
temperature distribution of stator core and coil at full load is 
given in Fig. 7. Experiment was also set for load and thermal 
test as shown in Fig. 8. 

Fig.3. (a) Flux density distribution of canned induction motor.  
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Fig. 4. Phase currents of motor with and without can. 

Fig. 5. Cooling system of canned induction motor.  

Fig. 6. Three dimensional model of canned induction motor used in CFD 
analysis.

Fig. 7. Temperature distribution of stator core and coil at full load. 

Fig. 8. Experimental setup of load test and thermal test.  
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Abstract — The internal and external magnetic couplings 
within a double-star permanent magnet synchronous machine 
(DS-PMSM), the influence of the switching frequency and of 
interleaved control are studied. An architecture with external 
coupling devices allowing to phase-shift the control signals of the 
two inverters is proposed; it allows reducing the current ripples 
and the total losses of the converter-machine assembly. Obtaining 
the same effect within a special machine with no external 
magnetic coupling is also possible and will be presented in the 
final paper. 

I. INTRODUCTION

Today, the power of electrical systems onboard aircraft 
increases and minimizing the weight and mass by means of 
global optimization is critical. Of course, in this field, safety is 
also a crucial requirement which must be taken into account in 
the optimization process. One solution is to change the 
architecture of the energy conversion chain by segmenting the 
power in the components with a high risk of failure [2]; for 
example, a multi-star machine can be supplied by several 
independent three-phase voltage source inverters (VSIs). 
However, the magnetic couplings between the different stars 
influence the harmonic content of the current flowing through 
each winding and this phenomenon needs to be studied. 

Previous work concluded that because of these interactions 
the switching frequency voltage applied across the different 
sub-machines should be in phase, which brings us back to the 
behaviour of a single star machine supplied by a single VSI: no 
benefit in terms of current ripple in the windings and no 
reduction of the input filter. 

This paper analyzes the mechanisms of interaction between 
the machine and the VSIs. Understanding these phenomena 
allows us to modify these interactions by means of InterCell 
Transformers (ICTs) [3]. In a second step, we show that it is 
even possible to modify the machine so that it incorporates the 
desired coupling characteristic and allows operation with a 
180° phase-shift between the control signals of the two VSIs, 
thus bringing almost the same advantages as ICTs.  

II. DOUBLE-STAR SYNCHRONOUS MACHINE – MODEL SUMMARY

The machine at stake is a double-star synchronous machine 
with permanent magnet and non-salient poles. In its general 

form, the stator consists of two stars shifted by an electric 
angle γ [Fig. 1]. 

Fig. 1. Windings of the double-star synchronous machine 

The machine is supposed to be unsaturated and the back 
EMF of the two stars is sinusoidal. The double-star machine 
has 6 coils, defining an inductance matrix with 36 parameters: 
6 inductances and 30 mutual inductances. For reasons of 
symmetry, only 5 independent parameters are in general 
needed to define the magnetic couplings of such a machine. 

The aim of this paper is to obtain a compensation of the 
harmonics at the switching frequency between the different 
subsystems; it is thus necessary to have the same harmonic 
amplitude, which requires equal duty cycles in corresponding 
phases. For this reason only the case γ = 0° is considered here 
and we will show that in this case, the machine is characterized 
by 4 parameters only: L11, M12, M13, and M14. Fig. 2 shows the 
simplified single-phase equivalent diagram of the double-star 
synchronous machine.  

Fig. 2. Simplified equivalent circuit single-phase of the DS-PMSM

The voltage equation is expressed as follows: 

1 1 1

2 2 2

.
vCYC CYC

CYC CYC v

v di dt eL M

M Lv di dt e

      
= +      

           

                         (1) 
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15111311 MLMLLCYC −=−=                                           (2) 

16121412 MMMMM CYC −=−=                                      (3) 

III. EXISTING STRUCTURES 

The system studied in this paper is shown in Fig. 3. 
Considering the harmonic content at the input of the VSIs, it 
was first concluded that phase-shifting the control signals of 
the two VSIs by 180° is advantageous, because the input 
current harmonics of the two VSIs cancel out partially. In this 
case, the phase currents are as shown in Fig. 4.  

Fig. 3. Global system (inverters + machine) with internal magnetic coupling 

Fig. 4. Phase currents with inverter commands 180 degrees out of phase 

Compared to the ideal sinusoidal supply, the relatively high 
current ripple generates extra conduction losses in the 
windings and higher stator and rotor losses. If the two VSIs are 
in phase, which means they operate as a single VSI, the current 
waveforms become those of Fig. 5. It can directly be seen that 
the current ripple is lower in this case, and a deeper study 
comes to the conclusion that the total losses in the machine are 
reduced very significantly with the VSIs in phase. By the way, 
this is in agreement with the conclusions presented in [1]. 

Fig. 5. Phase currents with inverter commands no shifted. 

On the other hand, another study [3] showed that using 
external ICTs (Fig. 6), it is possible to use VSIs controlled with 
a phase-shift of 180 degrees and to obtain simultaneously two 
benefits that seemed incompatible until then: 

– improving the input current THD;  
– reducing the phase current ripple. 
The first benefit is obtained as a well-known consequence 

of phase-shifting the control signals of the VSIs, and the 
second benefit can be explained as follows. The very strong 
coupling brought by the ICTs imposes quasi-equal currents in 
corresponding phases of the two inverters and their waveform 
is the same as if it was fed by a 3-level VSI: the current ripple 

is at twice the switching frequency and the amplitude is 
roughly four times smaller than in the case of Fig. 5. Such 
waveforms will be shown in the final paper. 

The price to pay for these important benefits is the addition 
of new components on the whole system, thus increasing the 
weight and price. 

Fig. 6. Global system (inverters + DS-PMSM) with external magnetic coupling 

IV. PROPOSED STRUCTURE 

The innovation described in this paper allows obtaining the 
same effect within a machine which is slightly modified to 
provide the appropriate magnetic couplings without any 
external component (Fig. 3). Such a machine has been studied 
with the finite element software EFCAD (Fig. 7). 

Fig. 7. Example of field map for the determination of magnetic couplings 

Fig. 8. Phase currents with internal magnetic couplings (proposed structure) 

V. CONCLUSION 

As will be shown, such internal couplings allow operation 
with VSIs 180 degrees out of phase thus providing multi-level 
operation, creation of a higher apparent frequency, reduction 
of the phase current ripples (Fig. 8) and of the input filter, as 
well as a significant reduction of the overall losses (inverters + 
machine). 
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Magneto-elastic finite element modeling
based on a multiscale approach
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Abstract—The design of electromagnetic devices sub-
mitted to mechanical stress is a growing issue and
requires appropriate modeling tools. We propose in this
paper to implement a multiscale model for magneto-
elastic behavior in a finite element code.

Index Terms—Magneto-elasticity, multiscale model-
ing, finite element method.

I. Introduction

Magnetic materials in electrical machines or actuators
are submitted to multiaxial mechanical loadings. These
stress states significantly modify their magnetic and mag-
netostrictive behavior [1]. The design of electromagnetic
systems consequently requires appropriate modeling tools.
A possible choice is the introduction of coupled consti-
tutive laws into finite element modeling. Unfortunately,
most of magneto-elastic models are restricted to uniaxial
mechanical loadings [2], [3]. A fully multiaxial magneto-
elastic model, based on a multiscale energetic approach
has been proposed recently [4]. The implementation of
this model into a finite element simulation still leads to
dissuasive computational times for engineering design ap-
plications. We propose in this paper to define a simplified
version of the multiscale approach and to implement it
into a coupled magneto-mechanical code.

II. Local magneto-elastic constitutive law

The local constitutive law is derived from a multi-
scale approach [4], [5] and gets very close to Armstrong
model [6]. The model has been simplified considering fully
isotropic materials. The local potential energy Wα of the
material is then written as the sum of magneto-static
energy and elastic energy.

Wα = −µ0
�H. �Mα − σ : ε

µ
α (1)

�Mα =Ms �α =Ms



α1

α2

α3


 ,

ε
µ
α = 3

2



λ100(α

2
1 − 1

3
) λ111α1α2 λ111α1α3

λ111α1α2 λ100(α
2
2 − 1

3
) λ111α2α3

λ111α1α3 λ111α2α3 λ100(α
2
3 − 1

3
)




(2)
�H and �Mα are the magnetic field and the magnetiza-
tion. σ and ε

µ
α are the stress and magnetostriction strain

second order tensors. The unknown of the problem is
the local magnetization direction �α. Ms is the saturation
magnetization of the material, λ100 and λ111 its magne-
tostriction constants. Assuming an isotropic behavior, we
will consider λ100 = λ111 = λs (macroscopic saturation
magnetostriction of the material). The probability fα for
the magnetization to be in the direction �α is calculated
using a Boltzmann type relation:

fα =
exp(−As.Wα)�

α

exp(−As.Wα)
(3)

As being a material parameter linked to the initial anhys-
teretic susceptibility χo [4]:

As =
3χo

µoM
2
s

(4)

Once the probability fα is defined, the macroscopic mag-
netization �M and magnetostriction ε

µ are obtained thanks
to an averaging operation over all possible directions:

�M =< �Mα >=

�

α

fα
�Mα dα (5)

ε
µ =< ε

µ
α >=

�

α

fα ε
µ
α dα (6)

III. Finite element implementation

The static finite element model (FE) is based on classical
mechanical and magnetic formulations. Considering the
mechanical problem with the decomposition of the total
strain ε into elastic strain ε

e(σ) and magnetostriction
strain ε

µ( �H,σ) (ε = ε
e +ε

µ), the mechanical formulation
contains an additional term Fµ( �H,σ), corresponding to an
equivalent force due to the magneto-elastic coupling. After
discretization with nodal elements, this term is expressed
with:

F
µ( �H,σ) =

�

Ω

∇s[C]εµ( �H,σ)dΩ (7)

∇s is the symmetrical gradient of the shape functions, [C]
the usual stiffness tensor, Ω the study domain. ε

µ( �H,σ) is
the magnetostriction strain obtained with the multiscale
model (MSM). Similarly, the magnetic scalar potential (Φ
with �H = −gradΦ) formulation contains an additional
term equivalent to a magnetic charge. The magnetic flux
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i ← 1; �Ho

e← 1; Φ0 ← 0;
ec ← 1.10−6; U

0 ← 0;

While (e ≥ ec) do

[(M i), (εµi)] =MSM( �Hi−1
,σ

i−1);

[S](Φi) = (Tµ(M i));

[K](U i) = (F ) + (Fµ(εµi));

e = |Ui−Ui−1|
|Ui| + |Φi−Φ

i−1|
|Φi| ;

i ← i+ 1;
done

Fig. 1. Fixed-point algorithm; i represents the iteration number,
MSM corresponds to the multiscale model.

density �B is defined from the magnetization �M ( �B =
µ0( �H + �M)). Maxwell’s flux conservation is written:

div(gradΦ) = div( �M( �H,σ)) (8)

where Φ corresponds to the magnetic scalar potential, and
M( �H,σ) to the magnetization obtained with the MSM.
Thus, the coupling term in the magnetic formulation is
finally obtained:

T
µ( �H,σ) =

�

Ω

∇m
M( �H,σ)dΩ (9)

with ∇m the gradient of the shape functions. The coupled
system is then defined by:

�
[S](Φ) = (Tµ( �H,σ))

[K](U) = (F ) + (Fµ( �H,σ))
(10)

with S and K respectively the magnetic and mechanical
stiffness matrices, U the displacement field and F the
external forces. Due to the non linearity of the problem in-
troduced by the MSM model, an iterative algorithm based
on the fixed point method is chosen for the resolution (Fig.
1). Values of magnetization and magnetostriction strain
are updated using the MSM model at each step i for each
element of the mesh, until the error criterion e falls down
ec.

IV. Application to a simple structure

In order to validate the finite element implementation,
the first study concerns a rectangular FeCo sample placed
in an uniform magnetic field and with uniform applied
stress (here compression). For such a homogeneous config-
uration, the analytical MSM model provides the magne-
tization and the magnetostriction strain directly, allowing
the comparison with the FE results (Fig. 2 and 3).

Considering these figures, the effect of the stress and
of the magnetic field on the magnetic and mechanical
behavior are obvious. Moreover, these results validate the
implementation in the FE simulation.
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V. Conclusion

In this paper, the implementation of a multiscale
magneto-elastic model in a finite element analysis has been
detailed. This implementation is validated considering an
iron-cobalt rectangular sample submitted to a homoge-
neous magneto-mechanical loading. The interest of this
modeling tool concerns structural analysis for the design
of electromagnetic devices. An illustration of a coupled
calculation on the rotor structure of an electrical machine
will be presented in the final paper.
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11. Electric Machines and Drives 

Abstract — In this paper a design condition for magnetically 
balanced operation in a single phase induction motor is induced 
in analytic forms. In addition, a condition for minimal stator 
copper loss is also induced under the balance conditions. Using 
these conditions, an induction motor is designed by a proper 
optimization algorithm, and its loss characteristics are 
investigated. The validity of the proposed method is verified from 
the results. 

I. INTRODUCTION

Single-phase induction motors (SPIMs) are used in various 
applications such as household applications, tooling machines 
and industry applications [1]. SPIMs are driven with a ‘single’ 
phase voltage source; therefore it is split to both a main and an 
auxiliary winding in order to develop start-up torque. 
However, the magneto-motive forces (MMFs) produced by 
both the windings of a SPIM are generally in a magnetically 
unbalanced state, thereby resulting in a backward field which 
deteriorates performances such as efficiency, vibration and 
noise etc. If the backward field can be artificially removed, the 
magnetic field of the motor gets in balanced state, improving 
efficiency [2]. In this paper, a new design method for the 
perfect balanced operation and the minimal copper loss is 
suggested.  

II. OPTIMAL DESIGN OF A SINGLE-PHASE INDUCTION MOTOR 

A. Conditions for the Balanced Operation 

For a SPIM with a main winding in arbitrary angle ξ  with 

respect to an auxiliary winding, magneto-motive forces 
(MMF) produced by both windings are shown in Fig. 1(a). To 
get a balanced state, the MMFs should satisfy 

j
m ae

ξ= −F F .                              (1) 

The SPIM equivalent circuit considering the angle ξ  in Fig. 

1(a) can be deduced from its classical circuit model [3], [4]
and shown in Fig. 1(b). Since a MMF is a product of the 
current and turn number of each winding, (1) is changed with 

j
m aa e ξ= −I I                  (2) 

, where a is the effective turns ratio. By calculating the 
currents of the circuit of Fig. 1(b) and using (2), the balance 
conditions are induced as follows; 

( )1 1 1, , ,a fR f a Rξ= Z   (3) 

( )2 1 1 1, , , , ,c a fX f a R X Xξ= Z   (4) 

, where Zf is the forward impedance of a rotor circuit. The 
function f1 and f2 will be given in the full paper.  

Main wind.

Aux. wind.

sinm ξF

cosm ξF
aF

mF

x

y

ξ

(a) Diagram of magnetic forces 

(b) Equivalent circuit of a SPIM 
Fig. 1. A single-phase induction motor  

B. Conditions for the Minimal Copper Loss 

Provided that the balance condition of (2) is satisfied, the 
conditions for minimal stator copper loss can be also induced 
as follows; Let the slot area for each winding be Sm, Sa and 
their total area be Stot. The copper loss in a stator winding is 
given by (5), where nm and na are each turn number, and lc is 
stack length. 
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2 2 2 2
1 1 1 1

2 2
2

 (  )

-
2 2

CS m a a a a

c tot tot
a m a tot m

W R I R I I R a R

l S S
I an n S S
σ

= + = +

⎛ ⎞⎛ ⎞ ⎛ ⎞= − +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

       (5) 

By differentiating (5) a condition for minimal copper loss 
can be obtained by (6). 

2
1 1aR a R=

                 
    (6) 

C. Optimal Design Strategy 

By using the proposed design method, a given commercial 
SPIM for an instance is optimized. The optimization algorithm 
in Fig. 2 is applied to improve the given previous model. The 
turn number of each winding and the spatial angle ξ  are 

selected as design variables. The total slot area of the designed 
model is same as that of the previous model. With variance of 
the design variables, all the combinations satisfying (3), (4) 
and (6) are founded and the best one is finally determined as 
shown in Fig. 2. The designed motor is compared with the 
previous one in Fig. 3 in which the determined angle ξ  is 

77.10, not in quadrature.  

,1,  ,  ,  m i ini i ini i inii n n a a ξ ξ= = = =

Initial values of variables

Calculation of reactance and rotor resistance

X1, X1a, R2, X2, Xm

Calculation of forward and 

backward Impedance Zf, Zb at rating 

Determination of winding resistances R1, R1a and

capacitance Xc using (3), (4) and (6)

Calculation of efficiency,

S’tot < Stot

Save the ith combination of variables and efficiency

determine the optimal combination

, ,  ,  m i fin i fin i finn n a a ξ ξ≤ = =

no

yes

yes

no

end

, ,

1

m i m i

i i

i i

i i

n n n

a a a

ξ ξ ξ

= +
= + Δ

= + Δ
= + Δ

η

iη

Fig. 2. Optimal design algorithm 

Figs. 4~6 show the analysis results performed by the time-
stepped FEA for the previous and optimized motors. From 
current waveforms in Fig. 4, it is noted that magnitudes of 
both MMFs become similar through the proposed design, 
getting into more balanced state. Magnetically balanced states 
lead to decrease of the torque ripple and ohmic losses in rotor 

as shown in Fig. 5. The efficiency is improved by 0.8% at a 
rated load (110W) as shown in Fig. 6.  

(a)previous                    (b)optimized 
Fig. 3. Comparison of winding distribution  
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Abstract — A method for finite-element analysis of a rolling-
rotor electrical machine was developed. The conventional 
moving-band technique for modelling motion was replaced by an 
element structure of radial bands in the air gap. This finite-
element scheme allows a large distortion of the elements at the 
contact point of stator and rotor without suffering of problems in 
the convergence of numerical solution or the accuracy of results. 

I. INTRODUCTION

Fig. 1 presents the operation principle of a rolling-rotor 
machine. The machine has no bearings, and the rotor rolls 
along the stator bore. A winding in stator produces a magnetic 
field and force Fem that causes the rotary motion and 
maintains the contact between the stator and rotor. The 
support forces on the contact line balance the electromagnetic 
force. The friction between the bodies has to be large enough 
to prevent slipping. 

Fem
Fr

Ft
Fig. 1. Operating principle of the rolling-rotor machine. 

The torque per volume ratio of a conventional radial-flux 
electrical machine remains small as the magnetic stress for the 
torque is proportional to the product of the radial flux density 
and circumferential flux density that is typically small. In the 
rolling-rotor case, the torque arm acts from the contact point 
of the rotor and stator, and the magnetic stress for the torque is 
proportional to the radial flux density squared. A large local 
force density can be obtained for torque production. 

The contact line on the stator bore may move at a 
relatively large speed but the rotation speed of the rotor 
remains small. Thus, the potential applications of rolling-rotor 
machines are in low-speed high-torque drives. A rolling-rotor 
machine was first described by a Russian engineer A. I. 
Moskowitin in 1944 [1]. Later on, these machines have been 
studied by Viviani [2] and Kaminski&Wrotek [3], among 
others. 

If finite-element analysis (FEA) and the commonly used 
moving-band technique [4] are applied for the rolling motion, 
problems arise related to the quality of the finite elements in 
the air gap. The elements become distorted, especially, close 
to the contact point. Refining the mesh may bring some relief 
but this easily leads to very large numbers of finite elements 
and long simulation times. Further more, as a rotor 
eccentricity is present, the finite-element mesh has to be 
constructed for the whole cross-section of the motor. There is 
no symmetry that could be used to reduce the solution region. 
Other possible ways of modelling the rolling motion within 
FEA could be the technique of overlapping meshes [5] or a 
hybrid method of FEM and BEM [6]. 

The aim of the present study is to develop the means to 
design and analyse rolling-rotor machines. The method should 
be computationally efficient and reliable enough to be used for 
structural optimisation of these machines. A small prototype 
of this machine was built and tested for the validation of the 
methods of analyses and for verifying the torque production 
ability of this type of a machine. 

II. MODELLING MOTION AND TORQUE

The rotor of a rolling-rotor machine is typically a 
homogeneous cylinder made of electrical steel sheets. If the 
core losses of the rotor are neglected, more freedom is 
obtained for modelling the motion. The rotor can be just 
pushed against the stator at the successive time steps in such a 
manner that the contact point moves exactly as in the rolling 
motion but the rotor does not rotate. If using this semi-rolling 
approach, adjusting the finite-element mesh in the air-gap 
becomes easier. 

To model the semi-rolling motion and avoid dense finite-
element meshes, the circumferential element bands in the air 
gap were replaced by radial bands (Fig. 2a). The idea is to 
keep the thickness of a radial band relatively constant from the 
rotor to the stator. When the rotor approaches the stator, such 
an element band is gradually reduced to two elements, which 
cover an almost rectangular area (Fig. 2b). When the motion 
proceeds, the rectangle is gradually reduces to almost a line 
segment, however, still including the two elements. A right-
angled triangular element seems to allow large distortions. 
Using this approach for a 2D time-discretised analysis, the 
process can be performed without convergence problems even 
if the length-to-thickness ratios larger than 1000 are allowed 
for the air-gap elements at the contact point. 

The torque was computed from the air gap using the 
method developed by Coulomb [7]. No special treatment was 
used for the distorted elements close to the contact point. 
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a)

b) 
Fig. 2. Second-order isoparametric elements are used. Regions where the rotor 

and stator are  a) relatively far from each other and  b) close to each other. 

III. RESULTS

Fig. 3 shows the geometry and magnetic field of the 
prototype rolling-rotor machine equipped with a five-phase 
stator winding, when the first phase is excited by a dc current. 
The definition of the load angle is also shown. Table I gives 
the main dimensions of the machine. 

δ−

0δ =

A

–A

–E

–D

–C

–B

B

C

D E

Fig. 3. Geometry of the rolling-rotor prototype motor. The eccentricity is 99% 
of the average air gap. The load angle δ defines the phase of the excitation 
with respect to the rotor position. 

TABLE I 
DIMENSIONS OF THE ROLLING-ROTOR MACHINE STUDIED 

Outer diameter of the stator [mm] 160 
Inner diameter of the stator [mm] 115 
Outer diameter of the rotor [mm] 112 
Inner diameter of the rotor [mm] 85 
Core length [mm] 100 

Fig. 4 shows the power versus load-angle curve of the 
machine, when the rotor is rolling and the phases are excited 
successively one by one with current pulses of amplitude 7 A. 
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Fig. 4. The shaft power versus load angle for the rolling-rotor machine. 

IV. CONCLUSION

Using the methods described above, it is possible to model 
cases with full stator-rotor contact, i.e. 100% eccentricity. No 
convergence problems were encountered when analysing 
machines supplied from current sources. When voltage-fed 
machines with full contact were studied, the time-stepping 
process was not completely reliable suffering from problems 
in convergence every now and then. 

The operation characteristics computed and measured for 
the prototype machine, i.e. the validation of the method of 
analysis is presented in the full paper. 
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Abstract — This paper presents an application of a vector 
Hysteresis model to the prediction of the inrush current due the 
arbitrary initial excitation of a transformer after a fault.  

The approach proposed seems promising in order to predict the 
optimal time to close the circuit after the fault.  

I. INTRODUCTION  

Inrush currents are high value transient currents generated 
when a magnetic core is driven into saturation during initial 
excitation. They have many undesirable effects, such as 
damage or reduction of life of the transformer, opening of the 
power circuit by means of protective relays, and this fact can 
strongly reduce the quality and the continuity of the power 
systems, especially in the case of uninterruptible power 
supplies. The effects of inrush currents can be mitigated by 
using suitable late-closing relays, over-size fuses, or other 
passive components. Although reduction in inrush currents 
magnitudes has been achieved with this hardware, active 
controls, such as controlled closing ones, seem to be 
promising in order to reduce the complexity and the cost of the 
power system. An open question is about their complexity, that 
means how much must they have memory of the power system 
parameters, in order to ensure the desired degree of reliability 
and robustness of the protection system. Usually the control 
strategies are based on the prediction of the residual magnetic 
flux acting in the transformer in order to avoid a transient 
overshoot in the current, by selecting the closing time 
correspondent to the given residual flux [1], [2], [3],[4], [5]. 
The evaluation of the residual flux with accuracy is a very 
difficult and complex problem to solve, for the two following 
reasons: the effects of the eddy currents in the laminated cores 
is in general considerable; the hysteresis in the magnetic 
materials must be taken into account.  

In this paper we approach the general problem of the 
prediction of the optimal closing time in a single-phase 
transformer, introducing a model of hysteresis in the transient 
during the transformer initial excitation.  

II. NUMERICAL MODELLING 

In this first approach to the problem, we postulate that 
magnetic hysteresis as a rate-independent phenomena and that 
the magnetic induction is uniform in the cross section of the 
magnetic core of the transformer. So, in the following, the 
eddy current effect will be neglected. The experiments 
reported in the extended version of the paper in order to help 
the discussion about the numerical modeling approached will 
be addressed to cases in which the eddy current effect seems to 
be negligible apriori. This paper is mainly focused to the 
introduction of vector models of static magnetic hysteresis in 
the simulation of inrush currents in order to discuss the 
improvement in accuracy achieved. The modelling of 
magnetic Hysteresis used is based on the rule of a 
phenomenological vector hysteresis operator recently defined 

in the H-space. The vector hysteresis operator is defined by 
means of a convex surface, called critical surface, which is the 
locus of the values of H where there is discontinuity of the 
magnetization and a Barkhausen-like jump. This jump is 
represented in the model by the fact that the unit magnetization 
is frozen in the direction that it had just before it entered the 
critical surface for fields inside the critical surface, it remains 
constant until it is internal to the critical surface, and is then 
suddenly oriented along the direction normal to the critical 
surface when the applied vector field it exits the critical 
surface. These rules allow the model to intrinsically obey to 
the saturation and the static loss property [6], [7], [8]. The 
vector model of hysteresis above has been implemented as 
circuital block in the equivalent network of the transformer at 
industrial frequency (See Fig.1). The magnetic and electric 
equilibrium equations have been solved in time domain via a 
suitable finite difference scheme.  

 
Fig. 1 – Equivalent circuit used for the simulation of the inrush of the no-load 
transformer.  

III. PRELIMINARY RESULTS  

In this section are reported preliminary data about the 
numerical simulations presented in the full paper.  

The figures below refer to the initial excitation of a single-
phase transformer respectively after a short circuit fault (see 
Fig.2) and an open circuit fault (see Fig. 3). Simulations of the 
example are made either by using the virgin curve or the 
complete hysteresis path.  In Fig. 4 are reported the 
experimental data.  
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Fig. 2 – Voltage and current vs time (a)(b), and magnetization path (c) in the 
core of the transformer calculated for a single phase short-circuit.  
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Fig. 3 - Voltage and current vs time (a)(b), and magnetization path (c)  in the 
core of the transformer calculated for an open-circuit fault.  
 

 
Fig. 4 – Experimental data recorded for the example of fig. 3. 
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Abstract — A 2D Transient FE model is used to evaluate a new
excitation signal in the estimation of synchronous generator
equivalent circuit parameters. Traditionally, step, dc flux decay,
sinusoidal perturbations have been used for obtaining off-line
data, which are then used to estimate the machine parameters.
This paper presents the results of applying a Gaussian
Modulated Pulse Signal into the d-q axes of the machine.  The FE 
simulation results are used to estimate the equivalent circuit
parameters with genetic algorithms, and the resulting
parameters are then validated by applying a sudden three-phase 
short-circuit to a 7 kVA, 220V, 60 Hz, four-pole synchronous
generator.

I. INTRODUCTION 
Equivalent circuits of electrical machines are a lumped 

representation of its complex electromagnetic behavior. They 
have been used since several decades ago for predicting the 
performance of synchronous generators, induction motors and 
transformers; their main advantages are their simplicity and 
acceptable accuracy. Lumped models are represented by a set 
of nonlinear ordinary differential equations; its parameters 
have traditionally been obtained by standard methods: 
standstill and online tests. Standstill tests are attractive 
because by applying a small perturbation signal along each 
magnetic axis, the complete set of parameters can be 
estimated, and furthermore it avoids a possible damage to the 
generator. Step voltage, dc flux decay and frequency response 
are the perturbations commonly employed; recently new 
signals have been explored [1]. A Finite Element (FE) model 
offers the ability of evaluating new excitations signals, which 
can be of interest to manufacturers of large generators. In this 
paper, the Gaussian Modulated Signal Pulse (GMSP) 
excitation is investigated, a two-dimensional FE model is used 
to simulate the test. The data obtained is then used to estimate 
the machine parameters by using a Genetic Algorithm (GA) 
and they are fine tuned by using a deterministic method. To 
evaluate the estimated parameters from FE data, the model is 
compared with a real sudden short circuit of a 7 kVA, 220V, 
and 60 Hz salient pole generator. 

II. MACHINE MODEL 
The electromagnetic behavior of synchronous machines is 

governed by the time-domain diffusion equation. 
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where σ is the electric conductivity, E is the electric field 
intensity and ν is the magnetic reluctivity.   

To couple the field and circuit equations fed by an external 
voltage source, it is necessary to consider the winding currents 
as one degree of freedom and solve simultaneously with (1), 
as it can be expressed by following set of equations [2]-[3]: 

0PI
dt
dANSA =−+  (2) 

V
dt
dILRI

dt
dAQ =++  (3) 

where S is the stiffness matrix, N represents eddy current 
regions, P represents machine windings, Q are induced 
voltages, R are dc resistances, L are end-winding inductances 
and V are source voltages. 

The synchronous generator, even though is of a salient-pole 
type, it has solid poles where eddy currents are present. The 
GMSP is applied to the d or q axes while the alternator is at 
standstill with the field winding in short-circuit. This kind of 
excitation has been applied to transient electromagnetic wave 
propagation and it is given by [4]: 

( )
(( delay

A
Tt

m TteVtv
delay

−=
−

−
ωsin)(

2

))  (4) 

where Vm is the amplitude of the signal, ω is the operational 
frequency, t is time, A and Tdelay are the shape parameters. 

The vector potential distribution while the machine is at the 
d-axis position is illustrated in Fig. 1, it can be seen the effect 
of the field produced by the eddy currents.  

 
Figure 1. D-axis field distribution with the GMSP excitation at t=0.15 s. 
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III. PARAMETER ESTIMATION AND MODEL VALIDATION 

The set of state-equations are derived using the electric 
equivalent circuit of the machine. One-damper winding is 
selected for both axes, and the equations for the d-axis are: 

dddddd IRXVXI 1
0

1
0

−−
•

−= ωω  (5) 
where Id, Rd, Vd and Xd are vector of d-axis currents, 
resistance matrix, voltage vector and d-axis reactance matrix, 
respectively, ω0 is the rated angular speed.  

The q-axis state-space equations are, 

qqqqqq IRXVXI 1
0

1
0

−−
•

−= ωω  (6) 

 

where Iq, Rq, Vq and Xq stand for q-axis current vector, 
resistance matrix, voltage vector and q-axis reactance matrix, 
respectively. 

The estimation of the fundamental parameters for each 
equivalent circuit was made using the least squares approach 
where the objective function can be expressed as: 

Fig. 2. Comparison of model and FE model for the d-axis current with a 6V 
GMSP amplitude. 

( ) ( )∑
=

−=
N

i
ii yyJ

1

2ˆ
2
1min θ   (7) 

 

where J(θ) is the objective function, yi is the set of 
experimental data, ŷi is the set of estimated responses from the 
proposed mathematical model, N is the number of the 
experimental points and θ  is the parameter vector.  

In this paper, a genetic algorithm was used to solve (7). A 
GA is a stochastic method that employs probabilistic and non-
local search heuristics that simulate natural evolution, which 
works on the chromosomes [5]. The final results were 
determined using a deterministic algorithm (Gauss-Newton). 
The obtained set of parameters are shown in Table I. Fig. 2 
illustrates the comparison of FE model and equivalent circuit 
for the d-axis current, where a good accuracy can be seen. 

Fig. 3. Field current in the sudden three-phase short-circuit.  

To validate the estimated set of parameters from FE data, a 
sudden three-phase short-circuit was applied to the generator 
which has special instrumentation features. The non-linear 
model of the synchronous machine under short-circuit 
conditions is represented by (8). 

zBF(x)xAx ++=
•

 (8) 

IV. CONCLUSION 
The 2D FE ability as a data source for parameter 

estimation using the Gaussian Modulated Signal Pulse was 
demonstrated. A Genetic Algorithm was used to obtain the 
parameters which were then employed in a non-linear time-
stepping lumped model to simulate the sudden three-phase 
short-circuit where good results were achieved. 

where x denotes the flux linkage state-variables, F is a 
function of nonlinear terms, A is the system matrix, B is the 
input vector and z is the input variable vector. 
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Abstract — This paper presents a new efficient method for 
finite-elements identification of the equivalent circuit inductances 
of doubly-fed induction machines (DFIM). The method can be 
easily integrated in a computer aided optimization design of 
DFIM, since it allows good precision combined with a fast 
magnetostatic analysis. The magnetizing inductance estimation is 
performed by a FFT of the spatial distribution of magnetic field 
measured in the air gap. The variable reluctance effect produced 
by the double slotting of the machine yokes is taken into account 
as well as magnetic saturation effect. An analysis of results 
precision versus mesh size is presented as well. 

I. INTRODUCTION

During the design process of an electrical machine, Finite 
Elements Analysis (FEA) is widely used for precision increase 
of performance prediction. FEA offers the possibility to 
perform a simulation of experimental tests of an electrical 
machine. This can be considered as a validation step of the 
final structure, performed at the end of the design process. 
However, FEA can also be used for intermediate performances 
validations of the electrical machine structure during the 
iterative optimal design process. In this case the selected 
numerical analysis should optimize the balance between 
precision and time cost. Analytical design models of DFIM 
can be used in combination with FEA in order to increase the 
design optimization precision. The detailed method presented 
in [1], is illustrated by  Fig.1. 

Fig.1 : Optimal DFIM design process in combination with a correction 
process thank to FEA. 

In a first step a non-linear optimization process is used to 
find the optimal dimensions of the DFIM for a given 

specification. The design models treated by the numerical 
optimization program are fully analytical based. In a second 
step the optimal dimensional solution is considered for FEA. 
In this process the goal is to determine the equivalent circuit 
parameters (inductances) by use of FEA and compare them 
with the ones determined by analytical methods. In case of 
inacceptable differences between analytical and FEA methods, 
correction factors are computed and inserted in the analytical 
models to improve their accuracy. The process last until the 
analytical model provides the same results as FEA method. 
These correction iterations should be as efficient as possible in 
terms of time cost (design time minimization) and precision. 

This paper presents an efficient method to determine the 
DFIM equivalent circuit inductance with FEA, in order to be 
easily implemented in the correction process described above. 

II. MAGNETOSTATIC ANALYSIS FOR EQUIVALENT CIRCUIT 

IDENTIFICATION

A. Cyclic inductances identification 

For cyclic inductances determination by magnetostatics 
methods one has to take into account the slotting effect. 
Indeed, for different relative angular positions of the rotor 
with respect to the stator, the cyclic inductances may result to 
be different because of variable reluctance. The presented 
solution consists in performing several magnetostatic flux 
computations for n different relative angular positions and by 
considering the mean value of the measured magnetic flux. In 
the case of a three-phase balanced sinusoidal supply, one 
considers the time instant where one phase is supplied by a 
current with an amplitude value I and where the other two 
phases are supplied by a current with an amplitude –I/2. When 
magnetic saturation is taken into account, the peak current 
value must be selected in order to produce the specified 
maximal magnetic induction level. The rotor or stator cyclic 
inductance Ls or Lr are derived from the measured magnetic 
fluxes Ψ for each relative angular position θ, as showed in (1). 
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n is the number of relative angular positions. Ls and Lr’ are 
defined in (2), and Lσs, Lσr and Lm are presented in Fig. 2. 
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Fig.2 : Steady-state equivalent circuit of a DFIM. 

Notice that ' 2
r rL L a= , where a is the stator to rotor voltage 

ratio defines as:    

( )

( )

1

1

s ws h

r wr h

N k
a

N k
=

=

⋅
=

⋅
 (3) 

Where Ns and Nr are the number of turns in series per 
phase of the stator and the rotor windings respectively. Factors 
kws(h=1) and kws(h=1) are the stator and rotor winding factors with 
respect to the first spatial harmonic h.

B. Magnetizing  inductance identification 

Since the early 20th century the magnetizing inductance 
was defined as the one representing the induced voltage by the 
fundamental space harmonic of the magnetic flux in the air 
gap [2]. Since then this definition has not changed as it can be 
noticed by the analytical formulations in [3]. Therefore, the 
best way to determine such inductance by finite elements is to 
measure the air-gap radial magnetic field and perform a FFT
in order to get the amplitude of its fundamental harmonic. 
Figure 3 shows the result of such a procedure, for a small 
DFIM with 48 stator slots and 36 rotor slots presented in 
Fig.4. 

Fig.3 : (a) Radial magnetic field in the air-gap; (b) Harmonics spectrum 
amplitude of radial magnetic field in the air-gap.

Knowing the fundamental space harmonic amplitude of the 
radial magnetic field Hr1 it is possible to derive the associates 
flux amplitude (4). 

( ) ( )0 1 0 11 1
2ˆ

2 2m r s r sws h ws h
DL DLH N k H N k
p p

πψ μ μ
π = == =  (4) 

D, L and p are the stator bore diameter, the axial length and 
the poles pair number whereas μ0 is the vacuum magnetic 
permeability. Therefore the magnetizing inductance is 
determined as follows:   

ˆm
m

s
L

I
ψ

=  (5) 

Notice that the result is correct for any relative position 
between stator and rotor. The space harmonics of higher order 
cannot be used to compute the differential leakage inductances 
because of slotting effects (not rotating at the right speed). 

Fig.4   Geometry and induction distribution of the considered DFIM.

C. Leakage inductances & mesh size sensitivity analysis 

The leakages inductances are derived by subtraction from 
(2). However the subtraction between two similar numbers 
could lead to precision errors. Table I shows that the leakage 
inductance value (showed for stator) is stable for different 
elements number ne in the considered domain. Notice that ne
used for Ls estimation must be equal to ne used to estimate Lm
to avoid inacceptable errors in the leakage inductance value. 

TABLE 1
EQUIVALENT CIRCUIT IDENTIFICATION SENSIBILITY VS. NUMBER OF ELEMENTS

Circuit
element 

ne= 5497 ne= 7409 ne= 11129 ne=14849 

Ls (mH) 3.67317 3.75544 3.79632 3.81714 
Lm (mH) 3.65310 3.7350 3.77550 3.7970 
Lσs (mH) 0.020074 0.020439 0.020818 0.020142 

III. CONCLUSION 

The presented method is efficient in terms of computing 
time and precision. The result sensibility against the chosen 
finite elements number demonstrates the stability of this 
method and makes it suitable for an implementation in a 
optimization design environment. 
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Comparison of Analytical and Finite Element 
Calculation of Eddy-Current Losses in the Solid 
Back-Iron of PM Machines with Concentrated 
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Electrical Energy Conversion Group, *Numerical Analysis Group 

Faculty of Electrical Engineering, Mathematics and Computer Science, 
 Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands 

Abstract-Permanent magnet (PM) machines with 
concentrated fractional-pitch stator windings are interesting 
because of their cost-effectiveness. However, in machines with 
fractional-pitch windings, the eddy-current losses, specifically in 
solid back-iron of the rotor are considerable and depend strongly 
on the combination of number of teeth and number of poles. This 
paper presents a comparison between analytically calculated eddy 
current losses and the loss calculation by Finite Element (FE) 
method. The software COMSOL is used for FE calculations. The 
model is applied to calculate the losses in the solid back-iron of 
the linear PM generator of the Archimedes Wave Swing (AWS) 
for different combinations of numbers of poles and numbers of 
teeth. 
 

Index Terms-eddy currents, permanent-magnet machines, 
back-iron, fractional-pitch concentrated windings, finite element 
model. 

I.  INTRODUCTION

Permanent magnet (PM) machines with concentrated 
fractional-pitch stator windings are increasingly used because 
of their cost-effectiveness. The objective of this paper is to 
compare and bring out differences between an analytical 
model and a finite element model for calculation of eddy-
current losses in the solid back-iron of these machines. If there 
is sufficient agreement between the results of each method, 
validation for the analytical method can be proved. The 
machine used for modeling is the linear PM generator of the 
Archimedes Wave Swing (AWS)*. Details about AWS are 
available in [1].  

Currently, a PM machine with distributed full-pitch stator 
windings is applied. It has one slot per pole per phase as 
illustrated in Fig. 1. The winding is a two-layer winding, which 
makes it rather expensive. This is where fractional pitch 
concentrated windings come into picture.  
                                                          

*This work was supported in part by a Marie Curie Early Stage Research 
Training Fellowship of the European Community’s Sixth Framework 
Programme under contract number MRTN-CT-2004-505166, the 
WAVETRAIN program. 

PM generators with concentrated fractional pitch windings 
may be much cheaper because they have simple windings 
around one tooth which can be wound automatically and hence 
economically. 

Fig 1: A Full pitch distributed winding (currently used in AWS) 

Fig 2: A fractional pitch concentrated winding

However, the magnetic field of fractional pitch 
concentrated windings has more space harmonics, including 
sub-harmonics (harmonics with a wave length larger than twice 
the pole pitch). This leads to additional eddy-current losses in 
the magnets and the back-iron, which is made of solid steel to 
make a cheap and strong construction. If these losses are high, 
the magnets may become so hot that they demagnetize. The 
contribution of this paper comes from validation of the 
analytical model used for calculation of these losses [5] by 
modeling the machines with different pole-teeth combination 
in a FE program. 

II.  TOPOLOGIES SELECTED

The combinations of number of poles and teeth affect the 
eddy current losses that occur in the solid conductive parts of 
the machine [5].This section gives an overview of the type of 
winding arrangement selected and the combinations of poles 
and teeth used for analysis. The pole-teeth combinations are 

Tooth 

Winding 

Magnet  
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selected in such a way that winding factor is comparable to 
that of a full pitch distributed winding. The table below shows 
the winding types considered for analysis

III.  ANALYTICAL CALCULATIONS

The method for calculation of eddy current losses is fully 
described in [5]. The Method consists of the following steps: 

  
a) First of all, using Ampere’s law, we estimate the flux 

density distribution in air gap. 
b) We decompose this flux density waveform into 

Fourier components. 
c) Then using relative position of rotor, we evaluate the 

space harmonics of this flux density waveform. 
d) Eddy Current losses can then be calculated from this 

data. 
A three layer model [6-7] for calculation of eddy current 

losses was selected. The eddy-current losses per square meter 
of surface area PA are given by  

Fe

A

vB
P

ρ
δ

4

ˆ 22
0=

where 

0B̂  is the amplitude of the flux density wave 
v is the speed of the flux density wave 
ρFe is the resistivity of iron 
δ is the skin depth 

IV.  FINITE ELEMENT CALCULATION

A model for FE calculations has been prepared in 
COMSOL and the results will be included later in the full 

paper.  

Fig 3: Flux Density Plot for a geometry 

The results will include FE modeling of eddy current losses 
in the machine with motion included. 

V.  CONCLUSIONS

The following conclusions may be drawn from the paper:  
  

a) The analytical results for the eddy current loss model 
have been presented. 

b) The paper presents a comparison between analytical 
method and a Finite Element method to estimate eddy 
current losses. 

c) Validity of the analytical method and the error range 
has been estimated. 

d) Reasons for differences between FE results and 
analytical calculations have been summarized. 
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TABLE II 
EDDY CURRENT LOSSES CAUSED BY THE SPACE HARMONICS (W) 

1 2 4 5 7 8 10 11 total
I 0 0 0 8 2 0 0 1 11

II 0 85 5 6 2 2 1 1 102
III 1369 0 15 2 3 1 1 1 1392
IV 104 98 0 211 0 0 0 0 415
V 296 35 516 0 2 0 0 0 849

VI 741 0 0 0 169 0 0 0 911
VII 741 0 0 651 0 0 0 1 1393

VIII 7301 0 242 12 16 15 18 3 7606
IX 10326 5476 0 86 4 61 9 8 15969
X 11067 0 0 0 182 0 0 1 11249

XI 11067 0 0 698 0 0 0 4 11769

TABLE I 
WINDING TYPES CONSIDERED

I Full pitch with 1 slot per pole per phase 
II Fractional pitch with 3 teeth with 3 coils per 2 poles 
III Fractional pitch with 3 teeth with 3 coils per 4 poles 
IV Fractional pitch with 9 teeth with 9 coils per 8 poles 
V Fractional pitch with 9 teeth with 9 coils per 10 poles 
VI Fractional pitch with 12 teeth with 12 coils per 10 poles 
VII Fractional pitch with 12 teeth with 12 coils per 14 poles 
VIII Fractional pitch with 6 teeth with 3 coils per 4 poles 
IX Fractional pitch with 6 teeth with 3 coils per 8 poles 
X Fractional pitch with 12 teeth with 6 coils per 10 poles 
XI Fractional pitch with 12 teeth with 6 coils per 14 poles 
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13. EDUCATION 

    Abstract  — Velocity induced eddy currents appear in the 

ferromagnetic core of an XY-actuator when the mover, equipped 

with permanent magnets responsible for the generation of the 

magnetic field of the primary circuit, moves over its working 

plan. The effect produces a damping force on the mover that 

affects its dynamics. Furthermore, the magnetic field in the air-

gap is modified owing to the secondary magnetic field produced 

by the induced eddy currents. The induction of electrical current 

is investigated for different armature core materials, i.e. solid 

steel and a grain-insulated soft magnetic composite (SMC). The 

figures show a reduction the velocity-induced eddy current by the 

use of a SMC core instead of a steel core. 

I. INTRODUCTION 

The XY-actuator in study comprehends a ferromagnetic 

slotless core on the top of which two sets of planar windings 

are placed. The former are orthogonal with respect to each 

other and have four sections each. The mover is the moving 

part of the actuator, and holds two high energy product 

permanent magnets and a back iron that are above the working 

plane of the actuator across the air-gap, Fig. 1 [1].   

 
Fig. 1. Perspective view of the actuator and its parts. 

II. FEATURES OF THE XY-ACTUATOR 

    The movement over its working plane, with two degrees of 

freedom, occurs when the coils of the armature phases located 

under the permanent magnets are properly fed with currents. 

The actuator relies also on a 3D distribution of the magnetic 

flux density in its magnetic circuit [1]. Owing to the velocity of 

the mover that moves the excitation field over the armature 

core, an electromotive force is produced on that core. As a 

result, currents are induced in the ferromagnetic core. These 

currents and their distribution depend on the resistivity and on 

the permeability of the core material. One effect of such 

induced currents will be a breaking force acting on the car to 

oppose its movement. Additionally, the core will be heated by 

them. These two aspects can determine the performance of the 

actuator. The reduction of the velocity-induced currents as 

described and their effects can be obtained by employing an 

isotropic grain-insulated composite magnetic material as 

material core. Hence, a soft magnetic composite, i.e. Somaloy 

500, is considered [3]. For comparison, two different slab-type 

cores are tested: one made of AISI 1020 steel, and other of 

Somaloy 500, Table I.   
 

TABLE I 

PARAMETERS OF THE ARMATURE CORES UNDER TEST [2] 

Quantity AISI 1020 Somaloy 500 

Maximum relative permeability 3,800 500 

Resistivity (m) 0.1862 40.03823 

Density (g/cm3) 7.85 7.3356 

III. VELOCITY-INDUCED EDDY CURRENT 

    The motion of the mover over the top face of the armature 

core causes the appearance of magnetically induced eddy 

currents in that core. Besides heat, the effect produces a 

second planar force that opposes the movement of the mover. 

The equation that sets the density of the induced eddy current, 

J , may be given by (1) [3]. 

                             ( )J E v Hoσ µ= + ×
   

                             (1) 

    In (1) σ  is the electrical conductivity of the armature core, 

E


 is the electric field, v


 is the velocity of the mover with 

respect to the armature core, 0µ  is the permeability of the air 

and H


 is the excitation magnetic field produced by the 

permanent magnets. In order to reduce those currents and, at 

the same time, maintain the benefit of the 3D distribution of 

the magnetic field, the use of an isotropic grain-insulated such 

as soft magnetic composite is taken into account. 

     A dynamic analysis carried out by means of a finite element 

analysis allowed to compute the distribution of the density of 

the induced current, J, in the core, as a function of the velocity 

of the mover. The region under the mover analyzed is where 

the structure has the largest concentration of magnetic flux 

density and can be visualized in the fig. 2. 

    Table II shows the results gathered from the numerical 

analysis for the velocity-induced current under the same air-

gap flux distribution for both cores employed one at a time. 

That current is considered through the cross section of the 
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13. EDUCATION 

armature core defined in between the projected centers of 

permanent magnets and the thickness of the slab core. 

 
Fig. 2. View of the area monitored to show the electrical current density. 

  

TABLE II 

COMPUTED VELOCITY-INDUCED ELECTRICAL CURRENT 

Computed induced current (A) Mover velocity (m/s) 

AISI 1020 Somaloy 500 

0.05 1.61004 0.07837 

0.10 2.37128 0.11274 

0.15 3.24823 0.16762 

 

    Another important detail is that the depth the induced 

currents penetrate the core are affected by the frequency of 

flux variation, the electrical conductivity and the magnetic 

permeability of the material. It decreases when the frequency 

increases, or the magnetic permeability increases, or when the 

electrical conductivity rises.  
    These results are computed a velocity of 15m/s for the 

mover. Figure 4 shows the results for the two different 

materials [1]. The values presented in the fig. 3 are RMS 

figures for the electrical current density.   

    It is important to observe two important aspects. It is 

possible to see that the current density is much larger when the 

AISI 1020 is used in the armature core; that happens once its 

electrical resistivity is lower than the one for the Somaloy 500. 

Another aspect that deserves comment is that, due the higher 

magnetic permeability of the AISI 1020 steel, the closer to the 

air-gap, the larger the concentration of induced current in the 

core; however, when Somaloy 500 is used the current is less 

concentrated in the region close to the top of the armature 

core. That is explained by the skin effect. 

 

IV. CONCLUSION 

For the sake of a comparative study, AISI 1020 steel and 

Somaloy 500 were separately employed in the armature core 

of an XY-actuator. Although both allow a quite similar static 

propulsion force, the braking force resulting from velocity-

induced eddy currents is smaller in the XY-actuator with 

Somaloy 500. That is explained by a larger resistivity of that 

core material. An overall friction coefficient that takes into 

account the mechanical friction and the electromagnetic 

braking force produced by the velocity-induced eddy currents 

is proposed and shows coherent figures. Moreover, the SMC, 

as an isotropic material, favours a 3D flux density distribution 

which the XY-actuator relies on. 

 
(a) 

 
(b) 

Fig. 3. Distribution of the induced current density in the armature core 

composed when the mover is movement with velocity of 0.15m/s with core 

material: (a) AISI 1020 and (b) Somaloy 500. 
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Abstract- This paper presents least squares support vector 

machine (LS-SVM) neural networks as a new tool to develop the 
model of the Switched Reluctance Starter/Generator (SRS/G). 
The basic premise of LS-SVM regression is that it forms a very 
efficient mapping structure for the nonlinear phase flux linkage 
and torque characteristics of SRS/G. The LS-SVM models are 
comprised of magnetization data with rotor position and phase 
current as input, and the corresponding flux linkage and torque 
as output. A LS-SVM current-flux-linkage-position model and a 
LS-SVM torque model are then used to simulate the dynamic 
performance of SRS/G, and the accuracy of the model is tested 
via comparison to the measurements of steady state waveforms. 
Both the simulation and experimental test results for a 0.55kW 
6/4 SRS/G system on a digital platform at the starting and 
generating modes are also presented along with useful guidelines 
for electric starter/generator implementation. 

I.  INTRODUCTION 
The simply structure, low cost, and the absence of windings 

and permanent magnets on the rotor of a switched reluctance 
machine (SRM) makes it a viable candidate for various 
general purpose adjustable speed and operation in harsh 
environments as a generator. The development of a SRS/G 
system demands a good computer simulation model to reduce 
the expensive and time consuming experimental stage. This 
paper presents Least Squares Support Vector Machine 
(LS-SVM) as a new tool to develop the flux linkage current 
position and torque current position characteristics of the
SRS/G. The sampled data sets obtained from experimental 
SRS/G by measurement and calculation via co-energy method, 
are comprised of magnetization data with position and current 
as inputs and the corresponding flux linkage and torque as 
outputs. Compared with the models based on artificial neural 
networks (ANN) methods, the proposed model has better 
capability of generalization and better convergent speed. The 
accuracy of the model is tested via comparison to the 
laboratory measurements of the machine’s steady state current 
waveforms and torque-speed characteristics.  

   II. MATHEMATICAL MODEL OF SRS/G 
This section firstly describes the basic operation principle 

of SRS/G and then gives an indirect method of obtaining the 
flux linkage and torque by experimental test calculation. The 
schematic diagram of the experimental setup to obtain the 
instantaneous voltage and instantaneous current for flux 
linkage determination is shown in Fig.1. The flux linkage 
versus different rotor positions and phase current, obtained are 
shown in Fig.2(a). Then, the static torque-current-position

characteristic can be calculated by derivative of co-energy via 
the principle of virtual displacement, which is shown in 
Fig.2(b). 
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      Fig.1 Experimental setup to obtain flux linkage of SRS/G 
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Fig.2 Flux linkage and torque characteristics of SRS/G: (a) flux linkage; (b) 
torque 

III. MODELING FOR SRS/G BASED ON LS-SVM 

This section presents least square support vector machine 
(LS-SVM) as a new toll to develop the model of flux 
linkage-current-position and torque-current-position models 
for the SRS/G. 
A. Least Square Support Vector Machine 

The discriminant function of LS-SVM classifier is 
constructed by solving the following minimization problem: 

       2

1

1 1min
2 2

n

i
i

J w w eγ
=

= ⋅ + ∑             (1) 

s.t.  ( )i iy w x b eφ= ⋅ + + ,  i=1,…,n      (2) 
where γ is the regularization factor and ei is the difference 
between the output yi and f(xi). Using Lagrange function, the 
estimation function becomes: 

1
( ) ( , )

n

i i
i

f x K x x bα
=

= +∑             (3) 

B．Application of LS-SVM for SRS/G modeling 
The LS-SVM approximates the nonlinear function using 

the equation (3). The Gaussian radial basis function (RBF) 
kernel is 

( )2 2( , ) exp || || / 2i iK x x x x δ= − −          (4) 

  The LS-SVM has adapted for calculation of the flux 
linkage and torque of SRS/G. For the LS-SVM, the inputs are 
rotor position θ and current i, and the output are flux linkage 
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ψ and torque T. The LS-SVM model used for calculating the 
phase flux linkage and torque are shown in Fig.3. 

1

( ) ( , )
n

i i
i

f x K x x bα
=

= +∑
i
θ

ψ

1
( ) ( , )

n

i i
i

f x K x x bα
=

= +∑
i
θ

T

 
(a) flux linkage calculation        (b) torque calculation 

Fig.3 LS-SVM models for calculation flux linkage and torque 

In this paper, the measurement flux linkage data and 
calculation torque data were used to generate sample data for 
training the LS-SVM and the data were shown in Fig.2. After 
the training is completed, the LS-SVM models of flux linkage 
and torque surface versus the rotor position and phase current 
are shown in Fig.4. The comparison of simulation results by 
ANN and LS-SVM models are shown in table I. 
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Fig.4 LS-SVM models of flux linkage and torque characteristics: (a) flux 
linkage; (b) torque 

TABLE I  COMPARISON OF SIMULATION RESULTS BY ANN AND LS-SVM 
MODEL FOR FLUX LINKAGE 

Number of 
sample data 

Modeling methods  
and parameters εmae/Wb εrms/Wb CPU/s

ANN(ε=0.001,δ=0.4) 0.0487 0.0258 23.66 
248 

LS-SVM(ε=10000,δ=0.4) 0.0085 0.0046 2.38 
ANN(ε=0.001,δ=0.4) 0.0102 0.0076 58.37 

496 
LS-SVM(ε=10000,δ=0.4) 0.0013 0.00045 4.12 

V. SIMULATION AND EXPERIMENTAL RESULTS 
In order to validate the accuracy of this model, this section 

uses machine variable waveforms and several characteristic 
curves predicted by the model for comparison with the actual 
machine data. Fig.5 shows the schematic diagram of the 
systematic simulation. The simulation algorithm includes an 
LS-SVM current-dependent inverse flux linkage model i(ψ, θ) 
to estimate current from flux linkage and rotor position, and 
an LS-SVM torque model T(i, θ) to estimate the torque from 
phase current and rotor position.  
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Fig.5 Schematic diagram of the systematic simulation 

1）Steady state waveforms: Fig.6 shows a comparison of 
measured current and simulated phase current at the starting 
mode. Fig.7 shows a comparison of measured current and 

simulated phase current when the machine was operated at the 
generating mode.  
2) Average torque versus speed: Accurate prediction of the 
average torque versus speed characteristics of the SRM is 
crucial. Measurements were taken for dc voltages of 90V and 
150 V at speeds ranging from 600 to 1200 r/min. Fig.8 depicts 
torque–speed data at the two dc voltages. The maximum 
deviation between the simulated and measured curves is lower 
than 10%. 
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Fig.6 Measured and simulated results at the starting mode with 950rpm and 
120V: (a) phase current; (b) energy conversion loop 
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Fig.7 Measured and simulated results at the generating mode with 1100rpm 
and 100V: (a) phase current; (b) energy conversion loop 
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Fig.8  Average torque versus speed  

VII. CONCLUSION 
This paper has presented a new idea and the procedure to 

use least squares support vector machine (LS-SVM) networks 
to model SRS/G. The LS-SVM models are comprised of 
magnetization data with rotor position and phase current as 
input, and the corresponding flux linkage and torque as output. 
Compared with the models based on artificial neural networks 
(ANN) methods, the proposed model has better capability of 
generalization and better convergent speed. Using the 
LS-SVM current model and LS-SVM torque model, a 
dynamic performance model for 6/4 SRS/G is constructed. 
The simulation and experimental results are presented to 
verify the effectiveness of the proposed modeling method. In 
addition, the experimental results are shown to demonstrate 
that the proposed method can be ideal for practical 
implementation of SRS/G system. 
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11. ELECTRIC MACHINES AND DRIVES

Abstract — This paper discusses an accurate magnetic field 
analysis that elasto-plastic deformation in the magnetic core by 
using the finite-element method (FEM) to estimate motor 
characteristics. This analysis method consists of the following 
steps: 1) measurement of the magnetic characteristics of 
electrical steel sheets in a state where plastic strain and elastic 
stress are added; 2) calculation of strain distribution and stress 
distribution using structural analysis; 3) preprocessing of the 
magnetic field analysis, which generates the FEM mesh taking 
account of the changes of the magnetic properties in each of the 
core elements corresponding to strain and stress distribution; 
and 4) magnetic field analysis using the data measured in step 1) 
and the FEM mesh generated in step 3). As an example, a result 
of a permanent magnet motor's cogging torque calculation is 
shown, focusing on elasto-plastic deformation due to stamping 
electrical steel sheets when the stator core of motor is 
manufactured

As a result, the cogging torque waveform was shown to differ 
depending on the strain and stress in the magnetic core when the 
electric steel sheets of motor core are stamped by metal mold.  

I. INTRODUCTION

The permanent-magnet synchronous motor (PM motor) is 
widely used in industrial drives, automotive applications, and 
traction machines for elevators due to its high performance. 
The electric steel sheets of PM motor are often stamped by 
metal mold in order to raise the productivity. On the other 
hand, the magnetic characteristics of electrical steel sheets in 
the strain and stress condition due to stamping are known to 
be inferior to those in the normal condition [1], but few 
examinations have reported on the relationship between stress 
and motor characteristics; up until now, quantitative analysis 
of the cogging torque or the torque ripple arising from strain 
has not been seen. 

In this paper, we discuss an accurate finite-element 
analysis for estimating motor characteristics, focusing on 
elasto-plastic deformation in the magnetic core. First, we 
measured the magnetic characteristics of a single sheet 
specimen under a strain and stress condition, and using these 
data we conducted a magnetic field analysis concerning the 
distribution of the magnetic characteristics resulting from 
strain and stress. As an example, we showed a result of the 
cogging torque calculation of a PM motor, examining strain 
and stress in the electrical steel sheets when the stator core of 
motor is manufactured. 

II. DEVELOPED COMBINED SYSTEM OF STRUCTURAL ANALYSIS 

AND MAGNETIC FIELD ANALYSIS 

Taking strain and stress distribution into account, we 
developed a combined system of structural analysis and 
magnetic field analysis. Fig. 1 shows the flow of the 
developed motor analysis system. This method consists of the 
following four steps: 
1) measurement of the magnetic characteristics of the 
electrical steel sheets in the condition where strain and stress 
is added; 
2) calculation of strain and stress distribution using structural 
analysis when the electric steel sheets of motor core are 
stamped by metal mold; 
3) preprocessing of the magnetic field analysis, in which the 
finite-element method (FEM) mesh is changing the properties 
of each mesh in the stator core corresponding to the strain and 
stress distribution; 
4) magnetic field analysis using the measured data obtained in 
step 1) and the FEM mesh generated in step 3). 
Several expressions of stress value can be used in the stress-

mapping process of this system, e.g., principal stress, which 
means the vector value, or the von Mieses stress, which 
expresses the stress in each element as a scalar value. In this 
paper we use the von Mieses stress. 

Fig. 1  Flow of motor characteristic analysis considering strain and stress 
distribution in stator core 
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11. ELECTRIC MACHINES AND DRIVES

III. MEASUREMENT OF MAGNETIC CHARACTERISTICS UNDER 

ELASTO - PLASTIC STRAIN AND STRESSED CONDITION 

In order to add a uniform strain distribution to electric 
steel sheets, we prepared the tensile test piece in Fig 2. And a 
single sheet test pieces is produced by wire cut after the tensile 
test. A single sheet test pieces is add an elasto-strain of 0% 
and 5% by the tensile test. Fig. 3 and 4 show the example of 
the measured data. Fig. 3 shows BH-Curve versus applied 
strain, Fig. 4 shows relative permeability versus applied strain 
and applied stress at magnetic flux density 1.0 T. The core 
grade of the magnetic steel sheet is 35A230 (JIS C 2552), and 
the measured frequency is 50 (1/s). These figures show that 
the BH-Curve and relative permeability under a strain and 
stressed condition is inferior to the normal (unstrain and 
unstress) condition; in particular, the characteristics under 
compressive are worse rather than those under tensile stress. 
For a combined analysis, we need to measure more data for 
different magnetic flux densities. 
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Fig. 2  Tensile test piece 
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IV. SPECIFICATION OF ANALYSIS MODEL 

AND CALCULATION RESULTS  

In this paper, we tried to estimate the cogging torque 
resulting from strain and stress, when the stator core is 
stamped by metal mold. The verification model is shown in 
Fig.5. We examine the PM motor having 8 poles and 12 sator 
slots.

Firstly, we calculate the strain and stress distribution of the 
motor core due to stamping using structural analysis. The 
calculated result is shown in Fig.6. The figure indicates that 
the stress of the motor core is growing in the edge of core. 
Secondly, the FEM mesh for the magnetic field analysis was 
generated using the result of structural analysis i.e., the 
properties of each of the core elements were changed 
according to the distributed elastic strain and plastic stress 

value. The calculated results of cogging torque by magnetic 
field anaysis are shown in Fig. 7. This figure indicate the 
cogging torque with strained and stressed core due to 
stamping is greater than that with the normal (unstrain and 
unstress) core. 

Fig.5 Verification model 

Fig.6  Calculation result of contour map of stress distribution in stator teeth 

-60

-40

-20

0

20

40

60

0 60 120 180 240 300 360

Rotation Angle (Degree)

C
og

gi
ng

 T
or

qu
e 

(m
N

m
) normal(unstrained) core

strained and stressed core

Fig. 7  Calculation Results of Cogging Torque 

V. CONCLUSION

In this paper, we proposed an accurate finite-element 
analysis for estimating motor characteristics, focusing on 
elasto-plastic deformation in the magnetic core. Taking strain 
and stress distribution into account, we developed a combined 
system of structural analysis and magnetic field analysis. And, 
we then measured the magnetic characteristics of the electrical 
steel sheets under a strain and stressed condition. Using this 
method, we tried to estimate the cogging torque of a PM 
motor resulting from strain and stress generated in the stator 
core at stamping. As a result, we showed that the cogging 
torque waveform differed depending on the strain and stress in 
the stator core when electric steel sheets of motor core are 
stamped by metal mold. 
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11. Electric Machines and Drives 

Abstract — In this paper the radial forces in an induction 
motor are calculated using finite element analysis. These radial 
forces (or unbalanced magnetic pull - UMP) are generated when 
the rotor is eccentric. The work illustrates the importance of 
higher winding harmonics and rotor differential leakage in the 
starting UMP. Examples of a 6 pole machine with 26 and 40 bar 
rotors show that increasing the bar number and air-gap length 
will reduce the UMP.   

I. INTRODUCTION – CAUSES OF RADIAL FORCE

Radial forces, or unbalance magnetic pull (UMP) is caused 
by the concentration of air-gap flux so that it asymmetrical. If 
the rotor is eccentric (not centered) then the flux will be 
concentrated around were the air-gap is narrowest. In terms of 
mathematical breakdown it was shown in [1] that in a 
cylindrical machine this concentration can be represented by 
flux waves with pole-pair numbers differing by one. There is 
much literature that focuses on the calculation of UMP, both in 
terms of analytical calculation and finite element analysis 
[2][3][4]. The standard approximation considers only the 
radial air-gap flux to produce normal stress where 

2

02
nbσ
µ

= (1) 

However Binns and Dye [5] suggested that, while the 
tangential components are small, there is still up to a 10 % 
UMP component due to the tangential stress. More accurately, 
the sheer and tangential stresses are 

2 2

02
n tb bσ

µ
−

=  and 
0

n tb bγ
µ

=  (2) 

where bt is the tangential air-gap flux density. Dorrell [6] has 
shown that there is up to 10 % variation of UMP due to the 
tangential components using finite element analysis (FEA). 
These can be used to calculate the UMP in orthogonal 
directions using stress integrals around the air-gap: 

( ) ( )( )2

0
cos sin

r

dF L ky ky dy
π

σ γ= −∫  (3) 

( ) ( )( )2

0
sin cos

r

qF L ky ky dy
π

σ γ= +∫  (4) 

This assumes that y is the tangential direction, x is the radial 
direction, bt is positive in the counter-clockwise direction and 
bn is positive when flowing out in the radial direction; k is the 
inverse of the mean air-gap radius while L is the axial core 
length. In this paper a finite element analysis is carried out and 
(1) is implemented (first terms of (3) and (4) integrals) in a 
step-wise fashion since it is a valid approximation. 

The literature contains little about UMP in cage induction 
motors when starting. Dorrell gave some results for a 10-pole 
machine at low voltage [7]. This is an analytical simulation 
and dates from 1994 when FEA of this problem was difficult. 
This simulation includes higher winding harmonic flux waves 

but did not include the rotor differential flux waves in the 
UMP calculation. The machine had 90 stator slots (18 slots per 
pole-pair – which is the same as the 6-pole machines 
investigated here) and 80 rotor bars (which is 16 rotor bars per 
pole-pair, which is a very popular bar number per pole-pair; 
this compares to 8.67 bars per pole-pair for a 6-pole 26-bar 
rotor machine and 13.33 bars per pole-pair for a 6-pole 40-bar 
machine – these arrangements are investigated here).  

Different types of eccentricity need to be addressed. Static 
eccentricity is where the rotor rotates on its own axis but is off-
centre from the stator bore. This can be caused by misplaced 
bearings or alignment. Dynamic eccentricity is where the rotor 
is not rotating about the rotor centre but is rotating on the 
stator bore centre. This could be caused by a bent shaft. 
Obviously static and dynamic eccentricity can exist together 
and Burakov and Arkkio [2] studied eccentricity (with FEA 
analysis) in general terms of a rotating eccentricity which does 
not correspond to rotor speed. However, this only really 
becomes relevant at higher speed and rated load. This was 
illustrated by Dorrell [8]. At low speed the air-gap is 
dominated by the higher winding harmonic flux waves (which 
are undamped by the rotor because the bar number is usually 
close the harmonic number) and also the rotor differential flux 
waves (which increase with slip and tend to saturate the tooth 
tips of the stator and the rotor surface).  

Fig. 1 Flux plots for 26 bar and 40 bar rotor at 75 % eccentricity. 

II. 6-POLE MOTOR ARRANGEMENT

Some induction machines have marked differences from 
normal power drive machines. High-voltage submersible 
machines exist with hydrodynamic bearings for underwater 
operation. One of the properties of the hydrodynamic bearings 
is that there is a large degree of inherence rotor eccentricity 
compared to standard drive motors which means the air-gap 
has to be larger. In this paper an initial 26 bar rotor (air-gap of 
1.7 mm) is studied – this had excessive UMP; while a further 
40 bar rotor is studied with an increased 2 mm air-gap. This 
will give lower UMP because, for a given rotor movement, the 
per-unit eccentricity is less and UMP is more a function of the 
per-unit eccentricity. 
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Fig. 1 gives the UMP simulations for these machines when 
the rotors are up to 75 % eccentricity (1.5 mm for 40 bar rotor 
and 1.275 mm for 26 bar rotor). The aim of this work is to 
identify the UMP that will cause hard pull-over of the rotor 
against the stator. At start there is no differentiation between 
static and dynamic eccentricity. The 40 bar and 26 bar 
machines were studied under locked rotor conditions using 
magneto-static FEA (with the current in the rotor calculated 
using an analytical calculation tool) and an analytical 
algorithm [1]. It is possible to develop full transient time-
stepped FEA models [2]; these are very time consuming both 
in terms of development and run. While magneto-static FEA 
should be used with prudence for an induction machine. The 
analytical calculation tool calculates a good value for the rotor 
current vector, even under locked and saturated conditions, 
which makes it suitable for carrying forward for use as the 
rotor current vector in a magneto-static FEA. In addition, the 
rotor damping currents of the main 6-pole MMF-sourced flux 
waves will be limited because the main 6-pole flux wave is 
small at start. 

The initial results, which compare the FEA, analytical 
algorithm and a typical rotor deflection line for rotor with 
hydrodynamic bearings, are summarized in Fig. 2 with the 26 
bar rotor having much higher UMP. The reasons for the 
different UMP characteristics are due to the increase in rotor 
bars, which will increase the damping of the lower pole 
number air-gap flux waves [7] and also decrease in rotor 
differential waves (which dominate the flux waves – this has 
not been reported in the literature before), and the increase in 
air-gap length. In Fig. 3, it can be seen that for both the 26 bar 
and 40 machines there are harmonics due to the stator winding 
at 15, 21, 51 and 57. For the 26 bar machine there are 
substantial harmonics due to rotor differential at 23, 29, 49 and 
55. This is also further modulation of the first slot passing 
frequencies and differential to give 25 (51-26) and 31 (57-26). 
For the 40 bar machine there are first rotor differentials are 37 
and 43 harmonics while there is first modulation of the slot 
passing frequencies at 11 (51-40) and 17 (57-40). There are 
several other harmonics for the machines which may be due to 
further modulations or possibly from numerical variance. 
When the rotor becomes eccentric additional flux waves either 
side of the main flux waves appear. 

Further air-gap flux waves can be analyzed which illustrate 
the flux variation over speed and voltage. This shows the air-
gap flux to be very variable in terms of harmonic make-up and 
hence the UMP is difficult to calculate, susceptible to 
continual variation and a function of core saturation. Hence 
there is variation between the FEA and analytical method from 
[1] in Fig. 2. 

III. CONCLUSIONS

This paper assesses the UMP in a 6-pole induction motor 
with either 26 and 40 bar rotors with rotor eccentricity. It 
illustrates that at start the air-gap flux is dominated by the 
higher flux waves including the rotor differential waves. Hence 
increasing the bar number will decrease the UMP. This paper 
presents some new information on UMP in cage induction 
machines that has not appeared in the literature. 
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Abstract — Temperature rise of the form-wound multi-
conductor stator winding of a 1250-kW cage induction motor was 
analyzed resulting from the eddy currents in the winding. The 
eddy current was modeled using time-discretized finite-element 
analysis (FEA). The resistive losses in each of the conductor 
obtained from the FEA are used as input for thermal modeling. 
The distance from the air gap to the topmost bar in the stator has 
a significant effect on the eddy-current loss as well as 
temperature rise in the winding. An acceptable distance for 
winding design was recommended. By using magnetic slot 
wedges the eddy-current losses can be reduced. 

I. INTRODUCTION

The eddy-current losses increase with the high-frequency 
harmonics of power supply. The loss determination has an 
important role in both design and use stages. The heating 
sources in a motor come from the losses. The consideration of 
the temperature rise is necessary to check whether the motor 
design is suitable or not. Numerical methods have been used 
to compute the losses, and then analyze the temperature rise in 
the electrical machines in recent years [1-2]. The time-
stepping finite element analysis (FEA) is required to estimate 
the losses due to high-order harmonic fields [3]. 

In this paper, the eddy-current losses in a multi-conductor 
stator winding of an inverter-fed cage induction machine are 
modeled. Secondly, the thermal analysis is performed on the 
basis of the average loss density of each stator bar. The 
installment of the magnetic wedges at the slot opening is a 
simple way to reduce the temperature rise.  

II. EDDY-CURRENT LOSSES IN STATOR WINDINGS

The two-dimensional (2-D) electromagnetic model is used 
to model the eddy currents in a cage induction machine [3]. 
The electromagnetic field in the multi-conductor winding is   

b

1

1
( ) 0

Q

j j z
j

AA u e
t l

ν σ ση
=

⎛ ⎞∂
∇× ∇× + − =⎜ ⎟

∂ ⎝ ⎠
∑       (1) 

where ν, σ – reluctivity and conductivity of conductor, A – 
magnetic vector potential, l – effective length of stator, bQ –

number of bars in stator winding, ju – the potential difference 

of stator bar j, jη is defined as follows 

1 if the point belongs tostator bar

0 otherwisej

j
η

⎧
= ⎨
⎩

A separate voltage equation is considered for the bar. This 
voltage equation strongly couples the field and circuit 
equation of the phase. The equations are discretised in time 
using backward Euler method. These equations are solved 
using Newton-Raphson method. 

The stator resistive loss tP  includes the resistive loss of 

stator bar sbP and the end-winding resistive loss ewP . The 

eddy-current loss eddyP is the difference between the total 

resistive loss and DC resistive loss. 

t sb ewP P P= +              (2) 
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= −∑            (5) 

J– current density, ji – phase current in stator bar j, sQ –

number of symmetry sectors. sR  and eR are one phase DC 

resistances of the end-winding region and stator bar. 

III. THERMAL ANALYSIS OF STATOR WINDING

The heat conduction of the solid conductor bars in the 
stator winding at the steady state obeys Gauss’ law [4]. 

loss.( )T pλ−∇ ∇ =             (6) 

  where lossp – power loss density, λ – thermal conductivity.  

A 2-D finite element model is built to consider the heat 
flow in the stator slot. The temperature T over a solution 
domain solved from (6) shows the thermal distribution in the 
stator winding. The heating sources are the average resistive 
losses in each conductor of the stator winding. 

IV. RESULTS

A PWM inverter fed three-phase cage induction motor 
690V, 1250 kW is used to consider the eddy-current losses 
and thermal distribution in the stator winding. The simulations 
are performed according to the distances from air gap to the 
conductor sbh  (the radial positions of the stator bar) in the 
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11. Electric Machines and Drives 

case of with and without the magnetic slot wedges installed at 
the slot opening. The stator bars are systematically transposed 
to reduce the effect of the circulating currents. 

A. Eddy-current losses 
The AC resistive losses decrease dramatically when the 

radial position sbh  is increased from 0.8 to 11.8 mm as shown 

in Fig. 1.  This variation mainly comes from the dependence 
of eddy-current losses on sbh in Fig. 2. 
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Fig. 1. AC and DC stator resistive losses at different radial positions. 

The eddy-current losses in the stator slots can be reduced 
by installing the magnetic wedges at the slot opening. The 
thickness of magnetic slot wedges is varied from 0.5 to 5 mm 
when sbh is increased from 0.8 to 5.8 mm. The thickness of 

wedges 5 mm is kept constant when sbh is larger than 5.8 mm. 
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Fig. 2. Eddy-current losses at different radial positions.

B. Temperature rise 
The temperature-rise analysis is performed by using public 

domain software FEMM [4]. The volume heat generation is 
calculated from the average AC resistive-loss density in each 
stator bar. The temperature-rise distributions in the stator slot 
without and with the magnetic wedge are shown in Fig. 3. 

Fig. 4 shows the maximum and average temperature rise in 
the stator slot according to the radial position of stator bars. 
The design of the stator winding is reasonable when the 
difference between the maximum and average temperature 
rise is smaller than 10 K. The presence of magnetic wedges 
helps reducing the maximum temperature rise or this 

difference. The radial position has to be larger than 5.8 mm or 
larger 4.8 mm in case of without or with the magnetic slot 
wedges installed. 

                                 
                      (a) without wedge        (b) with wedge 

Fig. 3. Temperature-rise distribution in the stator slot at sbh = 5.8 mm. 
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 Fig. 4. The maximum and average temperature rise in the stator slot. 

V. CONCLUSIONS

The eddy-current losses strongly depend on the distance 
from air gap to the stator bars. The magnetic wedges installed 
at the slot opening make it possible to reduce the eddy- current 
losses or heating dissipation in the stator windings. The 
goodness of winding design for an inverter-fed large induction 
machines can be pre-examined via a coupled electromagnetic 
and temperature-rise analysis. 
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Abstract — In this abstract, the authors present a cogging 
torque determination by a new two-dimensional (2-D) semi-
analytical solution of the magnetic field taking into account the 
slotting effect in surface mounted permanent-magnet (PM) 
motors (SMPMM). The cogging torque waveforms is compared 
with the finite element analysis (FEA) for radial and parallel 
magnetized PMs. The analytical results are in very good 
agreement with those obtained by the FEA, considering both 
amplitude and waveform. 

I. INTRODUCTION 
In a PM Brushless motor which consists of the magnet 

poles and slotted stator core, there exists the cogging torque. It 
can be the sources of speed pulsation, vibration, and acoustic 
noise…[1]. As electromagnetic forces result from the 
interaction between the rotor and the stator through the no-load 
magnetic field in the air-gap, an accurate prediction of the 
instantaneous local magnetic field taking into account the 
slotting effect is essential. In [2], Zhu et al. presents and 
compares six alternate analytical models for cogging torque 
prediction. In this paper, the authors propose another 
alternative approach for cogging torque evaluation by using 
the results of a new 2-D semi-analytical solution [3], which 
determines the no-load magnetic field distribution in the air-
gap taking account into the slotting effect. The cogging torque 
waveforms predicted by this new approach of the slotting effect 
(and calculated for both radial and parallel magnetization) have 
been compared with the FEA [4]. The semi-analytical results 
are in very good agreement with those obtained by the FEA, 
considering both amplitude and waveform. 

II. A 2-D NEW SEMI-ANALYTICAL SOLUTION [3] 

A. Problem Description and Assumptions 
Fig. 1 shows the geometric representation of the multi-pole 

SMPMM for the new 2-D semi-analytical solution used to 
study the effect of the stator slotting. The main parameters of 
this geometry are: the radius of the stator yoke surface, syR , 
the radius of the stator surface, sR , the radius of the PMs 
surface, mR , the radius of the rotor yoke surface, rR , the 
mechanical angle of PMs, m , the mechanical angle of a 
stator slot-opening, o , the mechanical angle of a stator tooth-
pitch, t , and the mechanical angle of a pole-pitch,  p . 

The authors make the following assumptions which are 
usual in many models of the literature: i) End-effects are 
neglected; ii) The stator and rotor back-iron is infinitely 
permeable (i.e., the magnetic saturation is neglected); iii) The 
electrical conductivity of the PMs is assumed to be null to 
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Fig. 1.  Cross section of one pole pitch of the multi-pole SMPMM. 

calculate the no-load magnetic vector potential (i.e., no 
resolution of Diffusion's equations); iv) The PMs are assumed 
to be nonoriented (with no particular direction of 
magnetization), isotropic, and having a linear demagnetization 
characteristic (rare earth magnets); v) Radial slot faces on the 
stator. 

B. No-load Vector Potential Determination 
The new semi-analytical solution is based on 2-D analysis 

in polar coordinates, and involves the solution of Laplace’s 
equations in the air-gap (i.e., concentric region) and in the 
slots on the stator (i.e., non-concentric regions) and the 
solution of Poisson’s equations in the PMs (i.e., concentric 
region) [see Fig. 1] with constant magnetic permeabilities. The 
no-load magnetic field solutions with the slotting effect are 
obtained by using the Fourier’s series and the method of 
separating variables. However, it now caters for i) internal 
rotor motor topology; ii) radial and parallel magnetization; 
iii) curvature effect; iv) depth of the slots.

 

 
The no-load flux density, in each region, has been 

compared to the FEA calculations, and the agreement was 
quite satisfying (considering both amplitude and waveform). 
The no-load vector potential can be expressed in the PMs, i.e., 
in Region 1, by 

   z1 rm m z1n 1n 1n sA B R f E ,G ,r, , (1) 

in the air-gap, i.e., in Region 2, by 

   z2 rm m z2n 2n 2n sA B R f E H ,r, , (2) 

in the slots on the stator, i.e., Regions i, by 

   zi rm s ziv iv sA B R f F ,r, , (3) 

where rmB  is the remanent flux density of PMs; r and s  are 
respectively the radial position and the mechanical angular 
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position of the stator; z1nf , z2nf  and zivf

 

are the functions in 
Fourier's series which depend respectively on the integration 
constants 1nE  & 1nG  in Region 1, 2nE  ~ 2nH  in Region 2, 
and ivF  in Regions i. In these equations, n and v represent 
respectively the spatial and the slotting harmonic orders. 

The integration constants in each region are determined by 
numerically solving the linear equations (i.e., the Cramer’s 
system) for each rs  (with rs  the mechanical angular 
position between the rotor and the stator). The Cramer's 
system, detailed in [3], for each rs  is based on 

   max p max6 n 1 Q v 1      equations and unknowns with 

maxn  and maxv  terms in the Fourier's series for the 
computation of z1A , z2A  and ziA . 

III. COGGING TORQUE CALCULATION 
The cogging torque is calculated by multiplying the 

Maxwell stress tensor at the stator surface by sR  and 
integrating it over the stator surface, i.e., 

p

r Rsp

s z2 z2
c s

0 s

p R L A AT d
r






 

   
    

  , (4) 

where p is the number of pole pairs, 0  is the vacuum 
permeability, and L  is the effective axial length of the motor. 

By using (2), the cogging torque can be defined by 
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where 2
cyl sV R L    is the exchange volume of the stator, and 
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It can be noted that the harmonic function Tf  is equal to 
zero for the slotless motors equipped with surface mounted 
PMs and in this case the cogging torque does not exist. 

IV. COMPARISON WITH FINITE ELEMENT SIMULATIONS 
The cogging torque evaluation has been applied to a 

SMPMM, whose main characteristics are given in the Table I. 
Fig. 2 shows the cogging torque waveforms, under a tooth-
pitch, with radial and parallel magnetized PMs. The semi-
analytical results are in very good agreement with those 
obtained by the FEA, considering both amplitude and 
waveform. The new semi-analytical solution takes significantly 
less computing time than the FEA. In this comparison, the 
Cramer's system in [3] has 486 elements (i.e., with maxn 49  
and maxv 30 ) which is much smaller than the FEA having 
6,000 surfaces elements for the studied SMPMM. 

TABLE I 
PARAMETERS OF SURFACE MOUNTED PM MOTOR 

Parameters Values Unit 
Number of pole pairs, p  1 – 
Total number of slots, sQ  12 – 

Magnet pole-arc to pole-pitch ratio, p m p    100 % 

Stator slot opening to tooth-pitch ratio, o o t    33.33 % 

Radius of the stator yoke surface, syR  37 mm 

Radius of the stator surface, sR  20 mm 

Radius of the PMs surface, mR  19 mm 

Radius of the rotor yoke surface, rR  14 mm 
Axial length, L  45 mm 
Remanent flux density of the PMs, rmB  1.13 T 

Relative magnetic permeability of the PMs, rm  1.029 – 
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Fig. 2.  Comparison of the cogging torque waveforms calculated numerically 

by FEA and semi-analytically by 2-D new approach of the slotting effect. 

V. CONCLUSION 
A new 2-D semi-analytical solution of the magnetic field 

taking into account the slotting effect has been used to 
determine the cogging torque in SMPMM. This general 
approach is mathematically more rigorous than the method 
based on the Schwarz-Christoffel transformation [5] which 
gives a 2-D complex permeance functions. Moreover, the 
semi-analytical solution can be a useful tool for design and 
optimization of multi-pole SMPMM, for example to minimize 
the cogging torque. 
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Abstract—Nowadays, the postprocessing and visualization of
finite element solutions is performed by means of static for-
mulations and methods. Dynamic modifications and interactive
exploration of 3D solution data are only possible in a very limited
way. In this paper, an interactive postprocessing approach is
introduced, allowing for a dynamic modification of finite element
solutions, a simplified mesh cutting and data exploring as well
as new ways of exploring complex solutions.

I. INTRODUCTION

The exploration and interpretation of a large amount of solu-
tion data is the most important part of a typical design process
when using the finite element approach. Important decisions
are made on basis of solution visualizations and next design
steps are planned in dependency of the ongoing understanding
of the device under research. Therefore, effective postprocess-
ing algorithms handling large amount of finite element data
and the usability of such methods in an interactive way allows
a faster and optimized design with finite elements. Today,
typical visualizations of finite element solutions are static
colorized representations of a field distribution, which map a
computed value to a specific color. Additionally, vector fields
can be visualized by colorized cones or arrows, indicating the
direction of the solution in every element. In this paper, further
postprocessing methods and visualization techniques are intro-
duced to enhance the exploration of finite element solutions.
These are mainly mathematical modifications of the visualized
solutions, simplified placing of cutting geometries like planes
or spheres, and dynamic changing of display objects. For all
mentioned aspects, examples are given to underline the usage
possibilities of the proposed postprocessing formulations.

II. COMPUTER GRAPHICS SOFTWARE

3D finite element analysis (FEA) leads to a large amount
of solution data. In general, developers of electrical devices
need to analyze the electromagnetic behavior in certain critical
machine parts, such as teeth or teeth heads, or identify local
magnetic hot spots. In intuitive method for the evaluation of
such simulation data is the interactive exploration in virtual
reality [1], which provides a direct visual impression of the
field characteristic. This ability supports the machine designer
to recognize the points of design interest quickly and allows to
perform further interactions and operations on the solution data
directly. Therefore, in this paper a software methodology is
presented to extend [2] by interactive postprocessing abilities.

The graphical package VTK [3] has been applied to vi-
sualize (static) 3D finite element solutions. The Visualiza-
tion Toolkit (VTK) is an open source, platform independent,
software library for 3D computer graphics, image processing

and visualization including an interface layer for several inter-
preted languages, such as Tcl/Tk, Python. The object oriented
design of this software is characterized by general, easy to use
data structures, whose versatility encourages a modular use of
algorithms acting as filter objects. The working principle of
VTK is based on visualization pipelines (see fig. 1).

Data Filter

Data

Data FilterDrain

Source

Fig. 1. Visualization pipeline of VTK.

III. APPLICATION

A. Interactive Cutting

Due to performance issues, the solution data of meshes is
generally mapped to its surface in 3D visualization, so that
mesh geometry and colorized solution appear correlated. The
corresponding visualization is restricted to the surface mesh
of the data object, so that no information of the internal
structure is available and cutting methods lead to an opened
hollow representation, compare. fig. 2(a). In these situations,

(a) Hollow cutting through a flux
density distribution of a PMSM.

(b) Interactive cutting of the flux density
in a PMSM.

Fig. 2. Different cutting types for the visualization of the flux density
distribution.

a cutting filter chain is required, that provides an insight into
the electromagnetic behavior within the simulated devices.
Since this exploration is data and user depended (direct user
interaction), an intuitive cutting method is required which
provides an interaction with the model, previewing the cutting
surface and the solution.

The necessary filter procedure is shown in fig. 3. First,
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vtkImplicitPlaneWidget

vtkPlane

vtkUnstructuredGrid

vtkDataSetMapper

3D Scene

vtkCutter

FE Mesh/Solu

SetScalarRange

SetHueRange

vtkActor

Interactivity

Visualization

Fig. 3. VTK filter chain for interactive cutting.

the finite element mesh and solution are converted into a
vtkUnstructuredGrid data set for each material. A vtkIm-
plicitPlaneWidget, an interactively placeable infinite plane, is
bounded to these grids. The mathematical representation of
the cutting surface, in this case a vtkPlane, can be obtained
from the 3D widget, so that the vtkCutter filter can generate a
cutting mesh along that surface. The resulting grid is mapped
to graphics primitives by the vtkDataSetMapper, who also
maps the scalar range of the finite element solution to a given
color range, specified by SetHueRange. The next element
of the filter chain is the vtkActor representing an entity of
the rendering scene. In particular, vtkActor combines object
properties (color, shading type, etc.), geometric definition, and
orientation in the world coordinate system. Since visualization,
model interaction and cut-mesh generation are separated ob-
jects in the filter chain, other widgets types, such as point-,
line-, plane-, sphere- and spline-widgets, can be applied for
further purposes.

The cutting plane of fig. 3, can be moved, resized or rotated
within the model boundaries and is computed in real time.
Fig. 2(b) exemplifies this cutting interaction on a permanent
magnet synchronous machine (PMSM) to illustrates the flux
density distribution inside.

B. Direct Model Interaction

To improve the interactivity in 3D visualizations of finite
element data, possibilities for a direct model interaction are
required. The idea of a direct model interaction is to give the
users an intuitive direct access to the visualized solution data.
By this, any kind of operation, e.g. mathematical integration
or multiplication, can be performed on the input, so that the
modification of the visualization can directly be observed.
Since 3D visualizations are scalable on different display sys-
tems (from normal desktop pc up to virtual reality systems
like cave style systems [2]), an intuitive model interaction,
controllable by various 3D input devices that directly operate
in the 3D scenes, is required. To fulfill the mentioned criteria,
a software methodology is required, that analyses the actual
3D scene to distinguish between different visualization types
like a geometry, a mesh or a scalar or vectorial field solution
plot. The methodology needs to returns the corresponding
original data sets from the FE meshes and solutions. The
generalized VTK filter chain for direct model interaction is

shown in fig. 4. As mentioned before, the finite element mesh

3D Scene

PickProb

Additional
Mapper Info

Label/Type
Extract

FE Submesh
FE Subsolu

SetLabelvtkActor

FE Mesh/Solu

SetType

vtkPicker

vtkActors

vtkUnstructuredGrid

VTK filter
chain

Visualization

Observer

Fig. 4. VTK filter chain for interactive cutting.

and solution are filtered by an arbitrary VTK filter chain and
stored in a vtkActor placed in a 3D scene, conf. sec. III-
A. To identify the vtkActors in the further processing, each
object gets additional information about the visualization type
(SetType) and the submesh label identification (SetLabel). In
the 3D scene, vtkPicker, controlled by a 3D input device, can
be applied to grab vtkActor objects (PickProb). Type and label
characteristics of the latter class objects can be used to extract
the corresponding input data from the FE solution. These data
sets are returned to the user interface. The same control pattern
enables a direct access to the properties of single visualization
objects.

Therewith, a combination of the interactive cutting geome-
tries (cmp. section III-A) with the direct model interaction
presented here is possible, to calculate the flux in various
positions in an electrical machine for example.

IV. CONCLUSION

Efficient methods for the visualization of finite element
solutions are essential for the evaluation of electromagnetic
devices under research and development. In present, FE data
is illustrated by means of static visualization formulations
and methods. In this paper, an interactive postprocessing
formulation is introduced, that extends the static process to
provide dynamic modifications within the visualization and
an intuitive 3D data exploration. Generalized techniques for
this postprocessing approach are proposed and described by
means of visualization patterns for interactive cutting and
direct model interaction. A first application example is given
to demonstrate the benefit of the presented 3D postprocessing
formulation.

Since interactive visualization enables other illustration fa-
cilities, further applications, examples and details will be given
in the full paper.
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Abstract — In this paper a comprehensive magnetic model of 
surface mounted permanent magnet synchronous machine 
(SPMSM) is proposed considering both the structural and the 
saturation saliencies to enable the numerical simulation of new 
rotor position detection algorithms. With an identifiable 
parameter matrix, a numerical nonlinear inductance model is 
developed, in which the rotor position and the stator current are 
taken as two independent variables. Furthermore, the stator 
current frequency is taken as another variable of the inductances 
and the inductance variation against the frequency is discussed. 
After experimentally identifying out all the parameters, a 
nonlinear mathematic model of SPMSM is built up based on the 
new magnetic inductance function. Simulation and experiment 
results are used to verify the proposed nonlinear magnetic model. 
The performance of proposed model is compared with the linear 
model provided in SIMULINK library.  

I. INTRODUCTION

The permanent magnet (PM) machines, such as permanent 
magnet synchronous motor (PMSM), have been widely used 
and a number of techniques for position sensorless and initial 
rotor position detection have been proposed based on tracking 
the rotor magnetic saliency. The rotating magnetic saliency 
inside a PMSM can be classified as structural saliency that 
mainly comes from the interior structure, and saturation 
saliency induced by the magnetic saturation effect of the stator 
core [1]. Most of the existing sensorless control and initial 
rotor position detection schemes are designed mainly based on 
the structural saliency incorporated with the saturation 
saliency for identifying the polarity of magnetic pole. 
However, these sensorless strategies can only achieve good 
performance for interior PMSM (IPMSM). They are not 
suitable for surface mounted PMSM (SPMSM), which has 
little structural saliency. 

Furthermore, the stator current frequency can also 
influence the values of the winding inductances, which are 
essential for rotor saliency tracking. The frequency should be 
counted in as a factor when performing the widely reported 
high frequency signal injection schemes for sensorless drive. 

The conventional PMSM model does not incorporate the 
saturation saliency. When developing a new scheme for the 
rotor position detection, it is not possible to numerically 
simulate the proposed scheme, and the experimental trial and 
error method has to be employed, which is time-consuming 
and uncertain. 

In this paper, a comprehensive mathematical model of 
SPMSM is built up considering magnetic saturation saliency 

and the influence of the stator current frequency. A numerical 
nonlinear inductance model is proposed based on the stator 
currents and rotor position variation with all the parameters 
experimentally identified. The simulation and experiment 
results are used to verify the machine model. The 
comprehensive nonlinear machine model is built up in 
SIMULINK and this model can be further used to develop, 
simulate and evaluate the rotor position detection strategies. 

II. MAGNETIC MODEL OF SPMSM WITH SALIENCIES

In an SPMSM, the observable total flux linkage tλ  inside 

the air-gap is contributed by both the stator currents and the 
permanent magnet on the rotor and it is the link of the stator 
and the rotor magnetic fields. The three-phase flux linkages 

abcλ  are here defined as the projection of tλ  on the stator 

reference frame and not only induced from the stator current. 
Therefore, the inductance of the stator is a function of both the 
stator currents and the rotor position, which are linear 
independent [2].  

Then a composite function of both the current and rotor 
position is defined to express the inductance: 

)()(),( θθ CAiIiL ⋅⋅=         (2) 

where ]1[)( 21 miiiiI L= is obtained from the 

magnetization curve, indicating that the inductance is a 
polynomial function of current for a fixed rotor position; 

TnnC ])cos()sin()cos()sin(1[)( θθθθθ L= is

obtained from the Fourier Series expression, indicating that 
the inductance is a periodic function of rotor position for a 
fixed stator current; and A is an identifiable parameter matrix 
with )12()1( +×+ nm dimensions.  

An experiment platform is carried out on an SPMSM to 
identify the parameters and test the inductances. During the 
test, the stator currents are fixed at several different levels 
from 0 to 6A at which the magnetic circuit is fully saturated. 
For each current offset, by applying a smaller AC current 
component the incremental inductance at a particular rotor 
position is measured. By changing the rotor position with a 
dividing head, a series of inductance is recorded with a 
resolution of 6 electrical degrees. Fig. 1 shows the inductance 
curves at different current offset levels. The magnetic 
saturation effect can be found and the rotor polarity is 

Comprehensive Magnetic Model of Surface 
Mounted PM Machines Incorporating 

Saturation Saliency 
Yi Wang1, Jianguo Zhu1, Youguang Guo1, Shuhong Wang2, Wei Xu1

1School of Electrical, Mechanical and Mechatronic Systems, University of Technology 
Sydney, NSW 2007, Australia 

2Faculty of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China 

215

pa6.14
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observable when the core is fully saturated with a large 
current offset. 

Fig. 1.  Measured self-inductance curves at different current offset levels. 

Based on the order of the magnetization curve and the FFT 
of the tested inductance values at different current offset levels, 
the dimension of matrix A is set to (7×17), by setting m=6 
and n=8 to acquire an accurate enough surface regression. 

To obtain better regression results, the Least Relative 
Residual Sum of Square (LRRSS) method is employed.  

Fig. 2.  Measured and estimated self-inductance at different current 
offsets. 

Fig. 2 is the comparison between the tested and estimated 
self-inductance of phase A at 0A and 6A current offsets, 
where ±0.5% error bands are added. It can be found that the 
relative errors of the inductances are very small and the 
regressed objective function can be used to describe the 
variable self-inductance. The same regression method is 
applied to the mutual-inductance coefficient identification. 
Then a nonlinear inductance model is built up for this three-
phase machine. An accurate inductance matrix can be 
calculated for given stator currents and rotor position. This 
model incorporates both the machine structural and the 
saturation saliencies. 

III. INDUCTANCE VARIATION VERSUS FREQUENCY

As shown above, the inductance of the SPMSM is related 
to the stator current amplitude and the magnet rotor position. 
On the other hand, the inductance values are also variable 
with the stator current frequency, which is always varying in 
the machine drive system. In most of the proposed initial rotor 
position detection schemes, the injection signal frequency is 
set at a much higher value in order to keep the rotor at stand 
still and to amplify the inductance variation. 

On the same experiment platform, the inductance tests are 
carried out on different frequencies. Fig. 3 shows the 
inductance curve at different current frequencies. The current 
offset level is set at 6A and the rotor angle varies. It can found 
that the self-inductance varies against the current frequency. 

Fig. 3.  Measured self-inductance curves at different current frequencies. 

IV. MACHINE PERFORMANCE

A non-linear SPMSM model is built up in SIMULINK and 
simulated under open loop operation to compare the 
performance with the linear PMSM model in SIMULINK 
library. No-load and loaded tests are simulated with the same 
machine parameters except the inductance model. The 
unsaturated inductances are chosen and input into the linear 
model as the linear part of the magnetization curve. As an 
example, Fig. 4 shows the speed and torque curves by using 
the proposed non-linear model and the existing linear model. 
After adding a load torque on the rotor shaft, there is some 
ripple on the non-linear model speed and torque output, which 
results from the non-linear saturated inductances. 

Fig. 4.  Comparison of speed and torque at no-load and load change 

More details about the model and the machine 
performance prediction using the new model will be presented 
in the full paper.  
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Abstract — The magnet field in a single-sided axial-flux 
permanent-magnet synchronous generator is analyzed using 
three-dimensional finite element method (3-D FEM). The flux 
that flow in radial planes, particularly that crossing the rotor 
back plates via the ferromagnetic rotor spacer, is accounted for. 
A time-stepping technique enables the output voltage to be 
determined to a good accuracy. The computed results have been 
verified by experiments on a small prototype generator.  

I. INTRODUCTION

Two-dimensional analysis is often used for studying the field 
distribution in an axial-flux permanent-magnet synchronous 
generator (AFPMSG) [1],[2],[3]. In most the methods the rotor 
back plates that serve as the yoke are assumed to be physically 
separate. When the number of poles is large and the radial 
length of the magnets is large, a two-dimensional (2-D) 
analytical or finite element analysis gives quite accurate 
prediction of the machine performance. A 2-D analysis however 
is valid only when the field region has a uniform cross section, 
which is not the case with the AFPMSG. The effect of the 
fringing flux at the inner and outer radii cannot be accounted 
for. Besides, the end winding leakage is difficult to model 
accurately. In this paper, a time-stepping, coupled field-circuit, 
three-dimensional finite element method is used for analyzing 
an outer-rotor, single-sided, 16-pole, 60-Hz axial-flux 
permanent-magnet synchronous generator. The computed 
results have been verified by experiments on an experimental 
generator.  

II. ANALYSIS

The three-dimensional (3-D) finite element transient solver 
of ANSYS Version 11 SP1 was used as the analysis tool For 
computation of the no-load magnetic field quantities a static 
field solution is sufficient. For computation of the generator 
performance on load, a time-stepping analysis is needed. The 
time-stepping field-circuit solution procedure is outlined as 
follows: 

• Construct the geometric model of the AFPMSG 
• Construct the circuit model of the AFPMSG, 

coupling with the field region being accomplished by 
defining appropriate nodes in the winding element 
and the corresponding field element. 

• Construct the sliding surface for time-stepping 
analysis.

• Select solver, boundary conditions, and size of time-
step.

• Execute program to obtain field/circuit solution. 

It should be noted however that 3-D FEA is 
computationally intensive, hence a compromise has to be 
made with regard to the computational accuracy required and 
the solution time. 

Fig. 1 shows a radial section of the AFPMSG and Fig. 2 
shows the geometric model developed for 3-D FEA. The rotor 
magnet is embedded in the rotor surface and the armature 
winding is embedded in the stator surface in Fig. 2. Non-
essential regions are not modeled in order to reduce the scale 
of the problem.  

Fig. 1 Cross-section of experimental AFPMSG. 

Fig. 2 Geometric model of AFPMSG for 3-D FEA. 

III. RESULTS

A. Surface Plots of Air Gap Flux Density 

In the subsequent discussion x, y and z denote, 
respectively, the radial, circumferential and axial directions of 
the AFPMSG. Fig. 2 shows the computed surface plots of the 
air gap flux density components in the AFPMSG under no 
load conditions, where circumferential distances 00 and 1800

coincide with the interpolar axes. The value of Bx is small 
under a magnetic pole, but due to fringing flux in the radial 
directions at the inner and outer radii there are two 
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conspicuous peaks at x = 0.055 m and  x = 0.011 m (Fig. 2a). 
At a given radial position, the value of By is zero at the pole 
centre, but it increases progressively towards the interpolar 
axis (Fig. 2b). Fig. 2c shows that the axial flux density 
component Bz decreases significantly at the inner and outer 
radii of the AFPMSG. This is due to fringing and results in 
reduction in the flux per pole. The use of 3D analysis is 
therefore justified as this phenomenon results in errors in a 2D 
analysis.

(a)

(b)

(c)
Fig. 3 Surface plots of no-load flux density components at mid-plane of armature 

winding: (a) radial; (b) circumferential; (c) axial. 

B. Effect of Axial Position on Flux Density 

Figs. 4 shows the circumferential and radial variations of 
Bz. The variation of Bz in the circumferential direction affects 
principally the magnitude and waveform of the generated emf. 
At z = 12 mm (1 mm above the surface of magnet), the Bz

waveform is approximately trapezoidal but as z increases the 
waveform gradually becomes more rounded and become 
closer to a sinusoid and the magnitude decreases (Fig. 4a). 
The resultant waveform in the armature winding, however, 
depends on the axial thickness and radial length of the 
conductor as different sections of the conductor is cut by a 

different value of Bz. As shown in Fig. 4b, the variation of Bz

along the radial direction is not symmetrical about the mean 
radius and the maximum value occurs at a radial position 
closer to the outer radius. In the ferromagnetic spacer ( 0.11m 
< x < 0.1135 m) Bz is negative showing the effect of the spacer 
on the flux at the outer radius. 
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Fig. 4 Variation of Bz with axial position in the air gap region:  
(a) along circumferential direction at mean radius;  

(b) along radial direction at pole center. 

C. Line and Phase Voltage Waveforms 

Fig. 5 shows the computed waveforms of the phase and 
line voltages when the AFPMSG is supplying a resistive load 
of 1.75 Ω per phase at rated speed. It is found that the phase 
voltages are flat- topped, due mainly to third harmonic 
contents in the air gap flux density Bz. The line voltages, 
however, are sinusoidal since a three-phase three-wire star-
connected load is being supplied. Convergence of the 3D FEA 
computations is very fast: in less than 4 steps the computed 
values are already very close to those at steady state.

There is a slight imbalance in the line voltages and line 
currents, mainly due to the asymmetry introduced in the 
geometric winding model for 3D FEA. 
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Fig. 5 Computed waveforms of line voltages and phase voltages for a load 
resistance of 1.75 Ω per phase.      
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Abstract—This paper proposes a unified scheme for imple-
menting the fixed-point method (FPM) and the Newton-Raphson
method (NRM) in finite-element (FE) analysis of nonlinear
magnetic problems. As the NRM and FPM have advantages and
disadvantages, the aim is to make both methods available in FE
programs and use them in a convenient manner. It is shown in this
paper that the FPM can be implemented using the same scheme
of the NRM that is commonly applied in FE programs. The
idea is simple and straightforward, and can be applied to a wide
variety of magnetic problems. As an example, the unified scheme
is applied here to a magnetic field problem formulated by the
magnetic vector potential. Numerical results for two-dimensional
FE simulations of an electrical machine are also presented.

I. INTRODUCTION

Taking into account magnetic nonlinearity is crucial to the
investigation and design of electrical devices. The associated
difficulties with nonlinearity, however, have restricted the
methods that can handle the problem to the Newton-Raphson
method (NRM), and less commonly, the fixed-point method
(FPM). The NRM has gained monumental popularity, thanks
mainly to its high convergence rate and its ability to solve
nonlinear functions with several variables [1]. Today, the NRM
is extensively applied to solve nonlinear electromagnetic field
problems in finite-element (FE) software packages, whereas
the FPM is scarcely employed. Popularity, however, can be a
somewhat deceiving indicator for measuring success. Most of
the NRMs, if not all, use the derivative to find the solution.
Therefore, they can easily fail to solve a nonlinear magnetic
problem, sometimes even with the simplest B-H curve, such
as the normal magnetization curve, not to mention hysteretic
field problems.

The FPM can also be applied to solve nonlinear functions
with several variables, and because its convergence is not
based on finding the derivative, the method is very stable and,
hence, proved to be the best candidate to solve complicated
nonlinear problems. Recently, the FPM has undergone an
excellent improvement in accelerating its convergence, making
it even a more attractive choice [2].

Although the FPM is reliable, the method should be re-
garded as an alternative and not a replacement to the NRM.
Researchers and developers of FE software in the area of
electrical engineering have become so familiar with the NRM
so that they cannot afford to abandon it easily, a credit also
goes to the method’s quadratic convergence. On the other

hand, the different formulation the FPM imposes is perceived
as a barrier towards the method’s prevalence. Because most of
the existing codes use the NRM formulation, switching to the
FPM would obviously require laborious work.

It is therefore expedient to make both the NRM and FPM
available in an FE package without augmenting or modifying
the entire equations. Accomplishing this desirable situation
will be the goal of this paper.

II. SOLUTION OF NONLINEAR EQUATIONS

The purpose of the NRM and FPM is to find the solution
of the nonlinear system

r(u) = 0 (1)

iteratively in a systematic manner.
An iterative system like (1) can be put as

u(k+1) = g(u(k)) (2)

where g is a real function with several variables. The solution
of (2), if one exists, is a fixed-point vector u∗ = g(u∗), which
starts at a specified initial iterate u(0).

The convergence criterion of (2) depends on the contraction
mapping principle. A function g is a contraction at a point u∗

if there exists a constant 0 ≤ β < 1 such that

||g(u)− g(u∗)|| ≤ β||u− u∗||. (3)

In general, if ||g(u∗)|| < 1, then g is a contraction at u∗.
The fixed-point iteration is the most basic technique for

solving nonlinear equations and is the essence of all other
methods. The Newton-Raphson iteration is a special case and
consequence of the fixed-point iteration. The goal of the NRM
is to construct an efficient iterative scheme that converges
rapidly (quadratically) to the solution of (1). Now if (3) is
utilized to enforce g(u∗) = 0, the following result is obtained
from (2) and (3) after simple mathematical manipulations

g(u(k)) = u(k+1) = u(k) − r(u(k))
−1

r(u(k)) (4)

which can be also written as

u(k+1) = u(k) − P−1r(u(k)) (5)

where
P = r(u(k)) =

∂r

∂u
.

9. NUMERICAL TECHNIQUES

219

pa6.16



Equation (5) represents the Newton-Raphson iteration in which
the iterates converge quadratically. The Jacobian matrix P is,
however, never explicitly inverted in practical computations.
It is more efficient to solve the correction ∆u(k+1) from the
linear systems of equations as

P∆u(k+1) = −r(u(k)) (6)

hence
u(k+1) = u(k) +∆u(k+1). (7)

It is clear that the use of (6) instead of (5) is inevitable
and (2) must be therefore modified to unify the scheme of
implementing the NRM and FPM. Substituting (7) in (2)
results in

∆u(k+1) = g(u(k))− u(k) (8)

which ensures that the FPM is also based on solving ∆u
rather than u, a straightforward but very useful achievement
for solving magnetic field problems.

III. APPLICATION TO MAGNETIC PROBLEMS

The ideas introduced in Section II are general and can be
applied to a wide variety of FE problems. The conventional
FE formulations of the NRM and FPM are well reported in
the literature (see e.g. [1]–[3]). Therefore, only the relevant
equations will be shown here without introducing the details.
As an example, Maxwell equations will be formulated by the
magnetic vector potential A.

The nonlinear magnetic equation can be put in a convenient
way in order to solve it by the NRM as

∇× ν(∇×A) = J . (9)

For the FPM, the nonlinear magnetic equation is conveniently
written as

∇× νFP(∇×A) = J −∇×M (10)

where J is the electric current density and ν is the magnetic
reluctivity, which is a nonlinear function of B (or A). νFP is
a reluctivity-like quantity and is, for now, a positive constant.
M , which is a nonlinear function of B (or A), is resulting
from enforcing the following constitutive equation

H = νFPB +M . (11)

Applying the FE method to (9) and (10) results, respectively,
in the following two systems of equations

S(a) a = f (12)

S a = f − q(a) (13)

where the independent variable a is a vector of the nodal
values of the magnetic vector potential, S is the assembly
matrix, f is a vector associated with the source J , and q
is a vector associated with ∇ ×M , which transforms the
nonlinearity to the right hand side. (See [1]–[3] for more
details about these FE matrices and vectors).

Solving (12) by the NRM, as S a− f = r = 0, leads to

P ∆a(k+1) = f (k) − S a(k) (14)

where
P =

∂r

∂a
= S +

∂S

∂a
a. (15)

On the other hand, solving (13) by the FPM leads to

S a(k+1) = f (k) − q(a(k)) (16)

and since
a(k+1) = a(k) +∆a(k+1) (17)

then (16) can be rewritten as

S ∆a(k+1) = f (k) − q(a(k))− S a(k) (18)

It is evident that (14) and (18) are analogous in several ways;
the main one concerning this paper is that they are both
leading to the solution of ∆a. Therefore, to switch between
the NRM and FPM, one only needs to consider the terms of
P and q when assembling the matrices and vectors within the
FE equations. The significance of having a unified scheme
for implementing the NRM and FPM will be even more
appreciated when dealing with more complex problems, such
as rotating electrical machines, for example.

IV. SIMULATION OF ELECTRICAL MACHINES

The developed methods are applied to the modeling of
electrical machines using a two-dimensional, time-stepping FE
method [3]. The voltage equations of the stator windings and
rotor circuits are coupled with the FE equations and solved
together, resulting in a strongly coupled system of equations.
Therefore, similarly, the stator currents are solved for ∆i
and the rotor voltages for ∆v, a consequence that highlights
the importance of the proposed scheme. FE simulations were
carried out using the NRM and FPM applying the same
stopping criterion. To speed up the convergence of the FPM,
the locally convergent method was used [2]. Some numerical
results carried out for a 380-V, 15-kW induction motor are
presented in Table I. The quantities of the motor computed by
the NRM and FPM are basically the same and the computation
times are close to each other. Although the FPM required more
iterates in average, the method was faster because it kept the
assembly matrix constant during iteration [2].

TABLE I
NUMERICAL RESULTS OF THE NRM AND FPM

Quantity NRM FPM
Terminal current [A] 28.802 28.801
Shaft power [kW] 15.353 15.352
Air-gap flux density [T] 0.937 0.937
Electromagnetic losses [kW] 1.721 1.721
Power factor 0.8739 0.8740
Average number of iterates 5 13
Computation time [sec] 174.32 169.04
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11. ELECTRIC MACHINES AND DRIVES

Abstract — The drive-train component of the electric vehicles 
is frequently using Brushless Permanent Magnet DC (BLDC) 
motor because that the motor have the advantages of high power 
density and high efficiency. The BLDC motor, owing to their 
restrictive field weakening range, is designed to be not as easy for 
vehicle application. Therefore, this paper presents a design 
procedure of BLDC motor for electric vehicle. Especially, the 
study focused to the decision method of the suitable scope of the 
BLDC motor parameters.  

I. INTRODUCTION

Recently, owing to environmental concerns and energy 
conservation, electric and hybrid vehicles are receiving the 
significant interest. Hybrid electric vehicles are more 
interesting than electric vehicles powered only by batteries 
because they have a limit at cost and size as present 
technology [1]-[2]. Despite this fact, the electric vehicles (EV) 
are employed in the urban areas as small electric passenger 
cars. Because of the reason the advantages of high power 
density reducing weight and high efficiency giving longer 
ranges for a given battery size, the drive-train component of 
EV is frequently using Brushless Permanent Magnet DC 
motor (BLDC motor) [3].  

This paper deals with a parametric design and verification 
of BLDC motor for an EV propulsion applications. Because 
that BLDC motor has a restrictive field weakening range, the 
parametric design of BLDC motor is applied in the design 
procedure to ensure the required specifications, which are 
instant rated power and continuous rated power of EV 
propulsion. The proposed parametric design is accomplished 
by coupling between the dynamic equation of EV and the 
voltage equation of BLDC motor.  

II. SPECIFICATION OF ELECTRIC VEHILCE PROPULSION 

Specifications of the EV, which is small electric passenger 
car, are as follows; 

- EV top speed : 65 kph 
- Instant rated power of the traction motor  : 25 kW 
- Continuous rated power of the traction motor : 10 kW  
- EV mass included passengers : 900 kg 
- Frontal area of EV : 1.2 m^2 
- Tire radius of EV : 0.27 m 
- Rolling resistance coefficient : 0.013  
- Aerodynamic drag coefficient : 0.75 

BLDC motor power is required by an acceleration 
performance of EV. The vehicle acceleration performance is 

evaluated by the tractive effort on the level ground, which is 
consists of two components as follows; 

Aerodynamic drag force: 25.0 vACF da                      (1) 

Rolling resistance: mgF rr                                        (2) 

where  is the air mass density 1.205 3/ mkg , A  is the 

frontal area of the EV, 
dC is aerodynamic drag coefficient, v

is the EV speed, r is the rolling resistance coefficient, m  is 

the EV mass. The total tractive effort required to reach the 
acceleration a  is as follows;  

rat FFmaF                                                           (3) 

From above equation, the power required by acceleration can 
be estimated by [3]. 

dtdvmvvACmgvP dracc 05.1625.0 3                   (4) 

Fig. 1. Proposed parametric design process of BLDC motor
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11. ELECTRIC MACHINES AND DRIVES

III. PARAMETRIC DESIGN OF TRACTION MOTOR

The important required condition of the traction motor in the 
EV is the capability for the extended speed range.  
The speed and torque of the BLDC motor can be obtained by 
the voltage equation as follows [4]; 

abc
abcabc

abcabc E
dt

di
M

dt

di
LRiV                                    (5) 

m

aaaaaa EiEiEi
T




                                                        (6) 

From the equation, it is realized that the characteristics of 
BLDC motor is totally depended on its parameters, such as 
back EMF, inductance, and resistance. Therefore, in order to 
design the BLDC motor, it is very important to decide the 
suitable scope of the BLDC motor parameters, which is 
corresponding to the given specifications of the EV 
propulsion, and it is accomplished by computing the dynamic 
acceleration (4) coupled with the electrical equation (5) and 
(6). The Proposed parametric design process is consists of two 
steps and the concept of this process is shown in Fig. 1. 

IV. RESULT AND DISCUSSION

Characteristic analysis according to the change of the induced 

voltage and inductance is illustrated from Fig. 2 to Fig. 5. At 

the condition of instant rated power, the EV velocity in 15 

second is shown in Fig. 2 and the armature current is 

illustrated like as Fig. 3. 

Fig. 2. Velocity map in 15 sec. at instant rated power 

Fig. 3. Armature current map at instant rated power 

Fig. 3. Velocity map in 30 sec. at continuous rated power

Fig. 5. Armature current map at continuous rated power

Fig. 6. DC link voltage at continuous rated power 

At the condition of continuous rated power, the EV 
velocity in 30 second is shown in Fig. 4 and the armature 
current is described in Fig. 5. Fig. 6 shows the minimum 
voltage, which will be able to operate at the continuous rated 
power. The target area on the figures is estimated by 
considering the condition of EV top speed and the limitation 
of armature current. From now on, the BLDC motor should be 
design within the target area of its parameters, and the design 
results will be described in the full paper. 
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    Abstract— We show that magnetism and elasticity have very
similar mathematical structures when fields are considered as
differential forms of adequate nature.  The same discretization
principles and techniques that succeeded in electromagnetism,
notably the use of edge elements, then lead to a manageable
form of coupled elasto-magnetic problems.

I.  INTRODUCTION

   Given a steady current density  J  and a spatial distribution
of reluctivity  ν , magnetostatics consists in finding fields  B
and  H  such that

div B = 0,      H = νB,       rot H = J (1)

(plus boundary conditions that we shall ignore here).  In terms
of differential forms  b,  h  and  j  for which  B,  H  and  J
stand proxy, this becomes

db = 0,         h = νb,          dh = j,  (2)

where  ν   is a Hodge operator.  The differential geometric
framework in which (2) makes sense is pictured in the Tonti
diagram of Fig. 1, which displays the underlying structure and
how to fit magnetostatics in it.  Its discrete counterpart, left
aside in this Digest, will be addressed in the full-length version.

a

b

0

h

j

ϕ

1

2

3

1

2

0

d

d d

d

~

~

~

h = νb

Fig. 1.   The Tonti diagram of magnetostatics.

Our purpose here is to enlarge the framework, both at the
continuous and discrete level, to make it home also to Elasticity,
in order to fit coupled problems in magnetoelasticity into a
diagram similar to Fig. 1.  But in spite of meaningful analogies
[1], the parallel between magnetism and elasticity is fraught
with obvious difficulties:  For instance, though the strain
tensor  ε  derives from a potential  u  (displacement) like  b
derives from  a, and must satisfy a compatibility condition

(rottrot ε = 0) somewhat reminiscent of  db = 0, the analogy
is weak, since  d  is a first order, instead of second order,
differential operator.  Finding a usable analogy requires some
conceptual changes about "stress" and "strain", as follows.
(We work in 3D affine space  A3, not oriented, not metricized.
Vectors we may mention are elements of the 3D real vector
space  V3, covectors are elements of its dual.)

II.  THE GEOMETRY OF STRESS AND STRAIN

Let us start from the equality  ∂ tq + dj = 0, or in integral
form,  dt ∫Ω q + ∫∂Ω j = 0  for all volumes  Ω , that expresses
(electric) charge conservation.  We shall write this, using a
Dirac-like bracket notation,  dt〈Ω ; q〉 + 〈∂Ω ; j 〉  = 0 ∀ Ω, or
as well,  〈Ω ; ∂tq + dj〉 = 0 ∀ Ω, which shows how  d  and
∂  are dual to each other.  There,  q  and  j  are twisted
differential forms, of respective degrees 3 and 2, which means
their integrals make sense over submanifolds (volumes and
surfaces, respectively) with outer orientation.  (In the case of
∂Ω , this means providing it with a crossing direction.  By
convention, this direction is inside out with respect to  Ω .)

Next, momentum (of a particle, say), being the integral in
time of force, is a covector, since applied force—which linearly
maps virtual displacements, i.e., vectors, to virtual work, a
real number—is a covector itself.  So we naturally represent
the distribution of momentum in a continuum by a density of
covectors, that is, a covector-valued twisted  3-form, denoted
p.  (Thus, the integral  〈Ω ; p〉  is a covector, expressing total
momentum inside  Ω .  Observe how the existence of distant
parallelism, beween vectors or covectors at different points, in
affine space, is essential to give sense to this integral.)

Now, momentum also is a conserved entity, like charge,
with the only difference that it is covector-valued:  The rate of
change  d t〈Ω ; p〉  of total momentum inside  Ω  plus the
momentum flux across  ∂Ω   must add up to the rate at which
momentum is poured into  Ω   by applied forces.  We therefore
introduce a twisted  2-form  s, similar to  j, but covector-valued,
to represent this flux, hence the relation  ∂ tp + ds = f, where
the twisted 3-form  f  represents the applied force field, to
encode momentum conservation.  (The relation between this
form  s  and the standard stress tensor  σi j  is a bit involved:
As it happens,  σi j  is a proxy (when  V 3  is equipped with a
scalar product) for  –s, the same way  J, H, etc.,  are proxies
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for  j, h, etc.  The minus sign results from a historically
established convention about stress, to which we shall conform
by setting  σ = –s, and calling this the "stress 2-form".)  The
full version will give the discrete form, with edge-based covector-
valued degrees of freedom.

u

ε

0

σ

f

χ

0

1

2

d

d d

d

σ = κε

vec-

vec-

vec-

2

3

1

~

~

~

cov-

cov-

cov-

Fig. 2.   The Tonti diagram of elasticity.  Potentials, here, are the
Beltrami one  χ  and the displacement  u.  The latter, being a
point-to-vector map, is ineed a vector-valued  0-form.

Strain is more of a problem, even in the context of small
deformations to which we shall restrain.  We have a material
manifold  M, representing the deformable bodies.  This
deformation is often described by a map  u  from  M  into
A3, called a placement.  Instead of that, we shall prescribe the
placement of material vectors (i.e., the vectors tangent to  M,
that form the tangent bundle  TM) in physical space  A 3.  So
we have a map  β0  from  TM  to  TA 3  for which compatibility
is assumed, i.e., there is a point-to-point map  u 0 : M → A3

the gradient of which is  β0.  This is the reference placement.
Now, consider  β  from  TM  to  TA3  again, close to  β0, but
not necessarily compatible, since it need not preserve material
continuity.  Vectors  β(vx)  and  β0(vx), though not anchored at
the same point, can be compared thanks to distant parallelism,
so let's set  εx(vx) = β(vx) – β0(vx):  This is a linear map from
TxM  to  Tu(x)A3, hence a vector-valued 1-form  ε, the "strain
1-form", that describes deformation with respect to the reference
placement.  [Again, the relation between this  ε  and the
traditional tensor  ε i j  is not simple:  To say it briefly, the
symmetric  ε i j  proxy is obtained by "quotienting rotations
out" of  ε, as justified by the universal constitutive law
according to which any material chunk can be rotated without
deformation work.]

Since  β  is not a priori compatible, a compatibility
condition must be imposed on  ε.  This is easily seen to be
dε = 0  (for a simply-connected  M), and we shall give the
discrete form, in which degrees of freedom are vectors, one for
each edge.  Discretization, to say it briefly, consists in describing
how edges of the mesh are displaced by  ε.  Interpolation will
be done by using Whitney 1-forms.

It remains to link  ε  and  σ  by a constitutive law.  This
is done by assuming an energy functional (similar, in the
isotropic case, to the standard  λ/2 tr(ε)2 + µ|ε |2, but expressed,
as we shall show, in terms of the present strain 1-form  ε),
hence a linear relation  σ = κε  and equations similar to (2),

illustrated by the Tonti diagram of Fig. 2,

dε = 0,         σ = κε,            dσ = f.       (3)

At this stage, one sees that the desired parallelism between
magnetism and elasticity has been achieved, but (2) and (3) are
still independent from each other, unless—and this is what
coupling is about— ν   in (2) depends on  ε–σ and/or  κ  in
(3) depends on  b–h.

III.  COUPLED CONSTITUTIVE LAWS

Such dependences are best expressed in variational form,
for which (non-hysteretic) magnetostatics gives a model:  One
introduces magnetic energy  Ψmag(b)  and coenergy  Φmag(h),
Legendre–Fenchel transforms of each other, one sets  Fmag(b, h)
= Ψmag(b) + Φmag(h) – ∫ b ∧ h  (integrating over the whole
domain of interest), and one requires  Fmag(b, h) = 0  (instead
of  ≥ 0, which holds for any pair  {b, h}  by definition of the
L–F transform).  This equality is equivalent to  h = ∂Ψmag(b)
and  b = ∂Φmag(h), so it's a way to state the behavior law.
Problem (2) then becomes (see [2] for details) find a pair
{b, h}  that minimizes  Fmag(b, h)  under the linear constraints
b ∈ Bs,  h ∈ Hs, where  B s  and  H s  are functional spaces that
account for source conditions such as  db = 0  and  dh = j,
and for boundary conditions.

Similarly, (3) consists in finding a pair  {ε, σ}  that
stationarizes the quantity  Fela(ε, σ) = Ψ ela(ε) + Φela(σ) –
∫ ε  ∧ σ  under suitable linear constraints,  ε ∈ Es,  σ ∈ Σs,
where  Ψ ela  is elastic energy (an example of which was given
in the previous Section) and  Φela  its Legendre transform.
(The wedge product  ε  ∧ σ, a real-valued twisted 3-form,
thanks to the vector-covector pairing, is a density of deformation
work, just as  b ∧ h, in magnetics, is a density of energy.)
Introducing the total energy  Ψ (b, ε) = Ψmag(b) + Ψ ela(ε)  and
its Legendre transform  Φ(h, σ), we may set the two problems
simultaneously, as the stationarization of  F(ε, b, σ, h) =
Fmag(b, h) + Fela(ε, σ)  under suitable linear constraints.  So
far, this only describes a parallel treatment of two independent
problems.  But this form of the problem allows one to grasp
what a truly coupled problem is:  Coupling occurs when
Ψ (b, ε)  cannot be written as a sum  Ψmag(b) + Ψ ela(ε)  of
distinct energy terms.  The constitutive laws are then  h =
∂bΨ (b, ε)  and  σ = ∂εΨ (b, ε), with now partial derivatives,
and the variational form of the coupled problem has

db = 0, dε = 0, h = ∂bΨ , σ = ∂εΨ , dσ = f, dh = j (4)

as its "strong" counterpart.  Discretization is then easy.
How one can know the energy functional  Ψ (b, ε)  in

concrete situations, and why one should associate  b  and  ε,
instead of (say)  b  and  σ, will be discussed in the full paper.
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Abstract — This paper presents a coupled Finite Element – 

Reluctance Network model for a hybrid motor. The equivalent 
permeances of the air-gap are determined by two dimensional 
(2D) nonlinear finite element (FE) computations. The 2D results 
are used for setting up a 3D analytical model. Spectral 
decomposition and a nonlinear fitting of the amplitudes of the 
permeance harmonics is performed to account for both 
saturation and high order harmonics effect. The method is 
validated with a 2D FE computation and then applied in the case 
of a highly saturated 3D hybrid stepping motor.  

I. INTRODUCTION

Three dimensional Finite Element (FE) method is a useful tool for the 
modelling of axial flux machines such as hybrid motors. However, 
this method requires a very long CPU time and a large space memory 
especially when the saturation phenomenon should be taken into 
account. The use of 2D finite element method coupled with nonlinear 
circuit model can be an alternate solution which combines accuracy, 
precision and fastness. Analytical models using reluctance networks 
have been developed which include the effect of saturation in well 
designed machines [1,2]. Various approximations and simplifications 
are often used which can be justified by FE computations.  

The authors present a coupled FE – analytic model for a highly 
saturated hybrid stepping motor that can be applied for the design and 
the optimization of such devices. The main idea is based on the use of 
2D FE parameter identification and a spectral analysis of the 
permeance function that can easily achieve the computation of the 
torque waveforms. 

II. HYBRID MOTOR: DESCRIPTION AND EQUIVALENT MODEL

The general architecture of the hybrid motor is shown on Fig. 1 
where the case of a 4-phase motor supplied by unidirectional currents 
is considered. The axial flux is provided by a cylindrical magnet 
axially magnetized located in the rotor. The number  of stator 

phases and r  of rotor teeth allow determining the period of the 

permeance function motor according to: 

q

N

      )/(360 rNq°=τ      (1) 

The two slotted half-rotors are shifted by 180 electrical degrees 
and separated with an axial gap x . A reluctance network model, 
which is shown on Fig.2, is developed. It includes two circuits of 4 
parallel branches representing the two half-machines. These two 
circuits are series connected via a circuit corresponding to the magnet 
and the yoke. According to the winding mode and the angular shift 
between the two rotors, there are permutation relationships between 
the permeances  on one hand, and equality relationships between 

the MMF sources  on the other hand. 
kP

8..1, =kVk

Fig. 1. (a) Longitudinal view of the hybrid machine, (b) Axial view 

Fig. 2. reluctance network equivalent model. 

(a) (b)

Fig. 3.  Permeance function and its Fourier’s coefficients. 

III. FE IDENTIFICATION OF THE MODEL PARAMETERS 

The principle of the proposed model consists firstly on a numerical 
computation of the phase fluxes with a nonlinear 2D FE code [3]. 
Then a numerical post-processing of the FE results is performed for 
setting up the circuit model. The flux-ampere turn curves of each coil 
are determined over one electrical period of the rotor, which allows 
determining the permeance ),( FP θ  as a  function of the ampere 

turns and position which is shown on Fig. 3-a. The spectral 
decomposition of this function is performed and expressed with the 
following expansion: 

∑=
n

rn nNFpF )cos()(),( θθP     (2) 

where F  is the magnetomotive force (MMF). The 
functions are shown in Fig.3-b. According to some 

permutation rules corresponding to the winding arrangement, the 

Fourier coefficients of the 8 permeances ( ) are easily 

)(Fpn

8..1, =kpk
n
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determined. Therefore,  is the Fourier coefficient of order n of the 

the kth branch permeance.  

k
np

A nonlinear resolution of the flux equations of the circuit model 
is performed for different positions of the rotor thanks to an iterative 
process. A rigorous convergence criterion is adopted to ensure the 
correct final solution of the problem. Indeed, due to the high 
saturation level of the teeth, the nonlinearity of the permeances is 
important as illustrated on Fig. 4.  The saturation level is represented 

by the position of the points  in the flux-ampere turn 

diagram. The general structure of the algorithm is based on the 
following steps: 

)( ii Fϕ

 a) F.E. identification of the parameters 
 b) For a given position θ

b.1 : Initialize the permeances kP0

b.2 : Solve nonlinear circuit equations 

b.3 : Compute the fluxes )( k
i

k
i Fϕ

b.4 : Deduce the new values of permeances k
iP 1+

b.5 : Test the convergence and go to b.2 or B.6 
b.6 : δθθθ +=  go to b) 

 c) Compute external performances energy and torque 

According to the saturation level of the different permeances ,

the convergence of the resolution process is reached after less than 9 
iterations. The algorithm is tested in different situations and changing 
starting point does not disturb the convergence process. Indeed, on 
Fig. 4 two different starting points which are represented by (*) are 
considered. The two figures show the trajectories of the points

kP

Fig. 4. Trajectories of the points )( k
n

k
n Fϕ  during the iterative process 

Fig. 5. Some static torques 

)( k
i

k
i Fϕ  that converge to the same final point  after few 

iterations. 

)( kk F∞∞ϕ

IV. EXTERNAL PERFORMANCES CALCULATION

The virtual works theorem is applied to compute the static torque of 
the motor for a given supply and for different positions. According to 
the spectral analysis of the permeance functions, we have: 
    )(

~
)( θθ θWT ∂=

∑ ∫
∞=

=

+−∂=

:1
8:1

0
)())(sin(2)(

~

n
k

F
k
nkrrm

k

FdFFpNnnNW αθθθ
   (3) 

where: mW
~

 is the coenergy in the magnet branch, andkF kα  are the 

total ampere-turns and the phase shift of the permeances of the kth

branch respectively. Fig.5 shows the static torque waveforms 
obtained in different supplying modes: (1): the cogging torque (no 
current), (2): the phase 1 is supplied with a direct current i, (3): the 
phases 1 and 3 are supplied with the currents i/2 and –i/2
respectively.  
The coupling between the results of numerical FE computation and 
the permeance network model is ensured by the good representation 
of ),( FθP  functions, which takes into account the locals high 

saturation levels and high harmonic ranks of the MMF. 
The developed model allows calculating the torque waveforms for 
any supplying mode. For high speed motors, the optimization of the 
supply according to the motor parameters is a serious problem that 
can be solved with such model. The computation of the optimal 
current waveforms can be performed with a minimal CPU time. 

V. CONCLUSION

A nonlinear coupled Finite Element – circuit model is developed 
for the study and optimization of a hybrid motor.  
The model is based on 2D FF results which are applied to simulate 
the 3D behaviour of the electromagnetic field in such devices. The 
use of nonlinear spectral analysis of the permeances allows 
determining the torque waveforms with an easy formulation. The 
model can be used for the optimization of the supply of such motors 
for high speed applications. 
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Sebastian Schöps1, Herbert De Gersem2, and Andreas Bartel1

1 Bergische Universität Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany
{schoeps,bartel}@math.uni-wuppertal.de

2 Katholieke Universiteit Leuven, Campus Kortrijk, 8500 Kortrijk, Belgium
Herbert.DeGersem@kuleuven-kortrijk.be

Abstract— This paper demonstrates how to take advantage of
multirate behavior in the time-integration of electromagnetic field
problems coupled to lumped electric circuits. The necessity of
multiple time step sizes in different parts of the model according
to their dynamics is explained and corresponding methods like
the co-simulation are introduced to reduce the computational
effort. This becomes especially important in cases where large
field models are unnecessarily evaluated at a high frequency.

I. INTRODUCTION

The electromagnetic field is mathematically described by
Maxwell’s set of partial differential equations (PDEs), but in
many applications simplified models of devices are accurate
enough and one models them as a lumped electric circuit using
a network approach. This leads to a time dependent system of
differential algebraic equations (DAEs).

The coupling of both the field PDEs and circuit DAEs
results in a system of partial differential algebraic equations
that avoids the computationally expensive field simulation
where possible, but allows particular devices to be given by
field models. Finally, the spatial discretization of the field
models yields a system of coupled DAEs, which leads to an
efficient simulation scheme.

A. Multirate Phenomenon

The numerical solution of the coupled DAE system is
obtained by integration schemes based on time discretization.
This discretization has to resolve the dynamics of the system
as a whole and thus yields a series of time steps that matches
the dynamics of the most active component (respectively the
one working at the highest frequency).

In coupled systems considering multiphysical behavior (e.g.
heating) one can easily split the equation corresponding to
their time constants since this is determined by the propagation
speed of the effects. In contrast to this, the field and circuit
equations are more describing the same effects, hence the same
time constants occur. Anyhow due to switches, filters or high
integration there may only be a small number of devices active
at a time, while the others remain latent. In either case the time
integrator will resolve parts of the model with an unnecessarily
high resolution and hence higher computational costs than the
problem requires are caused. Therefore a splitting w.r.t. the
activity level is beneficial.

field model

C

R

up L
uC uL

R str

str

(a) Circuit description

-10

-5

0

5

10

0 0.005 0.01 0.015 0.02

uC
uL

Time (s)

Vo
lta

ge
 (V

)
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Fig. 1. A simple field/circuit configuration requiring different time constants
in the time integration. The parameters are R = 10Ω, C = 100µF and
uP (t) = 12 sin(2πf1t)V+0.5 sin(2πf2t)V composed of two voltages with
frequencies f1 = 50Hz and f2 = 10kHz. The field model is approximately
given by an equivalent circuit with Rstr = 0.07Ω and Lstr = 1.7mH.

B. Demonstration Example

The configuration shown in Fig. 1 demonstrates the phe-
nomenon of different time constants within one circuit. Let
uP (t) represent a simplified circuit model and the boxed
inductor part is given by a stranded conductor model that is
described by a large non-linear system of equations. Then the
application of an adaptive time integration scheme would yield
time step sizes in the order of hC = 10−5s, although step sizes
of hL = 10−3s would be sufficient to render the dynamics of
the field model.

II. COUPLING

A. Electric Circuit

Electric circuits are commonly simulated by using the
modified nodal analysis, this yields an DAE due to redundant
coordinates, where voltages e and currents ı are the unknowns

F1(
dx

dt
, x, ıλ, t) := A

dq

dt
(x) + f(x, t) + Aλıλ = 0 (1)

with incidence matrices A, the unknown x := (e, ı), charge
and resistance functions q and f ; currents ıλ through field
devices as modeled below, [1].

B. Magnetoquasistatic Field

The electromagnetic field is described by Maxwell’s equa-
tions. We assume their spatial discretization based on the finite
element method with lowest order Whitney elements or by the
finite integration technique, [2, 3]. Then all equations can be
combined such that one obtains the curl-curl equation (2)

Mε
d2a

dt2
+ Mσ

da
dt

+ CTMνC
a =



j , (2)
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8. COUPLED PROBLEMS

with the unknown magnetic vector potential (MVP) a, the
discrete curl operator C, the electric current density due to
external sources  ; the material matrices Mν , Mε and Mσ

represent the reluctivities, permittivities and conductivities,
with Mσ singular in general.

C. Coupling with Conductor Models

In [4] the solid, stranded and foil conductor models have
been proposed for the usage in circuits. In all those cases
the coupling is established by relating circuit currents ıλ and
voltages uλ = AT

λx as defined in (1) to derivatives of the
field’s MVP a in (2). The curl-curl equation is excited by
currents that are derived from the coupling equation

 = Qıλ and Rıλ + QT da
dt

= AT
λx , (3)

where Q is the coupling matrix that imposes the circuit
currents and voltages onto edges of the grid; R contains the
dc resistances of all conductor models.

Finally, the field problem is given abstractly by the DAE

F2(
d2

dt2
a,

da
dt

,a, AT
λx, iλ) = 0 (4)

III. SIMULATION

A. Monolithic Simulation

The DAE (4) defines a current/voltage relation and hence
can be used as an element stamp in a circuit simulation
package. This monolithic (or strongly coupled) approach will
use the time integrator of the circuit simulator and serves as
reference solution.

Typical circuit integrators do not yet use multirate tech-
niques and thus the integration may become unnecessarily
expensive because of the different time constants. Furthermore
they focus on first order DAEs and hence one is forced to
rewrite the curl-curl equation to first order with the drawback
of doubling the number of unknowns or to disregard the
displacement current at all. The latter approach is known
as the magnetoquasistatic approximation and is the valid for
low frequencies, but is numerically cumbersome due to the
singularity of the conductivity matrix Mσ .

B. Waveform Relaxation

Instead of stamping the equations into one combined sys-
tem, both subproblems can be simulated independently from
each other by a waveform relaxation scheme, typically either
of Jacobi or Gauß-Seidel type, [5]. We suggest the Gauß-
Seidel scheme (5) that states the iteration in one time frame
and is employed to further frames according to Fig. 2.

The scheme starts from given initial values and an additional
initial guess for the current ı(0). It iterates for k = 1, . . . , N
and in each iteration the circuit is computed first and the
field afterwards. The first circuit solution x(1) is based on
the initial guess i(0), while later computations (k > 1) rely
on the previous field solution i(k−1). In Gauß-Seidel’s scheme

field
circuitt0 tend

iteration
of a time frame

Fig. 2. Integration of three time frames using a waveform relaxation schemes

the field computation always utilizes the latest available field
solution x(k):

Circuit: F1(
dx(k)

dt
, x(k), ı

(k−1)
λ , t) = 0

Field: F2(
d2a(k)

dt2
,
d
dt
a(k),a(k), AT

λx(k), i
(k)
λ ) = 0.

(5)

This approach allows the usage of problem-specific software
packages for the field and circuit equations (,,co-simulation”)
and therefore supports the full Maxwell case including the
displacement current. The convergence of this scheme is not
trivial due to the algebraic parts of the DAE, but convergence
has been shown in [6].

The co-simulation uses different time integrators and thus
supports different time steps towards each subproblem. But
this will not unlock all possible benefits of the multirate
phenomenon: different time scales within one subproblem
are not exploited and one may need too many iterations
of one time frame. Furthermore the consistency of the time
integration is only ensured on the subproblems. Therefore one
has to pick up the idea of multirate methods as they were
proposed in [7].

C. Implementation
A demonstration code for simulating the field/circuit cou-

pled problem is implemented within the CoMSON demonstra-
tion platform: the package FIDES for field devices is coupled
to the CoMSON circuit integrator (OCS). The results of Fig. 1
are obtained by the monolithic approach using a field model
discretized by FEMM.1
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8. COUPLED PROBLEMS: (a) moving boundary problems 

Abstract — Multidimensional field diffusion problems with 
front-type behaviour, moving boundaries and non-linear 
material properties are analysed by a finite volume front fixing 
method. Advantages and implementation challenges of the 
method are discussed with special attention given to conservation 
properties of the algorithm and achieving accurate solutions close 
to the moving boundaries. The technique is validated using 
analytical solutions of diffusion problems with cylindrical 
symmetry.  

I. INTRODUCTION 
Design and development of modern devices based on High 

Temperature Superconductors (HTS) requires numerical 
modelling since electromagnetic and thermal parts of the 
problem are coupled together via high sensitivity of HTS 
material properties to temperature [1, 2]. Both field variation 
and heat flow can be formulated in terms of diffusion. This 
allows utilising a standard modelling approach on fixed grids 
and thus simplifying the equipment design. But such approach 
often fails to deliver appropriate balance between accuracy 
and efficiency, especially when modelling pulse events or 
shallow field penetration. Special methods, such as adaptive 
meshes, front fixing and level sets methods [3], offer 
advantages in such applications but they have to be assessed 
and probably adapted for each particular problem. The paper 
focuses on the analysis of the front fixing technique [3] since 
it requires only a small modification of the computational 
algorithm in comparison with models based on fixed grids [4, 
5]. The major challenges are an implementation of 
conservation laws and achieving accurate solutions close to 
the moving curved boundaries. The paper uses analytical 
solutions of common front type problems to evaluate the 
performance of the numerical method. Two types of the 
problem are considered, namely a current pulse and an 
imposed external magnetic flux. 

II. PROBLEM FORMULATION 

A. Governing equation and material properties 
It is possible to describe the problem in terms of either 

magnetic or electric field diffusion [6, 7]. The electric field 
formulation is preferred for HTS materials with non-linear 
properties as it provides much more stable solutions [7]. The 
governing equation takes the diffusion-like form 

 ( ) 0curl curl 
t

∂
= −µ

∂
JE  (1) 

expressed in terms of the electric field E and current density J. 
HTS materials exhibit strong flux creep E-J behaviour often 

described by Rhyner’s power law [6], 1 1( )c cE E J J− − α= , 
where the critical current density Jc ≈ 109 A m−2 corresponds 
to a critical electric field Ec ≈ 10−4 V m−1. For practical HTS 
materials the power exponent α could be as high as 20. 
Substitution of the material properties into (1) results in a 
formulation of the problem in terms of the electric field only. 

B. Boundary and initial conditions 
A HTS wire with a round cross section of radius R is 

considered. For the first test, a pulse 0 0( , ) ( ) ( )zI r t I r t t= δ δ −  
of current is applied along the z axis at an instant t=t0. The 
second test case assumes an external magnetic flux Bz to be 
switched suddenly in the centre of the wire and maintained at 
a constant value afterwards. 

C. Analytical solutions 
The existence of an axi-symmetric analytical solution 

provides an opportunity to evaluate the performance of the 
algorithm on curved boundaries using the Cartesian 
coordinate system. The dimensionless solution for (1) in the 
case of cylindrical symmetry under the conditions of the 
current pulse can be derived as shown in [8] 

 
( ) ( )

( 1)1
2

0
1

( , ) 1 ( 1) 
4 4c

iE
E

α α−α−
α

α

⎡ ⎤
ρ τ ρ α −⎛ ⎞⎢ ⎥= −⎜ ⎟⎢ ⎥ατ ⎝ ⎠ α ατ⎢ ⎥⎣ ⎦

, (2) 

 ( )0 0
02 2

0
,  ,  c

c c

t t E Ir i
R J R J R

−
ρ = τ = =

µ π
. (3) 

The electric field and the current gradually spread from the 
centre of the wire towards the edges and there is a sharp 
interface between the region with a non-zero field and the 
outside part of the wire. A similar solution exists for the 
second test case of the applied external magnetic flux [9]. 

III. THE FRONT FIXING METHOD 

The spatial transformation uses new positional variables 
[3] adjusted to the front position and, generally, introduces a 
co-ordinate system in which all of the spatial boundaries are 
fixed to 0 or 1. As a result, the new computational domains 
remain the same with an additional advection term in diffusion 
equation plus an implicit non-linear equation for the boundary 
motion. This allows treating the nodes close to the interface as 
being independent of the motion, which gives higher accuracy 
for the same number of nodes used [4, 5]. In practical 
applications it is often sufficient to apply the transformation in 
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8. COUPLED PROBLEMS: (a) moving boundary problems 

only one direction, resulting in additional simplification [3]. 
Equation (4) is an example of the transformed (1) in notations 
(3) for the case of cylindrical symmetry:  

 
( ) ( )

2 1/ 2 1/
1( ) ,  c

us e ds su e e e E E
d u u u

α α
−

∂ ∂ ∂ ∂⎛ ⎞= + =⎜ ⎟∂τ τ ∂ ∂ ∂⎝ ⎠
. (4) 

with a boundary at s(t) and a new coordinate u=ρ / s(t). A 
divergent form of (4) ensures that there are no artificial energy 
sources [5]. 
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Fig. 1. Analytical and numerical predictions for a wire with I0 = 2A, R=0.5mm 

and α=6: mesh size effects.  
Dimensionless electric field Ez(r) at t = 0.01s (time step 0.1ms). 
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Fig. 2. Front-fixing method predictions of electric field inside the HTS wire 
after different times. Modelling conditions are similar to those in Fig. 1.  

IV. COMPARISON OF COMPUTATIONAL TECHNIQUES 

Predictions from fixed grid calculations and the front-
fixing method are summarized in Figs. 1-3. Fixed nodes 
cannot adequately describe the field profile in the case of a 
shallow penetration (Fig. 1). At least 4 nodes per penetration 
depth are required, which could be computationally expensive 
for large devices. Placing nodes close to the boundary does 
not always solve the problem because the front propagates 
further into the material at later stages of the process. In 
contrast, the front fixing automatically adjusts the nodes 
towards the front boundary, Fig.2, and good accuracy is 
achieved even by only 10 nodes in total. The particular 

advantage of using a front-fixing method for modelling of 
superconductivity phenomena is that the high accuracy can be 
obtained with a small number of grid points. The interface 
motion can also be accurately predicted on a coarse moving 
mesh, Fig. 3. 
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Fig. 3. Interface position as a function of time. Modelling conditions are 

similar to those on Fig. 1.  

V. CONCLUSIONS 
The application of a front-fixing method for modelling of 

shallow field penetration into HTS materials is demonstrated 
for 2D geometry cases. Efficient techniques for incorporating 
conservation laws are suggested and potential problems with 
complex boundary conditions are considered. It is shown that 
high accuracy can be achieved on a coarse mesh since the 
interface is fixed in new coordinates. The analysis of errors 
and further implementation details will be given in the 
extended version of the paper. The finite volume method has 
been utilised in the paper as an example; the finite element 
scheme can also be used for successful discretisation of space 
and time in the transformed equations. 
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8. COUPLED PROBLEMS 

Abstract —	 In	 a	 dielectric	 liquid,	 unipolar	 and	 bipolar	 space	
charge	injection	and	propagation	were	analyzed	under	simplified	
linear	 and	 Fowler-Nordheim	 charge	 injection	 conditions	 for	
parallel	 plane	 or	 needle-sphere	 electrodes	 stressed	 by	 a	 step	
voltage.	Especially,	here,	the	numerical	aspects	for	solving	space	
charge	analysis	were	explored	in	a	dielectric	liquid	by	the	Finite	
Element	Method	(FEM)	employing	the	artificial	diffusion	scheme	
as	 a	 stabilization	 technique.	 We	 first	 tested	 parallel	 plane	
electrodes	 with	 a	 simplified	 linear	 charge	 injection	 law	 for	
unipolar	space	charge	propagation	 that	 showed	good	agreement	
with	older	closed	form	with	space	charge	limited	condition.	And	
tip-sphere	 electrodes,	 where	 the	 radius	 of	 tip	 was	 40	 m,	were	
also	 tested	 for	 bipolar	 space	 charge	 propagation	 including	
Langevin	recombination.	

I. INTRODUCTION 
Dielectric liquids are widely used for many electrical 

insulation technologies such as transformer oil. When 
compared to gaseous or solid insulation, dielectric liquids 
generally offer greater electrical insulating strength, superior 
thermal conductivity, higher performance, and greater ease of 
use. One of the key issues for insulating liquids is to predict 
the electrical breakdown which is the final stage in the 
electrical breakdown process including several pre-breakdown 
stages.  

This breakdown is basically based on the charge injection 
and transport phenomena between electrode and dielectric 
liquid. To analyze these mechanisms, charge continuity 
equations and Poisson‟s equation for the electric scalar 
potential must be self consistently satisfied [1]-[2]. The 
distributions of space charge in streamer propagating channel 
might have a shock-wave pattern, which causes severe 
numerical instabilities, due to the abrupt injection and 
propagation of space charge.  

We briefly verified our numerical method by comparing 
analytic solutions earlier obtained by using the method of 
characteristics in the previous proceeding [3]. To stabilize this 
numerical difficulty, we, here, tested and discussed in the 
artificial diffusion technique incorporating the Finite element 
Method (FEM) considering the Peclet number in detail. The 
terminal current during discharge was calculated by using the 
principle of energy conservation for the electric field. Finally, 
we successfully applied the analysis to a tip-sphere electrode 
system, where the radius of tip was 40 m, for analyzing 
bipolar space charge propagation in a dielectric liquid medium. 

II. NORMALIZED GOVERNING EQUATIONS FOR UNIPOLAR 
SPACE CHARGE PROPAGATION 

To deal with numerical aspects, we tested the parallel 
plane electrodes with the lower electrode as anode at x=0 and 
the upper electrode as cathode at x=d, the distance between 
two electrodes. To employ the normalized forms, we took the 
normalized variables as 

 
2 2

0 0 0, / , / , / ,d t t V d V V V d V            
3 2

0 02 / , / , /d V d V A Ad   J J E E               (1) 
 

where the tilde denotes non-dimensional variables, t the time, 
μ the charge mobility, V0 the applied voltage,  the volume 
charge density, ε the dielectric permittivity, J the current 
density, and V the electric scalar potential related to the 
electric field intensity as E=V. Then, the normalized 
governing equations can be expressed as 

 
( )V        in Ω                  (2) 
 with ( 0) 1 and ( 1) 0 onV x V x        

( ) 0
t
 
 


E

   
  in Ω               (3) 

 with 0( 0, ) ( 0, ) onx t AE x t AE            
 

where 0E  is the non-dimensional electric field at x=0 and Ω is 
the domain region between electrodes. This governing 
equation for space charge propagation belongs to the 
hyperbolic-type PDE of which solution has a pattern of steep 
change in solution space resulting in numerical instabilities. 

III. STEADY-STATE SOLUTIONS BY DIFFERENT LINEAR 
INJECTION AND SPACE CHARGE LIMITED CONDITION 

In simple charge injection condition, when A , then 
0E  . This condition is the same as the space-charge limited 

condition. Figs. 1(a) and 1(b) show the dc steady-state 
distributions of the normalized electric field and the 
normalized space charge distributions. These all trends are 
match well with Zahn‟s results published in [1]. The 
maximum value, therefore, 5000A   can be regarded as the 
case of space charge limited condition as shown in Fig. 1.  
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8. COUPLED PROBLEMS 

 
(a)  Normalized electric field distributions vs. normalized position 

 
(b) Normalized charge density distributions vs. normalized position 
Fig. 1. DC steady-state distributions with respect to normalized charge 
injection constant, A . 

IV. NUMERICAL ASPECTS OF TRANSIENT ANALYSIS WITH 
ARTIFICIAL DIFFUSION SCHEME 

The governing equation, (3), strongly depends on the 
convective term and the discretization of convective-
dominated transport problems can introduce numerical 
instabilities in the solution. In this case, these instabilities 
might be noted as oscillations and non-convergence in the 
field solutions, primarily where steep gradients are present 
such as at the fronts of moving charge. The oscillations can 
even be large enough to prevent the solution from converging. 
To check this instability, the Peclet number at each element, 

celleP , can give a useful information related to a numerical 
stability, which can be expressed as [4] 
 

| | /
celleP h c                   (4) 

 
where h is the local mesh diameter, β the magnitude of the 
convective velocity, and c the diffusivity. Numerical solution 
will be unstable when the Peclet number exceeds two [4]. For 
our problem, because there is no diffusion term (c=0), 

celleP  . To resolve this numerical instability, an artificial 
diffusion technique was adopted, which yield more reliable 
results, as 
 

2( ) 0D
t
  
   


E

     
              (5) 

 
where D  is the non-dimensional artificial diffusion 
coefficient.  

Figs. 2(a) and 1(b) show the transient solutions of electric 
field intensity and space charge propagation with the different 
artificial diffusion factors at normalized time 0.1t   
comparing to those from analytic approach with space charge 
limited condition [1]. 

 
(a)  Normalized electric field distributions vs. normalized position 

 
(b) Normalized charge density distributions vs. normalized position 
Fig. 2. Electric field and charge density with respect to different artificial 
diffusion factors (Delta) in case of space charge limited condition (SCL) and 
simple charge injection condition  ( 1000)A   at normalized time  0.1t  . 
 

In extended paper, more results will be presented in detail 
including the Fowler-Nordheim field emission condition and a 
tip-sphere electrode system, where the radius of tip was 40 m, 
for analyzing bipolar space charge propagation in a dielectric 
liquid medium. 
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Abstract—In this paper, a generalization of cloaking is pre-
sented: instead of an empty region of space, an inhomogeneous
structure is transformed via Pendry’s map in order to give, to
any object hidden in the central hole of the cloak, a completely
arbitrary appearance.

I. INTRODUCTION

In 2006, it was suggested by Pendry et al. [1] that an
object surrounded by a coating consisting of an exotic material
becomes invisible to electromagnetic waves. This device was
named “invisibility cloak” in reference to Harry Potter, the
popular character of J.K. Rowling. Beside his famous cloak,
the little wizard has other spells to go unnoticed. Among
the most spectacular is the “polyjuice potion” that is able
to turn somebody into anybody else’s appearance [2]. In this
paper, we do not present a potion but rather an optical device
able to accomplish the same task, i.e. to give an arbitrary
optical response chosen in advance to any other object placed
inside the device. In fact, the principle is here very similar
to the design of Pendry’s invisibility cloak but, instead of
geometrically transforming an empty domain, it is a region
containing the object to be imitated that is transformed leading
thus to a generalization of cloaking.

II. GENERALIZED CLOAKING

In this section, we present a generalization of cloaking able
to arbitrarily transform the electromagnetic appearance of an
object. The basic principle is to obtain the constitutive relations
of the cloak by application of a space transformation to a non-
empty region.

A geometric transformation is given by a map ϕ from a
space N to a space M . For all our practical purposes, M and
N will be here the whole or parts of R3. Given a Cartesian
coordinate system x on M and an arbitrary coordinate system
x on N , ϕ : N → M is described by x(x), i.e. x given
as function of x. All the useful information, i.e. necessary
to transform differential forms and other covariant tensors, is
contained in the Jacobian matrix field J(x) = ∂x(x)/∂x.

The basic principle of transformation electromagnetics is
that, when you have an electromagnetic system described
by the tensor fields ε(x) for the dielectric permittivity and
µ(x) for the magnetic permeability in the space M , if you
replace your initial material properties by equivalent material

properties given by the following rule [3], [4]:

ε(x) = J−1(x)ε(x(x))J−T (x) det(J(x)),

µ(x) = J−1(x)µ(x(x))J−T (x) det(J(x)), (1)

(J−T is the transposed of the inverse of J), you get an
equivalent problem on N . Here, an equivalent problem means
that the solution of the new problem on N , i.e. electromagnetic
quantities described as differential forms, are the pulled back
of the solution [4], [5] of the original problem on M and that
the same Maxwell’s equations (i.e. as if we were in Cartesian
coordinates or, more accurately, having the same form written
with the exterior derivative) are still satisfied.

In the case of the cylindrical Pendry’s map [1], [6], de-
scribed by the transformation of the 2D cross section, the plane
R2 minus a disk D1 of radius R1 is mapped on the whole plane
R2 in such a way that a disk D2 of radius R2 > R1, concentric
with D1, is the image of the annulus D2\D1 by a radial
transformation. In cylindrical coordinates, this transformation
is given by:


r = (r −R1)R2/(R2 −R1) for R1 ≤ r ≤ R2,

θ = θ, z = z.
(2)

As for the outside of the disk D2, the map between the two
copies of R2\D2 is the identity map.

The material properties given by rule (1) corresponding to
this transformation provide an ideal invisibility cloak: outside
D2, everything behaves as if we were in free space, including
the propagation of electromagnetic waves across the cloak, and
is completely independent of the content of D1.

Now, rule (1) may be applied to D2 containing objects with
arbitrary electromagnetic properties so that a region cloaked
by this device is still completely hidden but has the appearance
of the objects originally in D2. We may call this optical effect
masking [7] or “polyjuice” effect.

III. NUMERICAL MODELING

Figs. 2 and 3 shows the effect of masking on a scattering
structure. On Fig. 2, a cylindrical TM wave emitted by
a circular cylindrical antenna is scattered by a conducting
triangular cylinder (the longest side of the cross section is
1.62λ and εr = 1 + 40i). The field map represents the
longitudinal electric field Ez(x, y) and the outer boundary of
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Fig. 1. This figure shows a part of the triangular mesh used for the finite
element modeling of the scattering problem of Fig. 3. The singular behavior
of the permittivity and of the permeability requires a very fine mesh along
the inner boundary of the cloak in order to achieve a satisfactory accuracy
with the numerical model.

Fig. 2. A conducting triangular cylinder is scattering cylindrical waves.

the cloak is shown to ease the comparison with the masked
case. On Fig. 3, the same cylindrical TM wave is scattered by
a masked triangular cylinder. This triangular cylinder is the
symmetric of the previous one with respect to the horizontal
plane containing the central fibre of the cylindrical antenna.
This bare scatterer would therefore give the Fig. 2 image
inverted upside-down but, here, this object is surrounded by
a cloak in order to give the very same scattering as before.
Indeed, on both sides, the electric fields outside the cloak limit
are alike.

The numerical computation is performed using the finite
element method (via the GetDP freeware [8]). The mesh is

made of 148,000 second order triangles. The singularity of ε

Fig. 3. A triangular cylinder different from the one on Fig. 2 is surrounded
by a cloak designed to reproduce the scattering pattern of the Fig. 2 triangular
cylinder in spite of the change of diffracting object.

and µ requires a very fine mesh in the vicinity of the inner
boundary of the cloak and is also responsible for the small
discrepancies between the numerical model and a perfect cloak
(including the non zero field in the hole of the cloak).

The rule (1) is applied but a small problem arises in
practice: the material properties are defined piecewise on
various domains and it is very useful to know explicitly the
boundaries of these domains, e.g. to build the finite element
mesh. These boundaries are curves in the cross section and
are thus contravariant objects. Therefore, their transformation
requires the inverse map ϕ−1 from M to N . Fortunately,
map (2) is very simple to invert. On Fig. (2) the image by
ϕ−1 of the triangle in the left side picture is the curvilinear
triangle inside the cloak in the right side picture. In practice,
this anamorphosis of the triangle is described by three splines
interpolating each 40 points.
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5. NANOMAGNETICS AND APPLICATIONS

Abstract — Acceleration of micromagnetic calculations on 
symmetric multiprocessing (SMP) system is investigated. A speed 
up of more than 20 times has been realized compared with the 
serial processing software. The SMP system with the optimized 
software has a speed up of 5.6 times compared to a previous 
version on an 8-CPU cluster system. Micromagnetic analysis of a 
write head with trailing and side shields is performed to derive 
the dynamic recording field and magnetization rotation process. 
The dynamic recording field is found to be affected by the shields. 

I. INTRODUCTION

Micromagetic simulation is a powerful tool to understand 
the complicated phenomena in recording write heads [1] that 
occur in the sub-nanosecond and sub-nanometer regions, 
where experiments are fairly hard. In micromagnetic analysis 
the computational load is large; therefore, parallel computing 
is essential. We have previously reported on a cluster system 
and parallelized program with full Fast Fourier Transform 
(FFT) [2]. In that system the communication time is not 
negligible and amounts to almost half the total computation 
time if a Gigabit network is used. An infiniband network 
system would reduce this time but they are fairly expensive. 

The first half of this paper investigates the acceleration of 
the micromagnetic analysis. We have used the symmetric 
multiprocessing (SMP) system to avoid problems with 
communication time between nodes and optimized the 
software. The major contributions to the speed-up are the use 
of a three-dimensional FFT in place of the two-dimensional 
FFT, and the reduced FFT procedure. In the second half, a 
single-pole-type (SPT) head with trailing shield (TS) and/or 
side shields (SSs) is analyzed, and the dynamic recording field 
and the magnetization rotation process are investigated. It is 
found that the recording field is affected not only by the 
magnetization rotation process of main pole (MP) but also the 
presence of trailing and side shields. 

II. CALCULATION MODEL

Throughout this paper we use the SPT head model shown in 
Fig. 1 with material characteristics shown in Table I, where 

sM  is the saturation magnetization, 
uK  is the anisotropy 

energy, A  is the exchange constant, and   is the Gilbert 
damping factor. For both the head and media soft underlayer 
(SUL), the anisotropy direction is assumed to be the cross-
track (+y) direction. The recording layer was assumed to be 
air. The model dimensions are close those of commercial 

heads except that the main pole tip has a large area (160 nm 
wide × 260 nm long) with a throat height of TS = 200 nm and 
a neck height of MP = 200 nm. The model is divided into 20-
nm a side cubic cells and the total number of cells is 
3,672,000. The recording field distributions are observed at 28 
nm from the air-bearing surface (ABS), where the distance 
between ABS and SUL = 66 nm. 
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(c) Plan view of main pole and side shield 
Fig. 1. SPT head model with trailing and side shields. Medium (soft 

underlayer) is not shown. 

TABLE I
MATERIAL CHARACTERISTICS FOR HEAD AND SOFT UNDERLAYER

SPT head Soft underlayer
M s  emu/cm3 1910 955
(4 M s  kG) 24 12
K u  erg/cm3 3x104 3x104

A erg/cm 1x10-6 1x10-6

0.2 0.2



SPT head Soft underlayer
M s  emu/cm3 1910 955
(4 M s  kG) 24 12
K u  erg/cm3 3x104 3x104

A erg/cm 1x10-6 1x10-6

0.2 0.2



The Laudau-Lifshitz-Gilbert (LLG) micromagnetic analysis,  

)()1( 2 HMMHMM 


sM


         (1) 

that treats the whole magnetic material micromagnetically was 
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5. NANOMAGNETICS AND APPLICATIONS

solved by using the finite-difference method, where M is the 
magnetization vector, H is the effective field vector and    is 
the gyro magnetic constant.  

III. ACCELERATION OF MICROMAGNETIC CALCULATIONS

In Tables II and III the hardware and software used are 
shown. We have optimized the software on an Intel Xeon 
SMP system. The speed-ups are summarized in Fig. 2 for one-
thread and eight-threads, where the original program was the 
parallelized program optimized for the cluster system. 
Program 1 is a serial processing program where the message 
passing interface (MPI) feature has been removed from the 
original program. Program 2 was parallelized using OpenMP 
and automatic parallelization was performed with a 
compilation option. Program 3 uses the three-dimensional 
FFT in place of the two-dimensional FFT. In program 4, the 
FFT procedure was reduced with the help of the symmetric 
nature of the FFT.  Program 4 has a calculation speed which is 
more than 20 times faster than program 1. It is also noted that 
the processing speed of program 4 on the Xeon SMP system is 
5.6 times faster than the 8-CPU Pentium4 cluster system. With 
regard to the memory requirement, the SPT head model can be 
solved with 8.5 GB. Note that the recording fields obtained by 
program 1 and program 4 agree with 6 digits of precision. 

TABLE II 
HARDWARE AND SYSTEM USED FOR THE CALCULATIONS

Cluster system [2] SMP system
CPU Pentium4 Xeon
Clock 3.0 GHZ 2.5 GHz
RAM 4 GB (x 8) 16 GB

Compiler Intel Fortran 9.1 Intel Fortran 10.1
Library Intel MKL 8.1 Intel MKL 10.0
Notes 8 nodes Quad core x 2

TABLE III 
DESCRIPTION OF SOFTWARE USED

Name Major feature Parallel/serial
Program 1 Cluster program, MPI removed Serial
Program 2 OpenMP + automatic parallelization Parallel
Program 3 3-D FFT Parallel
Program 4 3-D FFT + reduced FFT procedure Parallel
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Fig. 2.  Comparison of calculation times on Xeon SMP System. 

IV. CALCULATED RESULTS FOR VARIOUS SHIELD SPT HEADS

In Fig. 3, head field time variations are shown for various 
head structures: head 1 has no TS and no SS; head 2 has TS 
(60 nm from MP) and no SS; head 3 has TS (60 nm from MP) 
and SSs (60 nm from MP). Shielded head 3 has the smallest 

field amplitude and the response is quite different from the 
other two heads. In Fig. 4, snapshots of the magnetization 
vectors in MP, in the cells facing ABS, are shown for head 1 
and head 3 at t = 1.5 ns when current is 0; t = 1.65 when the 
driving current reaches positive peak; and t = 2.05 when the 
current starts to decrease from the positive peak. It is seen that 
the magnetization in MP is affected by the trailing and side 
shields, and directed towards the TS and SSs. It is also seen 
that, in dynamic response, the magnetization rotation process 
in MP is affected by the magnetization in the shields, which 
finally affects the head field response. 

The head field time variations and the magnetization 
process for various head structures and materials will be 
shown in the full paper. We will also try to propose a SPT 
head with fast response, large recording field, and small stray 
field to the adjacent tracks. 
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Fig. 4.  Magnetization vectors in MP for head 1and head 3.
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Abstract—We show how to use hexahedral and prismatic
elements for the efficient development of UPML around an
unstructured tetrahedral primal mesh using the finite integration
technique (FIT). Taking into account the properties of the UPML
medium, we obtain a simple scheme for the time-domain solution
of Maxwell’s equations. The implementation of the method is
presented for the general 3D case, and numerical results are
given for a 2D test case.

I. INTRODUCTION

Perfectly matched layers (PML) have been developed for the
numerical approximation of electromagnetic radiation and/or
scattering problems by the finite element method (FEM) and
the finite difference time domain method (FDTD). PML have
been introduced by Berenger in 1994 in the context of the
FDTD method using a formulation in cartesian coordinates
[1]. Berenger derived a split-field formulation of Maxwell’s
equations where each vector field component is split into two
orthogonal components. Subsequently, another formulation has
been proposed by Chew and Weedon [2] using the concept of
stretching complex coordinates. Both of these approaches yield
non-Maxwellian fields within the PML domain.

It has been demonstrated by Sacks et al [4] that Maxwellian
PML can be realized as a uniaxial anisotropic medium with
suitably defined permittivity and permeability tensor. The
introduction of losses into these tensors results in a per-
fectly matched absorbing medium. This mathematical model
(UPML) was first applied within the FDTD method by Gedney
[5].

The implementation of the UPML-FDTD method is simple
for the termination of regular hexahedral meshes [3]. UPML
termination of an unstructured tetrahedral mesh is much more
difficult. It can be perfomed with time-domain finite element
method, but this approach has some difficulties in terms of
computational and analytic effort, especially because of the
convolution term [7]-[8].

In this paper, a new efficient implementation of UPML
is proposed for the finite integration technique. Hexahedral
and prismatic elements are used to extend the tetrahedral
primal mesh. The resulting scheme is very similar to the usual
FDTD one but can be applied to the termination of general
unstructured meshes.

II. IMPLEMENTATION OF UPML IN THE FIT

We start with the tetrahedral primal mesh of an hexahedral
region (PML free region) around which we have to build the
PML. The PML mesh is built by extrusion of the primal
triangular faces of the boundaries. There are two types of
region to study in the PML:

• Regions where the absorption is done in one direction. In
these regions, the mesh is obtained by normally extruding
the triangular faces of the boundaries: the resulting mesh
is prismatic.

• Corner regions, where the absorption is done in two or
three directions, are made up of hexahedral elements.

The dual mesh is assumed to be the barycentric one on for all
regions.

In corner regions, the FIT formulation is based on the
direct application of the FDTD-UPML [3], using appropriate
diagonal constitutive matrices. In the other type of region, we
consider that x is the absorption direction. Amperes Law in
the matched UPML is expressed as

rotH = jw




1
Sx

0 0
0 Sx 0
0 0 Sx


E (1)

where Sx = κx + σx
jω with κx and σx the PML parameters.

Direct transformation into the time domain would lead to a
convolution between the tensor coefficients and the E field.
This approach has some difficulties because implementing this
convolution would be computationally intensive. A much more
efficient approach is to define the proper constitutive relation-
ship to decouple the frequency-dependent terms. We chose
to define D in order to obtain an isotropic time independent
behavior for the UPML in the directions perpendicular to the
absorption direction (y,z):

Dx = 
1
Sx

Ex (a); Dy = Ey (b); Dz = Ez (c) (2)

Then, applying the inverse Fourier transform and using the
identity jω → ( ∂

∂t ):
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Fig. 1. Notations for primal and dual meshes in the prismatic PML region

rotH =
∂

∂t




1 0 0
0 κx 0
0 0 κx


D +

1





0 0 0
0 σx 0
0 0 σx


D

(3)
The FIT formulation is obtained by integrating equation (3)

on the faces of the dual mesh (Fig. 1). For the faces associated
to a primal edge parallel to the absorption direction, the
equation is implemented directly by the following expression:

(Rh) =
∂d

∂t
(4)

where R is the discrete rotational operator, h and d the
degrees of freedom. On the dual faces associated with edges
perpendicular to the absorption direction, we have:

(Rh)⊥ = κx
∂

∂t
d⊥ +

σx


d⊥ (5)

Then, it is necessary to formulate the constituve relations. A
special constitutive matrix is built in order to take advantage
of the choice made for equations (2). The edges parallel
to the absorption direction are assumed to be independent
of the edges perpendicular to the absorption direction. In
consequence, equation (2a) can be directly expressed by:

d = 
1
Sx

S

l
e (6)

where l is the length of the primal edge and S the surface of
the dual face. By transformation into the time domain, this
equation gives an update scheme similar to the one of an
FDTD implementation. As equations (2b) and (2c) are both
independent of time, the constitutive relation can be treated in
a similar way that in the PML free region: for each layer of the
PML, the edges perpendicular to the absorption direction form
a 2D triangular mesh. The associated entries of the constitutive
matrix can be calculated using the 2D Galerkin’s method [6],
taking into account the thickness of the layer.

A similar formulation can be obtain for the other Maxwell’s
equation and constitutive law.

III. NUMERICAL RESULTS

For validation, a parallel plate waveguide is considered.
A plane TE gaussian pulse is generated at one end of the
waveguide, and the UPML medium is used to absorb the pulse

Fig. 2. Error with respect to the numerical solution without PML (x1000 of
the maximum value of the pulse) near the UPML medium

at the other end. The mesh consists of triangular elements
in the waveguide, and rectangular elements in the UPML.
The electric field is computed at a point near the PML
boundary. The result is compared to the numerical solution
obtained without PML but on a longer waveguide avoiding
any reflection during the simulation time. The error is given by
the difference between these two numerical solutions (Fig.2).
It remains under 5.10−4 on the whole simulation time which
shows that the UPML is efficient.

IV. CONCLUSIONS

In this paper, we have introduced the use of hexahedral and
prismatic elements for the development of UPML. We have
shown that the implementation using the FIT is very simple,
practical and compatible with unstructured primal tetrahedral
meshes. Normally extruded prisms and an apropriate choice of
the UPML scheme give the key to an efficient FIT formulation.
Numerical results on a 2D problem show the applicability of
the method. A complete 3D problem with absorption in all
directions will be presented at the conference.
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3. WAVE PROPAGATION 

Abstract — A finite integration technique (FIT) on a space-
time grid is studied for electromagnetic wave computation, where 
nonuniform time-step distribution is naturally introduced. 
Orthogonality between dual grids is given by the Lorentz metric 
to obtain a constitution equation for electromagnetic variables. 
An analysis of TE-wave scattering by the FIT on a nonuniform 
space-time grid is presented. 

I. INTRODUCTION 
The finite difference time domain (FDTD) method [1] is 

widely used for electromagnetic field computation because of 
its efficiency and accuracy. However, the conventional Yee 
grid requires brick-type representation of analyzed objects. 
The finite integration technique (FIT) [2], [3] can use flexible 
spatial grids including tetrahedron, prism, and pyramid 
elements. However, both conventional FDTD method and FIT 
use a uniform time-step. The FDTD method using sub-grids 
[4], [5] uses nonuniform time-steps, but it uses only brick-type 
spatial grids. 

On the other hand, space and time are handled in a unified 
manner by the special theory of relativity [6]. Although usual 
electromagnetic field computation does not require the relative 
theory, electromagnetic fields can be analyzed in space-time 
because Maxwell equations are not affected by the special 
theory of relativity. 

This study examines an electromagnetic field computation 
on a space-time grid, where nonuniform time-step distribution 
is naturally introduced.  

II. FINITE INTEGRATION METHOD ON A SPACE-TIME GRID 
The Euclid metric is used in this article for an analogous 

explanation to the conventional electromagnetics in two- or 
three-dimensional (2D or 3D) space. 

For simplicity, permittivity ε and permeability μ are 
assumed to be constant. A time-variable w is introduced as 

w = ct ,  c = (εμ) −1/2 .            (1) 

A 2D electromagnetic field is described by (2) and (3), 
where Ex, Ey and Bz propagate in (x, y, w) space-time. 

∂Ey/∂x − ∂Ex/∂y + ∂Bz/∂w = 0          (2) 

∂Hz/∂y − ∂Dx/∂w = 0 ,  − ∂Hz/∂x − ∂Dy/∂w = 0  (3) 

Ex = Ex / c ,  Ey = Ey / c ,  Hz =  Hz / c      (4) 

Two electromagnetic vectors are formally defined in (x, y, 
w) space-time as 

F = (Ey, −Ex, Bz) ,  G = (−Dy, Dx, Hz) .     (5) 

Equations (2) and (3) can be rewritten with F and G as 

∇2 ⋅ F = 0 ,  ∇2 × G = 0           (6) 
where ∇2 means (∂/∂x, ∂/∂y, ∂/∂w).  

The integral form of (6) is given as 
0=⋅∫ S

S
dnF  ,  0=⋅∫C dstG          (7) 

where n and t are the unit normal and tangential vectors, 
respectively. 

Equation (7) derives an FIT in the space-time using 
electromagnetic variables defined as 

ex = ∫Exdwdx ,  ey = ∫Eydydw ,  b = ∫Bzdxdy    (8) 

dx = ∫Dxdy ,  dy = ∫Dydx ,  h = ∫Hzdw .     (9) 

The integration of dx, dy, and h along the z-direction is 
implicitly assumed for unit length in (9). 

When orthogonal primal and sub grids in (x, y, w) space-
time are used, the FIT reduces (7) to (see Fig. 1) 

− bi, j
n−1 + ex,i, j−1/2

n−1/2 − ey,i−1/2, j
n−1/2 

+ bi, j
n − ex,i, j+1/2

n−1/2 + ey,i+1/2, j
n−1/2 = 0      (10) 

− dy,i+1/2, j
n−1/2 − hi, j

n + dy,i+1/2, j
n+1/2 + hi+1, j

n = 0   (11) 

+ dx,i, j+1/2
n−1/2 − hi, j

n − dx,i, j+1/2
n+1/2 + hi, j+1

n = 0 .  (12) 

Those result in the conventional FDTD scheme.  
 

 
 

     
 

Fig. 1  FIT using orthogonal space-time mesh. 
 
The following electromagnetic variables are defined when 

a non-orthogonal primal grid and its dual grid are used. 

f = ∫ F⋅ndS ,  g = ∫ G⋅tds           (13) 

Variables f and g are defined on the primal and sub grids, 
respectively. Integration of g along the z-direction is assumed 
implicitly for unit length in (13). 
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3. WAVE PROPAGATION 

Let np = (n1, n2, n3) be the normal vector of a face of the 
primal grid. To relate f to g, the tangential vector of the 
corresponding edge of the sub grid is given as ts = (−n1, −n2, 
n3), as presented in Fig. 2. Thereby, 

F⋅np = Eyn1 − Exn2 + Bzn3 
= (μ/ε)1/2 ( Dyn1 − Dxn2 + Hzn3 ) = Z G ⋅ ts .  (14) 

Z = (μ/ε)1/2                (15) 

It is noted that ts is orthogonal to the corresponding face of the 
primal grid by the Lorentz metric. 

 

primal

primal

sub

sub npts

np
ts

 
Fig. 2  Relation between face of primal mesh and edge of sub mesh 

 

III. APPLICATION TO TE-WAVE COMPUTATION 

Fig. 3 depicts a space-time primal grid with 2D-space. The 
grid has three domains according to the time-step: (I) the 
domain with time-step Δw, (II) the domain with Δw/2, and 
(III) the domain connecting (I) and (II). The FIT can use prism 
elements in domain (II) similarly to the usual brick elements. 
Fig. 3(c) and (d) portray connecting domain (III). An explicit 
time-marching scheme is developed for the space-time grid.  

 

   
(a)           (b) 

 

     
(c)           (d) 
Fig. 3  Geometry of application example and space-time grid: (a) source and 
domain (II), (b) three domains, (c) connecting part (solid lines: primal gird, 

dashed lines: sub gird), and (d) domain (III) 
 
The TE-wave induced by a magnetic current source is 

analyzed, where the TE-wave is scattered by a triangle 
dielectric. The permittivity and permeability are set to unity by 
normalization in the domains except the dielectric. The 
dielectric has ε = 20 and μ = 1, which occupies half of domain 
(II). The spatial cell size is unity and Δw = 0.5 in domain (I). 

Domain (II) and the magnetic current source with normalized 
frequency of 0.1 are located as depicted in Fig. 3(a).  

Fig. 4 depicts distributions of Bz obtained from the FIT on 
space-time grid and from the conventional FDTD method. The 
FDTD uses the same cell size and time-step as in domain (I) 
uniformly. Fig. 8(b) shows that the FDTD method results in 
insufficient resolution in the dielectric because of the fixed 
cell size. The FIT on space-time grid can zoom in/out 
according to the locally required resolution of the 
electromagnetic wave. 

 

(a)  

(b)  
Fig. 4  Distribution of Bz: (a) by FIT on the space-time grid, and (b) by FDTD  
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Abstract—We report on recent efforts towards the development
of a high order, non-conforming, discontinuous Galerkin method
for the solution of the system of frequency domain Maxwell’s
equations in heterogeneous propagation media. This method is
an extension of the low order one which was proposed in [1].

I. INTRODUCTION

In the recent years, there has been an increasing interest
in discontinuous Galerkin (DG) methods for solving the time-
domain Maxwell equations [2]- [3] due to their ability to easily
deal with unstructured meshes and heterogeneous media. The
development of DG methods for solving the frequency domain
Maxwell equations has been less impressive and mostly done
in the context of the Maxwell eigenvalue problem [4]. Besides,
a hp-adaptive DG method has been proposed in the context
of the low-frequency time-harmonic Maxwell equations [5].
In this paper, we report on recent efforts towards the devel-
opment of a discontinuous Galerkin method for the solution
of the system of frequency domain Maxwell’s equations in
heterogeneous propagation media. This DGFD (Discontinu-
ous Galerkin Frequency Domain) method is formulated on
simplicial meshes (triangle in 2D and tetrahedron in 3D).
Within each mesh element, the approximation of the elec-
tromagnetic field relies on an arbitrarily high order nodal
polynomial interpolation. Moreover, as a first step towards the
development of a hp-adaptive method, the approximation order
p is allowed to vary across mesh elements resulting in a non-
conforming DGFD method. We present preliminary results for
the simulation of two-dimensional propagation problems.

II. DGFD METHOD

We consider solving the non-dimensioned time-harmonic
Maxwell equations in the first order form:

iωεrE − curl H = 0 , iωµrH + curl E = 0, (1)

where E and H are the unknown electric and magnetic
fields. Parameters εr and µr are respectively the complex-
valued relative dielectric permittivity and the relative magnetic
permeability; we consider here the case of linear isotropic
media. Eq. (1) is solved in a bounded domain Ω. On the

boundary ∂Ω = Γa ∪ Γm, the following boundary condi-
tions are imposed: a perfect electric conductor condition on
Γm: n × E = 0, and a Silver-Müller (first-order absorbing
condition) condition on Γa: n × E + n × (n × H) =
n×E

inc +n× (n×H
inc). Vectors E

inc and H
inc represent

the components of an incident electromagnetic wave and n

denotes the unitary outward normal. Eq. (1) can be further
rewritten under the following form:

iωG0W +Gx∂xW +Gy∂yW +Gz∂zW = 0. (2)

Let Ωh denote a discretization of the domain Ω into a union
of conforming tetrahedral elements Ωh =

�

K∈Th

K . We look

for the approximate solution W h = (Eh,Hh)t of (2) in
Vh × Vh where the functional space Vh is defined by Vh =�
U ∈ [L2(Ω)]3 / ∀K ∈ Th, U |K ∈ Pp(K)

�
where Pp(K)

denotes a space of vectors with polynomial components of
degree at most p over the element K . The discontinuous
Galerkin discretization of system (2) leads to find W h in
Vh × Vh such that:

�

Ωh

(iωG0W h)
t
V dv

+
�

K∈Th

�

K




�

l∈{x,y,z}

Gl∂l(W h)




t

V dv

+
�

F∈Γm∪Γa

�

F

�
1

2
(MF,K − IFKGnF

)W h

�t

V ds

−
�

F∈Γ0

�

F

(GnF
�W h�)

t
{V }ds

+
�

F∈Γ0

�

F

(SF �W h�)t �V �ds

=
�

F∈Γa

�

F

�
1

2
(MF,K − IFKGnF

)W inc

�t

V ds,

(3)

∀V ∈ Vh × Vh, where Γ0, Γa and Γm respectively denote
the set of interior (triangular) faces, the set of faces on Γa
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and the set of faces on Γm. The unitary normal associated to
the oriented face F is nF and IFK stands for the incidence
matrix between oriented faces and elements whose entries are
given by 0 if the face F does not belong to element K , 1 if
F ∈ K and their orientations match, -1 if F ∈ K and their
orientations do not match. We also define respectively the jump
and the average of a vector V of Vh ×Vh on a face F shared
by two elements K and K̃: �V � = IFKV |K + IFK̃V

|K̃ and

{V } = 1
2

�
V |K + V

|K̃

�
. Finally, the matrix SF , which is

hermitian positive, allows to penalize the jump of a field or of
some components of this field on the face F and the matrix
MF,K is a numerical flux which can be either a centered flux
or all the upwind flux (see [1] for more details).

III. NUMERICAL RESULTS

Numerical results are presented here for the solution of the
2D TMz Maxwell equations. We first illustrate the conver-
gence properties of the conforming (i.e. p is the same for
all elements K ∈ Th) DGFD-Pp method by considering the
propagation of a plane wave (F=300 MHz) in vacuum. The
computational domain is the unit square [0,1]x[0,1] discretized
by non-uniform triangular meshes. The numerical convergence
of the method is visualized on Fig. 1 and convergence orders
are summarized in Tab. I. One can note that an optimal
convergence order is obtained in the case of an upwind
numerical flux function.
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Fig. 1. Propagation of a plane wave in vacuum. Numerical convergence of
the DGFD-Pp method: central flux (left) and upwind flux (right).

TABLE I
PROPAGATION OF A PLANE WAVE IN VACUUM. CONVERGENCE ORDERS OF

THE DGFD-Pp METHOD.

Numerical flux P1 P2 P3 P4

Centered 1.1 2.1 2.9 4.0
Upwind 1.9 3.0 3.9 5.0

The second test problem that we consider is the scattering
of a plane wave (F=300 MHz) by a dielectric cylinder. For
that purpose, we make use of a highly non-uniform triangular
mesh which consists of 2078 vertices and 3958 triangles.
The relative permittivity of the inner cylinder is set to 2.25
while the vacuum is assumed for the rest of the domain. We
compare the solutions obtained using a conforming DGFD-Pp

method for p = 1, 2, 3, 4 and a non-conforming DGFD-PpK

method and adopting a centered numerical flux function. In
the latter case, the approximation order is defined empirically

at the element level based on the triangle area resulting
in a distribution for which the number of elements with
p = 1, 2, 3, 4 is respectively equal to 1495, 2037, 243 and
183. For each method, the algebraic systems resulting from
the discretization of the time-harmonic Maxwell equations
is solved using an optimized sparse direct solver. In Tab. II
we summarize the performances of the methods in terms of
accuracy (L2 error on the Ez component using the existing
analytical solution for the considered problem), the CPU time
and the memory overhead (for storing the L and U factors).
These results clearly show the benefits resulting from a local
definition of the approximation order, especially in terms of
memory requirements and overall computational efficiency.
The present work is currently proceeding towards the design
of a p-adaptive solution strategy in the context of the proposed
non-conforming DGFD-PpK

method, and its extension to the
3D case.

Fig. 2. Scattering of a plane wave by a dielectric cylinder. Non-uniform
triangular mesh (top) and contour lines of Ez for the non-conforming DGFD-
PpK

method (bottom).

TABLE II
SCATTERING OF A PLANE WAVE BY A DIELECTRIC CYLINDER.

PERFORMANCE FIGURES.

Method L2 error on Ez CPU RAM (LU)

DGFD-P1 0.37977 1.3 sec 29 MB
DGFD-P2 0.58304 4.1 sec 84 MB
DGFD-P3 0.05527 7.9 sec 180 MB
DGFD-P4 0.05522 15.7 sec 317 MB

DGFD-P1,2,3,4 0.05586 3.7 sec 83 MB
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Abstract—By exploitation of eddy current effects, hidden
conductive objects can be detected on principle. A particular
challenge is posed by the task of exactly recognizing the position
of an object known in shape while hidden by other material
with sensor - object distances of several centimeters. This paper
will show how positioning parameters of the device under test
can be obtained by a sensor array, consisting of commercially
available standard-GMRs (giant magnetoresistors), and accord-
ing algorithms for solving the inverse problem. The array of
sensors allows to obtain all measurement data within a single
measurement operation.

Index Terms—Identification, ECT, Inverse Problem, GMR

I. INTRODUCTION

Electromagnetic methods enabling the localization of con-
ductive objects hidden by non- or weakly conductive materials
are well known and are used for numerous applications (e.g.
[1]). However, if the object’s position or attitude should be re-
trieved, sensor arrays offering finer resolutions and appropriate
evaluation algorithms need to be applied or developed.

GMRs ([2]) are used for the realization of a cost-efficient
sensor array featuring resolutions as high as possible. GMRs
are available as ICs and deliver voltages proportional to the
magnetic flux density. Apart from small geometric dimensions,
GMRs have the advantage to deliver relatively high output
voltages. The high sensitivity resulting from this fact clears
the way to identify objects in large distances to the sensors.

A copper ring serves as the device under test. Its degrees
of freedom and therefore the parameters for the reconstruction
algorithms are the azimutal angle ϑobj and the y-position yobj

(Fig. 1).
The raw measurement data obtained by the GMRs is then

fed into algorithms designed for solving inverse problems.
The forward problem is simulated using a 3D FEM model.

II. CONFIGURATION OF THE MEASUREMENT SYSTEM

The time harmonic excitation field is produced by two
opposed saddle coils. 9 GMRs are positioned on a semi circle
shaped circuit board inside the saddle coils. To get a sensor
array, three layers of sensors are positioned along the y-axis at
a distance of 1 cm from each other (sensor layer 1, 2 and 3).
A conductive copper ring with given dimensions but variable

position (ϑobj and yobj) as well as the excitation coil is shown
in Fig. 1.

Fig. 1. Scheme of the present measurement configuration.

III. SOLVING THE INVERSE PROBLEM

In order to retrieve both parameters ϑobj and yobj describing
position and attitude of the device under test from the measure-
ment data, an inverse problem has to be solved. Therefore, it is
necessary to simulate the forward problem with different sets
of (ϑobj , yobj). The results obtained then have to be compared
to the measurement readings.

Since these 3D calculations are very time-consuming, it
stands to reason to approximate the simulation results in an
adequate way. Using neural networks, this can be achieved
very advantageously [3]. A qualified selection of simulation
results is used to initially train the network. This training
phase requires data sets consisting of the variable parameters
ϑobj and yobj and the respective simulated measurement
values (Fig. 2). With these data sets, of which input and
output are hence known, the neural network is built. It can
then be used as a solver for the forward problem, once the
error compared to simulated data is small enough. This work
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Fig. 2. Training Process: the neural network is trained by using simulated
FEM solutions Br,t, which is the radial component of the magnetic flux
density B.

Fig. 3. Identification Process with the measured data Br,m and the already
trained neural network.

uses a feed forward network containing an input and a hidden
layer, each comprising five tan-sigmoidal neurons.

An (8/2, 20) evolution strategy [4] is employed for identi-
fication (Fig. 3). The objective function of given in (1) was
set up in a least square sense, taking the difference between
the actual data values (Bi,act), calculated with the forward
problem solver (the neural network), and the measured data
values (Bi,meas).

of =


i

(Bi,act −Bi,meas)2 (1)

IV. RESULTS

Currently only one layer of GMR is available for measuring
purposes. A complete array with three layers of GMRs and the
necessary electronics will be available soon and presented in
the full paper. Fig. 4 shows a comparison of the measured
and simulated data, which shows a very good agreement. In a
preliminary step, measurement data is obtained using the FEM
package EleFAnT3D [5] with some noise added.

Fig. 4. Comparison of simulated and measured data.

Fig. 5 shows the ”simulated measurements” of the GMR
located at 90◦ in each layer for different y-positions of the

TABLE I
COMPARISON OF THE EXACT AND THE RECONSTRUCTED DATA, WHICH

HAS BEEN FOUND AFTER 240 FUNCTION CALLS.

ϑobj yobj

exact position 5◦ 1 cm

reconstructed position 3.2◦ 0.98 cm

conductive ring. There is a distinguishable difference of the
obtained voltages even if the difference of the magnetic flux
density is not more than 0.2 µT . Using this data, the position
(ϑobj , yobj) of the conductive ring could be determined very
well (see Tab. I).

Fig. 5. Simulation results at different object positions yobj .

V. CONCLUSION AND OUTLOOK

A sensor array using GMRs was used to measure the
magnetic field distorted by a hidden conductive ring. These
measurements can advantagously be used to detect different
parameters of the hidden object.

The first results concerning the reconstruction of two pa-
rameters seem to be very promising. Further investigations
will focus on the following topics:

• Finding the most suitable objective function.
• Design of the sensor array arrangement.
• Increase in parameters respectively degrees of freedom

of the measurement object.
• Taking low conductive material into account.
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6. OPTIMIZATION

Abstract —In recent years, particle swarm optimization (PSO) 
approaches has been successfully implemented to different 
problem domains with multiple objectives. In this paper, a multi-
objective PSO approach, based on concepts of Pareto optimality, 
dominance, archiving external with elite particles and Cauchy 
distribution, is proposed and applied in the design with the 
constraints presence of a brushless DC wheel motor. Promising 
results in terms of convergence and spacing performance metrics 
indicate that the proposed multi-objective PSO scheme is capable 
of producing good solutions.

I. INTRODUCTION

In the last decades, many bio-inspired algorithms have 
been developed for optimization of electromagnetic devices, 
such as evolutionary algorithms and swarm intelligence 
paradigms. These methods have attracted a great deal of 
attention, because of their high potential for optimization 
problems in environments, which have been resistant to 
solution by classical mathematical programming techniques. 
The design of electromagnetic devices provides many 
optimization problems involving multiple objectives (multi-
objective optimization, MOPs), which should be optimized 
simultaneously. There is a set of compromise solutions in 
multi-objective optimization problem and none of the 
corresponding trade-offs can be said to be better than the 
others in the absence of preference information.  

A considerable number of multi-objective algorithms have 
been proposed for solving MOPs because they can deal 
simultaneously with a set of possible solutions in a single run 
instead of a series of separate runs as in the traditional 
optimization techniques. In this context, particle swarm 
optimization (PSO) approaches can be useful in MOPs [1]. 

PSO is a stochastic optimization technique developed by 
Eberhart and Kennedy [2] that is inspired by the emergent 
motion of a flock of birds searching for food. Generally, PSO 
approaches present reduced memory requirement, 
computationally effective and is easier to implement when 
compared to typical evolutionary algorithms. PSO is based on 
the hypothesis that members of a swarm can profit from their 
past experiences and the experiences of other particles. During 
the exploration of the search space, each particle has access to 
two kinds of information: the best potential solution (gbest,
global best) that it has encountered and the best potential 
solution encountered by its vicinity (pbest, personal best). 

The aim of this paper is to propose an enhanced multi-
objective PSO (EMOPSO) approach based on Pareto 
dominance, archiving external and Cauchy distribution to the 
design with the constraints presence of a brushless DC wheel 
motor. We compare our results with those generated by 
another multi-objective PSO (RNMOPSO) proposed by 
Raquel and Naval [3]. RNMOPSO incorporates the concept of 
nearest neighbor density estimator for selecting the global best 
particle, mutation operator and the constraint-handling 
technique from the NSGA-II [4]. The EMOPSO proposed in 
this paper is inspired in [3].  

II. FUNDAMENTALS OF EMOPSO

The RNMOPSO algorithm had difficulties in striking a 
balance between exploration and exploitation. Hence, the 
global search ability of PSO algorithm is restricted. To 
address this problem, some improvements proposed in 
EMOPSO are made on RNMOPSO as described. 

The EMOPSO uses a truncated Cauchy distribution to 
update the social and cognitive factors. EMOPSO does not use 
the mutation operator. The implementation of EMOPSO is 
based on following steps: 
i) Initialize a swarm (population), NP, with positions and 

velocities using a generator of random solutions based on 
uniform distribution. Set the initial value of counter of 
iterations (generations), t = 0;

ii) Evaluate the particles and store nondominated ones in an 
archive A with size As. Pareto-dominance concept is used 
to evaluate the fitness of each particle and thus determine 
which particles should be selected to store in the archive of 
non-dominated solutions. The archive absorbs superior 
current non-dominated solutions and eliminates inferior 
solutions in the archive through interacting with the 
generational population in every iteration.  

iii) Compute the crowding distance of each member of A;
iv) Sort A in descending crowding distance order; 
v) Randomly select the gbest for the swarm form a specified 

top portion (e.g. top 20%) for the sorted A and store its 
position in gbest.

vi) Update velocities and positions according to: 
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6. OPTIMIZATION

where tΔ =1, w is the inertia weight; [ ]Tiniii v,...,v,vv 21=

stands for the velocity of the i-th particle, [ ]Tiniii x,...,x,xx 21=
stands for the position of the i-th particle of population, and 

[ ]Tiniii p,...,p,pp 21= represents the best previous position of 

the i-th particle. Positive constants c1 and c2 are the cognitive 
and social factors, respectively, which are the acceleration 
constants responsible for varying the particle velocity towards 
pbest and gbest, respectively. Index g represents the index of 
the best particle among all the particles in the swarm. 
Variables cd and Cd are two random numbers using truncated 
Cauchy distribution in range [0,1]. 
vii) Evaluate the particles in swarm; 
viii) Insert all new nondominated solution into A if they are 

not dominated by any of the stored solutions; 
ix) Update the iteration counter, t = t + 1; 
x) Return to Step (iii) until a criterion is met. In this work, a 

maximum number of iterations, tmax, is adopted. 

III. RESULTS

The optimization problem is the design of a brushless DC 
wheel motor for a race solar car [5], which has 10 
optimization variables and 6 constraints (see Fig.1). The 
objective functions are the minimization of the mass (f1) and 
the maximization of the efficiency (f2). In this work, we 
include a penalty function on f1 and f2 to punish unfeasible 
solutions. The penalty function measures how much the 
solution has violated the constraints. Due to a weight, only 
feasible solutions could become a nondominated solution.  

Fig. 1. The geometry of the brushless DC wheel motor. 

On [5], the authors propose 3 different benchmarks. In this 
work, we will analyze a problem, which concerns all the 
variables except the number of poles (fixed to 6). The 
variables are: the stator diameter (Ds), the induction in the air 
gap (Be), the density current on the windings (δ), the average 
magnetic induction in the teeth (Bd), the magnetic length of 
the motor (Lm), the average magnetic induction in the stator 
back iron (Bcs), the ratio of the length rotor-stator (Rrs), the 
airgap (e), the DC bus voltage (UDC) and the average magnetic 
induction in the rotor back iron (Bcr).

The great majority of the optimization variables are 
associated to the magnetic circuit unless UDC, which is linked 
to the electronic converter. In this problem, the constraints 
play a very important role and they have a very different 
nature. There are typical sizing constraints, like the internal 

diameter, thermal constraint, magnetic constraints, like the 
average magnetic induction in the stator back yoke iron and 
electrical constraints, like the current rise time. The problem is 
typically a multidisciplinary optimization one. 

We adopted the following control parameters for 
RNMOPSO [3] and EMOPSO for the motor design: 
population size NP = 30, factors c1=c2=1.0, size of archive As

= 200, and tmax=200 iterations.  
In comparative studies, the choice of performance metrics 

is very important. The optimization goal of multiobjective 
algorithms is (i) to minimize distance between the generated 
and Pareto front, (ii) to obtain a good distribution and (iii) to 
obtain a good spread. Thirty independent simulation runs with 
different initial conditions were performed to evaluate the 
performance of RNMOPSO and EMOPSO on the brushless 
DC wheel motor design. Simulation results were presented in 
Fig. 2 showed and the non-dominated solutions (30 runs) 
obtained by EMOPSO dominated the solutions obtained by 
RNMOPSO.
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Fig. 2. Pareto set points using RNMOPSO and EMOPSO. 

IV. CONCLUSION

In this paper, the RNMOPSO and EMOPSO approaches 
are compared. Fig. 2 shows the effectiveness of the proposed 
EMOPSO algorithm, which produces solution sets that are 
highly competitive in terms of convergence, diversity and 
distribution with the RNMOPSO. 
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Abstract — This paper proposes a novel multimodal optimiza-
tion method, Coupling particles swarm optimization (PSO), to 
find all optima in design space. This method based on the conven-
tional Particle Swarm Optimization with modifications. The Cou-
pling method is applied to make a couple from main particle and 
then each couple of particles searches its own optimum by using 
non-stop-moving PSO. We tested out our method and other one, 
such as Clustering Particle Swarm Optimization and Niche Par-
ticle Swarm Optimization, on three analytic functions. The Cou-
pling Particle Swarm Optimization is also applied to solve a sig-
nificant benchmark problem, the TEAM workshop benchmark 
problem 22. 

I. INTRODUCTION

In many electromagnetic designs, a stationary design 
which has small design sensitivities is preferred to an opti-
mum design having big design sensitivities. It is because a 
design with big design sensitivities, when it is related with 
mass production process, may have a poor performance due to 
a manufacturing error. Finding all optima of an objective 
function, in this viewpoint, is necessary so that a designer may 
select a good robust design taking account of constraints. In 
recent years, therefore, there have been many attempts to im-
prove particles swarm optimization (PSO) so that it may find 
not only a global optimum point but also all optima including 
local optimum point [1]-[2]. The Clustering PSO and Niche 
PSO, among them, are popular.  

The Clustering PSO has it base on clustering algorithm 
which classifies particles into different groups and allows each 
group to move toward not a global best point but a group best 
point [1]. On the other hand, the Niche PSO basically follows 
the conventional PSO at the beginning of iterations, and di-
vides the whole particles into several groups and, then, fol-
lows the idea of Clustering PSO[1]-[2]. This is known more 
effective than the Clustering PSO, however, it failed to find all 
optima, or it requires a huge number of objective function 
calculations when it is applied to engineering optimization 
problems [3].  

In this paper, a robust and efficient PSO algorithm, Cou-
pling PSO, is developed to locate all optima of a multimodal 
function with less number of objective function calculations. 
The proposed algorithm is applied to some analytic functions 
to test its effectiveness and applied to TEAM problem 22 [4]. 

II. COUPLING PARTICLES SWARM OPTIMIZATION ALGORITHM

In the conventional PSO, the velocity of i-th particle is up-
dated as follows [1]-[3]: 

( )
( )

1 1

2 2

( ) ( 1) ( 1) ( 1)

( 1) ( 1) , 1,2, ,

i i i i

i

t t r t t

r t t i N

ω α

α

= ⋅ − + ⋅ ⋅ − − −

+ ⋅ ⋅ − − − =

v v p x

g x
 (1) 

where xi, vi, pi are the position, velocity and personal best 
position of the i-th particle, respectively, and g is the global 
best position, ω is the inertia, α1, α2 are cognitive and social 
coefficients, and r1, r2 are uniform random number within 
[0,1], and N is the total number of the particles. When the co-
efficient α2 is set to zero, equation (1) is called as cognition 
only model.   

The overall flow of the proposed Coupling PSO is summa-
rized as follows: 

Step 1. Initial particles 
Initially N main particles are randomly generated, and al-

lowed to move according to the cognition only model. Each 
main particle is expected to move toward not a global opti-
mum point but its nearest local optimum point.  

Step 2. Coupling  
When a main particle updates its personal best position, 

i.e., when ( ( )) ( ( 1))i iF t F t< −x p  is satisfied, it forms a i-th
couple by generating a new particle near by itself as shown in 
Fig. 1. The position of the new particle is given randomly as 
follows: 

( )( ) ( ) ( ) ( 1)i i i i it t r t t= + ⋅ − −c x x p  (2) 

where r is a uniform random number within [0,1].  

Step 3. Movement of a couple  
The movement of a couple is just like that of a group in the 

Clustering PSO. The two particles in this i-th couple will 
move according to the following rule:  

( )
( )

1 1

2 2 3

( ) ( 1) ( 1) ( 1)

( 1) ( 1) , 1, 2.

k k k k

i k

t t r t t

r t t r k

ω α

α δ ε

= ⋅ − + ⋅ ⋅ − − −

+ ⋅ ⋅ − − − + ⋅ ⋅ =

v v p x

c x
 (3) 

where ci is the couple best position of i-th couple and r3 is a 
uniform random number within [0,1], and ε is a very small 
number (for example, 10-4 % of the design space). The last 
term is for non-stop-moving and δ becomes 1 only when the 
condition, ( ) ( ) ( ), 1, 2.i k it t t k= = =c p x , is satisfied for 3 con-

secutive iterations.  

Step 4. Elimination of a couple and main particle  
When a couple or a main particle is very near to another 

couple, the couple or the main particle is eliminated as shown 
in Fig. 2. This process will increase the numerical efficiency 
of the proposed Coupling PSO.   

Step 5. Stopping criterion  
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The i-th couple will stop its moving when its movement is 
very small (for example, less than 10-4 % of the design space) 
for 10 consecutive iterations and its couple best position will 
be an optimum. The algorithm will be terminated when all 
couples stop without regard to main particles. 

III. NUMERICAL RESULTS AND DISCUSSION

A. Analytical Problems 
In order to check the validity and numerical efficiency of 

the proposed Coupling PSO, the following three analytic func-
tions with two design variables are considered:  

2 2 2 2
1 1 2 1 2( ) ( 11) ( 7) 200, [ 5,5]F x x x x= + − + + − − ∈ −x x  (4) 

{ }
2

2 2
2

1

( ) 10cos(2 ) 10 , [ 1.3,1.3]i i
i

F x xπ
=

= − + ∈ −∑x x  (5) 

22
2 2

3
1 1

1
( ) cos 1, [ 9.5,9.5]

4000
i

i
i i

x
F x

i= =

⎛ ⎞
= − + ∈ −⎜ ⎟

⎝ ⎠
∑ ∏x x  (6) 

The three functions are tested 100 times. In each test the 
number of initial particles is set to 50, and the maximal itera-
tion is limited to 800. The performances of three methods are 
compared in Table I by their percentages of successful trials 

of finding all optima. It is clearly shown that, the Coupling 
PSO and Niche PSO successfully locate all optima while the 
Clustering PSO can not, and the Coupling PSO requires less 
number of function calls than the Niche PSO. It is thought 
because the Coupling PSO eliminates the couples and main 
particles which would locate the same local optimum. It is 
also shown that the number of function calls in the proposed 
Coupling PSO is proportional to the number of optima found. 
Fig. 3 shows that the Coupling PSO gives better convergence 
to optimal points than other PSOs for F3(x).

B. Optimization in Electromagnetic Device 
TEAM problem 22 was chosen to show the application of 

Coupling PSO in electromagnetic optimization. The aim is to 
find the maximum stored magnetic energy with minimum 
stray field Bstray. It can be evaluated by (7) with three design 
variables as shown in Table II: 

22
2 2

,
1

1

22
stray stray i

i
B B

=

= ∑  (7) 

If the Bstray values of these optima are similar, solution with 
higher stored magnetic energy is preferred. Therefore, in this 
study, firstly the minima of Bstray are located by using Cou-
pling PSO, and then the stored magnetic energy values at 
these minima are calculated as shown in Table III. Finally, by 
considering the maximum stored magnetic energy values at 
these minima of Bstray , the minimum 1 is selected as the solu-
tion because it has small stray field and high stored magnetic 
energy.
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TABLE II
VARIABLE RANGES AND VALUES USED

Variable
[Unit]

1R
[m] 

1 2h
[m] 

1d
[m] 

2R
[m] 

2 2h
[m] 

2d
[m] 

1J
[MA/m2]

2J
[MA/m2]

Min - - - 2.6 0.204 0.1 - - 
Max - - - 4.5 1.1 0.6 - - 

Value 2.0 0.8 0.27 - - - 22.5 -22.5 

TABLE III
OPTIMIZATION RESULTS

Minimum 2R
[m] 

2 2h
[m] 

2d
[m] 

2
strayB Energy 

[MJ]

1 3.758 0.207 0.314 2.68E-06 201.268 
2 3.001 0.491 0.236 6.62E-06 178.731 
3 3.264 0.288 0.233 8.19E-06 177.425 
4 4.115 0.590 0.105 9.04E-06 201.412 
5 3.516 0.402 0.126 2.05E-05 180.172 
6 4.346 0.237 0.289 4.05E-05 229.293 
7 3.430 0.707 0.161 4.82E-05 211.692 
8 2.782 0.484 0.112 5.03E-05 150.323 

TABLE I 
EXPERIMENTS RESULTS

% of all optima found Average function calls 
Function Optima 

Clustering Niche Proposed Niche Proposed 

1( )F x 4 100 100 100 40,000 20,546 

2 ( )F x 9 83 100 100 40,000 26,144 

3( )F x 17 14 100 100 40,000 38,352 

            a) objective function                              b) Clustering PSO 

         c) Niche PSO                                 d) Coupling PSO 

Fig. 3. Positions of particles for function F3(x) after 800 iterations. 
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 Fig. 1. Generation of a new particle.                   Fig. 2. Elimination. 
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Abstract—Simulation is ubiquitous in many scientific areas.
Applied for dynamic systems usually by employing differential
equations, it gives the time evolution of system states. In order
to solve such problems, numerical integration algorithms are
often required. Automatic Differentiation (AD) is introduced as a
powerful technique to compute derivatives of functions given in
the form of computer programs in a high level programming lan-
guage such as FORTRAN, C or C++. Such technique fits perfectly
in combination with gradient based optimization algorithms,
provided that the derivatives are valued with no truncation
or cancellation error. This paper intends to use Automatic
Differentiation employed for numerical integration schemes of
dynamical systems simulating electromechanical actuators. Then,
the resulting derivatives are used for sizing such devices by means
of gradient based constrained optimization.

I. INTRODUCTION

Sizing by optimization is nowadays of major interest since
it provides a fast and reliable way to achieve, with low manu-
facturing costs, desired performances for products lacking of
optimality usually by means of minimizing a cost function.
We are particularly interested by constrained gradient based
optimization using Sequential Quadratic Programming (SQP)
algorithms [1]. Such algorithms require accurately valued
derivatives of the objective function. This may be the origin
of serious problems provided that often such functions may
result from complex numerical algorithms. We are particularly
interested in this paper by those objective functions resulting
from numerical integration of Initial Value Problems (IVPs) of
Ordinary Differential Equations (ODEs) simulating the motion
of an active body actuated by the electromagnetic force in the
context of electromechanical actuators.

A good compromise in the optimization context is Au-
tomatic Differentiation (AD) that is a term applied for a
technique able to compute derivatives of functions described
by computer programs. That is, this paper only uses AD
for sizing dynamical actuators by means of gradient based
constrained optimization. In particular, AD will be applied
using ADOL-C tool [2].

II. OPTIMIZATION PROBLEM

This paper considers the particular optimal problem of an
IVP formulated as in (1) to (5):

minimize J(xf , P ) (1)

ẋ = f(x, u(x, P )) (2)

ẋ = f(x, u(x, t, P )) (3)
x(0) = x0 (4)

xi(tf ) = x̃f , x̃f ∈ P (5)

where x ∈ Rn denotes the state with its associated initial
values x0. In the paper, two formulations of the state system
are intentionally specified. The formulation in (2) represents an
autonomous system, meaning that the time variable does not
appear in the differential equation, while the formulation in (3)
refers to a non-autonomous system. P ∈ Rp is the constraint
design parameters set and u denotes the control. The objective
function J depends on the reached final states and parameters.
Equality (5) represents the simulation end criterion in Fig. 1,
meaning that the simulation stops when a state xi reaches a
prescribed final state, x̃f ∈ R. This implies the existence of
the final time or response time, tf , depending implicitly on
parameters. Note that x̃f makes part of design parameters.

 

 

   

 

 

c
o
i
l

 

 

 

 

 

  integration stop

Fig. 1. Integration end criterion

The gradient based optimization algorithms applied for
the optimization problem in (1) require the gradients of the
objective function. These are evaluated like in (6) provided
that the final states depend also on parameters:

∇J =


∂J
∂xf

 
∂xf

∂P


+


∂J
∂P


(6)

Also, one may calculate the partial derivatives of the re-
sponse time with respect to parameters set. So, the response
time is carried out in optimization as a constrained parameter
in addition to formulation in (1).

III. AUTOMATIC DIFFERENTIATION

Automatic Differentiation is introduced as a powerful tech-
nique that computes error-free derivatives, up to machine
precision, of functions described as computer programs in
high-level languages such FORTRAN or C/C++. In [5] a rich
list of tools implementing AD is provided. Therefore, an AD
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tool could be a library that instruments a user program in order
to be differentiated. Such tools require minor modifications on
the initial source and they are implemented in packages like
ADOL-C that is subject to this paper. In general they are using
the operator overloading capabilities of certain programming
languages such C++ and FORTRAN95. In order to value
the partial derivatives in (1) one may employ ADOL-C over
a numerical scheme integrating the ODE system in (2) or
(3). The paper is then subject to two numerical integration
strategies. First, it applies AD over an adaptive step size Rung-
Kutta (RK) scheme as in (7):

xti+1(P ) = xti(P ) + h(P ) · ˙̄x (7)

where ˙̄x denotes a slope estimation and h is the integration
step which depends on design parameters for an adaptive step
size scheme.

Recent studies [4] were carried out for differentiating such
schemes. The difference in [4] is that the response time is
prescribed in advance at a fixed value. Our approach intends
to make use of it as a constrained design parameter carried
out further in optimization, so, its corresponding derivatives
are to be valued as explained before.

Secondly, truncated Taylor Series (TS), as in [5] are applied
to advance the solution of the ODE system in (2) or (3) over
a time interval as in (8):

xti+1(P ) = xti +
x1
1!

· h +
x2
2!

· h2 + · · · + xn

n!
· hn (8)

where xi = (dix)/(dti) denotes the ith order Taylor coef-
ficient. Paper [5] provides numerical solutions for adaptive
step size schemes for ODE solvers using Taylor expansion.
Interesting here is that AD is used for solving the dynamic
system, provided that ADOL-C is capable to value high-order
Taylor coefficients of the autonomous system in (2) supposing
that f is sufficiently smooth. In the non-autonomous case like
in (3) a special version of the ADOL-C routine responsible
for Taylor coefficients valuation is applied. The differentiation
of such integration schemes is made by using special drivers
implemented in ADOL-C.

The differentiation of a RK integration scheme in (7) tends
to be slower since the slope usually is represented by a
complex algorithm in the case of schemes up to second degree.
Contrary, the differentiation of (8) is faster since it represents a
sum expansion. However, here a cost of high-order derivatives
computation should be paid up to second degree. In the full
paper comparisons will be carried out for both schemes in
terms of efficiency as also as helpful aspects regarding the
AD of such numerical integration algorithms.

IV. OPTIMIZATION GOAL

The benchmark in [6] of the electromechanical actuator
modeling a circuit breaker in Fig. 2 is proposed for sizing by
gradient constrained optimization. When the switch is turned
off, the vacuum force produced by the magnet equilibrate
the spring force. The simulation starts when the switch turns
on. The electromagnetic force created by the coil cancels

partially the magnet force. Consequently, the plunger will
move, starting from initial position, z0, toward the upper
bound, zmax.
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Fig. 2. Electromechanical actuator

The dynamical system of the proposed device combines
both the equations of the electrical circuit feeding the coil
and the movement equations. The states are:

ẋ =
�

i di/dt z v


(9)

The response time is found from the end criterion in (5),
that is satisfied when the mobile plunger is bounded at zmax.

A multi objective optimization problem raises form this
particular case. These objectives are given in table I.

TABLE I
OPTIMIZATION SPECIFICATIONS

Variable Constraint Formula

Percussion energy at zmax [0.12, 10] J m · v2/2
Response time [0, 3.5] ms -

Total force at zmax 15 N -

Shock resistance at z0 [2000 - 10000] m/s−2
Fsp−Fmag

m

Total mass minimize -

The design parameters in (2) are represented by all geomet-
rical parameters of the studied benchmark. The optimization
results will be presented in the full paper.

V. CONCLUSION

This paper presents a particular optimization problem on a
benchmark dealing with state variables in Ordinary Differen-
tial Equations. Runge-Kutta and Taylor expansion integration
schemes are used to approximate these states. Both schemes
are differentiated by employing Automatic Differentiation in
order to value the gradients needed by SQP algorithms.
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Abstract—We examine the influence of randomized variations
of the sensor direction on the condition of the linear inverse
problem in magnetostatics. Setups with varied sensor directions
are compared with setups using perfectly in parallel oriented
sensors. As evaluation criterion for the condition of the linear
inverse problem, the condition number of the leadfield matrix
is used. The results indicate that for mono-axial planar sensor
setups the condition of the linear inverse problem can be consid-
erably improved, when the sensors are oriented non-uniformly.

I. INTRODUCTION

In geoprospection, magnetic field distributions are measured
by moving a SQUID based sensor system over a field of inter-
est [1]. Since the movement of the sensor system is performed
by a vehicle and the underground is typically very rough,
the orientation of the sensors in the measurement system is
altered while moving. This results in slightly different sensor
orientations for each measurement position. When analyzing
such measured magnetic field distributions with varying sensor
orientations it turned out, that the reconstruction was more ro-
bust than in some of our simulation runs with perfectly aligned
parallel sensor directions. Consequently, the aim of this paper
is to analyze the influence of random variations in sensor
orientation on the solution robustness of the magnetostatic
linear inverse problem. With simulations we evaluate, if the
experimentally observed effect holds also on simple generic
sensor setups.

II. METHODS

A. Inverse Model

In our study we consider the linearized inverse problem of
estimating the activity vector p on basis of the measurement
vector m corresponding to m = L·p+n, whereas n represents
noise and L the leadfield matrix. The leadfield matrix incorpo-
rates all relevant information on the sensor setup, source space
grid, and the forward model. The source space is formed by
regular grids given in Tab. I (positions are given in m). At
each grid postion, three orthogonal magnetostatic dipoles are
located to facilitate arbitrary source directions. Parameters for
the sensor setups are shown in Tab. II. Setup B represents a
three-axial setup with three orthogonal magnetometers at each
sensor position. Default configurations used in this study are
represented by the combinations A1, A2, B1, B2, and C3.

TABLE I
PARAMETERS OF THE REGULAR SOURCE SPACE GRIDS.

X,Y-Directions Z-Direction Number of

Grid Min(pos) Max(pos) #Rows Min(pos) Max(pos) #Levels Sources

1 -0.01 0.21 10 -0.11 -0.11 1 100
2 -0.01 0.21 15 -0.11 -0.11 1 225
3 -0.005 0.205 8 -0.15 -0.20 2 128

TABLE II
PARAMETERS FOR THE SIMULATED PLANAR SETUPS IN THE Z=0 PLANE.

X,Y-Directions Sensor Number of
Setup Min(pos) Max(pos) Directions Sensors

A 0 0.2 -Z 144
B 0 0.2 +X, +Y, -Z 3×144 = 432
C 0 0.2 -Z 441

These default configurations were each changed with random
variations as follows.

B. Random Variations

Sensor directions were changed by∆dir using Gaussian dis-
tributed random numbers with standard deviations SD(∆dir)
between 0.5°and 25°. For setup B, the orthogonality between
the three sensors was preserved. To examine the influence of
random variations on the sensor directions, 100 repeated runs
for each of the configurations A1 - C3 were conducted. In Fig.
1, A1 with randomly varied sensor directions is shown.
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Fig. 1. Example configuration A1 with source positions of grid 1 (◦) and
sensor positions of setup A (•). The sensors are randomly oriented around
the -Z direction with SD(∆dir) = 10°.
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TABLE III
CN AND DIMENSIONS (DIM) OF THE LEADFIELD MATRICES L0 FOR THE

DEFAULT CONFIGURATIONS A1 - C3.

Cofiguration CN(L0) dim(L0)

A1 2.0184e+08 144 × 300
A2 1.5753e+08 144 × 675
B1 3.5559e+10 432 × 300
B2 5.5170e+13 432 × 675
C3 3.6253e+17 441 × 384

TABLE IV
EVALUATION OF THE CONDITION USING RADOMLY VARIED SENSOR

DIRECTIONS FOR CONFIGURATIONS A1 - C3.

Config. SD(∆dir) Mean(CN) SD(CN) Mean(∆CN) SD(∆CN)

A1 0.5° 1.26e+07 3.116e+06 0.0625 0.01544
5° 6.23e+06 1.628e+06 0.0308 0.008065

10° 4.88e+06 1.129e+06 0.0242 0.005592
A2 0.5° 1.28e+07 3.293e+06 0.0809 0.02091

5° 6.35e+06 1.557e+06 0.0403 0.009883
10° 5.01e+06 1.17e+06 0.0318 0.007425

B1 0.5° 3.56e+10 2549 1 7.167e-08
5° 3.56e+10 2999 1 8.434e-08

10° 3.56e+10 3234 1 9.094e-08
B2 0.5° 5.52e+13 9.646e+09 1 0.0001748

5° 5.52e+13 1.049e+10 1 0.0001814
10° 5.52e+13 1.049e+10 1 0.0001902

C3 0.5° 3.28e+17 2.628e+16 0.845 0.06768
5° 2.93e+17 1.748e+16 0.754 0.04502

10° 2.88e+17 2.306e+16 0.742 0.05938

C. Criterion for Comparing Sensor Arrays

To evaluate the condition of the linear inverse problem, we
use the condition number (CN) of the related leadfield matrix
L (see also [2], [3]). Relative changes to the CN when random
sensor variations are applied are denoted by ∆CN(Li) =
CN(Li)/CN(L0), where CN(L0) is the CN for the leadfield
matrix of the default configuration given in section II-A, and
CN(Li) is the CN for the i-th of 100 leadfield matrices created
from the configuration described by L0 but using randomly
varied sensor directions. Mean value and standard deviation
(SD) for∆CN(Li) and CN(Li) are computed for 1 ≤ i ≤ 100.

III. RESULTS

As indicated in Fig. 2, the CN of leadfield matrices repre-
senting mono-axial setups (A,C) can be significantly reduced
by small random variations of the sensor directions compared
to a perfectly to -Z directed sensor array (Tab. III). Larger
variations of the directions lead to higher reductions of the
CN (Fig. 3 and Tab. IV). The decay of the average CN is
reduced for larger values of ∆dir. The improvements of the
CN by variations of the sensor directions of the 12×12 setup
A are higher compared to the denser 21×21 sensor setup C. As
expected, the CN of leadfield matrices for the three-axial setup
B are not influenced by variations of the sensor directions. In
the tested two examples, the CN of the mono-axial sensor
array A is superior to the three-axial array B, whereas both
are using indentical sensor positions and source grids.
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Fig. 2. Effect of 100 random variations of the sensor directions on the CN
for configuration A1 using SD(∆dir) of 0.5° (dashed line in the middle) and
10° (bold line at the bottom). The mean values are indicated by the thin lines,
the default CN by the dash-dotted line on the top.
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Fig. 3. Average CN (◦) for configuration A1 using randomly varied sensor
directions with SD(∆dir) between 0.5° and 25°. The value for ∆dir = 0°
represents the default CN for A1.

IV. CONCLUSION

Small variations in the sensor directions compared to sen-
sors that are perfectly oriented to -Z lead for mono-axial setups
to clearly smaller CN and consequently to an improved con-
dition of the inverse problem. Therefore, mono-axial sensors
should be directed non-uniformly in sensor arrays to support
more robust source reconstructions. In future work we will
evaluate the influence of random variations of sensor and
source postions. Besides the CN, further evaluation criteria
will be used.
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6  OPTIMIZATION 

Abstract — An inverse problem is formulated to indentify the 
shape and size of the defects in a nonlinear ferromagnetic 
material using the signal profile from magnetic flux leakage-type 
NDT. This paper presents an efficient algorithm based on 
topological shape optimization which exploits the topological 
gradient to accelerate the process of shape optimization to 
identify the defect.  

I. INTRODUCTION 
The magnetic flux leakage (MFL) method is a fast and 

reliable nondestructive testing (NDT) technique that has been 
widely used for decades. When a piece of ferromagnetic 
material is placed in a magnetic field and is magnetized to 
saturation, small defects or flaws in the material cause a 
significant flux anomaly due to the permeability variation. The 
anomalous fields are captured by Hall-effect probes or sensing 
coils, placed closely above the surface of the test object, which 
generate signals that can be used to identify the defect. 

A key problem in the design and analysis of a MFL 
sensing system is the ability to determine the shape, size and 
location of the defect rapidly and precisely in the presence of a 
large number of uncertainties, expressed as noise in the signal. 
The use of finite element method (FEM) based simulation of 
MFL began in the late 1980’s [1], [2]. 

In this paper, an inverse algorithm for defect identification 
in the MFL-type NDT is presented. The novel approach 
employs topological sensitivity analysis to first explore the 
search space and then to predict an appropriate initial structure 
for the use of efficient shape optimization. The robustness of 
the solution in the presence of noise will also be investigated, 
and this may provide useful information for improved sensor 
design and computer-enhanced signal processing. 

Fig. 1. A design domain with a small hole 

II. TOPOLOGICAL GRADIENT BASED TOPOLOGY AND SHAPE 
OPTIMIZATION 

Although shape optimization is being extensively studied 
in electromagnetic design, it suffers from the limitation that 
the overall change in a device is usually relatively small and 

no topological change is allowed. However, the topological 
gradient (TG) provides the sensitivity information of a design 
with respect to topological changes, such as the insertion of a 
small air hole at any point inside the solid material. 
Topological sensitivity analysis, which originated from the 
classical shape gradient information, is derived using a 
topological asymptotic expansion for PDE systems. Fig.1 
illustrates a design domain Ω defined on Rn (n=2 or 3), with 
boundary Γ. Consider a small hole B(x, r) in Ω , where x is 
the center and r is the radius of the hole. The topological 
gradient G(x) is given as : 
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where Ψ is an objective function defined on Ω, Ω\B(x, r) is the 
domain excluding the small hole B, and δ(Ω) is the volume of 
B with a negative sign.  

Assuming a perturbation of the boundary of the small hole 
B(x, r), the shape sensitivity of a scalar function J=Ψ(Ω\B(x, r) 
can be expressed in terms of the state variable A and adjoint 
variable λ from the field solution [3] 
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After some manipulation [4], J’ is approximated as: 
Fig. 1. A design domain with a small hole 

)(),(4)( 21 roArLrJ +−=′ λπ .                 (3) 

Hence, we obtain 

)(),(2)(

)0()()()),(\(

2
21

2

0

roALrdJ

JrJrxB
r

objobj

+−=′=

−=ΩΨ−ΩΨ

∫ λπρρ
.                 (4) 

Combining (4) and (1), G(x) is given, in 2D, as: 

 ),(2)( 21 λALxG = .                 (5) 

(1) can be re-written using a local expansion as: 

 ))(()()()()),(\( Ω+Ω=ΩΨ−ΩΨ δδ oxGrxB objobj
.                 (6) 

In order to minimize the objective function Ψ, i.e. 
Ψ(Ω\B(x, r) – Ψ(Ω) < 0, a hole should be created in the region 
where G(x) is greater than zero. Thus the following optimality 
conditions must be satisfied [4] 
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III. NUMERICAL EXAMPLE 

A. FEM modeling of MFL 

A permanent magnet MFL model and a test plate 6mm 
thick is created using MagNet [5].  The back yoke and the iron 
arm are made of linear material and test plate is made of cold 
rolled steel with a nonlinear permeability. A sensing array is 
placed 4.5 mm above the testing plate. For simplicity, the 
magnetic fields are solved with 2D finite-element analysis. 

 
Fig. 2. Magnetic flux plot for model with and /without defect 

He upper plot in Fig. 2 shows the magnetic field without 
the defect, while the lower one shows the effect of a defect, on 
the far side of the test plate, on the field. 

B. Calculation of Topological gradient 

In order to identify the size and the shape of the defects in 
the material, an objective function F is formulated from the 
field signals Bio captured by MFL sensors (obtained from the 
simulation model with the defect in Fig. 2) and the field values 
Bi computed from the FEM solution of a model where the 
shape of the plate is allowed to change at each iteration as the 
system  tries to create the defect shape to minimize F. 
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Based on the asymptotic expansion of (6) and the 
optimality condition (7), we would expect that the defects lie 
in the regions where the topological gradient has the largest 
positive value. 

The domain of interest is defined as a region from x = -15 
to 15 in the center of the plate. It is then divided to 6X40 small 
blocks, and the topological gradient is evaluated at the center 
of each block. 

 
Fig. 3. Topological gradient plot for one defect model 

 
Fig. 3 presents the topological gradient plot for the model 

with one defect of 5 mm wide and centers at x = 0; Fig. 4 

illustrates the topological gradient of a model with two defects 
of 4 mm wide and center at x = -12 and x = 12 respectively. 
As can be seen from the above figures, the regions of the 
highest values of topological gradient coincide with the 
position of the defects. 

 
 Fig. 4. Topological gradient plot for two defects model 

 

C. Determination of defect size and shape 

In order to test the topology prediction, a defect is created 
on the near side of the steel of 5 mm wide and 80% of the 
thickness in depth. The topological gradient is computed over 
the domain of interest. From this, about 5% of the area is 
removed from the domain. Next, the boundary of this hole is 
modified through a shape optimizer using continuum design 
sensitivity analysis [3].  

 
Fig. 5. Objective function values through the optimization 

The values of objective function F during the shape 
optimization are shown in Fig. 5. The initial value of the 
objective is 0.0865. The topological change reduces it to 10% 
of this value. The remaining improvement is then obtained 
through shape optimization. Fig. 5 also shows the convergence 
of the process if only shape optimization is used. 

IV. CONCLUSION 

The topological gradient provides information which can 
be used to reduce the objective function value. It provides a 
fast, but approximate, exploration of the solution space. Shape 
optimization can then refine the solution. The full paper will 
provide results for buried defects in 2-D and 3-D. 
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6. OPTIMIZATION

Abstract —The use of Grid computing to solve electromagnetic 
optimization problems using the Tabu Search algorithm is 
proposed in this paper. In order to significantly reduce the 
prohibitive computational cost of the numerical analyses 
required by the majority of iterative algorithms, two different 
grid-enabled Tabu Search strategies have been ported in the 
grid. Both strategies belong to the Domain Decomposition family: 
the decomposition of the search space and the decomposition of 
the neighborhood. The performances of the different parallel 
implementations have been evaluated on some electromagnetic 
benchmarks. 

I. INTRODUCTION

In the design of electromagnetic structures, it is often 
necessary to analyze the electromagnetic field distribution 
using numerical techniques such as the Finite Element Method 
(FEM). In order to optimize the design, it is usual to apply 
iterative techniques to search the potentially optimal 
configuration in the solutions domain. Moreover, when the 
number of design parameters to be optimized is considerable, 
the number of electromagnetic problems to be solved could be 
of the order of thousands. Since numerical electromagnetic 
solutions are often computationally intensive, the use of 
numerical solutions during the iterative optimization process 
can be unfeasible. One way to overcome this problem is to use 
approximating techniques, such as neural networks [1]. The 
main drawback of using approximating models is represented 
by the approximation errors, which can alter the value of the 
solution corresponding to the same design parameters.  

Another way to avoid the prohibitive computational time of 
iterative optimization is to use the new Grid Computing 
technology. Grid computing is a family of technologies for 
dynamically and opportunistically provisioning computing 
power from a pool of resources. The Grid is a type of parallel 
and distributed system that enables the sharing, selection, and 
aggregation of geographically distributed “autonomous” 
resources dynamically at runtime depending on their 
availability, capability, performance, cost and user's quality-
of-service requirements [2].  

In this paper, a Tabu Search (TS) is proposed as search 
strategy, and its parallel implementation on a computational 
grid is presented. TS is a family of meta heuristic procedures, 
which perform the search for the optimal solution exploring 
the variable space and storing the features that correspond to 
bad previous moves. Such features are labeled as tabu and 
they are avoided during the search for the optimum [3].  

In literature, different approaches have been adopted to 
implement a parallelization of the TS. In [4], a hierarchical 

classification of the parallel TS strategies is presented. Two 
main types of parallelization can be performed: the first is the 
so-called Multiple TS task category, in which multiple TS 
algorithm are run in parallel that may differ for different 
parameters such as the initial solution and the tabu list size; 
the second class is the so-called Domain Decomposition. In 
this work, we will compare the performances of two parallel 
TS strategies belonging both to the Domain Decomposition 
family: the decomposition of the search space and the 
decomposition of the neighborhood. The decomposition of the 
search space implies that the domain space is decomposed in a 
number of smaller domains. Each sub-domain has to be solved 
by separate TS. The decomposition of the neighborhood is 
performed by assigning to each task a different portion of the 
neighborhood to evaluate. In this work the performances of 
the two types of Domain Decomposition strategies will be 
compared. 

II. GRID-ENABLED TABU SEARCH ALGORITHMS 

The computing infrastructure we used is based on several 
computation centers localized in the main research institutions 
and academies in Sardinia, Italy, and it consists of more than 
100 nodes 1U System x3455 (200 CPU AMD Opteron 2218, 
400 CPU core). The fiber optics connections allow to 
dynamically aggregate the distributed resources and to reach a 
pick aggregated computation power of some TeraFlops. 

The optimization problem under investigation consists of 
finding a set of design parameters that allows the device to 
produce the desired effect depending on the value of the 
electric or magnetic field in prefixed points, under feasibility 
constraints. 

In order to formalize the problem, the range of each design 
variable is subdivided into a finite number of sub-ranges 
uniformly distributed. A symbol of a discrete alphabet is 
associated to each sub-range, so that every configuration in 
the continuous can be identified with an ordered sequence of 
symbols. According to this choice, the search for the optimal 
solution is performed by the TS moving from one discrete 
solution to another by simply modifying the value of one 
variable at a time. At each iteration, the neighborhood 
associated to the current configuration is built performing all 
the possible moves that can be played starting from that 
configuration. 

The simple iterative scheme of the TS is enhanced 
introducing several rule-of-thumb criteria such as 
intensification (deeply exploration of a region looking 
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6. OPTIMIZATION

promising), or diversification (leave a region that does not 
look promising). 

A. Parallel strategy 

The idea for a straightforward parallelization scheme is to 
decompose the search space into a set of disjoint subspaces, 
each of them explored by an instance of TS on a different 
CPU. When each process finishes, it writes in a secondary 
memory the obtained results. Once all the processes finish, a 
new process reads all the secondary memory files and gathers 
the results to obtain the optimal solution. The resulting 
parallel algorithm is simple, because inter-process 
communication is not necessary, and only a synchronization 
point is need. 

B. Master-Slave strategy 

The previously described parallelization schema does not 
fully exploit the peculiarity of the TS meta-heuristics to make 
use of the past history of the search to enhance the solutions 
domain. An alternative use of the Grid-Computing paradigm 
is made in this paper, by decomposing the neighborhood. In 
fact, the most important requirement in using a TS algorithm 
consists of defining the set of admissible moves, i.e., in 
defining the neighborhood set of a given configuration. As 
previously mentioned, our TS implements Cartesian moves, 
which consists of changing the value of one design parameter 
at a time. The exploration of a single variable can be carried 
out by independent jobs, which means that, for each 
configuration in the neighborhood, a FEM analysis has to be 
performed in order to evaluate the fitness of that solution. It is 
important to notice that in the Grid the execution of cyclic 
jobs is not allowed. This leads us to design the core of our 
algorithm to run locally in the user interface and to run the 
parallel exploration of the neighborhood in the Grid. This has 
been possible by splitting the program in a master-slave 
architecture. To each slave, a different variable to explore is 
assigned, and it runs different FEM analyses. When the jobs 
are done, the master program analyzes the entries written by 
the slaves and performs the optimal current move.  

III. RESULTS

The T.E.A.M Problem 25 “Optimization of Die Press 
Model” [5] is used here to compare the performance of the 
two grid-enabled TS codes. The four design parameters of the 
die mold have to be set up so that the magnetic flux density is 
radial and equal to 0.35 T in the cavity where the magnetic 
powder is inserted. The computation of the magnetic field is 
done using a magneto-static nonlinear FEM. The bi-
dimensional model was created in FreeFem++ open source 
finite element code [6]. 

The performances of the Grid-enabled TS with the Master 
Slave strategy are reported in Table I in terms of the speedup 
and the efficiency parameters usually used to evaluate the 
performance of parallel algorithms [7]. As the Grid we used is 
composed by a number of identical CPUs, we can extend the 
concept of speed up and efficiency, used in parallel systems, 
in the grid environment. The speedup is the ratio of the 

execution time of the algorithm when executed on one 
processor to that when executed on p processors: Sp = T1/Tp,
whereas the efficiency is the ratio of the actual speedup versus 
the theoretical maximum speedup equal to p. Here T1 and Tp

are the total times required to run one iteration of TS on a 
single CPU, and on p CPUs respectively. The maximum 
efficiency is obtained when the speedup is the closest to the 
theoretical speedup. Note that the algorithm in Grid 
environment has speedup limits and appears to saturate due 
mainly to communication overhead, and to some uncertain 
factors as instability of computing nodes, dynamic change of 
Grid environment, total load on the Grid, and so on. 

IV. CONCLUSIONS 

In the full paper, two Grid-enabled TS codes will be tested 
on standard electromagnetic test problems. The performed 
experiments showed that the porting of the algorithm on a 
computational Grid greatly reduces the computation cost, even 
if a degree of overhead is introduced. This is mostly due to the 
communication delay between the computing elements. The 
overhead can be neglected if the parallelized jobs have a high 
computational load, as it is the case of FEM analyses.  
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TABLE I 
PERFORMANCE OF THE GRID-ENABLED TS VERSUS SEQUENTIAL TS

p Tp [s] Sp Ep

1 1550 1 - 
4 773 2 50% 
8 593 2.6 32% 

16 503 3.1 19% 
20 485 3.2 16% 
32 458 3.4 10% 
40 449 3.5 9% 
80 431 3.6 4% 
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Abstract—The purpose of this paper is to show a new method-
ology for solving inverse problems of design. It is based on
the use of a deterministic global optimization algorithm. In
front of limitations induced by the use of analytical models, the
authors present a way to associate Interval Branch and Bounds
techniques and numerical computations based on finite element
method. Thank to this methodology, we are able to solve exactly
the associated inverse problem of a magnetic coupling design.

I. INTRODUCTION

Magnetic couplings are very useful devices for many appli-
cations as seal-less pumps in the chemical and petrochemical
industries, or the aeronautical and maritime ones for instance.
Their functionalities are to transmit a motion between two
separated zones without mechanical contacts. The studied
structure is a co-axial synchronous magnetic torque coupling.
It consists of two rings of permanent magnets separated by an
insulating partition. On each side of it, we find an airgap and
a binding band.

A. Previous Methodology

In [1], the authors solve the problem of such devices
design by applying a rational methodology. The problem is
understood and defined as an inverse problem, i.e. from some
characteristic values given by the schedule of conditions (for
example the torque), get the dimensions as well as the structure
and the composition of a co-axial magnetic torque coupling.
These inverse problems are formulated as a mixed constrained
global optimization problem.

In order to solve exactly the so-formulated global optimiza-
tion problems, a particular algorithm (called IBBA) based on a
Branch and Bound technique where the bounds are computed
using interval analysis has been developed and extended. See
[1], [2] and [3] for details.

The advantages of these kinds of methods are :

• they use mixed variables (real, integer, boolean, . . . );
• they do not need a starting point (or a set of ones);
• they guarantee to obtain the global minimum of the

problem (they are deterministic and global).

Their main drawbacks are their computation times and the fact
that they need (until nowadays) explicit analytic expressions
of criteria and constraints.

The inverse problem of couplings design problem is for-
mulated as a mixed constrained global optimization problem
defined as follow :



min
x∈IRnr , z∈INne ,
b∈Bnb , σ∈

nc

i=1
Ki

f(x, z, σ, b)

gi(x, z, σ, b) ≤ 0 ∀i ∈ {1, . . . , ng}
Γ(x, z, σ, b) = Γfixed

(1)

where f is a real function (for example the volume), Ki repre-
sents an enumerated set of categorical variables (for instance,
the kind of magnet), and B = {0, 1} is the boolean set (for
the fact that there are binding bands or not). gi are some
geometrical constraints. Moreover, an equality constraint upon
the maximum electromagnetic torque Γ is added, traducing the
fact that it must be equal to a fixed value (Γfixed).

The torque expression comes from an analytical model
based on the resolution of Poisson’s equations using the
separation of variables by keeping only the term due to the
first non-zero harmonic (the fundamental) [1].

Several techniques of constraints propagation, and others
adaptations were applied in order to reduce the time con-
vergence. Indeed, it was very difficult to compute efficient
bounds with interval arithmetic, because of the complexity of
our torque formula. Thanks to these techniques, the authors
obtained encouraging results dealing with the minimization
of the global volume or with the volume of magnets. In our
knowledge, it was the first time that such a problem was
solved.

B. Need of a More Accurate Model

If a finite element software is used to compute the electro-
magnetic torque and the mean value of flux density in yokes
(the physical constraints of our problem), we notice a non-
negligible difference between the values given by our model
and the numerical ones (around 20%). However, the kind of
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analytical models used is known to provide results closed
to those obtained by a numerical method [4]. Actually, the
observed gap is due to the fact that we do not have considered
the harmonics greater than the fundamental, and moreover the
optimization process is inclined to maximize the error due to
these assumptions.

II. NEW APPROACH : USE A HYBRID MODEL

The idea is to associate the advantages of two kind of
models : the swiftness of analytics and the accuracy of finite
elements based techniques.

The analytic expression of the electromagnetic torque is
given by the resolution of Poisson’s equations using the
separation of variables. Instead of taking into account only
the fundamental (Γo1) as in [1], the used expression (Γo3) is
the sum of the two first non-zero harmonics (1 and 3). The
thickness of iron yokes are deduced from the Gauss’s law of
magnetism and the fact that the mean value of flux density
in the yokes By must be less or equal to the maximum value
BM (σy) above which the iron is definitively saturated.

A specially dedicated finite element code has been written in
order to automatically draw the geometry, create the mesh, and
perform a magneto-static resolution of a magnetic coupling.
In output, the torque ΓFE (computed with the Maxwell Stress
Tensor) and the mean values of flux density in the inner and
outer yokes (BFEyi and BFEyo ) are given in less than 1 second.
This tool is in the form of a black-box (named NUMTFD)
which can be easily called by another program.

III. FORMALIZATION OF THE NEW DESIGN PROBLEM

Now the question is to know how to associate such a model
with an Interval Branch and Bound Algorithm.

A. Inverse Problem Formulation
The design problem must be re-formulated. In fact it is

not possible to directly include our black-box as a constraint.
Indeed, when the optimization process begins, the lengths of
the intervals are too large to perform a valid finite element
computation [3].

The idea is to defined several zones corresponding to dif-
ferent expressions. If we are far to the wanted value (Γfixed),
we use Γo1. If we get close, but not close enough to call ΓFE ,
Γo3 is used. The associate problem is then :



min
x∈IRnr , z∈INne ,
b∈Bnb , σ∈

nc

i=1
Ki

f(x, z, σ, b)

gj(x, z, σ, b) ≤ 0 ∀j ∈ {1, . . . , ng}


(1− λana)Γfixed ≤ Γo1 ≤ (1 + λana)Γfixed
(1− λFE)Γfixed ≤ Γo3 ≤ (1 + λFE)Γfixed
ΓFE(x, z, σ, b) = Γfixed

BFEyi (x, z, σ, b) ≤ BM (σyi)
BFEyo (x, z, σ, b) ≤ BM (σyo)

where λana and λFE are used to define the different zones
(for the tests, we have chosen 40% and 20%). Two inequality
constraints are added to ensure that the yokes are not saturated.

B. New Interval Branch & Bound Algorithm
The corresponding Interval Branch & Bound Algorithm

(IBBA+NUMTFD) has been coded. Its principle is to bisect
the initial domain into smaller and smaller boxes and then to
eliminate the boxes where the global optimum cannot occurs:

• by proving, using interval bounds, that no point in a box
can produce a better solution than the current best one;

• by proving, using interval arithmetic, that at least one
constraint cannot be satisfied by any point in such a box.

Some techniques of constraint propagation and limitations
have been included to improve the convergence.

IV. RESULTS AND CONCLUSION

The problem corresponding to the minimization of the
global volume of a studied magnetic coupling is solved and
results are given in Table I (strike-through text represents non-
satisfied constraints). We have chosen Γfixed = 10 N·m, the
real parameters represent geometric quantities, the integer p is
the number of poles pairs, and the different σ values are used
to choose the kinds of materials. To compare with the previous
methodology, the problem is solved using only Γo1 (IBBA),
next using Γo3 (IBBAo3), and finally using our hybrid model
(IBBA+NUMTFD).

TABLE I
MINIMIZATION OF THE MAGNETIC COUPLING’S GLOBAL VOLUME Vg

Param. Bounds Unit IBBA IBBAo3 IBBA+
NUMTFD

θint; θext [30; 70] % 48.1; 30.0 55.6; 30.0 52.5; 37.5
R1; R2 [1; 5] cm 2.20; 2.50 2.20; 2.50 2.87; 3.17
R3; R4 [1; 5] cm 2.70; 3.00 2.70; 3.00 3.39; 3.69

p [[4; 9]] - 6 6 5
σmi; σme {1 , 2} - 2; 2 2; 2 1; 1
σyi; σye {1 , 2} - 1; 1 2; 1 2; 1

Vg cm3 84.37 84.78 116.27
Γo1 N·m 9.80 10.96 13.61
Γo3 N·m 8.02 9.80 11.05
ΓFE N·m 7.39 8.98 9.92

BFEyi ; BFEyo T 1.71; 2.12 1.85; 2.13 1.53; 1.54
CPU Time 0’17” 0’21” 181’37”
Iterations 32124 38991 80514

Numerical Computations - - 19951

Only the results corresponding to the new methodology
answer perfectly to our non-homogeneous mixed constrained
global optimization problem.
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Rotating Machines by Associating Deterministic Global Optimization
Algorithm With Combinatorial Analytical and Numerical Models”, IEEE
Transactions on Magnetics, Vol. 43, pp. 3411-3419, N. 8, 2007.

[4] M. Couderc, C. Henaux, and B. Nogarède, “Analitycal modelling of high
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Abstract —we present two new strategies to sequential 
optimization method (SOM) for optimization design problems of 
electromagnetic devices. One is a new space reduction strategy; 
the other is selection strategy of sequential optimization models. 
In the implementation, two kinds of radial basis functions (RBF) 
approximate models are considered for the response surface 
reconstruction of design objectives and constraints. Then, by two 
design examples of TEAM benchmark problems, we show that 
our methods can significantly speed the design process and 
obviously reduce the computational cost of finite element analysis. 

I. INTRODUCTION 
Electromagnetic optimization and design problems are 

often solved by means of two kinds of methods, direct 
optimization method and optimization based on approximate 
models. The former is always implemented with finite element 
model and stochastic optimization algorithms [1]. However, it 
is computationally expensive. So the latter has been widely 
considered as an alternative method [2]-[3]. They are proved 
fast, but not very accurate. 

To improve the optimization efficiency, we have present 
sequential optimization method (SOM) to the electromagnetic 
design problems [4]-[5]. SOM can optimize the model and 
algorithm simultaneously. However, SOM was discussed only 
for response surface model (RSM) and Kriging model in the 
former study, and the sampling method is unique. In this paper, 
we will present a system discussion about the space reduction 
strategy and model selection strategy for SOM, including two 
kinds of radial basis functions (RBF) models.   

II. RBF APPROXIMATE MODELS 
RBF model is one of the most widely used approximate 

models to solve electromagnetic optimization problems. It 
uses a linear combination of RBF to interpolate sampled data. 
Given n sample points 1 2{ , , , }D

n ix x x x ∈  and responses 

1 2{ , , , }n iy y y y ∈ , for an input Dx D∈ ⊆ , the response 
value of RBF model is given by 

1
ˆ( ) (|| ||)n

ii
y x x xβ ϕ

=
= ⋅ −∑ i ,                            (1) 

where iβ s are model parameters, ( )rϕ is the RBF. Gauss and 
multiquadric (MQ) RBF are considered in this work.   

RBF model can rapidly and effectively replace the finite 
element analysis for optimization tasks and conditions. 
However, it is generally globally supported and poorly 
conditioned, especially when the number of sampling points 
increases significantly. 

 Compactly supported RBF (CSRBF) model is a promising 
improvement. When CSRBF model is used, the evaluation of 
(1) will not run over the whole set of points and the coefficient 
matrix will be sparse. Several criteria for positive definiteness 
of CSRBF have been provided and a series of positive definite 
CSRBF have been produced. The following two CSRBF are 
studied in this work; they have the form as 

6 2 3 4
C1( ) (1 ) (6 36 82 72 30 5 )r r r r r r rϕ += − + + + + + 5

3

,      (2) 
8 2

C2 ( ) (1 ) (1 8 25 32 )r r r r rϕ += − + + + ,               (3) 
where r is a norm with respect to the radius of the compactly 
supported domain, (1 )r +− is a truncated function.  

III. NEW SEQUENTIAL OPTIMIZATION STRATEGY 

SOM has been successfully employed to solve optimization 
design of electromagnetic devices. It is composed of coarse 
optimization process and fine optimization process [4]. The 
main purpose of the former is to reduce the design space and 
find the most interesting region. Space reduction equation 
plays an important role in this process. A new reduction 
strategy is given as follows.  

Let and  are the interval, step size and number 
of the kth sampling and optimization process, respectively. 

( ) ,kl ( )kh ( )kN

( )k
ox  is the optimization result of the approximate models. The 

new reduction strategy is designed with two steps. 
Reduction  step: 

{ }( 1) ( ) ( ) ( ) ( )ˆ max , [8( ) / ] / 8k k k k
li li oi i ix x round x l h h+ = − Δ k⋅ ,      (4) 

{ }( 1) ( ) ( ) ( ) ( )ˆ min , [8( ) / ] / 8k k k k
ui ui oi i ix x round x l h h+ = + Δ k⋅

]

,      (5) 

   Correction step: 
( 1) ( ) ( 1) ( ) ( ) ( )ˆ[2( ) / ] / 2k k k k k k
li li li li i ix x round x x h h+ += + − ⋅ ,         (6) 
( 1) ( ) ( 1) ( ) ( ) ( )ˆ[2( ) / ] / 2k k k k k k
ui li ui li i ix x round x x h h+ += + − ⋅ ,         (7) 

where ( ) ( )[ ,k k
li uix x  is the boundary of the ith variable, function 

round(x) is round to the nearest integer of x. , in 
which  is the reduction factors. If , the interval of 
reduced space is p/2 of the last interval; default value is 4. The 
starting point of new reduction strategy is very different from 
the former [4]. We focus on the reduction speed in the former 
SOM, while sampling points of last set can be employed 
sufficiently in the current modeling process by the new 
reduction strategy. So the cost of finite element analysis can 
be saved to a great extent.  

( ) /k
il l nΔ = l

ln ln p=
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IV. EXAMPLES 

In the section, we will compare the results with different 
reduction factors to discuss the limit cases of SOM. Moreover, 
model selection strategy will be discussed for SOM. 
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A. TEAM Workshop Problem 22 

It is a well known benchmark problem for the optimization 
of superconducting magnetic energy storage (SMES) [1]-[2], 
[4]. The three-variable (R2, h2, d2) case of SMES is a discrete 
problem which should be optimized with respect to the 
following objectives: (1) The stored energy should be 180 MJ; 
(2) BBmax ≤ 4.92 T (superconductivity constraint); (3) The stray 
field (Bstray) should be as small as possible. Table I shows the 
optimal results given by SOM with different RBF models.  

TABLE I 
OPTIMIZATION RESULTS OF SMES 

 Fig.1. Convergence rate of SOM with different models 
Var. 
Unit 

R2

m 
h2/2 
m 

d2

m 
Bstray

mT 
E 

MJ FESP

DEA 3.18 0.428 0.211 1.03 180.00 2310

G-RBF 3.12 0.309 0.295 0.93 179.94 214 

MQ-RBF 3.07 0.295 0.328 0.97 179.64 129 

1Cϕ  3.06 0.302 0.325 1.01 179.45 122 

2Cϕ  3.03 0.316 0.325 1.23 179.24 122 

G-  6ln 3.17 0.372 0.238 0.97 180.14 131 

G-  8ln 3.12 0.358 0.262 1.00 180.04 120 

From the table, we can see that 2420 FESP are sampled to 
get the optimization results by DEA. For the case of default 
SOM, only 331 FESP are needed, which is 13.68% compared 
with that of DEA. And for the case of nl = 6 and 8, the optimal 
results can be derived with only 161 FESP, which are 6.65% 
compared with that of DEA, and less than half of the former 
case. The results given by SOM only a little worse than that 
by DEA, but they also satisfy design objectives. 

TABLE II 
OPTIMIZATION RESULTS OF TEAM WORKSHOP PROBLEM 25 

 
 

Var. 
Unit 

R1

mm 
L2

mm 
L4

mm f FESP

DEA 7.5554 14.7212 14.8666 44.14 10−× 2420

MQ-RBF 7.6125 14.6250 15.7188 31.49 10−× 331 

MQ- 6ln 7.7500 14.6250 16.1875 31.85 10−× 161 

MQ- 8ln 7.7500 14.6250 16.1875 31.85 10−× 161 

In Table I, DEA means the results derived from differential 
evolution algorithm (DEA) with finite element model. G-RBF 
shows the results given by SOM with Gauss RBF model. 

means the results given by Gauss RBF model with 
reduction factor n
G- 6ln

l = 6; others cases have similar meanings.  
(1) All the methods can deliver satisfied results, especially 

those based on RBF models.  
(2) 2310 finite element sample points (FESP) are needed for 

DEA to get the optimal results. All FESP of SOM based on 
RBF and CSRBF models are less than 1/10 compared with 
that of DEA.   

V. CONCLUSION 

We present new strategies for SOM to solve design 
problems of electromagnetic devices, including two kinds of 
RBF models. From two TEAM benchmark examples, we can 
see that the computational cost of finite element analysis can 
be obviously saved by our methods.  

(3) The best results are from the case of Gauss RBF model 
with nl = 4. If we use nl = 6 and 8 to reduce design space, the 
FESP can be reduced obviously while the optimal results are 
only a little worse than that of the former case.   

Fig.1 shows the convergence rate of SOM with different 
models, including RSM, RBF, CSRBF and Kriging models. 
From the comparison, we can see that RSM, RBF and Kriging 
are better than CSRBF for the modeling process of SOM.  
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Abstract—A metaheuristic encapsulating a novel selecting 
strategy for finding the best solutions of both individual and a 
group, a desirability function to quantitatively take into account 
of dominance, the scaling of the objective functions etc., as well as 
an iterative mechanism of particle swarm optimization is 
proposed. Two numerical examples are reported to demonstrate 
the pros and cons of the proposed metaheuristic algorithm.  

I. AN MULTIOBJECTIVE METAHEURISTIC  
In engineering synthesis, it is not uncommon to ask the 

designer to satisfy several seemingly conflicting criteria/ 
objectives simultaneously. Such problems therefore require 
the finding of the best possible designs to satisfy a set of 
objectives under different tradeoff scenarios. To reach this 
goal, increasing endeavors have been devoted to develop 
metaheuristic algorithms such as, to name but a few, genetic, 
differential evolution, simulated annealing, tabu search, and 
particle swarm optimization, in finding a near-complete and 
near-optimal Pareto front. However, most available 
metaheuristics have difficulties in finding the best tradeoffs to 
distributing the computational resources uniformly whilst 
accomplishing the aforementioned ultimate goal. In this regard, 
a metaheuristic encapsulating some improved approaches and 
an iteration mechanism of the Particle Swarm Optimization 
(PSO) method is proposed with the goal to try alleviating the 
deficiency of available vector algorithms. 

The details about particle swarm optimization method are 
referred to [1],[2]. Hereafter only the approaches and 
methodologies for extending the PSO in solving a 
multiobjective design problem are described. 

A. Selection of Best Solutions of Individual and Group 
The solution of a multiobjective problem is not unique but 

is a set of tradeoffs of different objectives referred as the 
Pareto optimals. As a consequence, the best solutions searched 
by a particle, denoted by pbest stored in bestP , and those by its 
neighbors, denoted by bestg  memorized in Gbest, are multiple 
and these numbers will exceed one as the evolution advances. 
Since the fitness value of different Pareto optimals may be the 
same, this will give rise to difficulties when selecting the best 
solutions of both individual and the group. For example, if the 
best solutions are selected in a completely random way, due to 
considerable differences in the positions of the two selected 
best particles in the parameter space, the particle will oscillate 
within the parameter space in subsequent iterations, resulting 
in an inefficient iterative procedure; On the other hand, if the 
best solutions are always selected in a deterministic way, the 
distributions of the particles may have limited diversity, 
leading to a less robust vector optimizer for finding a well-

distribution of Pareto optimals. To keep the best balance of 
efficiency and robustness of the algorithm, the pbest and bestg  
of a particle are selected by using the roulette wheel selection 
mechanism, but for the former with a probability proportional 
to the distances of the specified particle to those of bestP  and 
for the later, with a probability proportional to the fitness 
values of the components of Gbest. 

B. Taking Amount of Domination into Consideration  
To assess the quality of a particle in a Pareto optimal sense, 

the dominance concept is commonly used to assign the fitness 
value [3]. However, such approaches can only determine 
qualitatively the relationships of dominances among different 
solutions, it cannot measure quantitatively the ‘level’ of 
domination [4]. However, a proper usage of such ‘level’ could 
guide the search towards the finding of more and better Pareto 
optimals with enhanced convergence performances. Hence a 
desirability function is introduced in that for the particle ix  in 
question, if its closest Pareto optimal searched so far is 
denoted by P

ix , its jth desirability function is formulated as 
'( ) exp( | | )jn

j i jd x Y= −                                (1) 

(2 ( ))/ | |j j j j j jY Y USL LSL USL LSL′ = − + −                (2) 

where; | ( ) ( ) |P
j j i j iY f x f x= − ; jUSL  and jLSL  are, respectively, 

the upper and lower specification levels characterizing a 
symmetric desirability around a target value in the middle 
between two limits of the jth objective or criterion; 0jn >  
controls the shape of the two-sided desirability function. 

Once the desirability functions for all objectives are 
determined, the desirability function characterizing the "level" 
of dominances is defined as 

1
( ) ( )

fN

i j i
j

d x d x
=

= ∏                                (3) 

This ad hoc desirability function will then be used to 
incorporate the ‘level’ information into the fitness value of a 
particle using the following formula, 

1 1
1

( ) ( ) (1 )[ ( ) / ( )]
PN

nor
fit i fit i i j

j
f x w f x w d x d x

=
= + − ∑       (4) 

where, ( )nor
fit if x  is the normally defined fitness of ix , w1 is a 

weighting constant, NP is the size of the swarm.  

C. Scaling of Different Objectives   
For an engineering design problem, different criteria or 

objectives have significant differences in magnitude, which 
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will result in an unevenly distributed Pareto frontier [5]. To 
eliminate this problem, the objectives are normalized to  

min max minˆ ( ) / ( )i i i i if f f f f= − −                        (5) 

where min
if  and max

if  are, respectively, the minimum and 
maximum values of the ith objective function. 

To fully use the information gathered from the so far 
searched Pareto solutions, a continuous approximation of 
these solutions at the end of each swarm is constructed using a 
‘support vector machine based’ response surface model. As 
more promising solutions might be found on this response 
surface, an intensifying search is then designed to exploit the 
sampling points generated by means of an interpolation on this 
surface in order to find more Pareto solutions. Moreover, the 
multiplicative scheme for implementing the ε-dominance [6] 
is used to guarantee the diversity of the final solutions on the 
Pareto front. 

II. NUMERICA L EXAMPLES AND CONCLUSIONS 
Extensive numerical experiments on different multi-

objective design problems are conducted to validate and to 
demonstrate the pros and cons of the proposed algorithm. 
However, due to the limitation of space, only the numerical 
results on two case studies are reported. 

A. Example One 
As the first application, the proposed algorithm is utilized 

to study the mutiobjective shape optimization of a coreless 
solenoid with a rectangular cross-section a×b [7]. If the 
current is assumed to be uniformly distributed over the cross-
section, the inductance L [μH] and the volume V [m3] can be 
approximated by F1 and F2, respectively, as follows: 

2
1
2

1
1 2

2

2 22
1 2 1 2

2 2

31.49
4

9 6 5

4 24

k
bF

k ka
b ab
k k k ka bF

a b

π

π
π

π

=
+ +

= + +

                                (6) 

Under some simplifications [7], this multiobjective design 
problem can be formally defined as: maximize the inductance 
L(a,b) and minimize the volume V(a,b) of the solenoid for a 
given length k1 = 10 m and cross-section k2 = 10-6 m2 of the 
current carrying wire, subject to 1 2 / (4 )a k k bπ>  . The 
searched Pareto front for this case study using the proposed 
algorithm is depicted in Fig. 1. It can be seen that the 
proposed algorithm produces a uniformly sampling of the 
Pareto front.   

B. Example Two 
The geometrical design of the multi-sectional pole arcs of 

a large hydrogenerator [8] is selected as another application of 
the proposed metaheuristic. The goals of the optimal design 
includes: maximize the amplitude of the fundamental 
component of the flux density in the air gap, 1fB ; minimize 
both the distortion factor of a sinusoidal voltage of the 
machine at no-load, ve , and the Telephone Harmonic Factor , 

THF. It is found that, for a typical run, after 2315 iterations, 
the proposed metaheuristic yields a set of acceptable Pareto 
solutions in the objective space, as shown in Fig. 2. Based on 
these experimental results, it can be seen that the viability of 
applying the proposed algorithm to multiobjective inverse 
problems is validated. 

 

 
Fig.1.The final solution of the proposed algorithm for example one.  

 

1
1.05 1.1 1.15 1.2 1.25

0.5

1

1.5
0.5

1

1.5

2

2.5

)(1 TBf

TH
F(

%
)

(%)ev

 
Fig. 2. The searched Pareto optimals by using the proposed method for 

example two. 
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10. SOFTWARE METHODOLOGY 
 

Abstract —	 The	 design	 space	 of	 an	 electromagnetic	 (EM)	
device	is	huge	and	complicate	since	such	devices	consist	of	a	large	
number	 of	 interacting	 sub-components	 and	 strong	 inter-
dependencies	 among	 elements	 related	 to	 a	 variety	 of	 physical	
areas	 such	 as	mechanical,	 electrical	 and	 thermal.	However,	not	
all	information	is	necessary	when	given	a	design	task	to	build	an	
EM	 device.	 In	 order	 to	 eliminate	 redundant	 information	 and	
speed	up	 the	design	process,	we	have	developed	a	compact	EM	
device	 prototype	 through	 feature	 selection	 techniques	 which	 is	
described	in	this	paper.					

I. INTRODUCTION 
    Design is an ill-structured problem since its specifications 
are not always complete and functional goals are often 
inconsistent; and the corresponding definitions of algorithmic 
solutions lack clarity. Furthermore, the complexity of the 
design task increases as the designer addresses the intricacies 
of a field such as electromagnetic devices [1]. The problem to 
be considered is that of how to explore the design space with a 
very large number of dimensions (design features) in order to 
derive solution candidates which can be quickly improved 
through an optimizer. Thus it is necessary to develop a 
compact prototype with reasonable multi-dimensional size and 
enough information to model an electromagnetic device. One 
feasible approach to solving this problem is to use feature 
subset selection techniques. Such a system, as a critical 
preprocessing step to an intelligent learning system, is an 
effective way to identify and remove as much irrelevant and 
redundant information as possible. This reduces the 
dimensionality of the design space and may allow the design 
process to perform faster and more effectively. In some cases, 
accuracy on a future design task can be improved; in others, 
the derived design prototype is a more compact, easily 
interpreted representation of the target concept. The intention 
of this paper is to investigate the feasibility of building a 
compact prototype for electromagnetic device optimization. 
To do this, it is imperative to develop a methodology for 
determining “feature relevance” as a standard to measure the 
goodness of a selected feature subset in a generic situation. 
The remainder of this paper is going to illustrate the related 
concepts, theoretical fundamentals and algorithms. Finally, 
induction motor case instances are used as a test example to 
explain the practical significance of developing a compact 
prototype. 

II. FEATURE RELEVANCE MEASURES 
    Based on the statement from Genari et al., features are 
relevant if their values vary systematically with category 
membership [2], the concepts and theoretical background of 

how well a particular feature subset can be applied to 
represent the original design space are formally described with 
the following definitions and formulae. First, we adopt the 
definitions of strong relevance, weak relevance and 
irrelevance in any feature set as described in the paper from 
John et al.[3]; then introduce how to use correlation between 
two features as a measure to find the relevant features from the 
original feature space.   
      Given an original set of features F , let iF F  and 

i iS F {F}  .  
The following definitions are then made: 
Defintion1:	 (Strong relevance) A feature iF is strongly 
relevant iff  

i i iP(C | F ,S ) P(C | S )  
Defintion2:   (Weak relevance) A feature iF is weakly relevant 
iff  
                             i i iP(C | F ,S ) P(C | S )  and 

'
iS S  , such that  ' '

i i iP(C | F ,S ) P(C | S )  
Defintion3:  (Irrelevance) A feature iF is irrelevant iff  

' ' '
i i i i iS S ,P(C | F ,S ) P(C | S )    

 
     Here iP(C | S ) is the probability distribution of different 
category memberships given the feature values in iS and 
P(C | F) is the original distribution given the feature values 
in F . C  is a set of different category memberships.  
      In order to evaluate the relevance of features for a given 
classification task, we adopt the correlation between two 
features as an approximation measure, then it is safe to state a 
good feature subset is one that contains features highly 
correlated with the class, yet uncorrelated with each other. So 
far there are two constant ways to calculate the correlation 
between feature variables. The first one is based on linear 
correlation and defined as follows. 
       For a pair of feature variables (X,Y), the linear correlation 
r is defined by the following formula. Here ix is the mean of 

X, and iy is the mean of Y. The range of r is [-1, 1].   
 

                        
i i i i

i
2 2

i i i i
i

(x x )(y y )
r

(x x ) (y y )

 


 




                    (1) 
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10. SOFTWARE METHODOLOGY 
 

       The second is based on the information-theoretical 
concept of entropy, a measure of uncertainty of a random 
feature variable. It is defined as follows. 
                i 2 i

i

entropy(X) P(x ) log (P(x ))                    (2) 

The entropy (X|Y) is defined as the following formula. 
               

j i j 2 i j
j i

entropy(X | Y) P(y ) P(x | y ) log (P(x | y ))        (3) 

Another concept, information gain (IG) [4], is given by the 
following formula.  
                  IG(X | Y) entropy(X) entropy(X | Y)              (4) 
It is applied to rank the level of correlation of one feature 
compared with the other two features. In other words, we can 
say that a feature Y is regarded more correlated to the feature 
X than to feature Z, if IG(X|Y)>IG(Z|Y).  

III. A FILTER FEATURE SELECTION ALGORITHM FOR EM 
DEVICES 

      The general process of feature subset selection is to 
iteratively evaluate a candidate subset of features, modify the 
subset and evaluate if the new subset has a better performance 
than the old. Since our purpose is to build a compact prototype 
for electromagnetic device optimization, it is necessary to 
explore as many design feature subsets as possible. Thus we 
adopt a filter algorithm [5] that employs correlation-based 
measures to evaluate the candidate feature subset and different 
search methods to generate a subset. The framework of a filter 
algorithm is presented in Fig.1. An induction motor case-base 
with 11 design features and 22 instances is chosen to test the 
feasibility of the method for selecting a feature subset from an 
original design space.  
 
A filter algorithm   
Input: 0 1 n 1D(F ,F ,...,F ) 					//			an initial space with N features	
											 0S 																								//			an initial subset to start the search 
											  																								//			a stopping criterion	
Output: bestS 																	//			an optional subset		
1 	begin 
2 						initialize:	 bestS = 0S ;	
3 						 best 0correlation sub eval(S ,D);    	 //correlation-

based	evaluation criterion 
4        do begin  
5 													S generate(D); 		//	generate a subset for evaluation 
6 					 correlation sub eval(S,D);    		
7    if	(	  	is better than	 best )	
8 										 best =  ;	
9 																					 bestS = S ;	
10 end  until (   is reached); 
11 return   bestS ; 
12 end.   
Fig. 1. The framework of a filter algorithm  
       
      The purpose of this experiment is to estimate the 

dependencies between functional and geometrical design 
features. Here we choose a critical geometrical feature, stator 
outer diameter, as the classification feature against other 
functional features. The experimental result shown in the 
following table reflects the fact that it is consistent with the 
domain knowledge in an induction motor.      

 
TABLE I 

CRITICAL FUNCTIONAL FEATURES FOR STATOR OUTER DIAMETER 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

This case base has been built with the help of MotorSolve 
provided by Infolytica Corporation [6]. 

IV. CONCLUSION 
   A filter feature selection algorithm to reduce the size of 

the design space for electromagnetic devices has been 
presented and applied to a database of induction motor 
designs. Using the information derived, it is possible to create 
a compact EM device prototype which can be used as the 
starting point for an optimization process. In effect, the feature 
subset selection technique provides an efficient and fast 
approach to exploring the potential design space allowing the 
optimizer to concentrate on the exploitation phase. The full 
paper will provide details of the algorithm and more 
experimental results to demonstrate the feasibility of the 
methodology presented in this paper.  
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6. Optimization 1

Abstract — The ON/OFF method which was developed for the 
static field problem is extended to the dynamic field problem. 
The method makes them particularly useful in topology 
optimization, where the parameterization enables all feasible 
shapes of electromagnetic devices to be explored. We applied the 
ON/OFF sensitivity method to the steady state linear eddy 
current problem in order to determine the optimal topology of 
the electromagnetic and magnetic shield. As a result, the optimal 
shape of electromagnetic and magnetic shield, which we could 
not imagine beforehand can be obtained using the ON/OFF 
method. A criterion of how to choose the sensitivity with respect 
to the reluctivity or conductivity is discussed. It is shown that the 
ON/ OFF method can be used for the design of electromagnetic 
or magnetic shielding, even when the material is the magnetic 
steel sheet which have two kinds of variables, magnetic 
permeability and conductivity. The best shielding configuration 
can be obtained for  each frequency using a larger design 
sensitivity. 

I. INTRODUCTION

We have already developed the ON/OFF method[1,2] 
which is attractive for the designer by applying it to the static 
magnetic field problem. If the ON/OFF method is extended to 
the optimization of eddy current problem, we may be able to 
get an optimal electromagnetic or magnetic shielding [3,4] 
from a comprehensive point of view by distributing 
conducting materials or magnetic materials in the design 
domain. As the electrical steel has both large permeability 
(small reluctivity ν) and conductivity σ, two kinds of design 
sensitivity ∂W/∂ν and ∂W/∂σ (W: objective function) can be 
considered. However, a criterion for selecting the sensitivity 
∂W/∂ν or ∂W/∂σ for the optimal design of shielding is not 
clear.  

 In this paper, the ON/OFF method is extended to the 
optimization of the eddy current problem using the step by 
step method and the adjoint variable method. The shape of 
electromagnetic shielding (non-magnetic material) and that of 
magnetic shielding (non-conducting material) are obtained 
using the ON/OFF method. The possibility of optimizing the 
shape of shielding having two types of design variables, e.g. ν
and σ, like the electrical steel sheet is examined, and the 
optimization is carried out.  

II. OPTIMIZATION OF ELECTROMAGNETIC AND MAGNETIC 

SHIELDING

The shape of shield is optimized so that the average flux 
density in a target region is reduced. The analyzed model of 
the electromagnetic and magnetic shield is shown in Fig. 3. 
This is a model that the ac magnetic flux produced by the coil 
is shielded. The shieldings are set between a coil and target 
region (5mm×40mm×40mm) in which the magnetic flux 
should be reduced. The design domain (5mm×200mm× 
200mm) for forming the shielding is divided into cells. The 
current of the coil is set as 1939AT (60Hz, 1kHz and 10kHz). 
When the material is a solid (electrical steel), the conductivity 
σ is 0.7×107(S/m), and the relative permeability μr is 1000 in 
the design region. When the material is a void, the 
conductivity σ is 0.1×103(S/m), and the relative permeability  
is unity in the design region.  The non-zero conductivity is put 
to the void, in order to design a current circuit.  
 The objective function is defined as follows in order to 
minimize the magnetic flux density at the target region: 

 
⎭
⎬
⎫

⎩
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⎧ ++∑=
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z
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W       (1) 

where ne is the number of  elements in the target region, Bx, By

and Bz are the x-, y- and z-components of the magnetic flux 
density.  
 When the electrical steel is used in the ac field, it has two 
kinds of shielding properties, electromagnetic shielding and 
magnetic shielding. The applicability of the newly developed 
ON/OFF method which use larger sensitivity between 
dW(istep)/dσ and dW(istep)/dν is examined using such a shielding 
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Fig. 1. Analyzed model. (a) overview, (b) x-z plane. 
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6. Optimization

composed of electrical steels. The following three kinds of 
optimization were performed: 
(method A) 

 The design variable is the reluctivity. In this case, the 
sensitivity dW/dν is only calculated. 
(method B) 
 The design variable is the conductivity. In this case, the 
sensitivity dW/dσ is only calculated.  
(method C) 
 The design variables are both reluctivity and conductivity. 
The sensitivity for each design variable is calculated 
independently and the sensitivity of which the absolute value 
is larger is adopted.  

Fig.2. Optimal shapes obtained using various design variables 
(10kHz). (a) method A, (b) method B, (c) method C. 
Fig. 2 shows obtained optimal shapes of shielding at 60Hz and 
10kHz. Fig. 9 shows the objective function of the optimal 
shape at each frequency. The flux density in the target region 
of the initial shape is about 6.6mT, and the value of the 
objective function is 1.2× 10-10. The shielding was most 
effective in the method A at 60Hz. The flux density in the 
target region is reduced to about 0.39mT. The shielding was 
most effective in the case B at 10kHz. This corresponds to the 
electromagnetic shielding.  

 The results of methods A and C (50Hz) are similar, and 
those of method B and C (10kHz) in Fig. 2 are similar. These 
facts suggests that the optimal topology of electromagnetic 
shielding or magnetic shielding can be automatically obtained 
using the technique of method C, which use the larger 
sensitivity between dW/dσ and dW/dν. In this model, a best 
configuration of magnetic circuit is obtained by the method C 
at 1kHz as shown in Fig. 3. The case of 1kHz is the 
intermediate situation between magnetic shielding and 
electromagnetic shielding. In such a state, the method C 
proposed here is very effective. 

III. CONCLUSION 

 The ON/OFF method for the topology optimization is 
extended to the linear eddy current problem. The technique to 
optimize the magnetic circuit composed of the material with 
two kinds of design variables (conductivity and reluctivity) is 
investigated. It is shown that the electromagnetic shielding 
and magnetic shielding can be automatically selected, 
moreover, the best shielding configuration can be obtained for 
each frequency using a larger design sensitivity with respect to 
design variable. 
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Fig.2. Optimal shapes obtained using various design variables 
(10kHz). (a) method A, (b) method B, (c) method C. 
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Abstract – This work proposes a procedure that reduces the design
space of a standard electromagnetic device by using response surface
methodology with multivariate Bayesian analysis. Our method seeks to
provide a reduced design space that contains the optimal design with
a probability of P , where P is specified by the designer and can be
arbitrarily close to 1. The reduced design space can then be searched for
the optimal device.

I. INTRODUCTION

When designing a standard electromagnetic device, an en-
gineer often has available a library of existing optimal designs
for the same type of device made to different specifications.
The goal of our work is to make use of this library in order
to reduce the search space of new designs. By using response
surface methodology and multivariate Bayesian analysis, our
method seeks to provide a reduced design space that contains
an optimal new design with a probability P , where P is
specified by the designer and can be arbitrarily close to 1.
The reduced design space can then be searched using standard
optimization algorithms.

II. BACKGROUND

The goal of device design is to find values for a set of design
variables d (such as physical dimensions) that satisfy a set of
design specifications s, while minimizing an objective (such as
mass). Our work models the relationship between d and s by
curve-fitting data from existing optimal device designs. This
model is then used to predict new designs. The most common
type of model used for curve-fitting is linear regression. This
section explains the multivariate Bayesian version of linear
regression that is used in this work.

A. Classic Linear Regression

Linear regression models a response variable y as a linear
function of the components of a covariate vector x. Note that
the components of x may be transformations of other under-
lying variables (e.g., x1 = s2 + s23), so although the model is
linear, it can take on many forms including polynomials.

The linear regression model is built by using n pairs
of responses and covariates (yi,xi) that already exist. The
underlying statistical assumption is that each existing response
yi was generated by a random variable Yi that has the form

Yi = β1xi1 + β2xi2 + . . .+ βpxip + εi = xT
iβ + εi, (1)

where β is a vector of p unknown constants called the model
parameters (the same β is used to model all n Yi’s), and
εi a zero-mean normally distributed random variable with an
unknown variance σ2 (all n εi’s are identically distributed).

The matrix form of (1) is Y = Xβ + ε for Y =
(Y1, Y2, . . . , Yn)T. Given the n pairs of existing responses and
their covariates, the elements of β are then estimated for this
model using least-squares analysis. Using this estimate, a new
response at covariates xnew can be predicted as ynew = β̂xnew,
where β̂ is the estimate of β.

In response surface methodology (RSM) [1], this prediction
model y = f(x) = β̂x is called a response surface. RSM
usually builds response surfaces to model device performance
(i.e., the elements in the design specifications s) as functions
of design variables d. This work, however, models d as a
function of s instead (this is explained in Section III).

B. Bayesian Multivariate Linear Regression
The classic linear regression model can be modified to be

Bayesian [2]. For this work, there are two major advantages
of Bayesian analysis: 1) It provides a distribution, rather
than just a single value, for any predicted response. This
distribution takes into account the uncertainties in estimating
model parameters. 2) It provides a way of modeling multiple
responses that take into account their correlations.

When there are q response variables to be modeled instead
of just one, then the single response y becomes a response
vector y = (y1, y2, . . . , yq)T. A multivariate model is then
built with n pairs of responses and covariates (yi,xi), where
each yi = (y1i, y2i, . . . , yqi)T. Whereas the univariate model
in (1) assumes that each single response yi was generated by a
random variable Yi, the multivariate model assumes that each
response vector yi was generated by a random vector Y i. The
elements of Y i are jointly distributed as follows:

Y i = Bxi + ui, (2)

where B, a q × p matrix of unknown constants, is the
multivariate version of β in (1). ui is a zero-mean random
vector with an unknown covariance matrix Σ (all n ui’s are
identically distributed).

The matrix version of (2) is Y = XBT+U , where Y is an
n× q matrix. For this work, we are interested in studying the
joint distribution of a predicted response vector Y new. Given
the n pairs of existing response vectors and their covariates,
this joint distribution is estimated using Bayesian analysis (we
use non-informative prior distributions as in [2]). It is found
that the predicted Y new at xnew has a multivariate student t
distribution with mean vector B̂xnew, and a covariance matrix
given by

S =
ν

ν − 2


ν((Z −XB̂T)T(Z −XB̂T))−1

1 + xT
new(XTX)−1xnew

−1
, (3)
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where X is the n×q matrix formed by stacking the n existing
covariates xi’s, Z is the n× q matrix formed by stacking the
n corresponding yi’s, B̂ = ZTX(XTX)−1 is the estimate
of B, and ν = n− p− q + 1 is the degree of freedom of the
distribution. This distribution takes into account the errors in
B̂ as well as correlations among the elements of Y new.

C. Confidence Region of Multivariate Normal Distribution

When the degree of freedom of a multivariate t distribution
is high, it can be approximated by a multivariate normal
distribution. Compared to the multivariate t distribution, much
more is known about the properties of the multivariate normal
distribution [3]. In particular, standard confidence regions can
be constructed for a multivariate normal distribution [4]. If
we assume that the distribution of a response vector Y new
predicted at xnew can be approximated by a multivariate
normal distribution, then a P confidence region for Y new is a
q-dimensional hyper-ellipse defined by

(y − B̂xnew)TS−1(y − B̂xnew) = χ2
1−P,q, (4)

where 0 < P < 1, B̂ and S−1 are as defined in the previous
section, q is the length of Y new, and χ2

1−P,q is the value of the
chi-squared distribution with q degrees of freedom evaluated at
1−P . This means that the probability that a vector generated
by Y new falls within the given region is P .

III. PROPOSED METHOD

As explained in Section II, the goal of device design is
to find a vector of optimal design variable values dopt that
satisfies a specification vector s while minimizing an objective.
Our method seeks to reduce the design space so that the
probability of finding dopt in that space is P . We achieve
this by modeling design variables d as a function of design
specifications s using existing optimal designs. In other words,
d is considered to be a vector of response variables, while a
transformation of s (see Section II-A) is the covariate vector
x. The details of our procedure is described as follows:

1) Build a multivariate linear regression model given in
(2), where the design variables are the responses to be
modeled.

2) Given a new set of design specifications, find the covari-
ance matrix given by (3) for the predicted distribution
of the design variables at this new specification point.

3) Using this covariance matrix, construction a P confi-
dence region given in (4). The probability of finding
dopt in the confidence region is ideally P .

IV. EXPERIMENTAL SETUP

We studied magnetic actuators in this work in order to
test the proposed procedure. This required building a library
of existing optimal actuator designs first. In order to do
this, we optimized 28 actuators (using MagNet [5]) that met
specifications found in manufacturers’ catalogues [6] [7] while
achieving minimum mass. These actuators have five design
variables (NI, coil height, coil thickness, plunger diameter,
and bushing height) and two design specifications (force and
stroke). Fig. 1 shows the design specifications for the actuators.
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Fig. 1. Specifications of the 28 existing actuator designs

TABLE I
OBSERVED FRACTION OF OPTIMAL DESIGNS IN P CONFIDENCE REGION

Polynomial order
1 2 3 4

P = 0.99 0.87 0.86 0.83 0.79
P = 0.95 0.81 0.82 0.75 0.71
P = 0.90 0.80 0.79 0.69 0.63
P = 0.75 0.73 0.73 0.59 0.55
P = 0.50 0.55 0.63 0.45 0.37
P = 0.25 0.38 0.46 0.31 0.30

After the library was built, the data was fitted to four
polynomial models of orders one to four (step 1 in the
proposed method). Using steps 2 and 3, the method was tested
with 121 new specifications located on an 11×11 grid covering
the space shown in Fig. 1. Given a value of P , a confidence
region was constructed for each new specification that ideally
contains the desired optimal design with probability P . In
order to verify whether the optimal design is indeed in the
confidence region, we again used MagNet to find the true
optimal design at each specification point.

V. PRELIMINARY RESULTS

Table I shows the fraction of optimal designs actually
observed in the P confidence regions. For example, the
P = 0.50 confidence region for the first-order polynomial
model contained the optimal design in 66 out of the 121
test cases, hence the observed fraction is 66

121 = 0.55. The
observed values show a reasonable correspondence with the
ideal P , hence demonstrating that the proposed method is
practical. The discrepancies between the observed and ideal
values are caused by: 1) the approximation of the multivariate
t distributions by multivariate normal distributions (especially
for the higher order polynomial models), 2) the small number
of samples tested, 3) the limitations in using RSM to model
the design space.
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Abstract—This paper considers the mesh discretization error
as a source of noise which entails a non-smooth behaviour in the
evaluated electromagnetic fields. This noise is filtered by a neural
network (NN), which is constrained to impose a certain level of
smoothness, such a way to retain the functions nonlinearities
whilst filtering the noise. This is automatically achieved by a
multiobjective training algorithm. Results considering a problem
with a known analytical solution and a micro motor are pre-
sented. They show that this approach can be used to decrease the
computational burden in the design of electromagnetic devices.

Index Terms—Mesh density, optimisation, neural networks.

I. INTRODUCTION

For many engineering problems, the objective functions
and/or constraints, can only be evaluated by means of nu-
merical techniques, such as the finite element method (FEM),
which usually implies a huge computational burden. The FEM
requires a mesh generator (a discretization of the domain),
and, the evaluation of the real physical properties, are closely
related to the mesh quality. Moreover, due mainly to dis-
cretization errors, the functions inherit a non-smooth behaviour
which renders a more complex optimisation context. This can
generate artificial local minima which can trap deterministic
techniques and slow down the stochastic ones.

One way to avoid this shortcoming is increasing the mesh
density. However, this increases the computational effort re-
quired in the optimisation procedure, which can become
prohibitive in many cases. This paper treats this discretization
error as a source of noise. This noise is then filtered by a NN
trained with a multiobjective learning algorithm [1].

Some authors have applied machine learning techniques as
an auxiliary tool in the optimisation of electromagnetic devices
in the past years. Rashid et al. [2] have applied neuro-fuzzy
methods in global optimisation of electromagnetic devices
considering an evolutionary step, and, afterwards, a determin-
istic step using the neuro-fuzzy models. Their approach is
based on the approximation of the function and its derivatives
by analytically calculating the sensitivity information [3].

A similar approach [4] considers, instead of neuro-fuzzy
models, a parallel layer perceptron (PLP) [5] neural network.
The main advantage of the latter is a simpler analytical
formulation and a faster training and testing algorithm. A slight
different approach [6] integrates the NN in the optimisation
procedure, where a neural network model is trained to define a
deterministic operator inside a genetic optimisation algorithm.

The novelty of this paper relies on the fact that the global
approximations are constrained to impose a certain level of
smoothness to the objective function. This level of smoothness
is automatic defined using the Q-norm complexity measure
[7]. This technique is called the minimum gradient method
(MGM) and it is applied to the PLP network [5]. The smooth-
ness is defined by an adaptive filtering process. The MGM
resembles the weight decay and pruning methods with the
advantage of using only convex functions, and, therefore, a
closed-form solution, in its formulation. Moreover, it has also
some similarities with the Wiener filter [1].

The noise is treated as an uncorrelated residual in the
cross-validation procedure. This guarantees to track the main
behaviour of the evaluated functions, including nonlinearities.
Wanner et al. considered second order model to fit the data
and, even though it is capable to filter the noise, it does not
model the real nonlinearities of the model [8]. Indeed their aim
was to generate a hybrid deterministic/stochastic optimisation
tool, which differs from the purpose of this work.

The NN formulation is shortly addressed in the next section.
Next, are shown results considering a problem with a known
analytical solution and a micro motor design.

II. NEURAL NETWORK FORMULATION

To achieve the desired filtering properties, the NN learning
is modelled as a bi-objective optimisation problem which
considers simultaneously the minimisation of the empirical
error and network output complexity. It is theoretically rea-
sonable to use the norm of the network output gradient as a
complexity measure [7], based on output smoothness, high-
frequency filtering, the concept of the larger margin, among
others. In this way, the gradient norm can be used to compute
the complexity for a given machine learning problem and,
consequently, the learning problem can be formulated as

min
w

�
Remp(w)

Ω(w) =
�Tr

t=1 �∇xf(xt, w)�2
(1)

where Remp is the empirical error, Ω is smoothness constraint,
w are the NN weights, ∇xf(.) is the gradient of the NN
output, and Tr is the training set size. The aim of this problem
is to achieve the equilibrium between the two factors, which
are in general conflicting. This equilibrium is responsible for
the machine generalization abilities. For the PLP, this problem
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can be solved in the linear layer by the closed-form solution,

l
∗ = [λCT

C + (1 − λ)Q]−1
λC

T
d, (2)

where l∗ is the vector of optimal parameters, C enforces the
error minimisation, the matrix Q defines the filtering, λ is
defined by the minimum cross-validation error, and d is the
desired output vector. See [7] for further details.

III. ELECTROMAGNETIC PROBLEM WITH KNOWN

ANALYTICAL SOLUTION

This section considers the results for an electromagnetic
problem with analytical solution. The problem is composed
by a wire with circular cross-section of radius r carrying a
constant current density J . The magnetic flux density B at
a > r away from the wire centre is given by B(r) = µ0Jr

2

2a .
The analytical, the FEM and the FEM smoothed solutions to

several radii are shown in Fig. 1. The FEM smoothed solution
is closer to the analytical solution than the FEM raw solution.
This is due to discretization errors. The Fourier transform of
the residual have a white noise characteristic, i.e., it ranges
the whole frequency spectrum.
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Fig. 1. Analytical, FEM, and FEM smoothed solutions for the wire
electromagnetic problem.

IV. MICRO MOTOR

This section considers the average torque τm(x) of a elec-
trostatic micro motor as in [9], parameterized by the rotor and
stator teeth width in x. Given an initial design point x0, an
optimising direction d, and a step α, Fig. 2 shows τm(x0+αd)
for the FEM result on a coarse mesh, its filtered version using
NN, and the FEM result on a fine mesh. The smoothed FEM
solution on a coarse mesh captured the main tendency of the
problem, which would allow an effective use of derivative
based methods.

V. CONCLUSION

This paper treated the mesh discretization error as a source
of noise and it was filtered using a nonlinear filter based on
NNs. These were trained with a multiobjective algorithm. This
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Fig. 2. Results considering the average torque of a micro motor. The filtered
version of the FEM solution with carse is very close to the FEM solution
considering a refined one.

assumption was investigated in a problem with known analytic
solution and a micro motor, where a correct smoothing was
observed. Although this cannot fully replace the FEM solution
obtained with a good mesh, the proposed technique can be very
useful in some intermediate step in the optimisation and design
of electromagnetic devices. Finally, the proposed technique is
based on a novel neural network training algorithm which is
less dependent on user’s defined parameters. This is a very
important feature, since automatic design is required in many
applications, and the cost to set the parameters can make
approximation techniques unfeasible.
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6. OPTIMIZATION

Abstract — Design optimization environment utilizing an 
Electromagnetic-Team Fuzzy Logic, EM-TFL, robust identifier 
for use with Particle Swarm Optimization, PSO, technique is 
presented. The developed environment is applied in a case study 
to optimize various components of a prototype Hybrid Electric 
Vehicle, HEV, powertrain. This optimization necessitates the 
characterization of the key electromechanical components of the 
HEV power train system which includes a generator, an electric 
motor drive system, and a battery pack in addition to an Internal 
Combustion Engine, ICE.  The basic objective of improving the 
fuel economy while maintaining the performance of the vehicle is 
met through the implementation of a PSO algorithm. 

I. INTRODUCTION

Growing concerns for clean environment and energy             
savings increased the demand for more environmentally 
friendly and fuel-efficient vehicles such as the Hybrid Electric 
Vehicle, HEV. The HEV makes use of hybrid powertrain 
which typically consists of an integrated Internal Combustion 
Engine, ICE, and electric power system. These two systems 
can be arranged into various configurations. The simplest and 
the most used configuration is the series configuration shown 
in Fig. 1 where the ICE is connected to a generator used to 
charge the batteries and deliver power to an electric motor 
drive that propels the vehicle [1]. This paper presents an 
Electromagnetic-Team Fuzzy Logic, EM-FL, module used to 
setup a robust identifier which is utilized with a Particle 
Swarm Optimization, PSO, algorithm for the design 
optimization of a prototype HEV powertrain system. The 
objective is to improve the efficiency and fuel economy of the 
HEV while maintaining maximum operating torque. 

 Generator
Power

electronic
unit

Inverter Batteries

4 Cylinder
Engine

Planetary
Gear setMotor Reduction

Gear
Front

Wheel

Fig. 1: HEV Series Configuration

II. INTEGRATED OPTIMIZATION ENVIRONMENT

A novel design optimization environment is developed and 
applied for the design optimization of HEV powertrain 
systems. The design optimization environment consists mainly 
of a PSO module and an Electromagnetic-Team Fuzzy Logic, 

EM-TFL, module (robust identifier). The major components 
(functions) of this environment are shown in Fig. 2. It 
involves setting up several PSO populations to identify each 
objective and the different output powers used for each 
component 
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individual to the fuzzy objective
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individual higest
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Modify the individual
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NO

yes

Optimize the
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Fig. 2: Block Diagram of the Optimization Process of HEV 

A. Particle Swarm Optimization 

PSO is a population stochastic optimization technique 
developed by Eberhart and Kennedy in 1995 [3]. The system 
is initialized with a population of random solutions and 
searches for optima by updating generations. In PSO, the 
potential solutions, called particles, fly through the problem 
space by following the current optimum particles. Each 
particle keeps track of its coordinates  in the problem space 
which are associated with the best solution, Pbest, or fitness it 
has achieved in the process. 

Another "best" value that is tracked by the particle swarm 
optimizer is the best value obtained during the optimization by 
any particle in the neighborhood of the particle. This location 
is called lbest. When a particle takes all the population as its 
topological neighbors, the best value is a global best and is 
called Gbest.

B. HEV Powertrain Robust Identifier 

The main components of the HEV series configuration 
under consideration, Fig. 1, are the electrical system which 
utilizes a Permanent Magnet, PM, generator and a 
Synchronous Reluctance Motor, SynRM, drive system in 
addition to an Internal Combustion Engine, ICE [4]. The 
design methodology of electromechanical systems must 

Particle Swarm Optimization of Coupled 
Electromagnetic-Electromechanical Systems 
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6. OPTIMIZATION

include a robust identifier coupled with a design optimization 
model that “accurately” and “quickly” predict the performance 
and optimize the design of the system. The proper modeling of 
the electric drive under consideration must account for 
anisotropic effects, saturation effects resulting from the 
nonlinearity of the material, space harmonic effects resulting 
from the machine complex geometry and time harmonic 
effects resulting from the switching of power electronics in the 
motor drive system. This task is very involving as it requires 
extensive computations if one to use conventional 
computational electromagnetics in design optimization cases. 
In this work, an Electromagnetic-Team Fuzzy Logic, EM-
TFL, environment is used for the characterization of the 
electrical components [5, 6], accordingly, setting up a robust 
identifier for use in a design optimization process.  

 This EM-TFL approach consists of two components. The 
first is the Electromagnetic, EM, module which utilizes a 
Finite Element-State Space, FE-SS, technique to accurately 
characterize the electric drive. This EM module is developed 
to provide the high accuracy needed for the Artificial 
Intelligence module. It involves iteration between the Finite 
Element and the State Space models based on the family of 
curves approach [5] and it is used to generate, mainly offline, 
a data base necessary to train and setup the second component 
which is a Team Fuzzy Logic, TFL, Artificial Intelligence, AI, 
module. This TFL based module is used online to quickly and 
accurately predict the performance characteristics of the 
electric drive for a wide range of design parameters and 
operating conditions [5]. The resulting robust identifier is used 
next for the design optimization of the HEV series 
configuration using a PSO technique. 

III. APPLICATION AND RESULTS

The developed environment of Fig. 2 was used for the 
design optimization of a prototype HEV system. The objective 
is to compute the best size of the ICE, batteries and electric 
motors to obtain high efficiency and better fuel economy and 
performance HEV. In order to achieve this goal the ICE has to 
be sized to operate in the most efficient regions and the 
developed torque of the electric motor has to be maximized 
while minimizing its losses. 

The HEV power train of Fig.1 includes the following 
major components: a 1.9-L, 4-cylinder 66 kW output power, 
43 % maximum fuel efficiency turbo-charged compression-
ignition direct-injection ICE; a 90 kVA PM generator; a 90 
kVA SynRM drive; a five-speed transmission; and a battery 
pack which has a nominal voltage rating of 312 V with an 
energy content of about 1.56 kWh. 

As a result of the optimization process, the ICE and 
battery bank ratings were determined to be at about 36 kW 
and 56 kW, respectively. Accordingly, the initial design ICE 
rated at 1.9-L, 4-cylinder, 66 KW output power was replaced 
by a smaller engine rated at 1.2-L, 4-cylinder, 36 KW output 
power. In addition, the electric motor was optimized to reach 
high torque to weight ratio and to minimize losses. The initial 
design of the SynRM had a rotor with 4 flux paths and a 4 
pole stator with 4 slots per pole per phase, Fig. 3. The required 

output torque was selected to be at 90 NM. The optimization 
process identified a solution with 5 flux paths [6]. A summary 
of results are shown in Table I where it is shown that both the 
torque ripple and machine losses were reduced, thus 
improving the HEV efficiency and fuel economy. In addition, 
the ICE performance indices are shown in Table II. An 
increase of 22% in predicted fuel economy and a significant 
decrease in the concentration of the harmful gas emission are 
found for the best solution as a result of utilizing smaller 
engine’s size.  

FIG.3. NUMBER OF FLUX PATHS VARIATION

Table I: Electric Motor Initial and Optimal Design 

 Initial Design Optimal Design Improvement 
Losses (W) 6265 2400.9 61.7% 
Torque Ripple  52% 29.85% 42.6% 
Torque Average  90 N.m. 90 N.m. N/A 

Table II: ICE Output Indices Before and After Optimization            

 Before optimization After optimization 
Fuel economy 38.6 mpg 47.1 mpg 

HC 0.673 .391 
CO 2.641 1.444 

Emissions 

NOx .462 .322 

IV. CONCLUSION

A novel design optimization environment utilizing an 
Electromagnetic-Team Fuzzy Logic, EM-TFL, robust 
identifier for use with Particle Swarm Optimization, PSO, 
technique was developed. The PSO algorithm is capable of 
optimizing various electromechanical components of HEV 
powertrain system despite the complexity of the optimization 
search space. This technique is equally applicable to various 
coupled electromagnetic – electromechanical systems. 
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6. OPTIMIZATION 

Abstract — The estimation of magnetic nanoparticle 
distributions is essential for their medical application. In this 
paper, novel spatio-temporal minimum norm approaches for this 
inverse problem are presented. These methods are quantitatively 
evaluated in simulations and compared to the conventional static 
technique. Our results indicate that the novel spatio-temporal 
approaches significantly improve the reconstruction quality. 

I. INTRODUCTION 
Medical applications of magnetic nanoparticles, like 

magnetic cell labeling, magnetic hyperthermia, magnetic drug 
targeting and tumor diagnosis, require the quantitative 
determination of distributions of these particles. Different 
approaches to this determination have been presented recently 
[1, 2, 3]. Our approach is based on magnetorelaxometry 
(MRX) [4]: The particles in the region of interest are 
magnetized by an externally applied magnetic field. After 
switching off this excitation field, the magnetic behavior of 
the particles is read out spatially resolved. From these 
measurements the distribution of the magnetic nanoparticles 
can be determined by means of inverse methods. Until now, 
inverse algorithms like the standard minimum norm estimation 
(MNE) were applied only to single time steps of the spatio-
temporal signals. We propose a way to improve the 
reconstruction results by integrating the qualitatively known 
relaxation behavior. In this paper, reconstruction approaches 
incorporating both spatial and temporal information are 
investigated and compared to the conventional static inverse 
computation. In computer simulations, the reconstruction 
performance of these approaches is examined quantitatively. 

II. INVERSE METHODS 

A. Forward model 
For all reconstruction approaches, the sources are 

approximated by multiple dipoles positioned on a regular grid 
below the measurement system. We use the magneto-static 
dipole to model the sources at the grid points. The magnetic 
field B

r
at position rr that is produced by a magnetic dipole at 

position 'rr  with moment mr  (µ0 is the permeability of free 
space) is computed according to 

( ) ( ) ( ) ⎟
⎟

⎠

⎞

⎜
⎜

⎝
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−
−−

−

−⋅
=

35
0

'
'

'
'3

4 rr
mrr

rr
rrmrB rr

r
rr

rr

rrr
rr

π
μ .             (1) 

B. Static reconstruction approach 
In the conventional static approach, the information on 

sensor positions and grid sources is merged to the leadfield 
(sensitivity) matrix L. To find the optimal dipole magnitude 

vector rmr  the difference between the forward computed field 
and the measurement vector b

r
 has to be minimized: 

( )bmLm
m

rrr
r −⋅= minargr

                            (2) 

rmr  can then be determined by a minimum norm estimation [5] 
using a Truncated Singular Value Decomposition (TSVD) 
method [6] neglecting singular values of L that are smaller 
than the regularization parameter σr: 

( ) ∑
=

++ =⋅Σ=⋅=
r

i i

T
T v

σ
bubVUbLm

0
i

i
rrr

r
rrrrr                  (3) 

C. Spatio-temporal reconstruction approaches 
A simple model to approximate the temporal 

characteristics of MRX signals is the logarithmic decay [7], 
with the amplitude a and the relaxation time constant τ: 

( )tatf τ+⋅= 1ln)(                                 (4) 

To incorporate this information in the inverse solution, three 
approaches were implemented: 
1)Fit of measurement data channels to the model function (4) 

followed by minimum norm estimation on fitted amplitudes (3) 
2)Static minimum norm estimation for every sample (3) followed by 

fit of estimated dipole magnitudes to the model function (4) 
3)Spatio-temporal minimum norm estimation 
For the last approach, the static forward model and therewith 
the leadfield matrix is expanded following Darvas et al. [8]. 
The spatio-temporal leadfield matrix LT is computed as the 
Kronecker product of ( )TTT tftftff )(),...,(),( 21=  and L: 

LfL TT ⊗=                                (5) 

Replacing L by LT and b
r

 by ( )TTT tbtbtbb )(),...,(),( 21

rrrr
=  in (2) 

and subsequently applying the same TSVD method results in 
an estimated optimal relaxation amplitude for each dipole. 

III. SIMULATIONS 
For the evaluation of the performance of the spatio-

temporal reconstruction techniques and the comparison to the 
conventional static approach, we perform simulations varying 
relevant parameters. We employ the setup of a 16 channel 
micro SQUID sensor system located at the BIOMAG centre 
Jena for our simulations, since this system has been involved 
in spatially resolved MRX experiments. The 16 sensors of the 
system are arranged in a rectangular area of 32 x 32 mm. 

With respect to the low spatial resolution of the sensor 
setup, the simulated source is formed by a single dipole 
positioned 10 mm off the centre in both directions and 20 mm 

Spatio-temporal reconstruction 
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below the sensor plane. The magnitude of the dipole decays 
following (4) with a=1 nAm2 and τ=10 ms, which is consistent 
with measurement values. White Gaussian noise leading to 
different signal-to-noise ratios (SNR) is added to the simulated 
data and 50 simulation runs with different noise realizations 
are conducted. The added noise is realized independently to 
channels and samples, respectively. The goodness-of-fit 
(GOFnn), i. e. the root mean square error between the field of 
the estimated sources and the respective noise-free input data, 
is selected as the figure of merit in this study. 

IV. RESULTS 
All spatio-temporal methods yield nearly identical results 

in the performed simulations with the given setup. Thus, in the 
following only the results of the third approach and the static 
approach are compared, respectively. Fig. 1 shows sample 
results of static and spatio-temporal reconstruction. 

 
Fig. 1.  Sample reconstructions for the static (left) and spatio-temporal (right) 
approach (SNR of input data: 2dBA σr: 0.05). The □ identifies the position of 
the source dipole. All units are mm, step between isolines: 0.25*10-12 Am2. 

 
The influence of the regularization parameter σr on the 

reconstruction quality is displayed in Fig. 2. Generally, the 
values are significantly higher for the spatio-temporal 
methods. Both spatio-temporal and static approach show the 
best values for σr = 0.05. 

 
Fig. 2.  Mean GOFnn values for different values of the regularization 

parameter σr (SNR of input data: 10 dBA; 50 simulation runs, SD < 1.5). 
 

To quantitatively evaluate the sensitivity of the compared 
approaches towards noise, GOFnn values for different SNRs in 
the simulated data are investigated (see Fig. 3). For all 
examined noise levels, the GOFnn of the spatio-temporal 
approach is above 97 % and significantly larger than the value 
of the static approach. With increasing SNR, the difference 
between both methods decreases. 

 
Fig. 3.  Influence of noise on the reconstruction quality: Mean GOFnn values 

for simulated data with different SNRs (σr: 0.05). 

We also investigated the influence of the selection of the 
relaxation time constant in the model function of the spatio-
temporal methods. As Fig. 4 shows, the GOFnn decreases with 
the increasing deviation of the time constants of the inverse 
model function and the simulated data. 

 
Fig. 4.  Mean GOFnn value for different time constants τ in the simulated data 

spatio-temporally reconstructed with a model function time constant of 
τ = 10 ms; the static approach is invariant to the temporal model function  

(SNR of input data: 10 dBA; σr: 0.05; 50 simulation runs, SD < 0.5). 

V. CONCLUSION 
Our simulations show that the integration of temporal 

information in the reconstruction of magnetic nanoparticle 
distributions from MRX measurements considerably improves 
the reconstruction quality, regardless of the regularization 
parameter. The robustness against noise significantly 
increases. Even with slight deviations between the time 
constants in the inverse model function and the data, the 
spatio-temporal approaches still show better results than the 
conventional static approach. 

Planned work comprises intensive studies on the properties 
of the spatio-temporal reconstruction approaches with respect 
to more complex model functions accounting for different 
relaxation processes and the size distribution of the particles. 
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6. OPTIMIZATION 

Abstract —Electrical Resistance Tomography (ERT) is a body 
of methods and techniques aimed to reconstruct the spatial 
distribution of the conductivity of a material starting from the 
knowledge of boundary measurements such as, for instance, the 
Neumann-to-Dirichlet map. This inverse problem is ill-posed and 
nonlinear and, therefore, its solution require a considerable 
computational effort. In this paper we discuss three fast non-
iterative reconstruction methods for locating inclusions in an 
otherwise homogeneous material. These methods, potentially, are 
candidate for near real-time applications. 

I. INTRODUCTION 
This paper is focused on the Electrical Resistance 

Tomography (ERT) to detect inclusions in conducting 
materials by non-iterative methods. Non-iterative methods 
have attracted a lot of interest because they provide a test for 
evaluating if a point of the domain (or a subregion) is part or 
not of the anomaly, regardless other points (or subregions). 
The test is usually very cheap from the computational 
viewpoint. On the other hand iterative methods, representing 
the most common approaches to inverse problems, update 
iteratively the current estimate of the spatial distribution of the 
conductivity. At each step of the algorithm at least one 
forward problem has to be computed thus, the computational 
cost is an issue and, moreover, the solution can be trapped in 
false solutions. 

In ERT a major role is played by the Neumann-to-Dirichlet 
map that is the operator Λ mapping the boundary (applied) 
currents f into the boundary (measured) voltages �|�Ω, i.e. 
Λ� � � �|�Ω where 

 

  � � � ��� � � in Ω
� �� ��⁄ � � �n �Ω             (1) 

 
Ω is the conducting domain under investigation and ν is the 
outward normal on ∂Ω. 

It is well known (see [1]–[5]) that the inverse problem of 
reconstructing the conductivity � from the knowledge of Λ 
has an unique solution when the conductivity satisfies some 
assumptions. In particular, here we face the reconstruction of 
piecewise smooth conductivities (for the uniqueness see [1]). 

Here we assume a constant background conductivity 
constant conductivities into each inclusion. In addition, each 
inclusion occupies a simply connected domain with enough 
smooth boundary. The union of all inclusion is the set B⊂Ω. 

In this paper we are going to show three fast and non-
iterative algorithms that we have implemented and a 
comparison of the related performances. 

II. NON-ITERATIVE IMAGING METHODS 

A. First method 
The first algorithm is based on the factorization method 
proposed by Bruhl and Hanke in [6]. This method requires the 
knowledge of the background Neumann-to-Dirichlet map Λ� 
(i.e. the map when no anomalies are present in Ω) and the 
measured map Λ corresponding to the domain with defects. 

In [6] and references therein, it is shown that a point z∈Ω 
belongs to an inclusion if and only if the boundary value 
���� � ������Ω is in the range of �Λ � Λ�����, i.e.: 
 
  � ������ ���� ��⁄�∞��� � �∞

 
           (2) 

 
where the ��’s and ��’s are the eigenfunctions and 
eigenvalues of Λ � Λ�, respectively and ���� is the solution 
of: 
 

  � ����� � ����� in Ω
����� ��⁄ � � �n �Ω.            (3) 

 
In (3) ���� is the dipole potential: 
 
  ������� � �������

��|���|� � � � �           (4) 
 
and d is a fixed but otherwise arbitrary unit vector. 
 

B. Second method 
The second method is an algoritm based on the MUltiple 

SIgnal Classification method (MUSIC) that has been shown to 
be closely related to the Factorization method if small 
inclusions are considered [7]. The MUSIC algorithm has been 
developed by Devaney [8] to locate point scatterers from 
multistatic measurements in wave propagation inverse 
problems. The same principle can be applied to small cavities 
that can take the role of the point scatterers. If each inclusion 
centered in �� is surrounded by a circle of radius ���, it is 
possible to show [7] that the Neumann-to-Dirichlet map 
Λ� converges to Λ� as � � � and that the range of the 
difference Λε  � Λ� is finite dimensional. In the limit for small 
�, a point z is in the inclusion if and only if the function ���� of 
II.B is in the range of Λε  � Λ�. Therefore, the MUSIC 
algorithm constructs the spatial map: 
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  ������� � ������� ��� � ��������         (5) 
 
where P is the orthoprojector operator in the range of Λ�  �
Λ� and θ represents, geometrically, the angle between gz,d and 
the range of Λε  � Λ�. By construction ������� is very large 
when z is inside an inclusion because ���� has a vanishing 
projection in the subspace orthogonal to range of Λ�  � Λ�, 
i.e. �� � ������ is very small. In the presence of noise having 
level δ the orthoprojector P is reduced from the range of 
Λ�  � Λ� to the linear space spanned by the first Ritz vectors 
of Λ�  � Λ� whose Ritz values are greater than δ.  
 

C. Third method 
The third method is based on an imaging method developed 
by the authors in [9]. The method relies on the idea that 
inclusions with higher electrical resistivity increase the 
boundary voltages in some sense [10]. In particular, is possible 
to demonstrate the following monotonicity for the Neumann-
to-Dirichlet map: 
 
  �� � �� � Λ� � Λ� � �           (6) 
 
where ≥ means positive semi-definite and Λ� is the Neumann-
to-Dirichlet map corresponding to anomalies occupying region 
Bk. The inversion algorithm [9] is based on: 
 
  Λ � Λ���� � � ����� � Ω���� � �        (7) 
 
that follows directly from (6) where Ω���� is a generic test 
anomaly used to reconstruct the unknown anomaly B. 
The imaging method checks (7) for different trial anomalies, 
for instance those obtained by partitioning the domain Ω in 
non-overlapped subsets (see figure 1). Then, it is possible to 
establish if a generic subset of this partition is part or not of 
the unknown anomaly B. Then, the reconstruction is the union 
of the subset that, through test (7), result to be included in B. 
Test (7) can be performed by evaluating the sign of the 
eigenvalues of Λ � Λ����. In order to avoid false negative due 
to the presence of noise that can alter the eigenvalues closer to 
zero, we associate to the test anomaly in subdomain k the 
following quantity (sign index): 
 
  �� � ∑ ����� ������⁄               (8) 
 
where λ��� are the eigenvalues of  Λ � Λ� and Λ� is the 
Neumann-to-Dirichlet map related to test domain k. Then, the 
spatial map ���� � ��� reveals the presence of anomalies in 
the peaks. 

III. NUMERICAL EXAMPLE 
This preliminary numerical example is related to an almost 

rectangular inclusion embedded in a circle with a radius of 
1cm. The defect has a resistivity that is 100% larger than those 
of the background. The synthetic data have neen obtained by 

an in-house FEM code. Random noise has been added to the 
numerically Neumann-to-Dirichlet map in order to avoid the 
inverse crime. 

In the full paper we will give further details of the methods 
and we will propose an exhaustive comparison between these 
methods. 
 

 

 
Fig. 1: Top: the real inclusion (left) and the reconstruction obtained by the 

factorization method (right). Bottom: the reconstruction obtained by MUSIC 
(left) and by the monotonicity method (right). The grid of the subdivision in 
test subdomains is also shown (bottom, right). 
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Abstract — This paper presents a new MRAM using 
perpendicular magnetic tunnel junction device about shape 
optimization for high capacity. Conventional MRAM need more 
increasing current power as smaller size for high capacity. It is 
critical problem that need more increasing current power. As a 
solution, we propose a new MRAM that has two additional high 
permeable poles in this paper. Proposed new MRAM has a 
strong switching field owing to two poles added on both sides of 
the free layer, just like perpendicular magnetic recording heads. 
For high Gb/Chip, by change of shape design, new MRAM can 
have a strong switching field on the same injected current. We 
show results that are variation of a switching field owing to two 
poles added on both sides of the free layer by thickness of the free 
layer and cell square size, injected current density. So we present 
an optimization design of new MRAM for high Gb/Chip. This 
research was done using three dimensional FEM with injected 
current density of  ~A/105 26 cm× 28 A/106 cm× . 

I. INTRODUCTION 
Partly because conventional MRAM has a faulty structure 

using a simple write current injection system, 
magnetoresistive random access memory (MRAM) is 
reducing its expectation as a commercial non-volatile memory. 
For downsize scalability, the major problem that is the mere 
write current is required at the smaller bit size should be 
solved with a new design [1]-[2]. STT MRAM technology has 
advantages conventional (toggle) MRAM on injected current 
and cell size. STT writing technology, by directly passing a 
current through MTJ, overcomes these hurdles with much 
lower switching current, simpler cell architecture which 
results in a cell that can be as small as 6F2 (for single-bit 
cells) and reduced manufacturing cost, and more importantly, 
excellent scalability to future technology nodes [3].  

In this paper, we presents a new technology that has 
advantages conventional MRAM on injected current and cell 
size. It is Pole Type Perpendicular MRAM (PTP MRAM). 
PTP MRAM uses perpendicular magnetic field in order to 
change the state of the free layer in a perpendicular magnetic 
tunnel junction (pMTJ) [4]-[5]. PTP MRAM uses two high 
permeability poles on both sides of the free layer in order to 
enhance switching field. Switching filed of conventional 
MRAM generated by injected current is equally distributed on 
the space but most of the field in PTP MRAM passes through 
the additional poles with high permeability. PTP MRAM has 
downsize scalability and is expected to be utilized usefully as 
a commercial memory with high capacity for having the 
enhanced switching field. Also PTP MRAM solves thermally 
assisted self-demagnetizing problem because this system is 
able to use high coercivity free layer. 

We show results that are variation of a switching field 
owing to two poles added on both sides of the free layer by 
thickness of the free layer and cell square size, injected current 
density. So we present an optimization design of new MRAM 
for high Gb/Chip. This research was done using three 
dimensional FEM with injected current density of 

26 A/105 cm× 28 A/106~ cm× . 

II. THE PTP MRAM CELL 
Fig. 1 shows a schematic drawing of the PTP MRAM 

element. PTP MRAM element has two poles added on both 
sides of the free layer. The material of these poles has high 
permeability and then this system is able to have enhanced 
switching field. We call bit pole for the one on top of the free 
layer and word pole for the other beneath the free layer. Both 
poles have a single current line at the side. PTP MRAM has 
pMTJ on the bottom of the word pole. Fig. 2 (a) ~ (c) 
describes the write process of PTP MRAM. Memory status is 
“0” in fig. 2 (a) because having same direction of 
magnetization in the free layer and the fixed layer. When bit 
current and word current are injected. Magnetization of the 
free layer is changed rapidly by the switching field assisted by 
the bit pole and word pole as fig. 2 (b). Finally the state of the 
free layer is changed like fig. 2 (c) and then the cell has the 
status “1”. Usually the name of pMTJ stands for a set of free 
layer, fixed layer and junction but in this paper pMTJ shows 
only junction part like fig. 2 (d). 
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Fig. 1. Schematic drawing of the PTP MRAM cell. PTP MRAM has a two 
high permeability poles added on both sides of free layer, named bit pole on 
top of free layer and word pole beneath the free layer. This system has the 
pMTJ beneath the word pole and fixed layer is poisoned beneath the pMTJ.
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III. RESULT AND DISCUSSION 

The PTP MRAM has superior magnetic field efficiency 
than conventional MRAM because this novel system has 
additional high permeability poles, which are expected to 
generate stronger switching field than conventional MRAM 
system. So this system has downsize scalability and high 
coercivity magnet can be used in the free layer.  Figure 3 
shows magnetic field intensity on the center of the free layer 
in PTP MRAM and conventional MRAM with  direct current 
densities I = ~A/105 26 cm×  28 A/106 cm× . Clearly the stronger 
switching field is generated in PTP MRAM than in 
conventional MRAM at the same direct current. 

Fig. 4 shows a result that is magnetic field intensity by 
changing free layer thickness on the center of the free layer of 
PTP MRAM with a direct current densities factor I= 26 A/105 cm× . 
We can know that switching field will be strong for 
decreasing free layer’s thickness of the PTP MRAM. But to 
d e c r e a s e  t h e 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
Free layer’s thickness increases the coercivity. 

IV. CONCLUSION 

We present an optimization design of new MRAM for 
high Gb/Chip. This research was done using three 
dimensional FEM with injected current density of  

~A/105 26 cm×  28 A/106 cm× . Next time, research will more be 
optimizing the switching field and injection current. 
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Fig. 2. . Write process of the PTP MRAM and structure of the pMTJ. (a)
shows “0” status. When direct current is injected in bit and word line, status
of free layer is changed like (b). Finally status of the free layer is stabilized to 
be ‘1” status as (c). (d) shows the structure of the pMTJ. 

 
Fig. 3. Comparison of magnetic field intensity on the center of the free layer 
of PTP MRAM and conventional MRAM with a direct current densities 
factor I = 2827 A/106~A/108 cmcm ×× . Clearly the graph shows PTP MRAM has a 
stronger field than conventional MRAM on the same current density injected.

TABLE I 
MAJOR SPECIFICATIONS USED FOR CALCULATIONS 

 Single Current Type 

Cell Square Size 50 nm (W) X 50 nm (H) 

pMTJ Thickness 2.2nm 

Fixed Layer Thickness 30 nm 

Free Layer Thickness 10 ~ 30 nm 

Metal Contact Thickness 30 nm 

Pole Length 400 nm 

Cell Gap 50 nm 

Current Line Cross-section 50 nm (W) X 400 nm (H) 

Current Range ]A/[105 26 cm×  

Fig. 4. Results of  magnetic field intensity by changing free layer thickness
on the center of the free layer of PTP MRAM with a direct current densities
factor I = 26 A/105 cm× . 
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Abstract—The purpose of this work is to propose and test a
mixed integer linear programming formulation for the problem of
brain source localization. Such technique allows the localization
of the minimum number of currents that are able to reconstruct
potentials recorded at the scalp. The algorithm makes use of
binary variables in order to be less sensible to noise on input data.
Some preliminary simulation results show that the algorithm is
effective in source localization and robust with respect to errors
on measurement data.

I. INTRODUCTION

The localization problem of brain sources from scalp po-
tential recordings is a key problem in computational bio-
electromagnetism, and its solution is an active research field
[1]. Primary sources are generally modeled as ideal point
current dipoles.

In the up-to-date literature the source location inverse prob-
lem from the knowledge of scalp potentials is commonly
solved by Nelder-Mead simplex method [2]. The functional
to be minimized is a suitable norm of the reconstruction
error. The main disadvantages of the simplex method is that
it requires multi-start and it can fail when the nodes of the
simplex fall inside a single element. It is possible to overcome
these drawbacks with a proper formulation of the problem. In
fact, there are classes of problems, e.g. convex problems, that
can be solved with deterministic techniques, that guarantee the
reaching of the global solution in a finite number of steps.

This work describes a mixed integer linear programming
(MILP) formulation of the brain localization problem and
some results on a simulation test case are presented and
discussed.

II. IDENTIFICATION ALGORITHM

A. Direct problem

When modeling neural sources, it is widely adopted the
static approximation of current conduction equation (displace-
ment currents are usually neglected). Under the hypothesis of
stationary field, the problem can be described by the Poisson
equation in terms of electric scalar potential ϕ:

∇ · (σ∇ϕ) = ∇ · Js (1)

where Js are the source current densities. In this work, (1)
is discretized by means of the cell method [3]. The algebraic
counterpart of stationary current field Poisson equation, is:

D̃MσGϕ = Aϕ = D̃is. (2)

G is the discrete gradient operator (edge-to-node incidence
matrix), Mσ is the conductance constitutive matrix (diagonal
when hexahedral discretization is adopted), D̃ = −GT is
the discrete (dual) divergence operator, is the source current
vector. It is worth noting that the number of elements in is
equals the number of edges in the mesh.

B. Lead field matrix

The solution of the inverse problem requires the definition
of the so called lead field matrix L [4], the linear operator that
maps the source vector to the vector of scalp potentials. IfA−1

is a suitable factorization of the stiffness matrix (e.g. obtained
by Cholesky factorization), potentials can be calculated by:

ϕ = A−1GTis. (3)

Since the reconstruction problem starts from the knowledge
of potentials in a subset ϕ̂ of surface potentials that belong to
electrodes, a projection matrix P is defined, such that:

ϕ̂ = Pϕ. (4)

In addition the localization problem can be appropriately
guided by some a-priori information on the localization of
brain sources, e.g. coming from functional magnetic resonance
imaging [1]. From a mathematical point of view, it is possible
to define an interpolation matrix Q that expands the restricted
vector of current sources to the complete vector of sources:

is = Qir. (5)

By collecting (3), (4) and (5) the reconstruction problem can
be formulated as:

ϕ̂ = PA−1GTQir = Lir (6)

The system (6) is under-determined, since the number of
electrodes is typically smaller than the number of possible
current sources.

C. Mixed integer linear programming

In this work the attention is focused on a single current
dipole lying parallel to one of the coordinate axes. Under this
hypothesis it is possible to formulate the source localization
problem as a MILP.

The vector of unknowns is made by a current value ik
(continuous) and a binary value δk for each edge k. These
variables are linked by the relation:

−Imaxδk ≤ ik ≤ Imaxδk. (7)
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TABLE I
GEOMETRY AND TISSUE PROPERTIES

tissue outer radius conductivity
cm S/m

scalp 9.2 0.43478
skull 8.74 0.00625
CSF 8.28 1.538
gray matter 7.82 0.3334
white matter 7.37 0.1428

Variable δk defines the on/off status of the kth edge current.
The novelty of the proposed algorithm is to impose the
identification of electrode potentials as constraint and not as
objective. To be less prone to measurement uncertainties on
scalp potentials, (6) is reformulated as inequality constraint1:

(1− α) ϕ̂meas ≤ Lir ≤ (1 + α) ϕ̂meas (8)

where α > 0 is an estimation of measurement uncertainties
and ϕ̂meas are the measured potentials. When noise is present,
a common problem in reconstruction algorithms is the raise
of spurious sources that compensate the potential fluctuations
with respect to the exact values. These undesired effects are
mitigated by the definition of the objective function. The linear
algorithm should minimize the number of sources, that can be
formulated as a linear combination of the binary variables:

min


k

δk (9)

By the definition of objective (9) and constraints (7), (8), the
MILP algorithm searches for the minimum number of currents
that matches the recorded potentials with the desired precision.

III. CASE STUDY

The test case is a modified five-layer spherical model
(Fig. 1(a)), whose geometrical and material parameters are
reported in Table I. The discretization is characterized by
61565 hexahedra and 67368 nodes. 17 electrodes are regularly
placed on the upper half of the outer sphere (Fig. 1(b)), while
a current dipole of 100 µAm is randomly placed on the outer
surface of gray matter. This corresponds to have 8068 possible
locations for currents. In order to prove the robustness of
the algorithm with respect to measurement errors, a random
white noise is added to scalp potentials. Noise amplitude is
progressively increased from 0% to 25% of the signal values.
In all cases the algorithm is capable of detecting a single
source and locating the exact position of the current dipole,
with a maximum error on current magnitudes lower than 8%
(Fig. 2). The average computational times of the different
MILP phases for this case are: LP relaxation 27 sec, generation
of cuts 16 sec, branch and bound 184 sec. Search is performed
by Xpress-IVE software [5] on a Intel Core 2 Duo, 2.4 GHz
with 4 GB of RAM.

1Equation (8) holds when ϕ̂meas > 0, otherwise inequality signs must be
reversed.

(a) (b)

Fig. 1. Geometry: (a) vertical cut showing 5 tissues and (b) position of
electrodes.

Fig. 2. Error on current magnitude for different random noise on scalp
potential measurement.

IV. DISCUSSION AND FUTURE WORK

The proposed method is effective in reconstructing scalp
potential due to a single dipole. By suitably using binary
variables, the algorithm has proved to be robust with respect
to noise on input data. It has been shown the possibility of
introducing some knowledge in the search by an appropriate
definition of the interpolation matrix Q.

These promising preliminary results will be extended in the
full paper, where a more accurate simulation protocol will be
followed. In particular there will be shown how the algorithm
can be extended to sources with arbitrary orientation, by the
definition of nodal currents. Moreover, the scalability of the
algorithm with respect to the number of sources and the model
resolution will be analyzed. Finally some simulations will be
performed on a realistic head model in order to verify the
effects of complex geometries on the algorithm performances.
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Abstract — Integrating Finite Elements into the design 
procedure of electromagnetic devices has always been a challenge
for researchers and design engineering community. This paper
presents the application of a hybrid method that involves the 
application of conventional design methodology and two-
dimensional finite elements. The optimization is carried out using 
a Genetic Algorithm which allows finding the global minimum 
and then a determinist algorithm is used to find the final solution. 
The methodology is illustrated in the design of a 1500 kVA 
distribution transformer.

I. INTRODUCTION

The necessity of being competitive in global marketing has
led transformer manufacturers to require computing systems
with the capacity to produce rapidly: optimal, reliable and
feasible transformer designs. These systems constitute a
powerful tool for manufacturers that are willing to have in
their design departments in their constant search for: (a)
saving experimented engineering-design man-hours, (b) 
increasing their design capacity, (c) reducing the delivery
cycle and (d) optimizing the use of materials. This is 
particularly true in cases where the reduction of fabrication
costs and the payment of specialized engineer salaries may
define the survival of a small factory.

Traditional design methods consist of calculating losses,
leakage impedance and magnetizing current with approximate
formulae which most of the cases are derived from empirical
knowledge owned by the experimented designers. With the
appearance of numerical methods, as the Finite Elements (FE), 
the electromagnetic performance of transformers can be 
predicted with higher accuracy. Using FE models in
optimization has always been a challenge for the
electromagnetic analysts, being the computation time one of
the main obstacles.

This paper uses both approaches, i.e. traditional
methodology and FE models, which when properly combined;
it can lead to better designs. A Genetic Algorithm (GA) is
used firstly with the conventional-design equations; this
allows finding an approximate global solution. Afterwards, a 
deterministic method uses the obtained design model and
employs FE models for calculating iron and winding losses,
leakage reactance and magnetizing current. The hybrid 
methodology is tested in the design of a 1500 kVA, 13.2/0.22
kV three-phase distribution transformer.

II. TRADITIONAL DESIGN METHODOLOGY

The general problem of design may be defined as that of
determining the most suitable form of the transformer [1],[2].

An optimal design is not obtained simply by the solution of a 
set of equations; it requires iterations. The sinusoidal induced
voltage, V, in any transformer winding is given by:

cm ANfBV 44.4= (1)

where N represents the number turns, f the frequency (Hz), Bm

is the amplitude of sinusoidal flux density (Teslas) and Ac

denotes the net cross section area (m2) of the iron carrying the
sinusoidal flux.

The transformer has different voltage levels; therefore it is
needed to determine the electric clearances of windings, coils,
core and yoke to avoid insulation failure due to high electric
field stresses. Dimensions of ventilation ducts between groups 
of coils are also taken into account at this stage, which will be 
dependant on the type of transformer. The total number of 
calculated turns must be accommodated in the transformer
window area, thus an initial distribution of windings must be 
computed. A distribution transformer must satisfy a set of 
design constraints to avoid penalized costs from the customer.
These constraints are: a) efficiency, b) percentage of leakage 
impedance, and c) no-load current. In addition, the designer
must guarantee the specified electrical power of the unit. The 
dc resistance loss of a single winding was calculated with the
following equation

cud

cuw
R

mJ
P

,

92 10

ρ
ρ ×

= (2)

where J stands for the current density (A/mm2), ρ denotes the
conductor resistivity (Ω-mm), mcu is the copper weight (kg) 
and ρd,cu is the density of cooper (kg/m3). The copper weight
can be computed with 

sNlm mcudcu ,ρ= (3)

where lm is the length of mean turn (m) and s is the cross-
sectional area of a conductor  (m2). It must be recalled that 
total joule loss is three times the joule loss of a phase (low and
high voltage windings).

The total winding loss is

eddyRcu PPP += (4)

where PR and Peddy denotes total joule and eddy current
winding losses, respectively.

SPR cu 100% ×= (5)
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6. OPTIMIZATION

( ) ( )[ ] 100/1 ×++⋅+−= cufecufe PPPFSPPη (8)

where S stands for the rating transformer power (VA), s0-2

(mm2) denote mean turn diameters multiplied by the gap of
between windings and thickness of primary and secondary
windings respectively. Pcu represents the total winding losses,
PF denotes the power factor and Pfe is the no-load loss (W)
obtained from the magnetizing curve and core flux density
data. Although a transformer is a simple device, its numerous,
highly interrelated and heterogeneous design parameters make
a closed-form solution to the design problem impossible.

III. HYBRID DESIGN OPTIMIZATION 

The hybrid design consists in using stochastic optimization
with conventional design procedures, as briefly explained in
the last section, and deterministic optimization with FE 
models as it is illustrated in Fig. 1. The improved design
calculations employing FE models are: leakage reactance, 
magnetizing current, eddy losses and no-load losses. Leakage
reactance and winding eddy current loss are calculated using
an asymmetric model of the transformer. No load losses are
obtained with a voltage fed cartesian FE model without load,
the same model is used for estimating the magnetizing current.
The summary of equations needed for making the above 
calculations are  [3]: 

( ) ( ) ( ) sJrA
r

j
r
rA

rrz
rA

rz
=+

∂
∂

∂
∂+

∂
∂

∂
∂ ωσνν

(9)

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
+
−+

ew VI

A

LjRQj

PNjS 0

ωω
ω

 (10) 

where S is the FE stiffness matrix, P and Q are weighting
winding matrices, R is the external resistance, L external 
inductance, Iw a vector of winding currents, Ve denotes the
external potential sources, A represents a vector of complex
potentials, ω is the angular frequency, ν stands for the 
reluctivity, r is radius, Js is the source complex current and σ
is the electric conductivity.

A GA was used to solve the equation related to the
conventional design. A GA is a stochastic method that
employs probabilistic and non-local search heuristics that 
simulate natural evolution, which works on the chromosomes
[4]. When the convergence is reached, an optimization with 
the Gauss-Newton method is launched where FE models are 
used. The proposed methodology was applied to the design of 
a 1500 kVA, 13.2/0.22 kV three-phase distribution
transformer and the achieved results are shown in Table I. 

IV. CONCLUSIONS

This paper has presented a novel approach that combines the
conventional design method of transformers with 2D-FE
models to improve calculations. Firstly, a Genetic Algorithm
is used until a solution is found using the conventional model
and then the optimization is switch to the Gauss-Newton. By 
using this approach, better designs results in a shorter period

of time are achieved because finite element models are 
employed in the last step of the optimization process.

TABLE I
HYBRID OPTIMIZATION DESIGN RESULTS

Optimization
Design variable GA

Conventional
Gauss-Newton

FE-Conventional
Efficiency (%) 98.963 98.952
No load loss (%) 0.154 0.154
Load loss (%) 0.68 0.63
Reactance (%) 4.99 4.93
Resistance (%) 0.68 0.69
Impedance (%) 4.99 4.99
Magn. Current (%) 0.40 0.211
Flux density 1.513043 1.513043
LV Current density 2.484883 2.484883
HV Current density 3.438826 3.438826
Core Diameter (mm) 274.943817 274.943833
Height Winding (mm) 549.048645 549.048645
Gap LV-HV 24.520662 24.520662

Fig. 1.  A Hybrid method used for the design distribution transformers.
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13.INVERSE PROBLEMS

Abstract — This paper illustrates the methods which were 
developed to diagnose and evaluate the condition of the 
grounding grid used in electric substations.  The grid is made of 
copper conductors which are buried to a depth of typically up to 
2 meters.  The safety of the substation depends on the continuity 
of the grounding grid where direct visual inspection of the 
grounding grid is not possible.  RPI has developed an inverse 
method which can be used to detect breaks in the underground 
grid as well as the location of the buried conductors. We have 
performed forward and inverse calculations and have made field 
measurements on a simulated grid and at a substation.  

I. INTRODUCTION

A schematic of a substation grounding grid is shown below 
in Figure 1.  The substation equipment such as transformers, 
switchgear, towers, etc is grounded and to ensure a low 
resistance ground a grid of copper conductors is buried 
underneath the substation. Each piece of equipment and tower 
is connected to this grid, which in turn is connected to 
grounding rods down into the water table.  Since the safety 
and security of the substation depends on the proper operation
of this grid, we must insure that it has not degraded over time 
or the welded connection have broken [1]-[3].

Figure 1: Schematic of Substation

II. ANALYSIS

The grid is usually set out in a rectangular pattern with 
allowance made for the location of the substation equipment.  
In the initial phase of the investigation we solved the forward 
problem [4].  This was to insure that a good signal could be 

picked up at the surface.  Current was injected into the grid at 
one corner and removed at the other. The current distribution 
was found including resistive and inductive effects and the 
skin effect in each of the conductors.  The grid is shown in 
Figure 2.

Figure 2: Test Grid

The results (magnitude of the Flux Density) at 200 mm 
above the grid is shown in Figure 3. We see that the shape and 
size of the grid are clearly visible and the magnitude of the 
field was in a range that is easily measured.  In the case of a 
healthy grid, the signature is symmetric. 

Figure 3:  Flux Density for Healthy Grid

We explored various faults and excitation patterns which 
will be detailed in the full paper.  The case of the excitation of 
Figure 2 with 3 faults is shown in Figure 4. 
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13.INVERSE PROBLEMS

Figure 4:  Results with 3 Faults

The indentation for subheadings is 0.1 in.

III. INVERSE PROBLEM

We now turn to the inverse problem.  If we assume a set 
of loop currents in the grid, we can find the influence 
functions that give the flux density at the field points in terms 
of the unknown currents.  If we have breaks in the grid, the 
currents in the affected branches will naturally be zero.

Figure 5:  Set-up For Inverse Problem

After much algebra (included in the full paper) we obtain

1 11 1

n nn n

B a i

B a i

    
    =    
    
    


    


We solve this full matrix for the loop currents and then 

convert this to branch currents.  Results from this method 
confirm that the currents can accurately be found from good 
measurements.

Another type of inverse problems allows us to take surface 
measurement and then locate the path of the conductor.  
Figure 6 shows actual flux density measurements taken at a 
substation and the final path computed by our algorithm.  In 
this case, the current in the conductor is known and the 
algorithm finds the path.  The development will be given in 
the full paper. 

Figure 6: Measured Flux Densoity and Calculated 
Conductor Location

IV. CONCLUSIONS

We introduce the idea of using surface field measurements 
to diagnose the integrety of the grounding grid.  The forward 
problem shows that we can diagnose problems with the 
grounding grid. We illustrate 2 types of inverse problems. In 
the first one we take field measurements with an assumed 
geometry and show that we can find the branch currents.  In 
the second example we take real data and locate the path of 
the underground current. The indication is that field 
measurements can be a valuable technique to diagnose 
problems in the grounding grid.
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12. DEVICES AND APPLICATIONS(I)
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Abstract — This paper presents a practical methodology of  
finding a robust optimal solution for a multi U-slot PIFA(Planar 
Inverted F-Antenna) structure with triple bands of 433 MHz, 912 
MHz and 2.45 GHz. Using evolutionary strategy, a global 
optimum is first sought out in terms of the lengths and widths of 
the slots and the shorting strip. Then the optimized values are 
modified by Taguchi quality method in order to obtain 
robustness against the change of material constant and feed 
position. To verify the method, the performance of the antenna is 
accurately predicted by general-purpose electromagnetic 
software and optimized results are thoroughly examined 
compared to the initial design.

I. INTRODUCTION

The success of wireless communication service is heavily 
dependent on the development of reliable RF components. As 
a core of RF components, the antenna should satisfy various 
demands for small size as wells as versatile functions. 
Especially, multi-band function is needed to provide the RF 
systems with flexibility and mobility in wide use. Up to date, 
intensive research has been carried out to find an efficient and 
reliable structure of multi-band RFID antennas, which works 
well regardless of standard frequencies used. As part of the 
efforts, U-slots are adopted to get multi-band characteristic, 
where a parametric study is conducted to seek proper design 
parameters starting with the approximated formula on 
resonance frequency [1]. In other works, a U-slot based PIFA 
structure is used but it usually requires a lot of computing time 
because of the three-dimensional (3D) structure itself [2].

This paper proposes a practical methodology of finding a 
robust optimum for a U-slot based PIFA structure with triple 
bands 433MHz, 912 MHz and 2.45 GHz. To achieve this, 
Taguchi quality method (TM) is complemented with evolution 
strategy (ES) algorithm. An initial design starts with two U-
slots in the metal patch on the substrate located above the 
ground. The lengths and widths of the two U-shaped slots and 
position of the shorting vertical strip are selected for design 
parameters during ES optimization[3]. The optimized design 
yields better performance than the initial one alone with 3D 
electromagnetic simulation. However, it cannot give a 
guarantee of the optimized design because there are 
fabrication errors in real world that may deteriorate good 
performance predicted  

Therefore the optimized values from ES should be 
modified to become insensitive to possible changes in the 
coaxial feed position (FP) and the permittivity of the substrate 
(PS), which are uncontrollable factors in reality. Applying TM 
to the design optimized by ES, robust optimal  values are 
obtained to take into account the noise factors of FP and PS. 

From results, it is confirmed that the final design produces 
satisfactory performances especially in terms of robustness to 
the noise factors.

II. PRACTICAL APPROACH TO ROBUST DESIGN

This paper proposes a practical approach to achieving a 
robust optimal solution of triple-band antenna structure, where 
Taguchi method (TM) is complemented with evolution 
strategy (ES) algorithm. In general, it is difficult in seeking 
out an optimal solution in infinite design space only by 
Taguchi method because of its restriction on the number and 
level size of design parameters. To overcome the drawback, 
(1+1) evolution strategy is first utilized in order to find a 
global optimum for an initial design considered. Then the 
robust optimization by Taguchi method is executed with the 
optimal design values previously obtained from the evolution 
strategy. After all, the proposed method can give a robust 
design target around the global optimum while keeping the 
product performance insensitive to the effects of noise factors 
that may appear in manufacturing process. The procedure of 
the robust optimization proposed involves four main stages. 

1) Defining design parameters and objective function and 
executing evolution strategy algorithm for searching a 
global optimum. 

2) Selecting sensitive parameters based on the above as 
well as noise factors. 

3) Setting the optimal solution as an initial design and 
executing numerical experiments according to 
orthogonal array. 

4) Using analysis of mean (ANOM) and variance 
(ANOVA) techniques to obtain optimal setting of 
parameters for robust design. 

Then, the robust optimal solution is investigated in terms 
of the concepts of signal-to-noise (SN) ratio and loss function  

III. RESULTS

A. Analysis model 

The geometry of the problem is illustrated in Fig. 1 where a 
metalized patch lies on top of the substrate located above the 
ground plane. The metal patch is connected to the ground 
plane by means of the shorting strip and the coaxial feed. Such 
the PIFA resonates around certain frequencies suggested by 
the approximate formula presented in [1] and [2]. Here the 
initial geometry of the patch is decided for 433 MHz 
resonance. Then the initial lengths and widths of the U-shaped 
slots are roughly determined for the radiation at 912 MHz and 
2.45 GHz. To accurately predict the performance of the 
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12. DEVICES AND APPLICATIONS(I)

antenna, the 3D EM simulation technique in the time-domain, 
FIT are used with the perfect matched layers (PMLs). 

 
Fig. 1. Configuration of the triple-band PIFA structure 

B. Size optimization using evolution strategy  

Among 6 design parameters shown in Fig. 1, four crucial 
parameters, W2, L2, W3 and L3, forming U-shaped slots are 
selected for size optimization using (1+1) ES. The design goal 
is to obtain optimal slot dimensions for triple-band PIFA at 
frequencies of 433, 912 and 2,480 MHz. To achieve this, the 
multi-objective function with constraints is defined as: 

dB15)(Stosubject

)(|Minimize

11

3

1

2

−≤

−= ∑
=

i
f

oififiF
i

α
                     (1) 

where αi  is weighting factor, fi band frequency computed at 
each design iteration, foi target frequency value and S11

reflection coefficient. For saving computing time, the design 
parameters are forced to be selected from finite integer sets. 

The initial and optimized design values are presented in 
Table I and the reflection coefficient values are compared in 
Fig. 2. From the results, it is observed that the performance of 
the optimized design coincides well with the design goal even 
thought only the integer values are permitted for design 
parameters. But, at this stage, we have no idea of how robust 
the optimum is.  

TABLE I. DESIGN PAMETERS AND PERFORMANCE
Parameter Unit Initial values Optimal values 

W2 mm 41 50
L2 mm 41 43
W3 mm 15 13
L3 mm 15 16

Frequency 
/ S11

MHz
/dB 

439.5/-25.15 430/-40.82
981.5/-15.90 910.5/-27.22
2,563/-7.13 2458.5/-16.24

Fig. 2. Comparison of reflection coefficient before and after EV optimization 

C. Robust optimization using Taguchi method 

Starting with the optimized design by ES, robust 
optimization is carried out by Taguchi method in order to find 
a new optimal solution insensitive to noise factors. For the 
four design parameters, the x and y coordinates of feeding 
point and substrate permittivity are considered as noise factors. 

Based on the number of design and noise parameters and the 
settings considered in Table II, a standard orthogonal array 
L9(34×34) was selected for the matrix numerical experiments, 
where the parameters are assumed to be mutually independent. 

For the “nominal the best characteristic” case, which 
resembles the minimization of the performance (1), the SN 
ratio can be calculated by 

)/log(10ratioSN 2
ii Vy−=                             (2) 

where y and V denote the mean and variation of performance 

values, respectively and the subscript  belongs to the ith row 
of the orthogonal array used.  Through the somewhat routine 
process of Taguchi quality control, an optimal setting of the 
design parameters can be determined. It is revealed that the 
performance deviation (i.e. robustness) predicted from the 
setting improved by more than 70% compared to the 
optimized design in ES. Fig. 3 compares the reflection 
coefficient profiles before and after robust design procedure. 

TABLE II 
DESIGN AND NOISE PARAMETERS FOR THE FIRST SETUP

Type Parameter 
Level 

1 2 3

Control
Factor 

W2 (mm) 49.8 50 50.2
L2 (mm) 12.9 13 13.1
W3 (mm) 42.8 43 43.2
L3 (mm) 15.9 16 16.1

Noise 
Factor

Feeding point  x coordinate -0.1 0 0.1
Feeding point  y coordinate -0.1 0 0.1
Substrate permittivity (εr) 4.36 4.4 4.44

Fig. 3. Comparison of reflection coefficient before and  
after robust optimization 

IV. CONCLUSION

A practical approach to robust optimization of triple-band 
antenna structure is proposed, where TM is complemented 
with ES algorithm. From results, it is referred that the final 
design is insensitive to noise factors and also nearly close to 
the global optimum. Our extended paper will include 
comparison of experimental and simulated data. 
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6. OPTIMIZATION(B)
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Abstract — Patterned ground shield of on-chip spiral inductor 
is designed using deterministic optimization method. Separation 
between inductor and ground strip is modified during design 
process, as well as widths of ground strips and slots. For 
sensitivity analysis, approximate adjoint variable method is used. 
Significant increase in Q-factor is observed in final design while 
reduction of inductance is minimal. 

I. INTRODUCTION

On-chip spiral inductors are widely used in a variety of 
radio frequency integrated circuits (RF IC’s). For spiral 
inductors in silicon-based RF IC’s, substrate loss at high 
frequencies can degrade quality factor (Q). Also, noise 
coupling may appear at gigahertz frequencies. One of the 
popular design techniques to alleviate this problem is to insert 
a patterned ground shield (PGS) to block inductor electric 
field from entering the silicon [1]. Patterned slots on the PGS 
cut off the path of induced loop current, hence reducing 
disturbance of inductor magnetic field. 

When designing spiral inductor with PGS, many 
parameters should be considered including widths of ground 
strips and slots, separation between spiral and ground shield, 
and number of overlap turns between ground strip and 
inductor. So far, these design variables were determined by 
trial and error in most cases, resulting in high design cost and 
time. 

In this paper, deterministic optimization method is applied 
to the optimal design of PGS of on-chip spiral inductor. 
Design goal is to maximize Q-factor while keeping inductance 
reduction minimal. Sensitivity analysis of objective function is 
performed by approximate adjoint variable method. 

II. DESIGN OF SPIRAL INDUCTOR WITH PGS

Fig. 1 explains improvement of Q-factor of spiral inductor 
with PGS. Electric field of inductor in substrate direction is 
blocked by a ground shield and dissipation loss is reduced. 
Magnetic field disturbance is small because eddy current on 
ground shield is suppressed by patterned slots. 

SL

SC

 and  denote inductance and resistance of the line and 

coupling capacitance between overlapping lines are written as 
. Capacitance of oxide layer between silicon board and line 

is modeled by , and parasitic capacitance and resistance 

of silicon board are modeled by  and , respectively [2]. 

SR

a

OXC

gnetic sim
SiC SiR

Electrom ulation of inductor will significant error 
compared to the measurement if the material parameters are 

entered inaccurately. In order to obtain EM simulation result 
similar to the TSMC process, accurate electric conductivity of 
the inductor substrate is determined by evolution strategy (ES). 

spiral inductor

E

H

patterned
ground
shield

substrate

(a) Picture of Spiral inductor with patterned ground shield

 
 (b) Equivalence circuit of Spiral inductor 

Fig. 1. Schematic picture of spiral inductor with patterned ground shield. 

Q-
ctor and inductance, where Q is given by  
The objective function F is expressed by a function of

fa

magnetic energy stored
2Q π= × . (1) 

energy loss in one cycle

Sensitivity of objective function F with respect to design 
variable p is calculated using approximate adjoint variable 
method [2] and written as 

( ) ( )
0

ˆ
x n xn

n n

E R E d dt
p p Ω

maxTeF F∂ ∂
≈ − ⋅Δ Ω

∂ ∂ ∫ ∫∫∫  (2) 

where

( ) ( ) ( ) ( )x n x n tt x n t xR E E D E D Jα βΔ − Δ −ΔL . (3) 

L is a finite-difference operator, 

nΔ =

α and β  are co
efined by grid size and time step, and D J  is a difference of 

cu

efficients
d t x

rrent density at 2t t+ Δ  and 2t tΔ [3]. The design 
variables are explained in Fig. 2. 

−

289

pb1.24



6. OPTIMIZATION(B)

Fig. 2. Design variables for PGS optimization. 

A. Anal gy 

III. DESIGN RESULTS

ysis model using evolution strate

Fig. 3. Spiral inductor of  TSMC process 

e inducFor th n w th ES, 
the num
an

FO

| |) (| |)L L Q Qi oi i i oiβ− + −∑

tor structure used in EV simulatio  i
ber of the coil turns is 5.5, width of the top metal 6 μm, 

d radius of inner coil 98.04 μm as shown in Fig. 3. 
The design parameters are set as electric conductivity of 

each layer of the substrate, named pass2, pass, IMD, ILD, 
X, Sub (Fig. 3). The main characteristics of inductor are 

inductance and Q-factor, and the objective function is defined 
as a function of them: 

12 12
2 2

1 1

Minimize (
i i

F iα
= =

= ∑  (4) 

where iα  and iβ  are weighting factors for inductanc

r

e iL  and 

Q-facto iQ  from EM simulation, and oiL , oiQ  are rget 

values of ductance and Q-factor obtain fr equivalent 
circuit analysis. 

Design result and optimized values are shown in table I and 
II. Also, inductance and Q-fact

ta

in ed om 

or results are compared in Fig. 
4

ter Unit Initial values Optimal values 

and 5.

TABLE I. DESIGN PAMETERS
Parame

Pass3 0.5S/m 0 
Pass 0.5S/m 0 
IMD S/m 0 0.002
ILD S/m 0 0.002
FOX S/m 0 0.002
Sub S/m 0 14

 4. Comparison of inductance before and after EV optimization Fig.

TABLE II. PERFORMANCE
Performance Unit  5GHz 1GHz 2GHz 3GHz 4GHz
Inductance 19.538/ 29.705/ 12.582/ 13.512/ 15.483/ 

Initial/Optimal 
nH

12.568 13.810 16.503 21.797 28.973
Q-factor 

Initial/Optimal 
7.062/
6.037

11.706/
7.435

13.083/
5.546

11.785/
3.116

8.505/
1.165

Fig. 5. Comparison of Q-factor before and after EV optimization 

B.
ormed for 2 target frequencies (1 and 

2.

nduct Q-factor 

PGS optimization 
Optimization was perf

5 GHz). In Table III and Fig. 6, Q-factor and inductance of 
spiral inductor with optimized PGS is compared with those 
with no PGS and with solid ground shield. Significant drop in 
both inductance and Q-factor is observed for inductor with 
solid ground shield because of eddy current in ground shield, 
whereas for optimized PGS, Q-factor is improved by as much 
as 16.6% while inductance reduction is small.  

TABLE III. Q-FACTOR AND INDUCTANCE COMPARISON
 I ance 

Frequency ( 2.5GHz) 1 2.5 1 
Non-PGS 12.5 14.927 6.0 6.70168 37
Solid ground shield 12 895 2743.7 3. 2.115 4.
PGS 11.928 14.258 5.967 7.439

Fig. 6. Comparison of Q-factor Non-PGS and PGS 

Detailed o ented in 
ou
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4. ELECTROMAGNETIC COMPATIBILITY

Abstract — An approach to estimate perfectly matched layers 
parameters for finite-element modeling of grounding systems is 
proposed. It is based on two optimization techniques, namely 
Kriging models and Multiobjective Evolutionary algorithm. 
Results are compared with both theoretical and experimental 
data.

I.INTRODUCTION

In the finite element analysis (FEA) of grounding systems, 
a suitable mesh truncation scheme is needed in order to 
delimit the unbounded three-dimensional domain. Perfectly 
matched layers (PML) have been efficiently used for this 
purpose in the numerical solution of 2D problems governed by 
Laplace equation [3]-[5]. Nevertheless, the parameter 
estimation of PML has proved to be problem dependent. This 
is also true in the case of 3D FEA of grounding systems [4]. 

Here, an attempt is made to develop guidelines for their 
selection by firstly parameterizing the PML in terms of the 
relevant dimensions of a grounding system and then to 
determine these values with the aid of optimization 
techniques. A previous, similar attempt has been reported in 
[5] for Electrostatics in 2D.

In this work, a Multiobjective Evolutionary algorithm [7] 
is used to find a set of PML parameters that provides a highly 
accurate solution. Kriging models replace the numerical 
solution to evaluate the relevant quantities and therefore to 
save computing time [6]. 

II.PROBLEM DESCRIPTION

The proposed strategy is firstly tested in a canonical 
example, composed of a single, vertically buried electrode. 
Although a 2D problem in nature, it is solved in 3D, since 
both theoretical and experimental data are available for this 
configuration [1]-[2]. The case of a 32-m bare copper stake 
[2], buried in a soil with a resistivity of 450 Ω.m, is used as 
test case. The quantities to be analyzed are low-frequency 
ground impedance, R, and surface potential, V, computed at a 
distance of 1.0 m from the electrode. 

The parameters involved in the construction of a PML are 
(see Fig. 1): a) thickness of the buffer region, dbuff; b) 
thickness of the absorbing layers, dPML; c) material coefficient, 
a. As a first attempt, the thicknesses, dbuff and dPML, are 
parameterized in the geometrical model of the ground system 
as:

2buffd h L= +α         and PMLd n h= β , (1) 

where h is a distance taken as 1.0 m, 0≤α≤5.0 and 1.0≤β≤10.0
are dimensionless, real values; n is the number of absorbing 
layers (1≤n≤10) , and L is the electrode length. The material 

coefficient, a, was initially restricted to the range [1,50]. 
Therefore, the actual parameters chosen to be optimized are all 
dimensionless values: α, β, n and a.

Fig. 1  3D model of a single-wire grounding system showing PML 
parameters.

III.METHODOLOGY

Quantities R and V, which are relevant in the low-
frequency performance of grounding systems, are computed 
and the corresponding error compared with their theoretical 
values is to be minimized. 

First, let the errors, eR and eV (associated, respectively to 
the grounding resistance and the surface potential) be defined 
as follows: 

( )R th num the R R R= −         and ( )V th num the V V V= − , (2) 

where the subscripts th and num indicate theoretical and 
numerical values, respectively. The optimization problem can 
be written as: 

2

2
min R

V

e

e

⎧⎪
⎨
⎪⎩

, with respect to α, β, n and a. (3) 

The errors are squared in order to enhance absolute low-
valued errors. This corresponds to an unconstrained, 
multiobjective  optimization problem, which will provide a set 
of rules to build an efficient PML for the grounding system 
problem scenario.

The minimization is performed with a multiobjective 
genetic algorithm, as proposed in [7]. The algorithm stores 
both dominated and non-dominated solutions. In order to 
obtain faster convergence, only the non-dominated solutions, 
as well as the ones close to the Pareto set, enter the selection 
process. A clearing technique in the parameter space, 
associated to a niche approach in the objective space, is 
performed so as to avoid similarities between solutions. In 
both cases a specific criterion is used to penalize one of the 
individuals.

Optimization of perfectly matched layer parameters 
for finite element modeling of grounding systems 
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4. ELECTROMAGNETIC COMPATIBILITY

 In order to construct inexpensive approximations of 
computationally expensive engineering analyses and 
simulations (such as FEA), Kriging models [6] are adopted. 
The design of the computer experiment was based on Latin 
hypercubes [8] in order to fill the space of the input data. 
These procedures are used to derive some relationships 
between pairs of PML parameters, which are expected to lead 
to lower errors in both R and V.

IV.RESULTS

Fig. 2 presents the Pareto set, achieved after minimization 
of both eR

2 and eV
2. Fig. 3 shows histograms of PML 

parameters associated to that Pareto set, i.e., those parameters 
which lead to the lowest errors.  Fig. 4 illustrates histograms 
for some ratios between pairs of PML parameters, which are 
useful as a guidance to choose the more appropriate values for 
the test case described in II.

With the aid of Figs. 3 and 4, the following parameters 
might be selected: dbuff  = 135 m, a = 47, n = 10  and dPML = 30 
m. By adopting these values, the FEA of the problem depicted 
in Fig. 1 yielded the results summarized in Table I.

Some results in Figs. 3 are shown in absolute values (m) for 
clarity, although the optimization schemes were applied in the 
dimensionless variables of (3). 

Fig.2  Pareto set after minimization of eR
2 and eV

2.

Fig.3  Histograms of  PML parameters of problem of Fig. 1.

Fig.4  Histograms of some useful ratios between pairs of PML parameters. 

TABLE I 
NUMERICAL × THEORETICAL RESULTS 

 Theoretical[1] FEA eR,V (%) 
Ground resistance (Ω) 20.98 (Exp. 21 [2]) 21.25 1.2
Surface Potential (V)1 9309 9092 2.3 
Electric Field (V/m)1 2237 2097.4 6.2 
1 at 1.0 m of the stake 

V.CONCLUSION

The proposed optimization strategy to determine PML 
parameters for FE modeling of grounding systems was based 
only on geometrical parameters in this preliminary approach. 
A more complete analysis should include other significant 
variables in (3), such as soil resistivity, discretization 
refinement, as well as other grounding grid configurations, 
e.g. horizontal electrodes. These additional issues are intended 
to be addressed in the paper’s extended version 
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6. OPTIMIZATION

Abstract — We present here an original application linking an 
electrochemical phenomenon and the computational aspect of 
electromagnetic fields to provide a corrosion diagnosis of a 
protected underwater steel structure. This is possible with the 
pairing of a numeric method, the BEM, and the study of inverse 
problems. After a defined operating time, it is mandatory to check 
an underwater steel structure. Sadly, current examinations 
techniques require immobilize the structure for a long time and 
are less efficient. The purpose of this paper is to replace this 
checking by a series of close electrical measurements in the 
electrolyte which provides a corrosion diagnosis of the structure. 
The new method introduced ensures a great time-saving but also 
an accuracy never reached before. This paper presents this 
method and its checking through real measurements on a frigate 
mock-up. 

I. INTRODUCTION

During its operating life, an underwater structure suffers 
from corrosion. This phenomenon starts when iron paint 
defects appear on its surface, electrically linked to noble 
metals (propellers in Bronze and Nickel for example). This 
reaction, called galvanic coupling, makes the iron an anode 
and bronze a cathode. To fight against this reaction, two main 
methods have been developed: 

• The Sacrificial Anode Cathodic Protection (SACP): 
some less noble elements than iron (Zinc, Aluminium, 
etc…) are placed on the structure to protect it. They are 
going to be corroded instead of the iron of the structure 
itself, becoming the new anode of the reaction. 

• The Impressed Current Cathodic Protection (ICCP): 
Platinum anodes are distributed on the structure, 
injecting currents in the seawater. This places the iron 
in its passivation zone and protects it. 

These two protections lead to a circulation of currents in 
the seawater, inducing the presence of a varying 
electromagnetic field. The first step of the study is to predict 
this electromagnetic field from the electric boundary 
conditions. Then, the problem will be inversed and a 
corrosion diagnosis will be deducted, starting from near 
electric field measurements and leading to the corroded 
areas localization. This paper, based on electric fields and 
applied to real measurements on a mock-up, extensively 
improves a method previously introduced [1]. 

II. FORWARD MODELING

As said before the forward modeling aims to predict the 
electric potential and the electromagnetic field from physic 

boundary conditions. Trying to achieve to diagnosis tool, the 
numeric method used must directly link the boundary 
conditions to the measurement locations, advantage provided 
by the Boundary Elements Method. Moreover, this method 
permits a simple modeling of the infinity region [2] [3]. 

Starting from the Laplace equation, the principle is to use 
the third Green’s identity to write an integral equation on the Γ
boundaries of the problem: 

0).().,().,().()().( =
∂
∂−

∂
∂+ ∫∫ Γ∂Γ∂

dlP
n

PMGdlPMG
n

PMMh
qq

ϕϕϕ             (1) 

where ϕ is the electric potential and ∂ϕ/∂n the opposite of the 
normal current density, within the conductivity σ factor. P is 
the integration point on the boundary and M the point where 
the computation is made. h(M) is the solid angle seen by M 
and G is the Green function 1/r, where r is the distance |MP|. 

After the surfaces have been meshed, a point matching 
approach of (1) at the barycenter of each element can be 
provided, leading to a matrix system..  

[ ] 0. =
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Making such an approximation is known as not very 
precise, but, as the main goal is the development of an inverse 
method, it is acceptable for us. Of course, this system has more 
unknowns than equations. To solve it requires the introduction 
of boundary conditions. At the last step of this forward 
modeling, we get a non linear system due to the form of the 
polarization law (∂ϕ/∂n=f(ϕ)) introduced by the presence of 
polarizable steel on the boundaries. This system is then usually 
solved by an iterative Newton-Raphson process.  

The electric field anywhere in the domain is then available 
thanks to the gradient of (1): 
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If the electric field is expressed in several points, the last 
equation can be represented by the following system: 

[ ] E
n

A tMeasuremen =












∂
∂ϕ

ϕ
.             (4)  

III. INVERSE METHOD AND IMPROVEMENTS 

The main goal is, from real electromagnetic measurements 
contained in the E vector and the construction of the system 
(4), to find the X vector. This problem is very ill posed, due to 
a different number of unknowns and equations, numeric 
approximations and measurements error. It leads to a very bad 
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6. OPTIMIZATION

condition number for (4) and a direct inversion provides a 
good mathematical results but with no physic behavior. 

An original method to get a better condition number is to 
add the Green equations from (2) linking all unknowns on the 
boundaries. This ensures to have a physical result and permits 
to reduce the number of measurements to make. This first step 
permits a real facilitation of the inversion [1]: 
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0
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nA

A

Green

tMeasuremen
ϕ
ϕ             (5) 

In a second time a regularization technique is needed to get 
the best solution of (5). The one chosen is Tikhonov’s method, 
its principle being to find a solution minimizing [4]: 

( )XLBXA ...min λ+− .          (6) 

The L matrix is called the regularization matrix: a 0-order 
regularization (L is the identity matrix) privileges solutions 
with minimum norm; a 1-order one favors continuous solutions 
and a 2-order one accentuates this continuous behavior. In our 
study, a 2-order method is chosen. The λ choice, image of the 
importance given to this regularization (symbolizing the 
compromise between solution precision and regularization 
effect) is made thanks to the well-known L-curve technique. 

IV. METHOD CHECKING WITH REAL MEASUREMENTS

To check the diagnosis method explained before, real 
measurements are employed: a composite 1/40th mock-up of a 
frigate has been equipped with an adapted ICCP, electrically 
linked to iron plates (simulating the paint defects) disposed on 
the hull. The mock-up is then placed in a salted water with a 
controlled conductivity (5,16 S/m). 

Fig. 1. 1/40th mock-up set in measurement conditions  

 When the ICCP is running, some electric field 
measurements are made on lines at different depths.

Fig. 2. Real electromagnetic measurements on a 1/40th mock-up 

These measurements have been made in the Physical Scale 
Modeling (PSM) facility of the US Naval Research Laboratory 
(NRL) located in Key West (Florida). In fact, 640 
measurements are made: 320 Ex and 320 Ez, no one made on 
the y (transverse) axis. The complex meshing of the structure 
gives 3103 elements, making the system under determined.  

By adding the 3103 Green equations through AGreen, the 
new system gets a better condition number. An interpolation is 
finally made from the electric field measurements, to get a 
sufficient number of equations and make the problem over 
determined.  

The current density on each anode is known (in the range 
of the hundred A/m²) as an evaluation of the mean value of the 
current density on the propellers. The previous improved 
inverse method gives the following results on the hull: 

−2 −1.5 −1 −0.5 0

Fig. 3. Current density on the boundaries in A/m²  

Current density results are only shown, because of their 
visibility, but potentials are also obtained. The scale is 
negative as we want to see the currents going back to the hull, 
which are the corroded ones. These parts correspond to the 
less potential areas. The result matches the real location of the 
iron plates, giving a good diagnosis, with less than 5% of 
error. The method guarantees good results with a complex 
geometry and real measurements. 

V. CONCLUSION

This diagnosis method succeeds in locating the corroded 
areas of an immerged part of a hull with real electric field 
measurements. But some other structures can be studied, as 
pipelines, offshore platforms, etc… Potential measurements 
can also be the basis but the use of electric field sensors is 
more widespread. Moreover, the numerical tools used here can 
be applied to other scientific domains, such as heat problems 
for example. 
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Abstract— The electroencephalogram (EEG) is one of the
techniques that is used for the non-invasive diagnosis of patients
suffering from epilepsy. EEG source localization identifies the
neural activity, starting from measured EEG. This numerical
localization procedure has a resolution, which is difficult to
determine due to uncertainties in the EEG forward models. More
specifically, the conductivity values of brain and skull in the
head models are unknown. In this paper, we propose the use of
non intrusive probabilistic methods for quantifying the possible
errors introduced by the uncertain head conductivity values. This
paper illustrates the accuracy and computational advantages of
the non intrusive method for EEG source analysis. We validate
the presented method with Monte Carlo simulations.

I. INTRODUCTION

Neurological disorders, such as epilepsy, can be diagnosed
by the use of the electroencephalogram (EEG). The EEG
measures potentials on the scalp of the patient under study by
means of electrodes over a period of time. These potentials
are the result of electrical activity produced by the brain.
The number of electrodes may vary, but typically 20 to
40 electrodes are placed on the scalp of the patient. The
malfunctioning region in the brain needs to be identified using
the EEG. To this end, EEG measurements can be coupled to
a numerical procedure in order to identify the neural sources,
in a so-called EEG source analysis. For EEG source analysis,
two subproblems need to be solved: a forward and an inverse
problem.

The EEG forward problem consists in simulating the EEG
potentials for a given neural electrical activity. For this, the
following needs to be provided: a head model, i.e. a model that
incorporates the anatomy of the head with the different brain
tissues, and a source model, i.e. a physical and mathematical
model for the brain activity. By solving the EEG inverse
problem, sources are determined which correspond with the
measured EEG potentials. These sources can be identified
with good temporal resolution, contrary to other biomedical
imaging techniques, but fail to have a high spatial resolution.
The need exists for quantifying the errors that are made when
recovering the neural sources when using a certain inverse
numerical procedure. In the head model, the geometry can

This work was supported by the Belgian Science Policy under grant IAP
P6/21 and by NSF under grant DMS-0609824.

give rise to errors [1] but through the use of accurate Mag-
netic Resonance Images, these errors can be limited. Large
uncertainties however are introduced with model parameters
that are difficult to determine: the conductivity values of
the brain and the skull. We propose to use so-called non
intrusive probabilistic algorithms to quantify the uncertainties
on the location of the neural sources, which only assume the
conductivity to be of finite variance [2], [3].

II. INCORPORATION OF STOCHASTIC UNCERTAINTY IN
EEG SOURCE ANALYSIS

A. Definition of the problem
The EEG forward problem starts from the location and

orientation of neural sources, where conductivity values of
the brain and skull need to be provided, and calculates the
EEG electrode potentials. We assume for simplicity of analysis
that the neural activity is represented by a single electrical
dipole with a given location r = [rx, ry, rz]T and orientation.
This is a widely used approximation of the neural activity of
patients suffering from epilepsy. The brain to skull ratio of the
conductivity X is the important model parameter when solving
the EEG forward problem. Since we want to propose a method
that takes into account the uncertainty on the conductivity
and where the error due to geometrical modelling is not
considered, we employ a coarse approximation of the head:
the spherical head model. This model is a widely-used ap-
proximation of the head where the head is represented by three
spheres: the inner sphere represents the brain, the intermediate
layer represents the skull and the outer layer represents the
scalp (cf. Fig. 1a). In this case a semi-analytical expression
exists for the computation of the EEG potentials [4]. In our
numerical tests we always use a standard configuration of 27
electrodes.

Spreading out the uncertainty from the conductivity to the
position of the dipole is an inverse problem. To solve this
inverse problem we use the Nelder-Mead simplex method in
combination with a non intrusive stochastic approach based
upon a chaos polynomial decomposition of both the con-
ductivity and the dipole position [2]. The only assumption
on the conductivity is that it is a random variable of finite
variance. We do not make any assumption on the shape of the
probabilistic distribution of the position of the dipole.
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Fig. 1. (a) Three-shell spherical head model and (b) larger mean error for
dipoles for which the potential is very sensitive to the conductivity.

B. Non intrusive method for EEG source analysis

Assuming that the conductivity is a random variable of finite
variance, we can expand it as a truncated series of order pin

of Hermite polynomials of a random gaussian variable ξi(ω),
known as Hermite chaos polynomials [2]:

X(ω) =
pin�
i=0

Xihi(ξ(ω)), (1)

where hi is the polynomial of Hermite of order i and ω is
random coordinate.

The inverse deterministic problem allows us to compute
the value of the position of the dipole from the value of the
conductivity (X). This process can be seen as a “blackbox”
such as r = r(X(ξ(ω))). Hence the dipole position along the
spatial direction x (resp. y or z) belongs to a space that can be
spanned by the polynomials hi(ξ(ω)), and can thus be written
as a truncated series at an order pout:

rx(ω) =
pout�
i=0

rm
x hi(ξ(ω)). (2)

To compute the value of the unknown real coefficients rm
x , we

use the orthogonality properties of the Hermite polynomials:

rm
x =

E(rx(ω)hm(ξ(ω)))
E(hm(ξ(ω))2)

, (3)

where E(·) is the mathematical expectation. The denominator
can be computed analytically. To compute the numerator
(which is an integral) we use a Hermite Gauss integration
scheme with d integration points [2]:

E(rx(ω)hm(ξ(ω))) ≈
d�

i=1

wirx(X(ti))hm(ti), (4)

where ti is the i-th Gauss point and wi the associated
weight. This only requires to compute the inverse deterministic
problem d times, with the conductivity evaluated trough (1)
with ξ(ω) = ti, i = 1, . . . , d.

III. RESULTS AND DISCUSSION

We performed computations using the Monte Carlo (MC)
and the non intrusive (NI) methods for several test cases
corresponding to dipoles located increasingly farther from the
center of the head (Case 1 to 4). In all cases the Monte Carlo
simulations were performed using a sample size of 2000 and
the non intrusive method used pin = 13, pout = 6 and d = 10.
The brain to skull conductivity ratio X is chosen as a uniform

TABLE I
MEAN OF THE POSITION OF THE DIPOLE (MM) FROM THE CENTER IN THE

x, y AND z-DIRECTION FOR SEVERAL TEST CASES.

Case Method rx (mm) ry (mm) rz (mm)

Case 1 MC 7.72 7.72 7.73
NI 7.72 7.72 7.73

Case 2 MC 23.54 23.34 23.65
NI 23.52 23.32 23.64

Case 3 MC 31.75 31.62 31.73
NI 31.72 31.60 31.71

Case 4 MC 39.49 40.07 39.33
NI 39.46 40.03 39.31

TABLE II
STANDARD DEVIATION OF THE POSITION OF THE DIPOLE IN DIFFERENT

CASES.

Case Method σrx (mm) σry (mm) σrz (mm)
Case 1 MC 0.53 0.53 0.53

NI 0.54 0.54 0.53

Case 2 MC 1.38 1.50 1.31
NI 1.40 1.51 1.33

Case 3 MC 1.63 1.70 1.64
NI 1.65 1.72 1.66

Case 4 MC 2.17 1.91 2.26
NI 2.19 1.85 2.28

random variable between 1/40 and 1/9. A fixed orientation
(y-direction) of the dipole is assumed, and its location is
measured from the center of the head model.

The results in Table I show the mean obtained by MC
and NI for the four different EEG data sets. The results
obtained using both methods are in very good agreement.
The computational time required by the Monte Carlo method
is about 8000 seconds on a 2.26GHz personal computer,
whereas non intrusive method requires only 40 seconds.

Table II shows that for increasing distances from the center
of the head, larger standard deviations are observed. This
means that the uncertainty on the spatial position of the source
increases when the source approaches the electrodes. This is
due to the fact that the sensitivity of the potentials to the
conductivity becomes larger when the source is farther from
the center (cf. Fig. 1.b). Here again, one can note the good
agreement between both numerical methods.

The full paper will provide additional details on the non
intrusive probabilistic method and compare this method with
classical techniques used in the EEG community, such as the
Cramer-Rao boundary method.
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Abstract —The design of local, asymmetric gradient coils is of 
great importance for magnetic resonance imaging (MRI). Such 
local coils promise increased gradient strengths and slew rates 
that have the potential to acquire image data with increased 
spatial and/or temporal resolution. Conventional coil design 
techniques are limited to specific geometries (e.g. cylindrical, 
planar) by their mathematical formulation. In order to more 
closely surround the sample of interest a symmetry-free, inverse 
boundary element method (BEM) was employed to design local 
gradient coils without relying on symmetry to parameterize and 
simplify the mathematical problem. With several examples we 
illustrate the versatility of this approach and the superiority of 
the performance of local gradient coils. 

I. INTRODUCTION

High performance gradient coils are critical for the ever 
increasing demands of new techniques in magnetic resonance 
imaging (MRI). Many methods for designing gradient coils 
have been presented [1, 2] with the aim of tailoring the wire 
pattern of the coil to generate linear axial magnetic field 
gradients in a region of interest (ROI) with high efficiency (η, 
field gradient per unit current measured in T/m/A) and low 
stored magnetic energy (low inductance L, µH). It is known 
that reducing the coil size and re-designing the wire pattern 
accordingly increases the coil performance [3], often measured 
as the ratio η2/L [1]. However, conventional coil design 
methods based on the target field approach [1] were developed 
for specific geometries such as cylinders and are difficult to 
apply to local gradient coil. Employing a symmetry-free 
gradient coil design method allows us to tailor the shape of the 
gradient coil to more closely conform to the ROI. Such a 
boundary element method (BEM) was first presented for 
gradient coil design by Pissanetzky [4] and has been extended 
[5] and applied to more complex design problems [6]. An 
alternative approach was used in this study that employs the 
equivalency between a magnetized volume and a surface 
current density, which we have therefore termed the 
“equivalent magnetization current” (EMC) method [7]. The 
versatility of the EMC method is demonstrated by the design 
of asymmetric, high-performance, local gradient coils. It is 
illustrated that conforming the coil design surface to the 
sample shape increases the performance of the resulting 
gradient coil 

II. MATERIALS AND METHODS

The EMC method considers an isotropic, rigid, non-
hysteretic, arbitrary volume, V, of thickness h, bounded by the 

surface S (S∈ℜ3) that possesses a magnetization, M(r’), 
normal to S. A volume of “well-behaved” magnetization M(r’) 
can be considered as equivalent to a uniform current density 
on its surface [8]. If h is small and M(r’) is piecewise-linear 
throughout the thin volume, V, it can be shown that (See Eqs. 
(1)-(9) in [7])  

),'(ˆ)'(ψ)'( rnrrM ⋅=h ,' S∈r         (1) 

where ψ(r’) is the scalar piecewise-linear stream-function of 

the current density flowing on S and )'(ˆ rn  is the normal 

vector to S at r’. The arbitrarily–shaped surface is discretized 
into triangular elements with N nodes defining the corners of 
each boundary element. ψ(r’), can be expressed as a sum of 
unknown nodal stream-function values, sn, and basis-functions, 

ψn(r’); ∑
=

ψ=ψ
N

n
nns

1

)'(ˆ)'( rr  [7], for which ψn(r’) is linear in 

each triangle and can be expressed as: 
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for i = 1,…,O, where dni is the perpendicular distance vector 
from rn to the far side of each triangle ni, associated with the 
nth node and O is the number of triangles associated with the 
node n.  Equation (2) simply ensures that ψn(r’) in each 
triangle has value of one at the node n and falls linearly to zero 
at the edge opposite to the node n. In the rest the conducting 
surface (

ni∆∉'r ) ψ(r’) is zero. The flux density of the 

magnetic field, B, produced by a magnetized thin volume was 
deduced by applying the curl operator to the magnetic vector 
potential, A, Eq. (5.103), pg 197 in [8]. Substituting the 

product )'(ˆ)'(ψ rnr ⋅  for the magnetization-thickness 

function, M(r’)h, the magnetic flux density can be written as: 
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   (3), 
where Ani is the area of the triangle i associated with node n. 

The stored magnetic energy, force and torque can be 
calculated assuming an equivalent surface current density, J, 
flowing in the surface of the triangle that belongs to the node 
n. The axial component of (3) Bz(r) is linear with respect to sn, 
as are the net torque and net force generated by the coil in the 
intense, uniform background magnetic field, B0z. The stored 
magnetic energy is quadratic with respect to sn. The 
optimization was therefore stated as a quadratic programming 
(QP) problem in the present work. The quadprog function,
provided in MATLAB’s® optimization toolbox, was employed 
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to solve the QP problem. The solutions, sn, are the stream-
function values corresponding to the gradient coil with 
minimum inductance that satisfies the constraints placed upon 
the net torque and net force and the inequality constraints of 
the linearity of Bz(r). Equally-spaced contours of ψ(r’) were 
generated to approximate the continuous current density by an 
arrangement of discrete current-carrying wires [6].

III. RESULTS AND DISCUSSIONS

For comparison, a figure of merit (FoM) given by η2/L, was 
used to characterize performance of the coils. The maximal 
deviation from the target flux density in the ROU was 
calculated using Eq. (6) in [6].  

Fig. 1. The three axis local x-,z-,y- gradient coils for breast imaging (a,b,c). 
Asymmetric torque balanced transverse x-gradient coils for head imaging 
(d,e). The uniplanar insertable z-gradient coil. The arrow in the coil pattern 
represents the sense of the current. Contour line at the DSV represents the 
values of the axial magnetic field component (units in Tesla). 

A three-axis (x, y, z) gradient coil for breast imaging was 
designed using the EMC approach. Figs. 1 (a, b, c) show the 
wire pattern of each coil and the two ROIs used to specify the 
target linear magnetic field. The proposed coils would permit 
imaging of both breasts simultaneously. The FoM of the 
designs resulted 11.113⋅10-4 T2⋅m-2⋅A-2⋅H-1, 10.5⋅10-4 T2⋅m-2⋅A-

2⋅H-1 and 9.04⋅10-4 T2⋅m-2⋅A-2⋅H-1 for the x-, y- and z-gradient 
coils, respectively. If one large ROI is used instead of two 
smaller ones, the coil FoM decreases by as much as 0.7 times, 
the resistance increases dramatically and the gap between 
wires is reduced from 1 mm to 0.0001 mm producing a 
complex and an impractical design. The FoM of the local 
gradient coils can be up to 130 times larger that the same value 
produced by standard whole body gradient coil. A second 

design was two torque-balanced, asymmetric gradient coils for 
head imaging. Figs. 1. (d, e) shows the wire patterns of the 
transverse x-gradient coils. The pattern in Fig. 1 (d) shows the 
ROI shifted towards one end for patient access. However, this 
feature is obtained with detriment of coil performance; the 
FoM is reduced 4.6 times from the original value and the 
resulting torque is minimized 1000 times from an unbalanced 
coil. Providing shielding for such a coil would make it easier 
to torque balance as the shield wires flow with opposite sense 
to the primary wires. Fig. 1 (e), presents an ultra-short head x-
gradient coil with a similar target ROI. Due to the shape of this 
structure the resulting FoM was 120 times larger than the same 
value produced by the coil Fig. 1 (d). A minimal torque of 
0.0001 N/m⋅A⋅T along the y-direction would be generated by 
the coil when immersed in a homogenous magnetic field. A 
uniplanar, open structure was also studied using the EMC 
method. This coil could be used for spinal imaging, for 
example. Due to the closeness to the sample, high gradient 
strengths could be generated. The efficiency of this design was 
η=0.34⋅10-3 T/m (approximately one order higher than the 
standard local coils), the resistance was expected to be 66⋅10-3 

Ω using a maximal copper strip width of 1.4 cm and the 
minimal value was 3.5 mm with a 1 mm of gap between strips.   

IV. CONCLUSIONS

Several examples of local gradient coil with increased 
performance over whole body coils have been presented. This 
was made possible by employing a symmetry-free coil design 
to optimally tailor the shape of the coil to more closely 
conform to that of the imaging region. The use of two ROIs 
instead of one large one simplifies the coil current pattern and 
hence superior coil performance is obtained. 
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Université Catholique de Louvain

Louvain-la-Neuve, BELGIUM
thibaut.labbe@uclouvain.be

François Glineur
Center for Operations Research

and Econometrics
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Abstract—To perform parameter and shape optimization, an
initial topology is required which affects the final solution.
Topology optimization methods have the advantage to release
this constraint. They are based on a splitting of the design space
into cells, in which they attempt to distribute optimally some
given materials.

Several convexity issues were already highlighted in topology
optimization of electromagnetic devices. The optimization algo-
rithm gets trapped in local minimizers and the final solution
differs according to the initial conditions. In this paper, two main
causes of this lack of convexity are studied. The first one is linked
to the handling of intermediate materials, especially those that
are a combination of windings and iron. The second one appears
when the optimization objective is computed by a difference of
magnetic energy between different positions of the rotor.

The methods proposed to manage these convexity issues focus
on the shape of the optimization domain of each cell, in terms of
materials. They are based on the use of parameterized hyperbolic
functions to define the boundaries of the optimization domain and
to modify them during the optimization process.

I. INTRODUCTION

Optimization methods differentiate themselves from the
design parameters on which they are performed. Parameter
optimization is concerned with some dimensions of the drive
topology, such as the length of a tooth. However, the range
of solutions that may be obtained is limited by the topology
fixed initially. Shape optimization experiences the same issue
at a lower level.

In topology optimization, the design space is split into cells.
The method is then concerned with distributing predefined
materials into the cells, such as air, copper or iron [1]–[4]. The
design parameters are thus the electric and magnetic properties
in each cell, i.e. the current density and the permeability. The
main advantage of this approach is that no initial topology is
required and that the design parameters enable any topology to
be represented. However, this problem often turns out to lack
of convexity, which has already been experimented in [5], [6].

In this paper, two complementary methods are suggested to
affect the convexity. The first one is related to cells containing
a combination of iron and copper, for which the current density
and the permeability must be adjusted carefully. The second
method concerns problems where the objective function is
computed by the difference of magnetic energy between

TABLE I
ELECTRIC AND MAGNETIC PROPERTIES OF THE MATERIALS

Material Permeability (µ) Current Density (j)
Air µ0 0
Iron µ0µr 0
Copper µ0 J

different rotor positions. The two methods are explained on
the basis of the three materials described in Table I.

II. CONVEXITY ISSUES RELATED TO INTERMEDIATE
MATERIALS

The development described in this section is based on
Fig.1, which illustrates the optimization domain in a cell.
The three black points represent the three possible materials.
The horizontal and vertical boundaries are easily delimited,
respectively for a material moving between air and iron and air
and copper. However, when a cell is moving between copper
and iron, we must determine the maximum allowable values
for the current density and the permeability.

There are two extreme choices for this boundary. If we allow
the electromagnetic properties to move in the whole rectangle
(boundary 1 on Fig.1), we can expect a convex shape for the
objective function. Indeed, a cell can then be filled with an
intermediate material having the maximum permeability and
current density at the same time and thus more valuable than
copper or iron alone, as illustrated on Fig.1(b). The other
extreme is motivated by the fact that eventually, the cells
should contain a unique material and not a combination of
them. We could thus reduce the domain to the horizontal
and the vertical segments (boundary 5). In this case, there
is no combination of iron and copper anymore, a cell must be
emptied of copper before being filled with iron.

At the beginning of the optimization, we want the problem
to be convex in order to avoid the algorithm to be trapped
in local minimizers. Since the cells must eventually be filled
with a unique material, we have to reduce progressively the
optimization domain. In order to modify the domain bound-
aries, we suggest the use of hyperbolic functions, which is
illustrated by the boundaries 2, 3 and 4.
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Fig. 1. (a) Optimization domain in a cell for the design variable µ and j
(b) Illustration of the convexity evolution

Fig. 2. (a) Mapping between the permeability µ and the design variable p
(b) Optimization domain in a cell for the design variable p and j

In the literature, the topology optimization is usually per-
formed on a design variable p linked to the permeability by
a given mapping, rather than on the permeability itself. Here,
a mapping could also be used to simplify the optimization.
Indeed, the shape of the optimization domain is complex
because of its hyperbolic boundary. Thanks to the following
mapping, the optimization can be performed on the triangular
domain represented on Fig.2:

µ = µ0
1 + (µr − 1)(1− a)p

1 + ( 1
µr
− 1)ap

, (1)

where a ∈ [−∞, µr
µr−1 [ is a parameter. When p stays in

the triangular domain, the set of possible values for the
permeability and the current density change according to the
parameter a. Increasing progressively its value is similar to
a progressive reduction of the optimization domain using a
hyperbolic boundary in terms of µ and j.

III. CONVEXITY ISSUES RELATED TO THE DIFFERENCE OF
MAGNETIC ENERGY

In a finite element model, the torque of an actuator can be
computed in different ways. One of them is to compute the
difference of magnetic energy between two rotor positions.
However, we observe that using a difference as an objective
function creates convexity issues. A solution is then to allow
having different rotor shapes for the two positions at the
beginning of the optimization.

We define p1 the permeability of a cell in the rotor position 1
and p2 the permeability of the corresponding cell in position 2.
The idea is to allow these two permeabilities to be different at
the beginning of the optimization and to reduce progressively
the difference between them. This can be achieved by using
the optimization domains shown on Fig.3: the boundaries are
defined by hyperbolic functions and the domain is reduced
during the optimization to become eventually a straight line.

Fig. 3. Optimization domain for the rotor part

Fig. 4. Optimal topology of a reluctant actuator

IV. APPLICATION

The two methods described in this paper were applied for
the optimization of a reluctant actuator. The optimization result
is illustrated on Fig.4.

V. CONCLUSION

In conclusion, the two methods presented along this paper
are based on the utilization of hyperbolic boundaries for
the optimization domain in the cells. They allow reducing
significantly the issues linked to convexity for the topology
optimization of electromagnetic drives.
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6. OPTIMIZATION 

Abstract— The development of optimization techniques for 
multiobjective problems in electromagnetics has been flourishing 
in the last decade. This paper proposes an improved 
multiobjective particle swarm optimization (PSO) approach and 
applies it to the multiobjective version of TEAM workshop 
problem 22. Simulation results show that improved multiobjective 
PSO finds a better Pareto-optimal front with respect to more 
classical PSO methods while maintaining a better spread of 
nondominated solutions along the front. 

Index Terms— TEAM workshop benchmark problem 22, 
particle swarm optimization, electromagnetic optimization, 
multiobjective optimization.  

I. INTRODUCTION

Recent literatures suggests that multiobjective approaches 
based on meta-heuristics can serve as a more exploratory and 
effective tool in solving multiobjective optimization problems 
than traditional optimizers in electromagnetics optimization. In 
this context, recent work has presented the effectiveness of 
multiobjective particle swarm optimization (MOPSO) [1]. 
Particle swarm optimization (PSO) is a meta-heuristic 
technique developed by Eberhart and Kennedy in 1995 [2], 
inspired by social behavior of bird flocking or fish schooling. 
PSO has been successfully used to solve single-objective 
optimization because of its high convergence speed and 
relative simplicity. These features motivated researchers to 
extend PSO to multiobjective problems. Recently, a 
considerable number of MOPSO algorithms have been 
proposed [3].  

This paper evaluates a MOPSO, based on [4], which is 
improved by social and cognitive time-variant factors and an 
operator of velocity updating based on truncated Gaussian 
distribution (G-MOPSO). G-MOPSO is tested on the 
multiobjective version of TEAM benchmark problem 22. 

II. FUNDAMENTALS OF PSO, MOPSO AND G-MOPSO 

The PSO algorithm uses a number of particles which 
constitute a swarm. These particles fly with a certain velocity 
and, at each iteration, adjust their velocity vector, based on 
their momentum and the influence of their own best position 
(pbest) as well as the best position of their neighbors (gbest). 
In other words, the swarm direction of a particle is defined by 

the set of particles neighboring the particle and its history 
experience. 

A. MOPSO 

Moore and Chapman proposed the first extension of the 
PSO strategy for solving multi-objective problems in 1999 [5].  

However, the high speed of convergence in MOPSO 
approaches often implies a rapid loss of diversity during the 
optimization process. [4] proposes a MOPSO incorporating 
the concept of nearest neighbor density estimator for selecting 
the global best particle and also for deleting particles from the 
external archive A of nondominated solutions. This approach 
uses the mutation operator proposed in [6] in such a way that it 
is applied only during a certain number of generations at the 
beginning of the process. Finally, the authors adopt the 
constraint-handling technique from the NSGA-II [7].

The implementation of MOPSO given in [4] is based on 
following fundamental steps (obvious ones are omitted): 

i) Initialize a swarm with random positions and velocities  
ii) Evaluate the particles and store nondominated ones in  A; 
iii) Compute the crowding distance of each member of A; 
iv) Sort A in descending crowding distance order; 
v) Randomly select the global best for the swarm form a 

specified top portion (e.g. top 10%) for the sorted A and 
store its position in gbest. 

vi) Update velocities and positions according to: 

)]()([                      

  )]()([)()1(

2

1

txtpUdc

txtpud ctvwtv

ig

iiii

−⋅⋅
+−⋅⋅+⋅=+

      (1) 

 )11 +⋅+=+ (tvt)t(x)t(x iii ∆             (2) 

where w is the inertia weight; [ ]Tiniii v,...,v ,v v 21=  stands for 

the velocity of the i-th particle, [ ]Tiniii x,...,x ,x x 21=  stands for 

the position of the i-th particle of population, and 

[ ]Tiniii p,...,p ,pp 21= represents the best previous position of 

the i-th particle. Positive constants c1 and c2 are the cognitive 
and social factors, respectively, which are the acceleration 
constants responsible for varying the particle velocity towards 
pbest and gbest, respectively. Index g represents the index of 
the best particle among all the particles in the swarm. 
Variables ud and Ud are two random numbers [0,1].  
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6. OPTIMIZATION 

vii) Perform the mutation operation proposed in [6]; 
viii) Evaluate the particles in swarm; 
ix) Insert all new nondominated solution into A if they are not 

dominated by any of the stored solutions. All dominated 
solutions in A. If the archive is full, the solution to be 
replaced is determined by: a) compute the crowding 
distance values of each nondominated solution in the 
archive A; b) sort the nondominated solutions in A in 
descending crowding distance values, and iii) randomly 
select a particle from a specified bottom portion (e.g. lower 
10%) and replace it with the new solution; 

xi) Return to Step (iii) until a criterion is met, usually a 
sufficiently good fitness or a maximum number of 
iterations, tmax. In this work, the tmax value is adopted. 

B. The proposed G-MOPSO approach 

The proposed G-MOPSO approach uses social and 
cognitive time-variant factors [8] and a velocity update 
operator based on truncated Gaussian distribution [9]. In 
particular the updating of c2 is given by [8]: 

( ) iif c
t

t
cc c 2

max
222 +⋅−=                    (3) 

where c2i and c2f are constants. In this work, the adopted values 
are suggested by [10] and given by c2i =0.4 and c2f = 2.05. 

III. OPTIMIZATION RESULTS

TEAM workshop problem 22 consists in determining the 
optimal design of a superconducting magnetic energy storage 
(SMES) device in order to store a significant amount of energy 
in the magnetic field with a fairly simple and economical coil 
arrangement which can be rather easily scaled up in size. 

The multiobjective version of TEAM workshop problem 
22 [10] is a continuous, constrained, eight-parameter 
benchmark with two conflicting objectives: the attainment of a 
required stored energy and the minimization of the stray field 
along two given lines. The setup of the MOPSO and G-
MOPSO  methods involved binary tournament selection, 
population size P=30, and stopping criterion t=200 
generations. In the MOPSO, a unitary value was adopted in c1

and c2, and w with linear decreasing of 0.9 to 0.4 during the 
generations, while in G-MOPSO equation (7) is used to update 
the c1 and c2 values. 
Simulation results for 30 runs (Figs. 1 refers to the Pareto front 
obtained by G-MOPSO) show that the non-dominated 
solutions obtained by G-MOPSO dominate the solutions 
obtained by MOPSO. Furthermore, it can be observed that in 
terms of spacing metric [11] the solutions obtained by G-
MOPSO are more uniformly spaced than MOPSO approach. 
The spacing obtained using MOPSO was 133.8798 and in the 
case of G-MOPSO was 2.1843. 

IV. CONCLUSIONS 

PSO is becoming very popular due to its simplicity of 
implementation and ability to quickly converge to a reasonably 
good solution. 
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Fig. 1. Pareto front obtained by G-MOPSO. 

Furthermore it can be quite easily extended to multiobjective 
problems. In this paper the performance of a variant of 
MOPSO is tested on the multiobjective version of TEAM 
benchmark problem 22 with good results. In the extended 
version of the paper a thorough comparisons of the fronts 
obtained by MOPSO and G-MOPSO will presented together 
with a detailed description of the algorithmic details of G-
MOPSO.
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Abstract — A Magnetic Fluid Hyperthermia (MFH) inductor 
design using multiobjective evolution strategy techniques has 
been proposed. Uniformity of the magnetic field and solution 
sensitivity are the objective functions chosen for the selection of 
the inductor geometry . 

I. INTRODUCTION

MFH provides the heating of cancer lesions until a 
temperature that can damage tumoral tissues. In this therapy 
nanoparticles, injected in the human tissues, are heated by 
means of an AC magnetic field which should be as much as 
possible uniform in the treatment area [1]. Such a kind of 
equipment was installed e.g. at the Charité hospital in Berlin 
[2] The field source is a coil with a ferrite yoke which is able 
to guarantee, in a cylinder with diameter of 20 cm a magnetic 
field strength with a uniformity of 90 % [2]. In the paper, the 
synthesis of an iron-free magnetic field source, inspired by 
Loney solenoid system [3], is proposed. The aim is to 
synthesize a uniform field in the treatment region, insensitive 
to small variations of coil system parameters. 

Actually, in various applications of bioengineering, the 
generation of uniform magnetic fields is required. For instance, 
in magnetic resonance imaging (MRI) [3], as well as in 
magnetic induction tomography (MIT) [7], the field synthesis 
problem is characterized by a small size of the controlled 
region and a high degree of uniformity (in the order of ppm). 
Instead, in MFH the controlled region size is one order bigger 
than in MRI and MIT systems, because the anthropometric 
dimensions should be taken into account; this, in turn, has a 
consequence in terms of the degree of field uniformity 
achievable in practice. 

Scope of the paper is to propose an automated optimal-
design procedure of inductors for MFH clinical treatment of 
cancer lesions, with the final aim of providing a control in the 
uniformity of magnetic field and hence a uniform therapeutic 
temperature in wide body regions. In particular, an air-cored 
solenoid system, which offers a possible advantage in terms of 
reduced size due to the lack of ferromagnetic material is 
considered. The design problem is formulated in terms of a 
multiobjective problem [4]. 

II. THE DEVICE

In Fig. 1 an half of the longitudinal section of the device, with 
the controlled region , and design variables, is sketched. L1

and L2 are the lengths of main and correcting coils, 
respectively, x1 is the radius of main coil, dx the gap between 
main and correcting coil, z1 the distance of the main coil from 

the z axis, dz is the shift of the correcting coil with respect the 
main one. The square at the system centre, with side Lx, is the 
area where the field uniformity is to be controlled. 
In Table I the variation ranges of design variables and the 
fixed values of parameters are reported. 

TABLE I 
VALUES OF THE PARAMETERS 

 R1[m] dr[m] Z1[m] dz[m] L1[m] L2[m] I1[A] I2[A]
Min 0.25 0.05 0.15 -0.05 0.2 0.15 1000 500 
Max 0.5 -- 0.4 0.45 -- -- -- -- 

III. DIRECT PROBLEM 

The magnetic field has been computed using a semi-
analytical model, i.e. superposing the field generated by each 
turn composing a coil. To this end, a classical formula [5] that 
involves the evaluation of elliptic integrals has been used. This 
method has been chosen for its computational speed in 
repeated field analyses, and in view of an optimization 
procedure. 

A. Field analysis 

The inhomogeneity function, f,  is defined as follows: 

meanH

HH
f minmax −=                               (1) 

where Hmax , Hmin, and Hmean are maximum, minimum and 
average value of the magnetic field in the controlled region  , 
respectively; numerically, inhomogeneity has been computed 
in a set of N=231 points, located in .  

B. Sensitivity evaluation 

An inexpensive evaluation of sensitivity is possible when a 
set of np>>1 points discretizing the search space is available. 
Each point of the set is considered as the centroid of a 
hypercube ω, composed of all the other points which distance 
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from the given one is less than a threshold [6]. Then, 
sensitivity s is approximated as : 

  ω∈−≡ − ggfgfgfgs
gg

,)](inf)(sup[)]~([)~( 1            (2) 

where sup and inf are computed within ω, and )~(gf  is the 

inhomogeneity function value at the hypercube centroid g~ . In 

Fig. 2, sensitivity s is plotted as a function of inhomogeneity f.  
The cloud of points has been obtained after sampling the three-
dimensional search region formed by variables x1, z1 and dz. In 
particular, z1 and dz have a practical significance because they 
have to be adjusted during the set-up phase of therapy 
equipment, and their setting depends on the patient size. The 
sampling is based on a random search governed by a uniform 
probability density function, and is composed of 1,000 points.  

IV. DESIGN PROBLEM

The aim of the magnetic system is to generate a field uniform 
enough in the controlled region Ω. The shape design of the 
system has been performed using a multiobjective formulation. 
Ensuring the maximum homogeneity of the magnetic field in a 
prescribed volume was the main target of the design. In fact, a 
uniform magnetic field is a preliminary condition for an 
uniform power density and then for an almost uniform heating 
of human body tissues. On the other hand, since the opening of 
the system has to be adjusted depending on the anthropometric 
sizes of the patient, the sensitivity of configurations 
minimizing the field inhomogeneity should be evaluated. This 
way, among all feasible solutions, the ones exhibiting both low 
inhomogeneity and sensitivity will be selected. Therefore, the 
design problem has been cast as a two-objective optimization 
problem: find the set of feasible solutions x such that both f(x)
and s(x) are minimum, according to Pareto optimality [4]. 

V. RESULTS

In Fig. 3a and 3b two feasible geometries are shown: the 
former is an example of good solution, the latter of bad 
solution. The first one represents a optimum case and the 
second one a not-optimal case. In Fig. 4 the percentage 
variation of the H field is shown; the maximum of the 
magnetic field H is close to 15000 A/m. The maximum has 
been evaluated as the global one along three directions 
(d1,d2,d3), defined inside the controlled region (Fig. 1). It can 

be noted that between 2 and 20 cm from the axis system the 
field uniformity is higher than 95%. 
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Fig. 4: percentage variation of H field. 

In the full-length paper the Pareto front of the problem will 
be identified by means of an optimization procedure based on 
evolutionary computing. Eventually, for assessing the 
optimization results, a finite-element based thermal analysis of 
a human tissue subject to the synthesized magnetic field will 
be developed. 
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Figure 3: geometry and H field lines for a (a) good and a (b) bad solution. 

306

 



12-J DEVICES AND APPLICATIONS, BIOMEDICAL AND BIOLOGICAL APPLICATIONS 6. C OPTIMIZATION, STOCHASTIC METHOD 

307



6. OPTIMIZATION 

Abstract — The approaches to process the process variations in 
the parasitic extraction of interconnects are still indigent and 
how to implement spectral stochastic finite element method 
(SSFEM) is still a little ambiguous. In this paper, the clear flow of 
SSFEM is detailed and three important points such as the 
stochastic field, the post-processing for calculation of capacitance, 
are emphasized. 

I. INTRODUCTION 
During this ultra-deep submicron and nanoscale integrated 

circuit technology era, it’s irrefutable that the process 
variations have become pivotal issues in integrated circuit 
design and verification, and an ample solver to handle the 
variability shall be a crucial goal in EDA. Of all types of 
variations [1], material parameter variations, especially at the 
interconnect structure level are studied in this paper. 

In brief, the stochastic analysis in numerical computation 
was firstly applied in the structural mechanics and gradually 
extended to the field of electromagnetic [2]-[3]. Usually, the 
finite element method (FEM) is used to analyze material 
variations [4] while the integral equation method (IEM) and 
the boundary element method (BEM) are utilized to discuss 
geometric variations [5]-[6]. Ideas of SSFEM and polynomial 
chaos (PC) are practiced in [2], but some key procedures of 
SSFEM for electromagnetism computation are not 
appropriately explained and practices in analyzing 
interconnects parasitic are not yet made. 

In this paper, based on the scheme of stochastic finite 
element methods and stochastic field theory, we will show 
clearly the overall flow of SSFEM and introduce the way to 
analysis the material properties with correlation functions 
which becomes probable requirements henceforth. 

II. STOCHASTIC FINITE ELEMENT METHODS 
Neumann expansion stochastic FEM (NSFEM) traced here 

is usually used to solve randomness problems. 
For FEM’s matrix system =K bΦ , given + ΔK = K K , 

-1ΔP = K K , according to Neumann series expansion [2], 
1 1 1 1 1

1 1 2 3 1

( ) ( )
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III. PROBLEMS 
Parasitic extraction of interconnects is readily an 

electrostatic field problem or a steady electric field problem: 

( ) ( )grad 0, grad 0div or   divε ϕ ρ σ ϕ⋅ + = ⋅ =          (3) 

Let us consider a small domain spatial D  or an element 
eΩ  with random permittivity. If the permittivity is supposed to 

be uniform within D , we call it constant distribution, while if 
the distribution obeys some correlation function, we call it 
field distribution. If ε  is random, but its variance is finite in 
real space, it can be expressed as a stochastic field, 

( , ) ( , ) ( )Hε θ θ ε≡x x x                              (4) 

A. Stochastic field 
Karhunen-Loève expansion (K-L) and orthogonal series 

expansion (OS) are usually used to discrete stochastic field 
into expressions in random space. For example, the K-L 
expansion of stochastic field ( , )H θx  is shown as 

1
( , ) ( ) ( ) ( )i i i

i
H θ μ λ ϕ ξ θ

∞

=

= +∑x x x               (5) 

In the above, ( )μ x  is the mean of the whole domain D , 
( )iξ θ  is a standard normal variable (SNV), 

iλ  and ( )iϕ x  are 
value pairs of eigenvalues and eigenfunctions relative to the 
correlation function of the stochastic field. Under a certain 
condition, we can get the closed form solution, while under 
other conditions, we can choose another orthogonal functions 
set [2]. In constant distribution, ( ) 0iϕ ≡x , 1iλ ≡  equivalently. 
Then the element coefficient matrix and ensemble coefficient 
matrix can be re-written as, 

(

)
0 0

1 1

1
0

( ) ( ) ( ) ( ) ( ) ( )

( ) det( )
e

e e e e
i i i

i i

T
i egradwJ J gradw J d

θ θ θ ξ θ θ ξ θ λ

ϕ ε

∞ ∞

= =

− −

Ω

= + = +

⋅ Ω

∑ ∑

∫

k k k k

x

    (6) 

0
1

( ) ( )i i
i

ξ θ θ
∞

=

⎡ ⎤+ ⋅ =⎢ ⎥⎣ ⎦
∑K K bΦ                         (7) 

B. Governing equation of stochastic response 
Expand equation (7) via Neumann method, then 

1
0

0 1

( ) ( 1) ( )
k

k
i i

k i

θ ξ θ
∞ ∞

−

= =

⎡ ⎤= − ⋅ ⋅⎢ ⎥⎣ ⎦
∑ ∑ oK KΦ Φ                 (8) 

With the growing of k  as well as the amount of constant 
distribution domains, the product of ( )iξ θ -s becomes 
increasingly complex. 
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C. Polynomial chaos 
The complex items of ( )iξ θ -s can be mapped to another 

normalized orthogonal basis set 
0{ ( )}j jθ ∞

=Ψ , such as Hermite 

polynomial, Legendre polynomial and etc in space 2L . Of 
course 

0{ ( )}j jθ ∞
=Ψ  is well-defined by 1{ ( )}k kξ θ ∞

= , so each 
stochastic response quantity ( )iφ θ  can be expressed as 

10
( ) ( ), ( )= ( ( ))

i

M

j j iij
while hαφ θ φ θ θ ξ θ

∞

==
= Ψ   Ψ Π∑ α

       (9) 

The number of -M dimension and -p order polynomial 

items is 
1

0

p
k
M k

k

P C + −
=

=∑  [2]-[3]. 

D. General stochastic coefficient matrix 
Based on equations (7-9), the matrix items are truncated at 

advisable dimensions and series degree to form a residue, 

(

)

1 1

,
0 0 0 0

1

0 0

( ) ( ) ( )

( ) ( ) ( )

M P M P

M P i i j j i i
i j i j

M P

j j i j i j
i j

err ξ θ θ ξ θ

θ ξ θ θ

− −

= = = =

−

= =

⎡ ⎤⎡ ⎤= ⋅ Ψ − ⋅⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦

Ψ − ⋅ Ψ −

∑ ∑ ∑∑

∑∑

K b = K

b = K b

Φ

Φ Φ

  (10) 

Set
0

E[ ], E[ ],
M

ijk i j k k k jk ijk i
i

c cξ
=

= Ψ Ψ = Ψ =∑b b K K ,and 

implemented by Galerkin scheme, the general stochastic 
coefficient matrix is approximately formed as 

00 0, 1 0 0

( ) ( )( )1,0 1, 1 1 1
(1) (1)( )

P

N P N PN PP P P P P
N P

−

× ××− − − − −× ××
×

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⋅ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

K K b

K K b

Φ

Φ

     (11) 

Then we get the stochastic response, 
1

0

( ) ( )
P

j j
j

θ θ
−

=

= Ψ∑Φ Φ                            (12) 

The above method is so called SSFEM, and it’s a real one 
in the case of field distribution. 

E. Post-processing 
Using equation (12), we can obtain statistics moments and 

probability distribution conveniently for jΨ  is determinate 
functions of SNV. Calculation of capacitance can be referred 
to the electric flux surrounding a conductor 

( )F k grad v dε θ
ΣΩ

= ⋅ Ω∫                        (13) 

where 
ΣΩ  is a closed thick surrounding surface. Finally the 

capacitance is also a function of
iΨ . 

Particularly, we use Latin hypercube sampling (LHS) 
method instead of direct Monte Carlo sampling method to 
verify the validity and effectiveness of SSFEM; LHS turns out 
to be more efficient and credible. 

IV. EXEMPLIFICATION 
A simple example (Fig 1) is drawn to validate the idea of 

interconnects parasitic extraction with SSFEM. 

Homogeneous permittivity and 2-M = dimension are 
assumed, for that the variations is quite small, choose 5p = , 
then 21P = . The FEM matrix is 898 898×  while SSFEM 
matrix is18858 18858× . 

 
Fig. 1. Sketch of example of multi-domains with probability distribution. 

Results are shown in Table I, the unit of capacitance is 
/fF mμ , unit of time is s . We can find that if field distribution 

is under consideration, the time consumption booms sharply 
and the error is also notably fluctuated. 

TABLE I. COMPARING SSFEM AND FEM USING LHS 

Type Value SSFEM LHS 

Nominal mean  0.014310 

Constant distribution 
mean 0.01428 0.01430 
std 0.002721 0.002796 

time 326 1,226 

Field distribution 
(correlation function of 

exponential type ) 

mean 0.01483 0.01526 
std 0.003230 0.005045 

time 472 1931 

V. CONCLUSION AND OUTLOOK OF SSFEM 
Three points during the detailed steps of SSFEM are 

emphasized: the NSFEM procedure, the stochastic field 
distribution, and the capacitance formula as the function of 
PCs. But it’s still not known clearly which distribution are the 
actual one, which perhaps strictly obeys some physical 
processes; and the orthonormal functions we select as the 
space basis maybe cannot exactly keep the characteristics of 
the original field. More efforts to in-depth research in 
stochastic field are required. 

SSFEM explodes the amount of calculation and memory 
needed, so high efficiency algorithms is another key point. 
Adverting to the current programs, the techniques of multi-
core CPU, GPGPU, etc are surely worthy of attention. 
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Abstract — This paper describes the applicability of a kriging 
assisted method to the design of a synchronous generator with a 
high temperature superconducting (HTS) rotor winding. The 
derived algorithm provides pareto optimal fronts maximising the 
air-gap flux density while minimising the length of YBCO tapes. 

Fig. 1. Rotor configurations chosen for the design study: a) fully cored,  
b) inner core and coil core, c) inner core, d) fully coreless. I. INTRODUCTION 

The prospect of reducing the size and weight of a machine 
through using HTS windings is very appealing, especially for 
applications such as offshore wind power generation. Until 
recently the performance of such machines was somewhat 
hampered by the limited capabilities of the available BiSCCO 
tapes. Now that the second generation (2G) HTS tapes have 
become commercially available [1], with improved tolerance 
to the perpendicular component of the magnetic field, the 
possibility of building much smaller and lighter electrical 
machines is becoming a reality. The design of such devices 
requires substantial simulation effort; structural and thermal as 
well as electromagnetic requirements may require modelling. 
The cost is greatly increased if optimisation is required.  

II. THE SPECIFIC OPTIMISATION PROBLEM  
As an example, we consider a 6-pole arrangement with a 

2G HTS rotor winding which may be used to demonstrate the 
principle of a high torque slow rotating multi-pole machine 
working in applications such as wind power generation. The 
objective is to maximise the air-gap flux density using the 
shortest possible length of the HTS tape  

There are a number of possibilities regarding the rotor 
configuration (Fig.1). Although a coreless rotor is clearly the 
best choice to achieve the substantial mass reduction required 
to justify the use of a HTS winding in a full size machine, use 
of some iron may be warranted in a demonstrator. The choice 
of rotor configuration is a compromise between obtaining a 
high air-gap flux density and making the small demonstrator 
as similar as possible to the full-size machine. Similarity to the 
full size machine is not easily quantified; each configuration 
was therefore optimised separately, allowing the final choice 
to be informed by the results of these optimisations.  

Each of the arrangements of Fig. 1 has two possible stator 
configurations: ‘slotted’ and ‘slotless’. In a conventional 
machine, the stator teeth are required to help raise the air-gap 
flux density by providing a low-reluctance flux path through 
the stator winding. The high current densities available in a 
HTS field winding may allow a high air-gap flux density to be 
obtained without the aid of teeth, suggesting that they are not 
required; hence they could be removed to save weight. 

Moreover, the high flux density may saturate the teeth, 
reducing their effectiveness. It has also been found that 
modulation of the air-gap field by the stator teeth can induce 
quite substantial tooth ripple losses in the rotor. While these 
considerations favour the removal of the teeth, it should be 
noted that the teeth provide mechanical support for the 
winding and a radial thermal conduction path to help cool the 
winding. If they are removed, alternative arrangements must 
be sought to ensure support and cooling of the winding.  

Optimising the design of an electrical machine is a 
computationally expensive process requiring repetitive use of 
finite element models. An added complication arises from the 
use of HTS windings. Since the critical current density of the 
HTS tape depends on the magnetic field that impinges on it, 
the critical current is a function of the current in the winding. 
This implies that for any configuration to be analysed the 
critical current density needs to be found iteratively, further 
increasing the computational cost. An efficient algorithm is 
therefore required, which should minimise the number of 
evaluations for which finite-element modelling is required. In 
this work we propose a methodology based on surrogate 
modelling using kriging [2, 3] to improve the efficiency of the 
optimization process.  

III. SURROGATE MODELLING 

The response surface methodology fits an approximation 
function to data obtained from the computationally expensive 
objective function at a small number of points. This response 
surface can then be used to predict the value of the objective 
function at intermediate positions in the search space. After 
constructing the response surface from an initial set of data 
points (off-line learning), it is used to guide the optimiser in 
selecting a new design vector for evaluation. As each new 
point is added, the surface fitting is repeated to take advantage 
of the new data point (on-line learning). 

 Kriging is a form of response surface modelling based on 
the principle of maximum likelihood and, in addition to 
providing a response surface that passes through all the data 
points, provides a meaningful estimate of the uncertainty of its 
predictions. Using these two values it is possible to estimate 
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the expected improvement that may be obtained by adding a 
new data point to the existing set. Using this measure to 
determine where the next point should be added greatly 
reduces the risk of the optimiser getting trapped in a local 
minimum. However, this technique is not foolproof; the 
algorithm may still fail to find the global minimum if the 
kriging function significantly underestimates the uncertainty 
in this region of the search space.  

The goal of this study is to find a design which will give 
the highest possible air-gap flux density while using the least 
amount of superconducting tape. Due to the anisotropy of the 
tape both magnitude and direction of the magnetic flux density 
need to be considered. The manufacturer’s data for the 
dependence of the critical current of the YBCO tape on the 
field, in both the perpendicular and parallel directions, has 
been incorporated into the command script executing in the 
finite element package. The critical current is taken to be the 
lower of the value estimated from the maximum normal 
component of B and that estimated from the maximum parallel 
component of B. The critical current is found by repeatedly 
solving the model and changing the assumed current in the 
superconductor towards the minimum value given by the 
graphs of IC(B) until satisfactory convergence is obtained. The 
fundamental D-axis component of the air-gap flux density 
predicted by the model is then returned to the optimisation 
algorithm written in MATLAB. 

Use of the expected improvement to drive the algorithm 
seams reasonable, but it has its limitations. First, as noted 
previously, it is likely that the values of expected square error 
predicted by the kriging function are under-estimated; hence 
the algorithm could stop after finding a good local minimum 
but fail to find the global minimum. Secondly, maximising the 
expected improvement for each new point is a short-term 
objective and places no value on the knowledge gained by 
adding new data points. Scaling up the uncertainty estimates 
as proposed in Fig. 2 should overcome the first problem, 
although the method of deciding whether under-estimation of 
uncertainty is still credible needs further consideration. While 
the optimiser can be encouraged to explore more widely by 
deliberately over-estimating the uncertainty, the expected 
value of the information obtained from a new data point is 
difficult to estimate. More discussion about exploration versus 
exploitation and enhanced formulations will be provided in 
the extended paper. Figure 3 shows the pareto optimal front 
obtained for a coreless rotor at 40K in a slotless stator.  

 
Fig. 3. Pareto optimal front for one of the considered configurations. 
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IV. CONCLUSIONS 

The paper demonstrates the use of surrogate modelling and 
kriging assisted optimisation in the context of the design of a 
synchronous generator having a superconducting rotor 
winding made of YBCO tapes. The necessary repetitive use of 
finite element models makes the design process 
computationally expensive but is helped by efficient use of the 
response surface methodology. The criterion of expected 
improvement is applied but the balance between exploitation 
and exploration needs to be carefully controlled. 

Fig. 2. Optimization algorithm. 

A simplified illustration of the algorithm is presented in 
Fig. 2. The optimizer varies the following parameters: the 
number of turns in the largest coils, the number of coils and 
the number of coils that have reduced number of turns to leave 
space between adjacent poles. A constraint was imposed on 
the minimum bend radius at the ends of the HTS coils. 

A set of 16 points is first chosen using the Latin sampling 
cube [4]. After evaluating these points and fitting a surface the 
algorithm finds the maximum of the expected improvement  

 )()()()]([ minmin
min s

yfs
s

yfyfxIE −
+

−
Φ−= φ  (1)  V. REFERENCES 

[1] http://www.amsc.com/products/htswire/2GWireTechnology.html and evaluates the objective function at the new point. In (1) 
fmin is the minimum value of the objective function at the 
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square root of the expected square error at point x predicted by 
the surrogate model, φ is the standard normal distribution 
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by integrating the product of the improvement and the 
estimated (assumed normal) probability density function.  
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The advantage of using a surrogate-assisted optimization algorithm is the small number of finite element evaluations. A surrogate-

assisted optimization algorithm, called Multiobjective Efficient Global Optimization, suited for grid computing is presented in this 
paper. The surrogate model used by the algorithm is the Kriging model. An application to the Superconducting Magnetic Energy 
Storage (SMES) system of Team benchmark problem 22 is presented. The Pareto optimality front, representing the trade-off curve 
between objectives is obtained at low cost. At the end of the optimization process, the surrogate model and the finite element model are 
very close to each other in the subspace around the Pareto front.  
 

Index Terms—surrogate-assisted optimization, multiobjective optimization, Kriging surrogate model, grid computing, optimal 
design, SMES, Team benchmark problem 22.  
 

I. INTRODUCTION 

n the design optimization process, analytical models are 
usually used in order to simulate the behavior of the 

designed product. The Finite Element Analysis (FEA) is used 
in the later stages of product development, in order to validate 
the obtained design. 

The recent trend is to integrate the Finite Element Analysis 
in the early stages of the product development cycle, allowing 
this way a significant reduction of the product development 
delay. Even though the computing resources have developed 
exponentially during the last decade, the FEA still remains 
time consuming, and its direct integration in the optimization 
process remains marginal. This is due to the great number of 
function calls of an optimization algorithm. The surrogate-
assisted optimization strategies appear a promising approach 
[1], allowing the integration of high fidelity models, such as 
FEA, in the optimization process, and with a reasonable time 
cost. The application to the optimal design of an electrical 
machine using multiphysic model including FEA can be found 
in [2]. Some extensions to the multiobjective optimization 
case have been developed recently [3]. 

Real design engineering problems are complex, presenting 
many conflicting objectives and constraints. The trade-off 
curve between objectives (called Pareto optimality front) 
obtained through multiobjective optimization helps engineers 
in the difficult task of decision making. In this paper a new 
multiobjective surrogate-assisted optimization algorithm is 
presented. A new infill criterion, called Pseudo distance, 
suited for the multiobjective optimization case is presented. 
The Kriging surrogate models developed by the algorithm 
through the optimization process present the particularity of 
being very close to the FEA model in the subspace around the 
Pareto front. The algorithm was applied to the Team 
benchmark problem 22, which deals with the optimization of a 
superconducting magnetic energy storage system (SMES). 

II. SURROGATE-ASSISTED OPTIMIZATION 

This section describes the Surrogate-Assisted Optimization 
strategy. The algorithm presented in this paper is based on [2], 
which was adapted for the multiobjective case, and suited for 
grid computing. The surrogate models used by the algorithm 
are Kriging models. 

A. Kriging Surrogate Model 
In the Kriging model formulation, an unknown function 

y(x) can be expressed as a sum of two terms: one that gives the 
global trend of the function, called the regression or 
polynomial model, and another one that gives the local 
deviations from the global trend. The correlation function 
controls the smoothness of the model. The Gaussian 
correlation function between points i and j is: 

( ) ( )( ) ( ) ( )

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−−= ∑

=

2

1
exp,

vn

k

j
k

i
kk

ji xxxxR θ  (1) 

where x is the design variable vector, θk represents the 
unknown correlation function parameter vector. 

The Kriging model predicts the estimated response value ŷ. 
The Mean Square Error (MSE) is the expected value of 
difference between the true response and the estimated one. 
Since Kriging interpolates the data, MSE is zero at the 
sampled points. At unknown points, MSE should be 
minimized in order to obtain a good approximation. 

Fig. 2 presents a one dimensional example. The Kriging 
model is constructed using 5 sample design points. At the 
sample points the standard error is zero and higher in the gaps 
between sampled points. This tells us that the Kriging model 
gives the exact value at the sample points (interpolation 
model) and may have some error at other design vectors. This 
important information is used by the infill criteria to locate the 
infill point to be added. 

I 
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Fig. 2 – One dimensional illustration example showing the true model, 
Kriging prediction and its standard error. 

B. Algorithm 
The algorithm starts by sampling the initial points using the 

Design Of Experiments (DOE) method. The set of initial 
points is then evaluated using the high fidelity model, such as 
FEA model. A Kriging surrogate model is fitted for each 
objective and constraint function individually. A new infill 
point selection criterion was developed in order to generate a 
set of infill points instead of a single point. This allows the 
distribution of the FEA model evaluations over each available 
CPU. Each of these points is then validated against accept 
conditions and if these conditions are met, it will be added to 
the improvement solution set. In both cases, the point is added 
to the sample data set. If the prescribed stopping criteria are 
met, the algorithm ends, obtaining the non-dominated 
solutions forming the Pareto front. Otherwise, it goes back and 
uses the new obtained infill points to fit new Kriging models. 

More details on the algorithm will be given in the full 
paper. 

C. Infill Point Selection Criteria 
In this paper a new infill criterion, called pseudo distance is 

proposed for the multiobjective optimization case. It is based 
on the non-dominate concept. The pseudo distance is 
composed of two terms: the dominate distance Dd, and the 
neighboring distance Dn, presented in (2)-(4). 
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An example is given in Fig. 3 to explain the concept. 

 
(a) (b) 

Fig. 3 – (a) Dominate distance, (b) Neighboring distance 

Dd gives a design vector with the smallest estimated 
standard error (small ŝ), i.e. accurate Kriging predictions that 
will dominate with the greatest distance the existing non-
dominated front (NF). Starting from a non-dominated front 
NF1=[S1,S2,S3,S4,S5], from the previous iteration, the point T1 
will be preferred to another point T2, due to its greater 
dominate distance, as presented in Fig. 3a. 

On the contrary, the Dn will focus to the neighborhood of 
the trial point. It will give a design vector with a high standard 
error (high ŝ), i.e. the greatest distance between the trial point 
and its neighboring non-dominated points. It sacrifices 
prediction accuracy in order to spread the points along the 
front, filling up the largest gap between two existing non-
dominated points, as shown in Fig. 3b. This time, the point T3 
will be preferred to T4, because of the greater Dn. 

The next design vector is located by maximizing (2), using 
a mono objective optimization algorithm. This step is repeated 
until a prescribed number of infill points are obtained, 
depending on the number of available CPUs. 

III. APPLICATION TO TEAM WORKSHOP PROBLEM 22 

The algorithm was applied to the eight-parameter 
multiobjective Team workshop problem 22. The obtained 
results are presented in Fig. 4. The non-dominated front is 
obtained through 300 FEA model evaluations (220 infill 
points and 80 initial points using Latin hypercube sampling). 
The problem was formulated as follows: 
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with Eref=180MJ, Bn=200μT and subject to quench condition. 
The presented algorithm allows obtaining the Pareto non-

dominated front with low number of FEA evaluations. 
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6. OPTIMIZATION

Abstract — A hybrid algorithm based on the combination of
the Flock of Starlings Optimization (FSO) and the Bachterial
Chemotaxis Algorithm (BCA) is presented for multimodal
optimization tasks. In particular the FSO, that is a modification of
the well known Particle Swarm Optimization, is a powerful
instrument for exploring the whole space of solutions, whereas
the BCA, that virtually emulates the motion of a real bacterium
looking for food (i.e. fitness function), shows its better
performances in local search. The present approach uses the FSO
to explore the solution space and the BCA for refining solutions.
A parallel strategy is implemented: the FSO is permanently
running, and any time it found a possible solution, the BCA is
launch, and so on. Test on general optimization benchmark and
on the TEAM22 problem are shown.

I. INTRODUCTION

In this paper is presented a hybrid algorithm based on the
combination of two heuristics inspired from Artificial life: the
Flock of Starlings Optimization (FSO) [1] and the Bachterial
Chemotaxis Algorithm (BCA) [2]. The approach is
particularly suitable for multimodal optimization tasks. The
FSO as described in [1] is a modification of the well known
Particle Swarm Optimization (PSO) [3] by adding a
topological rule to the metric rules typical of the PSO. In fact,
the FSO is inspired to recent naturalistic observation about the
real starling flights [4]. As it is shown in [1], the FSO is
particularly suitable for exploration and multimodal analysis.
On the other hand, the BCA virtually emulates the motion of a
real bacterium looking for food (i.e. fitness function). It is a
heuristic that shows its better performances in local search [5].
The present approach uses the FSO to explore the solution
space and the BCA for refining solutions. Moreover, a parallel
strategy is implemented: the FSO is permanently running, and
any time it found a possible solution, the BCA is launch, and
so on. Test on general optimization benchmark and on the
TEAM22 problem are shown.

II. THE APPROACH

A. The FSO

The classical PSO algorithm [3] is based on the control of
the velocity shown by particles moving into the solution space.
The updating at the (t+1)-th calculation step of the k-th
component of the velocity vector, ( 1)j

k PSOv t , of each j-th

particle is ruled by the following expression:
( 1) ( ) ( ( ))

( ( ))

j j j j j j
k PSO kPSO best k k

j j
best k k

v t v t p x t

g x t
(1)

where 1...k ,  and is the dimension of the solution space
of the x variables; j , j  and j are the so-called inertial,

cognize and social coefficients respectively (often governed by
the random (0,1) function) [3]; best kg  is the coefficient global

best of the whole swarm, while j
bestkp  is the personal best of

each j-th particle.
The FSO algorithms add to (1) a new term due to the
observation [4] that in real flock each generic h-th bird
controls and follows the flight of a number, _crl birdsN , no

matter what are their positions inside the flock: j j
kMccb ;

where j is the so-called topological coefficient [1].
Finally, the updating at the (t+1)-th calculation step of the k-th
component of the velocity vector, ( 1)j

k FSOv t , of each j-th

particle is ruled by the following expression:
( 1) ( 1)j j j j

k FSO kPSO kv t v t Mccb    (2)

where:
_

,

1_

1 crl birdsN
j h j

k FSOk
hcrl birds

Mccb v
N

is the mean value of the

k-th velocity components, ( 1)j
k FSOv t , of each h-th controlled

starling of the flock by the j-th birds. The values best kg  and

best kg ,j k  are evaluated at each step t. These best values are

computed by a suitable fitness function that estimates the
goodness of the actual solution. As it has been proof in [1] for
the case of identification of hysteresis models, the FSO can
find a solution even if the dimension of the solution space is
very high and moreover it is particularly suitable for
multimodal optimization tasks.

B. The BCA

The BCA [5] takes inspiration by the motion
characteristics of particular micro-organisms (bacteria) that is
due to the different chemical properties encountered in the
habitat (bacterial chemotaxis). A real bacterium differently
reacts to the gradients of nutritive substance concentration
(fitness) or of harmful substances. A mathematical description
of the bacterium motion can be developed by the
determination of suitable probabilistic distributions referred
both to the motion duration and to the velocity vector (speed
and direction) of the bacterium. For space reason, we invite to
refer to [2] for a detailed description of the algorithm. More
details will be given in the extended version of this paper.

C. The Hybridization and Parallelization

The present approach is hybrid since when the FSO finds
a possible optimum, the BCA is launched to refining this

Parallel hybrid algorithms based on Artificial
Life for Multimodal Optimization

S. Coco1, A. Laudani1, F. Riganti Fulginei2 and A. Salvini2
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2 DEA, University of  Roma Tre, Via della Vasca Navale, 84, Roma  I-00146, Italy

alaudani@diees.unict.it, asalvini@uniroma3.it

314

PB2.12



6. OPTIMIZATION

solution. But the FSO does not stop his search and goes on
looking for other possible solutions. For implementing this
approach we use 20 PC dual-cores. One of this is the Master
on which the FSO runs; one is used to store the found
solutions; whereas the other 18 units manage the BCAs. In this
way it is possible to combine the high exploration capability of
the FSO with the high fastness of the BCA in local search.

III. VALIDATION ON GENERAL BENCHMARKS

Let us apply the proposed algorithm to a 2D famous
benchmark: the bird function which is expressed by

2 2(1 cos( )) (1 sin( )) 2( , ) sin( ) cos( ) ( )y xf x y x e y e x y� �� � � � . Into the

range , [ 2 , 2 ]x y � �� � � , it shows several local minima and two

global minima equal to min 106.7645367f � � (approximation

by limiting to 7 digits the decimal point precision) for two
different pairs of coordinates: ( 1.58214, 3.13024)� � and

(4.70104,3.15294) . By comparing PSO, FSO and hybrid

FSO+BCA we found the following results: the FSO found
each minimum with good accuracy without to be launched
more than one time: ( 1.58, 3.14)� � with min 106.72f � �  and

(4.64,3.13) with min 106.24f � � ; the PSO was entrapped into

the closest global minimum encountered (depending on
initialization of guess values) but showing the same level of
accuracy of FSO; FSO+BCA improve the accuracy of the
single FSO: it found both the global minima achieving the
same value of min 106.7645367f � �  for both minima.

IV. VALIDATION ON TEAM PROBLEM 22

The goal of the Team problem 22 [6-8] is to optimize the
performance of the considered s��������������� ��������
������� �������� ������ systems consisting of two
superconducting solenoid coils of rectangular cross section
carrying opposite currents. This system has to be optimized in
terms of its geometrical dimensions and currents carried,
taking care that the magnetic stray field should be minimized
without reducing the stored energy value. Consequently the
target energy stored is fixed to 180 MJ, while the stray flux
density should be as small as possible; in addition the
maximum magnetic field within conductors must not exceed a
certain critical value (in the present test, all the used
optimization constrains are those reported in [8]). The
optimization problem consists of finding all or a subset of the
8 parameters: R1, h1, d1, J1, R2, h2, d2, J2 (see Fig. 1). In this
optimization problem we use as performance indices both the
energy target and the stray field, i.e. the magnetic flux density
RMS value measured along the two lines shown in Fig. 1 (for
this evaluation we have considered 22 equally spaced points):

22 2

1
2

1

22

istray
refi

refnorm

B Energy E

EB
� �

� �
� � �
� �� �
� �
� �
� �

�    (3)

where Eref is 180 MJ and Bnorm is 3 mT. The magnetic flux
density, B, can be easily obtained by using the Biot-Savart law,
whereas the energy can be computed by considering the
system in term of mutually coupled inductors. The self and

mutual inductances have been evaluated according to [9][10].
The present test is referred to the 3-parameter optimization.
We have fixed 1 1 1(h ,R ,d ) (3.0916,2.8071,0.1162) [m]�  and

the current densities 2
1 2(J ,J ) (23.3809, 19.5511) [MA/m ]� � .

Random guess values have been used for FSO which found a
solution in 2 2 2(h ,R ,d ) (1.56,2.34,0.39) [ ]m� returning

0.026� � by (3). Then, the FSO values have been used for

initializing the BCA that found a refined solution
in 2 2 2(h ,r ,d ) (1.56101,2.34240,0.39395) [ ]m� (just 5 decimal

digits of 16 are here reported) corresponding to 42.16 10� �� �

that is a significant result [8].

Fig 1. – Team problem 22 geometrical and optimization parameters
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Two-level refined direct method for electromagnetic
optimization and inverse problems
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Abstract—Electromagnetic optimization and inverse problems
require a large number of evaluations in numerical forward mod-
els. These computer models simulate complex problems through
the use of numerical techniques, and hence the evaluations
need a large computational time. Two-level methods have been
developed that include a second model so to accelerate the inverse
procedures. Contrary to existing two-level methods, we propose a
scheme that enables acceleration when the second model is based
on the initial numerical model with coarse discretizations. This
paper describes the proposed refined direct optimization scheme
and validates the method onto algebraic test functions. Finally, we
apply the method for solving an electromagnetic inverse problem.

I. INTRODUCTION

THE classical equations of Maxwell can be solved when
the geometry, material characteristics and sources are

specified. Using efficient numerical techniques, electromag-
netic computer models can be built, which solve the so-
called forward problem. Optimization and inverse problems on
the other hand, need to identify a priori unknown parameter
values by starting from an objective or electromagnetic mea-
surements. Traditional direct optimization procedures strive
towards the minimization of a predefined cost function by the
use of one forward model. These methods have an update
scheme that is based on the responses and eventual first and
second order derivatives of the forward model. However, when
dealing with complex problems where a single evaluation of
the numerical forward problem is very time demanding, it
is possible that solving optimization and inverse problems
becomes difficult, time demanding and not practical.

In this perspective, so-called two-level optimization meth-
ods, e.g. space mapping [1], manifold mapping [2], etc., were
conceived which accelerate the optimization procedure by
incorporating an additional coarse model in the procedure.
These methods propose an iterative scheme that includes a
coarse model (low accuracy, time efficient) and a fine model
(high accuracy, very time demanding), but fail to converge
in a computationally efficient way when the computational
time of the coarse model is not sufficiently smaller than the
computational time of the fine model [2]. This is for example
the case when the coarse model is based on the initial fine
numerical model with coarse discretizations. Indeed, when
dealing with complex electromagnetic problems, it is not
always possible to build a very fast analytical model that is
similar to the fine model. Therefore, we propose an alternative
method that enables to solve optimization problems in a more
efficient way, when including such a coarse model. This paper
describes this so-called refined direct optimization scheme

in detail and implements the scheme with the Nelder-Mead
simplex method and non-linear least squares methods. In order
to validate the method, we apply the method onto algebraic
test functions and an electromagnetic inverse problem.

II. REFINED DIRECT OPTIMIZATION (RDO) SCHEME

The computational effort in existing two-level schemes
can become high because the coarse model is sequentially
optimized with different objective values. In this paper, we
carry out only one optimization of a surrogate-based model,
that is iteratively refined during the optimization itself. The
basic idea of the RDO scheme is to alter the optimization of
the cost Y , e.g. least-squares difference between measurements
and simulations, of the fine model f:

x∗f = arg min
x

Y(f(x)) (1)

to the optimization of the cost of the surrogate model:
x∗

s = arg minx Y(s(x)). Metamodels can be used as surrogate
models within optimization schemes. These models are built
by interpolating response data, obtained by evaluating the
model f(xi) for a certain set of sample points xi, i = 1, . . . , N

in the design space. N is the number of design points. When
dealing with complex problems, N needs to be large in order
to obtain a sufficiently accurate metamodel. Here, we use
metamodels for interpolating the coarse model response data
to the fine model response data. The relation between coarse
model response and fine model response is less complex and
less difficult to determine. In this way, N can be reduced.
The surrogate model, used in the RDO scheme has the
following form: s(x) = c(x) + e(x) with error function
e(x) that is determined using metamodels. In this paper, we
use the Kriging metamodel, see e.g. [3], for making the
interpolation. The surrogate model s(x) is refined during the
optimization procedure by performing a limited number of fine
model evaluations. The number of updates depends on how
accurate the coarse model is, compared to the fine model. The
proposed method has the same features as the traditional direct
optimization method, i.e. start value, stopping criteria, etc.,
where the internal parameters of the RDO method are self-
tunable. The method uses a trust-region strategy for updating
the surrogate model. An outline of the algorithm is given:

Step 1: N design points are generated around start value
x(0) within the trust region radius ∆(0): x(0)

i . Here, the latin
hypercube sampling method is used. Evaluations are then
carried out in the coarse and fine model.

Step 2: Construction of surrogate model s(0) by determining
e(x). We initialize m = 0.
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Fig. 1. (a) Minimization of Y1, and (b) of Y2.

Step 3: Partial run of direct optimization method using
surrogate model s(m). Updates x(k), k = 1, . . . K are carried
out, depending on the used direct optimization method. The
partial run of direct optimization method is stopped when x(K)

is near the trust region boundary. x(m) becomes x(K).
Step 4: Update of surrogate model: s(m+1) in region ∆(m).

A limited number of evaluations are carried out in the fine
model, so to refine the surrogate model in the next trust region.

Step 5: Determine the accuracy of the surrogate model so to
determine the new trust region ∆(m+1). The accuracy of the
previous surrogate model s(m−1), depends on the fidelity of
the coarse model c(x) and the accuracy of the error function
e(x). The accuracy is determined as follows:

ρ(m) =
Y(f(x(m−1))) − Y(f(x(m)))

Y(s(m−1)(x(m−1))) − Y(s(m−1)(x(m)))
. (2)

On the basis of ρ(m), we determine ∆(m+1), similar to [4].
Step 6: If the termination criteria of the direct optimization

method are not satisfied, then go to step 3, and set m = m+1.

III. RDO APPLIED ONTO ALGEBRAIC TEST FUNCTIONS

AND AN ELECTROMAGNETIC INVERSE PROBLEM

We compared the RDO method with the traditional direct
optimization scheme. Firstly, we applied the RDO onto the
following algebraic function: Y1(f(x)) = − exp(−(x2

1 + x2
2))

with x∗f = [0, 0]T . The implemented coarse model is similar
to the fine model but where output and input are altered with
optimal value x∗

c = [1,−1]T . Fig. 1a shows the points x(k) that
are updated in the traditional Nelder-Mead simplex method in
order to obtain x∗f and x∗c . The figure shows the alternative
path followed by the RDO algorithm in order to achieve
convergence to x∗s = x∗f . The path followed by the iterates
differ from the fine model one, but convergence is obtained
with a limited number (20) of evaluations in the fine model.

Secondly, we applied the RDO onto the minimization of the
two-dimensional Rosenbrock test function, with fine model:
Y2(f(x)) = 100(x2 − x2

1)
2 + (1 − x2

1). The coarse model
is again, seriously altered in input and output space. Fig. 1b
compares the convergence history of the traditional method
with cost log(Y(f(x(k)))) with the RDO method with cost
log(Y(s(x(k)))) in each k-th iteration.

Finally, we applied the RDO method on the identification
of the anhysteretic B-H characteristic of a magnetic ring
core. The magnetic ring core, shown in Fig. 2a, is partially
excited with an excitation angle 230◦, where the introduced
air gap is approximately 1 mm. This geometry is a simplified
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Fig. 2. (a) Configuration of the partially excited magnetic ring core
with air gap. (b) Recovered BH-characteristics using RDO and actual B-H
characteristics.

magnetic circuit of an electromagnetic device. Due to the
lack of extra samples to perform measurements with e.g. the
classical single sheet tester, the B-H characteristics remain
unknown. Therefore, we identify the material properties on the
magnetic circuit itself, using a coupled experimental-numerical
inverse approach based on the RDO technique. The results are
compared with a traditional least-squares non-linear method.

The fine and coarse models are three-dimensional numerical
models based on the finite element method (FEM), with fine
and coarse mesh respectively. The FEM model solves the
non linear quasi-static Maxwell’s equation with non-linear
permeability. The single-valued nonlinear constitutive relation
of the magnetic material, is modelled by means of three
parameters [H0, B0, ν]:

H

H0

= (
B

B0

) + (
B

B0

)ν . (3)

The inputs of the forward problem are the excitation currents
and the magnetic material parameters for well known ring core
dimensions. However, the output is the magnetic induction at
specific position, e.g. position 2, as shown in Fig. 2a. On the
other hand, the inputs of the inverse problem are the measured
excitation currents and the measured local magnetic induction,
e.g. at position 2. The output of the inverse problem is the
magnetic material parameters. The identified material charac-
teristics are depicted in Fig. 2b, where the recovered material
characteristics approximate the actual B-H characteristic. The
result is obtained in a computational efficient way with 20 %
acceleration compared to the traditional optimization method.

IV. CONCLUSION

This paper proposes a method that decreases the com-
putational time that is needed when optimizing or solving
electromagnetic inverse problems. The results show that such
problems can be solved with considerably improved accelera-
tion as compared to the traditional inverse solutions.
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6.Optimization 

Abstract — This paper describes the application of 
multivariate adaptive regression splines (MARS), one of the 
response surface methodologies, for reducing the calculation cost 
in electric machine design. Some numerical examples are 
reported for confirming the validity and effectiveness of MARS. 
And then, we also apply the proposed optimization method with 
MARS to a practical optimization problem. 

I. INTRODUCTION

Recently, the practical application of design optimization 
method has been gradually spread. However, increasing 
calculation cost remains as an essential issue. Then, in this 
paper, we propose the adoption of multivariate adaptive 
regression splines (MARS), one of the response surface 
methodologies (RSM), for reducing the calculation cost in 
electric machine design.  MARS adequately decomposes the 
search domain into some sections with basis functions so as to 
hold the abundant expressiveness and versatility. This paper 
reports some numerical examples, e.g., mathematical and 
benchmark models, to demonstrate the effectiveness of the 
proposed optimization approach with MARS.  

II. MULTIVARIATE ADAPTIVE REGRESSION SPLINES (MARS)

MARS adopts the nonparametric regression model [1] as 
follows.  

( ) iii xfy ε+= ˆ                              (1) 

where yi is the objective function value at the ith experimental 
point. ( )　ixf̂  and εi stand for the approximate function value 
and the error at the point, respectively. And then, ( )xf̂  is 
expressed with plural basis functions Bm and truncation 
functions as shown in (2) and (3). 
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           (3) 

where α is the unknown parameters to be calculated. 

III. APPLICATION OF MARS TO MATHEMATICAL MODEL

First, we apply MARS to the mathematical model shown 
in (4) in order to examine its effectiveness by comparing its 
numerical results with that of the conventional high-order 
polynomial approximation in (5).  
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   (5) 

Figure 1 shows the approximation results. The figures 
clearly demonstrate the difference of the accuracies between 
MARS and the conventional polynomial approximation, 
which indicates the effectiveness of MARS.  

IV. APPLICATION OF MARS TO BENCHMARK PROBLEM

Next, we apply MARS to the benchmark model, i.e., Die 
Press Model [2]. In this model, the function W1 for the angle 
of the flux density and the function W2 for the amplitude of 
the flux density are objective functions, respectively.

The proposed optimization procedure is shown in Fig. 3. 
In the procedure, to estimate the accuracy of the pareto 
optimal solutions obtained by the response surface with 
MARS, we recalculate their objective functions’ values by the 
FE analysis, and compared them. By properly reducing the 
search domain around the space existing the obtained tentative 
pareto optimal solutions, it’s expected that the conclusive 
pareto solutions are searched at short times diminishing the 
influence of the approximation error of the response surface.  
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(b) Conventional polynomial approximation 
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(c) Response surface with MARS 

Fig. 1. Response surface configurations

Figure 4 shows the optimization results. The pareto 
optimal solutions obtained by the proposed method, i.e., RSM 
with MARS, are superior to ones without RSM. In addition, 
the total calculation time of the proposed approach is about 
44% of the whole compared with that of the conventional 
method. 

Incidentally, most of the calculation time with the 
proposed approach is spent on computing the response surface 
with MARS. So, the introduction of the parallelization with 
OpenMP is attempted with a view to enhancing the 
effectiveness of the proposed method. Furthermore, it’s 
possible that the parallelization of the FE analysis at the 
experimental points leads to less calculation time. By actually 
calculating, the parallelization results in the reduction of the 
calculation time to almost 16% of the whole compared to that 
without parallelization and RSM. 

 
Fig.2. Die Press Model 
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Fig. 3. Iterative optimization procedure 
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V. OPTIMIZATION OF SHIELD CONFIGURATION 

As the effectiveness of MARS is confirmed in the previous 
chapters, the application of MARS to the more complicated 
and practical model will be reported in the full paper. 

The details of the optimization problem are as follows. As 
shown in Fig. 5, the signal receiver for the train operation 
control is placed under the train floor, where the noise from 
equipments such as the inverter has a negative influence on 
the signal reception from the rail currents. For the purpose of 
reducing the noise influence, we will efficiently carry out the 
design optimization of shield configuration without lowering 
the receiving level by using the proposed approach with 
MARS. 

Shield

Rail

Signal Receiver

(Iron+Coil)

Shield

Rail

Signal Receiver

(Iron+Coil)

Fig. 5. Analysis model (half model) 
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13. EDUCATION

Abstract — For the measurement of liquid level in ship's cargo 
tank, ballast tank, fuel oil tank and fresh water tank, several 
types of gauge meter are used such as tubular type, magnetic 
float type, reflex type, transparent type and welding pad type. 
Among them, magnetic float type gauge meter is environmental 
friendly device because it is free of power source and 
maintenance.  The main obstacle of the device is relatively large 
error bound. In this paper, finite element method is used to 
design and analysis of the magnetic float type gauge meter. The 
operation of reed switch according to the magnetic field has been 
successfully described and agreed well with experimental 
measurement. The optimum geometry with combination of 
permanent magnet and reed switches are designed to achieve 
95% and 98% accuracy of fluid level.  

I. INTRODUCTION

Recently, the increase of a ship accident has a lot of 
economical and environmental problems. There are many 
causes but the explosion accident by inaccurate measure of the 
oil level has the biggest damage and is preventable. So, to 
detect the position of alert level is very important.[1] For 
preventing the accident, the stability and exactitude is 
requested to a measuring instrument.[2]

For the measurement of liquid level in ship’s cargo tank, 
ballast tank, fuel oil tank and fresh water tank, several types of 
gauge meter are used such as tubular type, magnetic float type, 
reflex type transparent type and welding pad type.[3] Among 
them, magnetic float type gauge meter is environmental 
friendly device because it is free of power source and 
maintenance. The main obstacle of the device is relatively 
large error bound. Mutual influence of magnets cause reed 
switch to malfunction in the dual magnetic float type gauge to 
detect a specific level. 

In this paper, we designed the combination of permanent 
magnet and suitable distance of dual level gauge that reed 
switch operate exactly. The optimum geometry with 
combination of permanent magnet and reed switches are 
designed to achieve 98% reliability of fluid level. 

II. STRUCTURE OF THE MAGNETIC FLOAT TYPE LEVEL GAUGE

The magnetic float type level gauge includes magnetic 
floats and reed switches. The reed switch is the magnetic field 
sensor. The magnetic float is comprised of permanent magnets 
and stainless steels (permeability: 1) like Fig.1. The magnets 
(Alnico 5) are round stick. And stainless steels set the magnets 
and move the fixed pipe. The reed switch module(two reed 

switch) keep ‘On’ in a high magnetic density level and change 
to ‘Off’ at a low level. 
It is distributed into four-magnet and six-magnet model by the 
number of magnets. The Material of magnets is Alnico 5. The 
ring type metal plates and metal pipe for fixing the permanent 
magnet are made stainless steel. The magnetic floats move by 
a buoyancy. The reed switch being the key element of the 
sensing part organizes two thin reed switches and a small 
glass pipe. If we put the magnet near the reed switch, 
magnetic field is concentrated at a magnetic material. The 
switch’ ‘On/Off’ are decided by the magnetic flux intensity 
and direction.  

Fig. 2. Structure of Magnetic Float type level gauge  

A Research on the Optimum Design of Magnet 
Structure for Improving Measurement Accuracy 
in the Dual Magnetic Float Type Level Gauge 

Dong Sok Kim, Jae Min Kim, and Gwan Soo Park, Member IEEE
Pusan National University, Busan 609-735, South Korea 

kdongsok@pusan.ac.kr, jmin@pusan.ac.kr, gspark@pusan.ac.kr 

Fig. 1. Structure of Magnetic Float (4-magnet) 
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13. EDUCATION

The two magnetic float type level gauge set at the upper 
position (98% of a whole tank) and the lower position (95% of 
a whole tank). The Magnetic Float is moved according to the 
quantity of fluid inside a tank and the sensor module is 
changed ‘On’ or ‘Off’ according to value of magnetic flux 
density in pipe. When it is ‘Off’ status, the system ring the 
alert sounds. However, if higher magnetic flux density than 
operation point (this system is 25[G]) of the switch, a range of 
switch operation is widen. Accordingly, a detection of correct 
position is impossible and we don’t measure the accurate 
position (95%, 98%). Also, if distance of two Magnetic Floats 
is close, the reed switch has error by mutual influence. In this 
paper, we researched on the optimal design for improving 
measurement accuracy using finite element method.

III. CHARACTERISTIC ACCORDING TO THE NUMBER OF 

MAGNETS 

Fig. 3 is analyzed the magnetic flux density distribution of 
the magnetic float according to the number of magnets. And 
fig. 4 is values of magnetic flux density in Magnetic Float’ 
center. We can see magnetic flux density of type-II is higher 
than type-I. Accordingly, accuracy of type 1 is higher than 
type II.

IV. MUTUAL INFLUENCE OF DUAL MAGNETIC FLOAT 

Two magnetic float type level gauges are on the position of 
95% and 98% of inside the tank. When Dual Magnetic Float 
are situation 95% position and 98% position, magnetic field at 
the low position doesn’t have influence on sensor module of 
the high position. But, if distance is close, the magnetic floats 

of a low position and high position have influence on each 
sensor module.  
We analyzed a mutual influence of center’s magnetic flux 

density according to pole arrangement in dual magnetic float 
type level gauge.  First structure is that magnetizing direction 
is NS(Magnetic Float of 95%’ position)-NS(Magnetic Float of 
98%’ position). Second is structure of SN(Magnetic float of 
95% position)- NS(Magnetic Float of 98%’ position).
Where, influence according to the number of magnets is 

analyzed together. Table I is to compare fore case. As a result, 
when use four magnets and are SNNS status, we get good 
result that distance of influencing each other is short and 
magnetic flux density value in middle point is 0[G].  

TABLE I
INFLUENTIAL RANGE BY THE NUMBER OF PERMANENT MAGNET AND 

DISPOSITION OF POLE

The
number of 
Magnets

Pole Status of 
Manget 

(MF1-MF2) 

Rang of 
non_interference 
(Reed Switch of 
20[G] Range ) 

Magnetic Flux 
Density between 

two Magnetic Float 

Type I
4 NS - NS 140[mm] 5[G] 

4 SN - NS 140[mm] 0[G] 

Type II
6 NS - NS 86[mm] 6.8[G] 
6 SN – NS 87[mm] 0[G] 

V. CONCLUSION

There are many kinds of the level gauge of measuring level 
of a kind of fluids. Among them, the magnetic float type level 
gauge needs not extra-power and is semi-permanent sensor 
system. This system includes reed switches and magnetic float. 
The reed switch become ‘On’ when it is near the high 
magnetic flux density. It is ‘Off’ during the low. If the range 
of ‘On’ is wide, the sensitivity of the level gauge is lower. 
And if distance between two magnetic float is short, mutual 
interference is caused and the reed switch is wrongly operated. 
So, this paper suggests the optimum structure and position of 
this level gauge by analyzing magnetic characteristic of the 
system and motion characteristic of reed switch. We analyzed 
a influence according to the number of permanent magnets 
and the arrangement of magnetized direction. In the result, 
when Magnet float has four magnets and arrangement of 
magnetized direction is SN-NS, it has the highest sensitivity 
and the lowest interference. 
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(a) Type I (4 magnet)                                               (b) Type II(six magnet)

Fig. 3. Magnetic flux density of Magnetic Float 
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13. ELECTRIC MACHINES AND DRIVES 

Abstract — The topology optimization by distributing 
the magnetic material in the design domain, which is 
called as the ON/OFF method, is attractive for designers 
of magnetic devices, because an initial conceptual design, 
which we could not imagined beforehand, may be 
obtained. We examined how to apply the ON/OFF 
sensitivity method to the IPM motor in order to 
determine the optimal topology of the rotor. A technique 
to apply the ON/OFF method to the design of motor 
considering the nonlinearity and rotation of rotor is 
shown. The effect of various design requirements on the 
obtained topology of motor core is discussed. 

I. INTRODUCTION 

It is required to design an efficient and miniature motor 
with small cogging torque. If the ON/OFF method [1] is used, 
there is a possibility that a new magnetic circuit is discovered, 
because it is not necessary to set design variables in advance. 
There are few reports of the optimal design of motors [2] 
using the ON/OFF method.  

In this paper, the ON/OFF method is expanded to the 
optimal design of permanent magnet motor, and techniques 
how to satisfy constraints, such as the limitation of terminal 
voltage, are examined. The effect of design requirements, 
such as the improvement of efficiency, on the optimal shape 
of motor core is also shown. 

II.  METHOD OF ANALYSIS 

In the ON/OFF method, the sensitivity dW/dp (W: 
objective function, p: design variable) of an element is 
calculated by using the adjoint variable method. If the 
sensitivity is negative, the air is put in the element. If it is 
positive, the iron is put in the element. The sensitivity of the 
i-th element is obtained by differentiating the objective 
function W by the design variable ע.
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where עi is the reluctivity of the i-th element. The sensitivity 
(dW/dעi)k is calculated at each rotor position k. The sensitivity 
dW/dעi which is used for judging ON(iron) or OFF(air) of 
material is the sum of (dW/dעi)k during one pole pitch for 
example, 90deg, as follows: 
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where, n is the number of steps during the rotation. 

The objective function of the obtained shape by using the 
ON/OFF method is calculated using FEM and the torque is 
calculated using the nodal force method. The calculation is 
terminated when this process is repeated and the objective 
function does not decrease.  

III. OPTIMIZATION OF THE ROTOR OF THE IPM MOTOR 

The analyzed model of the rotor of the IPM motor is 
shown in Fig.1. The thickness in the z-direction is 100mm. 
The initial material of elements in the design region was set 
as a magnetic material. 
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Fig.1. Model of IPM motor. 

 
The current of each phase is given by: 

 
 

(3) 
 
β is the current phase, which is set to 45°. The maximum 
ampere turns of the coil are set 1297AT (50Hz). The 
specification of analysis is shown in TableⅠ. 

TABLEⅠ 
SPECIFICATION OF ANALYSIS 

Stator core
Rotor core (design domain)

Magnet
Direction of  magnetization (T)

Magnetization
Speed (min-1)

Number of Nodes
Number of Elements

14420
6964

Material
35H230
35H230

HS-40FH

1500

1.23
Parallel

 

Examination of Optimal Design of IPM 
Motor using ON/OFF Method 

Takaya Yamada, Norio Takahashi, Daisuke Miyagi 
Dept. Electrical & Electronic Eng., Okayama University 

3-1-1 Tsushima, Okayama 700-8530, Japan 
norio@elec.okayama-u.ac.jp

)sin( βω += tII mU

)120sin( βω +°−= tII mV

)120sin( βω +°+= tII mW

)sin( βω += tII mU

)120sin( βω +°−= tII mV

)120sin( βω +°+= tII mW

322

PB2.16



13. ELECTRIC MACHINES AND DRIVES 

The objective function was defined as follows in order to 
minimize the torque ripple of the rotor and maximize the 
torque of the rotor:  
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Both k1 and k2 are chosen as unity. Ti is the torque of a rotor 
at an angle i. Tave is the average torque during a pole pitch 
angle. The optimal shape is shown in Fig.2 (a). The flux at 
the 1st step is shown in Fig.2 (b). Fig.3 shows the cogging 
torque. 
 

 
(a)optimal shape                    (b)flux distribution 

Fig.2. Result of analysis. 
 

By removing a small part of rotor surface, the cogging 
torque of optimal shape is reduced. It is thought that the 
magnetic flux is transmitted to the teeth smoothly from the 
rotor. The torque ripple and average torque is shown in Table
Ⅱ.The torque ripple rd  is calculated by  

100minmax ×
−

=
ave

d T

TT
r            (7) 

where Tmax is the maximum of the torque and Tmin is the 
minimum of the torque. Tave is the average of the torque. 
Compared with initial shape, the average torque of the 
optimal shape is a little reduced, because the air gap is 
increased at the removed part of the rotor. But the cogging 
torque is about 2% improved. 
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Fig.3 Cogging torque. 

 
TABLEⅡ 

TORQUE RIPPLE AND AVERAGE TORQUE 
torque ripple (%)  average torque(N/m)

Initial Shape 13.96 7.79
Optimal Shape 11.56 7.56  

 
Fig.4 shows the objective functions W1 and W2 in (3) and 

(4). It is understood that W depends on mainly W1. 
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Fig.4 Objective function. 

IV. CONCLUSION 

It is shown that the ON/OFF method can be applied to the 
design of rotor shape by using the sum of the sensitivity at 
each angle of rotor. A technique how to satisfy a constraint of 
limitation of terminal voltage, and the effect of design 
requirement of improving the efficiency will be shown in the 
full paper. 
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Optimization of Inductors Using Evolutionary 
Algorithms and Its Experimental Validation 
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1. Generate an initial population of N random candidate 
solutions. 

Abstract — This paper presents parameter optimization of 
inductor shapes using immune algorithm (IA) and micro genetic 
algorithm (GA). It is shown that the inductor volume can be 
almost halved satisfying constraints on values of inductance 
under different DC current conditions. The best results of the 
parameter optimization obtained from IA and micro-GA are 
similar to each other. During the optimization processes, values 
of inductance are repeatedly computed using finite element 
method taking the nonlinear BH characteristics into account. The 
dependence of inductance on the imposed current obtained by 
the present method is in good agreement with the experimentally 
measured results. 

2. Evaluate the objective function and the constraint 
condition for each antibody. 

3. Test a stop criterion. If it is satisfied, stop the procedures. 
4. Eliminate P (%) low-ranking antibodies. 
5. Generate clones for each surviving antibodies. The 

highest-ranking antibodies receive a higher number of 
clones. 

6. A small-amplitude Gaussian noise is applied to the clones, 
which are then evaluated over the objective and constraints. 
Only the best candidate solution from each subset of 
(parent antibody + clones) is allowed to survive to the next 
generation. 

I. INTRODUCTION 
Inductors are important electric parts widely used in electric 

and electronic devices such as mobile phones and computers. 
Size reduction, higher operation frequency and larger current 
tolerance have been strongly required from the industries. 
While development of new materials having better 
characteristics is important to meet these requirements, 
improvements in inductor shapes are also indispensable. For 
the latter purpose, shape optimization based on computational 
electromagnetism is thought to be effective. 

The goal of this study is to develop reliable optimization 
methods for inductor shapes on the basis of computational 
electromagnetism. Evolutionary optimization methods are 
suitable for this kind of optimization because objective 
functions often present non-linearities due to the 
ferromagnetic material, and complicated constraint conditions 
must be considered. In this paper, we adopt immune algorithm 
(IA) and micro genetic algorithm (-GA) which has good 
computational efficiency compared with the conventional GA. 
The values of inductance under a high DC current bias are 
computed using the finite element method. The parameter and 
topology optimization are studied, with only the former results 
shown in this digest due to page limitation. We also test the 
reliability of the optimal solutions by comparing their 
performance with experimentally measured results.  

7. Add randomly generated antibodies to replace the ones 
eliminated in Step 4, in order to keep the population size 
constant. 

8. Back to step 2. 

II. OPTIMIZATION METHODS 

A. Immune algorithm 
The IA draws inspiration from the Clonal Selection 

Principle, and combines local and global search 
characteristics [1]. In the parameter optimization, each 
candidate solution is referred to as an antibody according to 
our immunological metaphor. The procedure of IA is 
described below [2]. 

Steps 5 and 6 have a role of regulating the local search of 
the algorithm, while step 7 promotes global search. We can 
control the balance of local and global search by adjusting the 
parameters N and P.  

B. Micro genetic algorithm 
The main difference between -GA and the conventional 

GA is that very small populations are used in the former [3]. 
To avoid the convergence to local optima, all individuals 
except the best-ranking one are replaced by randomly 
generated individuals if the population is converged to a local 
optimum. The procedures of -GA are shown below. 

1. Generate a small number N of initial individuals randomly. 
In this work, N is set to 5. 

2. Evaluate the objective function and the constraint 
condition for each individual, preserving the best one. 

3. Test the stop criterion. If it is satisfied, stop the 
procedures. 

4. Make pairs by randomly selecting two individuals, and 
the higher ranking individual for each pairs is called the 
parent. 

5. Select two pairs randomly, and apply the crossover 
operation to the parents of selected pairs. This yields the 
children. Steps 4 and 5 are repeated until the number of 
children reaches N-1. 

6. Check the convergence of population. If the population 
falls into a local optimum, N-1 individuals are replaced by 
randomly generated ones. These individuals and the 
reserved best individual remain for the next generation. 

7. Back to step 2 until the end criterion is satisfied. 
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III. OPTIMIZATION SETTINGS 
The inductor optimized in this study consists of a bobbin-

shaped ferrite core and a coil surrounding it. The parameter 
optimizations with 5 variables (X1, X3, Y1, Y2, Y3) shown in 
Fig. 1 are performed using IA and -GA. Note here that X2 
depends on X1 and Y1 because the coil area is fixed to that of 
the original mass product model whose inductance in 
specification is 100(H). Other settings such as material 
properties are also fitted to the original model. 

The objective of the optimization is to reduce the volume of 
inductor keeping the inductance to the specification value for 
small AC currents. Moreover, it is important to reduce the 
variation in the inductance against DC bias current, because 
this type of inductors is used for AC signal with high DC bias 
current. Considering these requirements, we define the 
objective function to be minimized as, 

 ,  (1a) penaltyHWLf AC  286
1 10|10010|

 ,  (1b) 




 




otherwise
LLpenalty ACAC

0
)1080(1080 6

22
6

where LAC1 is the inductance at AC current of 0.2 [A] without 
DC bias, LAC2 is that inductance under DC bias current of 1 
[A], W [mm] and H [mm] denote the radius and height. The 
finite element analysis taking the nonlinear BH relations into 
account is performed for computation of LAC1 and LAC2. The 
constraint condition is Y1   Y2  Y3, and the range of 
parameters is 0 < X1 < 2, 0.5 < X3 < 4, 1 < Y1 < 4, 1 < Y2 < 
5, 1 < Y3 < 5 [mm]. 



 

IV. OPTIMIZATION RESULTS 
Table I and Figure 2 summarize the best solutions obtained 

by the IA and -GA. We can see that the inductor volumes in 
the optimal solutions are around 55% of the original model. 
Moreover, these optimal solutions have similar tendencies: 
low height (Y3), wide width (X2), and fat radius of core (X1). 

We manufacture a trial piece shown in Fig. 3(a) based on 
the solution obtained by IA to test reliability of numerical 
analysis. Figure 3(b) shows that the numerical results are in 
good agreement with the experimentally measured results.  

 We also performed topology optimizations which result in 
finding a novel shape. It will be discussed in the full version. 

 
TABLE I OPTIMIZATION RESULTS 

Method Value 
of f 

LAC1 

(H) 
LAC2 

(H) 
Volume ratio against the 

original model (%) 
IA 2.71 100.03 80.11 55 

-GA 2.74 99.99 82.54 56 

(b) IA(a) original 

(c) -GA 
Fig. 2. Optimized shapes and flux distributions. 
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Fig. 3. Numerical and experimentally measured results. 
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Abstract — This work presents results of a multiobjective 

approach for optimization of design parameters of Mach–

Zehnder lithium niobate modulators with additional floating 

electrodes. This process uses a genetic algorithm to search for 

geometrical parameters of the modulators and their 

characterization is performed by the finite-element method. The 

multiobjective approach is based on the weighted sum method in 

order to mapping the Pareto frontier, optimizing simultaneously 

three characteristics of a modulator. 

I. INTRODUCTION 

Mach-Zehnder modulators made of titanium diffused 

lithium niobate (Ti:LN) substrate with traveling-wave 

electrodes present low bias drift and large electrooptic 

coefficients [1], and technological advances in this kind of 

devices have produced high-quality LN modulator components 

for use in many sectors of the society. 

A LN modulator can be characterized, in a quasi-static 

regime, by the analysis of the some electrical characteristics 

such as: the characteristic impedance (Zc), the half-wave 

voltage (V), the effective index of the microwave (Nm) and 

the driving power for the modulator (Pin), which depend on a 

large number of parameters. Stochastic methods are often 

employed in optimization techniques to analyze the effects of 

the geometric parameters, which affect the characteristic of 

these devices. These methods present good trade-off between 

the quality of the solution and the processing time.  

However, to treat multiobjective problems, in which more 

than one characteristic have to be optimized at once, specific 

optimization techniques have been developed to reduce time 

development, analyzing different models and are able to 

choose the most convenient models. 

II. THE MACH-ZEHNDER MODULATOR 

The cross-section of a Mach–Zehnder modulator with 

CPW is presented in Fig.  1. Three extra floating electrodes 

are included under the main electrodes and deposited on the 

LN substrate without electrical contacts with any other part of 

the device. The purpose of these extra electrodes is to apply 

the available RF voltage directly across the indiffused optical 

waveguides, increasing the coupling between electric field and 

optical field. The expected result is to improve modulation,  

reducing the required RF input [2]. In this figure, Tb is the 

thickness of the buffer layer, Te is the electrode thickness, G is 

the gap between the hot electrode and the ground electrode, 

WH is the width of the hot electrode and g is the gap of the 

floating electrodes. 

Fig. 1. Cross sectional structure of a X-cut floating electrodes LN modulator.  

III. CHARACTERIZATION OF A MODULATOR 

The modulation of the LN modulators is produced by a 

voltage-induced change in the refractive index. To change this 

index, either large voltages or long electrode lengths are 

needed to obtain an adequate modulation. A useful figure of 

merit for modulation is the product of the half-wave voltage 

(V) and the electrode length (L). By using traveling-wave 

electrodes, in which the electrical signal propagates along the 

same direction as the optical wave, much higher bandwidths 

can be obtained, but they are limited by the mismatch between 

the electrical and optical propagation constants. 

Other electrical characteristics of the modulator, which are 

determined from the microwave propagation (electromagnetic 

wave) characteristics of its electrodes, are the effective index 

of the microwave Nm, the characteristic impedance Zc and the 

driving power for the modulator (Pin). These characteristics 

can be calculated by using quasi-static analysis. Simple quasi-

TEM analysis using scalar potential function can be performed 

using the Finite-Element Method which is capable of handling 

transmission lines with rather arbitrary configurations, such as 

thick metal electrodes, ridge type structures, besides the 

anisotropic permittivity of the LN [3]. 

Several parameters, as cited in section II, have to be 

analyzed in order to obtain a modulator model that satisfies the 

required performance, using a lossless quasi-static analysis. 

IV. DESIGN OPTIMIZATION APPROACH 

An optimization problem consists of finding one or more 

solutions (usually the best ones) from all solutions in a feasible 

region which correspond to extreme values, minimum or 

maximum, of one or more objectives. Some basic factors in 

this type of problem are an objective function, which it is 

intended to minimize or maximize; a set of variables, or 

parameters, which affect the value of the objective function 

and, a set of constraints that allow some values for the 

variables and exclude others. 
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6. OPTIMIZATION / 15. PHOTONICS AND OPTOELECTRONICS 

A stochastic method, the genetic algorithm – GA, is used in 

this work for the design optimization process. GA's have been 

widely applied for optimization and for inverse problems in 

several areas. GA's mimic the survival of the fittest individual 

among competing organisms [4]. 

Multiobjective optimization aims the optimization of more 

than one characteristic of the problem. In this case, there is one 

objective function for each characteristic to be optimized. It is 

desirable to identify a set of solutions known as Pareto-optimal 

solutions in which each optimal solution corresponds to a 

particular trade-off of the different objectives [5]. The 

multiobjective optimization tries to find as many optimal 

solutions as possible. Many of the solutions obtained by the 

GA are going to be on the Pareto front, the line formed by the 

optimal solutions. An approach to find the Pareto-optimal 

solutions that compose the Pareto-optimal front is the weighted 

sum method. This method compose a multiobjective function 

F(x) by performing the weighted sum of the objective 

functions fi(x) of each characteristic to be optimized. The 

multiobjective optimization is converted to a single objective 

optimization, as follows: 

  

  (1)  

 

where x is the parameters vector that defines the modulator 

geometry and wi is the weight of the n-th objective function. 

V. RESULTS 

In a previous work [3], the weighted sum method was used 

to performed multiobjective experiments in order to optimize 

two characteristics at a time of a conventional and a floating 

electrodes LN modulators.  

In this work, three design parameters, the gap (G) and the 

thickness (Te) of the electrodes and the gap (g) of the floating 

electrodes were encoded in the individual chromosome, to 

obtain preliminary results of the optimization for three 

characteristics at a time for the floating electrodes LN 

modulator, that are: the V L, Zc and Nm. The optimal value for 

the first characteristic is 0 Volts, while the optimal value for Zc 

is the impedance of commercial microwave sources, namely 

50  and the optimal value for Nm is No (2.142), the effective 

index of the optical wave. Also, a constraint was defined: a 

penalty term added to the objective function, if the calculated 

electric field between the electrodes and the air exceeds a 

threshold value. For all configurations analyzed in this work, 

the calculated electric fields were bellow the adopted threshold 

(1.0E6 V/m). 

The minimization of the three respective objective 

functions yielded the Pareto-optimal solutions presented in 

Fig.  2. The points of the Pareto frontier, obtained from each 

set of weight wi, were plotted on a surface graph. In order to 

illustrate the differences of the obtained configurations, two 

regions (A and B) are pointed. The region A includes the 

matching of the characteristic impedance, ZC values near 50 , 

but with penalties in the V and Nm. Otherwise, in region B, it 

is obtained excellent values of V and Nm but mismatching Zc. 

Notice that for this region small driving power are obtained, 

despite the mismatch of the characteristic and source 

impedance. Despite possible losses caused by reflection of 

electromagnetic wave, resulting in a decrease in a bandwidth, 

this type of configuration of modulator may be of interest for 

operation in environments with limited energy source and to 

operate the device at small frequencies. Tables I and II present 

the values of characteristics and geometric parameters, 

respectively, for two configurations of modulators, obtained in 

the regions cited above. 

 

 

Fig. 2. Surface graph of the solutions for Zc, V and Nm characteristics for 

floating electrodes modulators. 

 

TABLE I 

CHARACTERISTICS OF THE FLOATING ELECTRODES 

MODULATORS NAMED A AND B IN FIG. 2 

region Zc () V.L (V.cm) Nm Pin (W.cm2) 

A 49.75 32.21 2.178 2.59 

B 15.10 3.96 2.148 0.055 

 

TABLE II 

GEOMETRIC PARAMETERS OF THE FLOATING ELECTRODES 

MODULATORS NAMED A AND B IN FIG. 2 

region G (µm) Te (µm) WH (µm) g (µm) 

A 35 28 6 35 

B 5 17 36 5 
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Abstract— In this paper, a layering analysis scheme for
reconstruction of deep Stress Corrosion Cracks (SCC) from ECT
signals is proposed based on a strategy of multi-frequency and
multiple liftoff in order to improve the sizing accuracy. The shape
profiles and conductivity of the crack are reconstructed
respectively using a hybrid inversion scheme. The profiles of
several cracks are reconstructed from simulated signals of
conductive notches and measured signals of artificial SCC. It is
demonstrated that the new strategy is promising for improvement
of the sizing precision.

I. INTRODUCTION

Sizing of Stress Corrosion Cracks (SCC) is an important
task once such kind of defect is detected in key structural
components of a nuclear power plant in order to evaluate its
propagation behaviors. Ultrasonic Testing (UT) is a major
NDE tool for this purpose currently. However, UT is not
efficient especially for shallow SCC because of their
complicated microstructures [1] and the anisotropic property
of welding joint. As a supplement of UT, the Eddy Current
Testing (ECT) technique has been applied to the
reconstruction of several kinds of natural cracks including
some SCC recently [2]-[4]. For a deeper SCC, however, the
reconstruction accuracy is still not satisfactory even using the
conductive crack model, because the crack conductivity and
shape may significantly change at different crack depth.

In this paper, a scheme to improve the ECT inversion
accuracy for a deep SCC is proposed, which reconstructs crack
profile at different depth with signals of different excitation
frequencies and liftoffs. Several cracks are reconstructed to
demonstrate the efficiency of the new strategy for sizing of
artificial SCC.

II.A LAYERING ANALYSIS SCHEME USING SIGNALS OF

MULTIPLE FREQUENCY AND LIFTOFF

The eddy current density exponentially decays with the
perpendicular distance from the conductor surface because of
skin depth effect. Therefore, higher excitation frequency gives
a better possibility to detect surface small defect. On the other
hand, the ECT signals of high excitation frequency contain less
crack information from deeper position. It is an issue that
deserves to be weighed between improving the detection
sensitivity and the penetration depth of ECT. Recently, the
potential of using multi-frequency eddy current technique for
nondestructive testing applications has been explored [5]-[7].

On this background, a layering analysis scheme for
reconstruction of a deep SCC is proposed based on multi-
frequency excitation and multiple liftoff strategy in order to
improve the sizing accuracy of SCC in this paper.

A. Crack Reconstruction using Multi-Frequency Signals

Since the signal of high excitation frequency mainly depends
on crack profile at the near surface layers, more information of
crack at deeper position will appear in signals of smaller
excitation frequency. Therefore, if crack profile at the surface
layers has been reconstructed properly by using signals of high
frequency, a signal of smaller frequency is more suitable for the
reconstruction of the crack profile at deeper layers. In this way,
the sizing accuracy is possibly to be improved by using signals
of multiple frequencies based on this layering analysis scheme.

B. Reconstruction Using Multiple Liftoff Signals

There is certain error using above-mentioned layering
analysis strategy as the crack conductivity reconstructed of
upper layers is an equivalent result .In order to reduce the
cumulative error further in the layering analysis, a multiple
liftoff strategy is also introduced. The strategy is based on the
phenomenon that the proportion of crack information from the
deep layers is bigger for the signals of large liftoff than that of
a small liftoff. Therefore, for the reconstruction of crack
segments in the upper layers, signals of smaller liftoff should
be applied, while the signals of larger liftoff is more suitable
for reconstruction of crack segments at deeper layers. Together
with the multi-frequency strategy, further improvement on the
accuracy of SCC reconstruction can be expected.

C. Layering Analysis Strategy for SCC Reconstruction

In practice, the layering analysis strategy is realized as
follows. The inspection target is divided into a group of layer
segments (see Fig. 1), where the crack conductivity and length
are supposed as different values in each layer. The depth of each
layer is set as a constant value referring to the skin depth of the
selected highest excitation frequency. As the crack width and the
crack conductivity affect the crack signal together [8], the crack
width is supposed as a constant for all crack segments, which
will be estimated based on the signal of high frequency, i.e., the
reconstructed crack conductivity will become an equivalent
parameter. The crack profile of the top layer is predicted by
adopting ECT signals of high frequency and small liftoff using
the conventional ECT inversion scheme [9]-[10]. By utilizing
crack information reconstructed at top layers, the crack profiles
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Signals of Multiple Liftoffs
Li Wang and Zhenmao Chen
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6. Optimization

of deeper layers can be evaluated efficiently by using signals of
lower frequency and bigger liftoff. The multiple frequencies and
liftoffs inversion strategy is illustrated in Fig. 2. Based on the
proposed inversion strategy, profiles of several conductive
cracks are reconstructed from the simulated ECT signals. The
numerical results show that the proposed strategy can improve
the sizing precision of SCC.

Fig. 1. An example of selected frequency and crack layers

Fig. 2. Layering analysis and multiple frequencies and liftoffs strategy

III. ACOMBINATORIAL INVERSION SCHEME FOR CRACK

Concerning the significantly different effects of crack
conductivity and shape on the crack signal, it is not efficient to
solve them by using the same inversion scheme. Hence a hybrid
scheme of the Conjugate Gradient (CG) method and the
advance-retreat algorithm [11] is applied.

IV. A NUMERICAL EXAMPLE

To validate the proposed scheme, cracks in a SUS 316 plate
of 5 mm thickness (conductivity 1.4 MS/m) is taken as examples
to be reconstructed. A small plus-point coil (inner diameter 4.5
mm, outer diameter 5.5 mm and thickness 2.0 mm) and a big
plus-point coil (inner diameter 7.5 mm, outer diameter 12.5 mm
and thickness 2.5 mm) are applied as the inspection probe, while
excitation frequencies are chosen as those shown in Fig. 1 for
each layer, i.e. the thickness of each layer is 0.5 mm.

To establish the database for the fast forward solver, the
selected possible crack region (search region) is taken as 16 mm
in length, 5 mm in depth and 0.2 mm in width, and subdivided
into 120 (6×10×2) crack cells.

A rectangle conductive crack of 4.5 mm depth, 14 mm in
length is reconstructed from the signals of multiple excitation
frequency and multiple liftoff at first. The reconstructed crack
depth is 4.48 mm by using the new strategy, while the result is
3.75 mm with the conventional method (see Fig. 3). This result
shows that the proposed strategy gives a good possibility to
improve the sizing precision for a deeper SCC. Results using
experimental signals will be presented in the full paper.

Fig. 3. Comparison of results reconstructed by using multi-frequency and
multiple liftoff scheme for a rectangle conductive crack model
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Abstract — This paper presents and analyzes in detail a 
evolution strategy (ES) assisted by Kriging metamodeling to pre-
select the most promising solution. The role of Kriging 
metamodeling is to predict objective function value for new 
candidate solution by exploiting information recorded during 
previous generations. The use of promising solution for screening 
the candidate solutions makes it possible to significantly reduce 
the computational cost of ES. The efficiency and usefulness of 
proposed method are verified by means of mathematical test 
cases.

I. INTRODUCTION

Evolution Strategies are excellent optimization tools for 
solving complex parameter problems where classical 
deterministic methods are known to have failed   [1]. However, 
like other population based algorithms they require a very 
high number of fitness function evaluations.  

The cost of optimizing expensive problem is dominated by 
the number of fitness function evaluations in order to reach a 
global optimum with adequate precision. Therefore, standard 
ES is not practical for such application. 

ES using computationally expensive evaluation may 
reduce the cost through metamodeling [2]. Metamodel should 
be understood as surrogate evaluation model that is built by 
exploiting information of evaluated individuals [3]. This 
information can be used to adapt the recombination and the 
mutation operator in order to sample promising offspring. 
Evaluated individuals are obtained during one or more 
generations of ES and the algorithm can get back once more to 
the true fitness function for updating the metamodel with 
newly evaluated points expected to be closer to the global 
optimum. Therefore, the prediction quality generally improves 
with a growing number of evaluated points in the optimization 
process.

From the various existing modelisation methods, Kriging 
is chosen since it is more suitable for the design and analysis 
of computer experiments (DACE).    

In this paper, Kriging replaces the objective function 
during the optimization process and decreases the number of 
expensive fitness evaluations which results in a better 
convergence rate of the algorithm. 

II. PROPOSED ALGORITHM

As stated briefly in the Introduction, the main feature of 
proposed algorithm is the reduction of fitness function 
evaluation by Kriging-metamodel assisted ES (KAES). The 
proposed method adopts the concept of elite which stores 
superior solution. The element of the elite is replaced with 

much superior or improved solution during the optimization 
iteration.  

Total process of the proposed algorithm is as follows : 

A. Step 0 - Initialization  
a)  Initialize αmin, αmax, αinit for each design variable. 
αmin The minimum variation of design variable.  

This factor controls the convergence rate. 
αmax The maximum variation of design variable. 
αinit Initial value for αi.
αi Evolution range of the ith design variable.  

If the ith individual is pi, the child generation is 
generated within [pi-αi, pi+αi] where αmin < αi < αmax.
This factor is modified during the generation except 
at the starting time. 

b) Create  initial population by (1)-(2) and save in a database 

,  0.5 < δ < 1.5,                 (1) δ))((
1
∏
=

−=
n

i
ii abn

ai < xi < bi, i = 1,…,n,                         (2) 

n The size of initial population. 

xi xi means the ith design variable. 

δ According to the problem characteristic and the design 
variable of range, δ can be adjustable.
In the KAES, since the convergence ratio is decisively 
dependent upon the fitness landscape by initial sample
s, an adequate selection of δ is essential. 

B. Step 1 - Generation of initial parent set 
Among initial population with n individuals, μ solutions 

are selected as members of the initial parent set. Those are 
determined by following rules. 
a) Put the currently best  solution into the parent set  and   

check the position of the best solution. 
b) Find another best solution except the checked position and 

repeat a) until μ elite solutions are found. 

C. Step 2 - Generating Children 
Make new λ children within evolution range. 

D. Step 3 - Annealing  
If the current elite solution is improved compared to prior 

generation, the evolution range is increased by dividing 0.8. If 
the elite solution is not improved, the evolution range is 
decreased by multiplying 0.8. 

E. Step 4 - Shaking 
Random solution is generated in the whole search space. 

In standard ES, since a high shaking ratio drops the 
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convergence rate, the ratio is decreased generally according to 
convergence degree. However, in case of the KAES, since the 
random solutions improve overall quality of the fitness 
landscape, the shaking ratio is increase in proportion to 
optimization iteration. 

F. Step 5 - Reshaping 
a) Update check 

The metamodel is continually updated using the new datas 
obtained during iteration that does not satisfy the convergence 
criterion [4]. One drawback of the Kriging Interpolation with 
a growing number of samples is a computational cost. Then, 
we adapt the reconstruction algorithm to probable behavior of 
the evolutionary algorithm. It is assumed that the set of data 
points obtained in the early stages are weakly correlated with 
the global optimum and that those obtained in later 
generations are better and better correlated. Therefore, a 
reasonable strategy is to use a high value of p reshape 
probability in the early stages of iteration and to reduce this 
value near to zero in the later generations. The proposed 
reconstruction method is hence : 

max

(1 )
gp r

g
ω= − < 1,                         (3) 

0 <  < 1,                                   (4)r

0 < ω < 1,                                   (5) 

where  is the random number, gmax is the maximum number 
of generation allowed and ω is the control parameter. Because   
the reconstruction algorithm depends on ω control parameter, 
an understand on the influence of this parameter would be 
necessary.

r

b) Mean square error check 
If the prior model is updated by the reconstruction 

algorithm, we search the best promising solution in the new 
fitness landscape and examine local mean square error (MSE) 
at that position. If a candidate solution has more MSE than 
specified criterion, the algorithm scatters samples near the 
candidate solution and repeats until lower than basis. 

G. Step 6 - Convergence check 
Repeat A - G until the solution is not improved any more. 

III. NUMERICAL TEST AND RESULT

The proposed algorithm was applied to the optimization of 
the mathematical function. Fig. 1 and Fig. 2 show two 
examples of the test functions and optimized results. From the 
figures, we can see that the results show very fast convergence 
speed and the proposed method is very efficient to find the 
global optimum. 

IV. CONCLUSION

In this paper, an algorithm of the ES for the reduction of 
fitness function evaluation was proposed. The algorithm is 
based upon combination of the evolution strategy and the 
Kriging metamodeling. The usefulness of the proposed 

method was verified by the application to various test 
functions. 
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(a) Test function (b) Initial sample

(c) Iteration 0 (d) Iteration 7
Fig. 1. Optimization result for a test function(n = 41, μ = 2, λ = 2) 

(a) Test function (b) Initial sample 

(c) Iteration 0 (d) Iteration 21 
Fig. 2. Optimization result for a test function(n = 64, μ = 2, λ = 2) 
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Abstract — This paper treats a level set method for topology 
optimization of electrostatic actuator. The classical shape 
optimization has meshing problem for shape change. To 
overcome this difficulty, the level set method is employed because 
of its efficient representation of evolving geometry. The velocity 
field is required for solving the level set equation of Hamilton-
Jacobi equation and it is obtained by the continuum shape 
sensitivity in a closed form by the material derivative concept. 
The optimization problem is modeled as coupled system of 
Poisson’s equation and the level set equation and they are solved 
using a standard FEM in time domain. The design goal is to 
obtain a maximum torque for operating actuator. A result of 
optimal shape and topology of the salient pole actuator is 
presented. 

I. INTRODUCTION 
The classical shape optimization has been applied to many 

design problems for electromagnetic systems. One of its major 
difficulties is related the meshing problems coming from the 
shape modifications. In order to circumvent this kind of 
technical difficulties of the moving mesh problems, a couple 
of researches have tried to formulate shape optimization with 
fixed mesh analyses based on fixed grid finite elements. This 
approach was naturally associated with the Level Set 
description of the geometry to provide an efficient treatment 
of such problems involving geometry change and 
discontinuities. The level set method is a numerical technique 
first developed to track moving interface. It was first devised 
by Osher and Sethian [1] and has been recently introduced in 
the field of structure shape optimization [2],[3]. The level-set 
method has several advantages. Its main advantage is to 
enable an accurate description of the boundaries on a fixed 
mesh. Therefore it provides with fast and efficient numerical 
algorithms. It can also handle topological changes since it 
allows the boundary in a natural way to split apart or merge 
together with no extra technique by controlling the level-set 
function of a Hamilton–Jacobi equation. Such treatment of 
topological change can transform the difficult topology 
optimization problem into a relatively easier shape 
optimization problem. In this paper, we apply the level set 
method to a topology optimization of electrostatic actuator 
using continuum sensitivity [4],[5] for the velocity field that is 
inserted into the Hamilton–Jacobi equation for the level set 
function. The goal of actuator design is to generate maximum 
torque operation. The numerical algorithm is implemented 

with a standard finite element procedure. 

II. LEVEL SET METHOD 
We employ the level set method to define evolving 

boundaries since it provides a convenient way to describe 
closed interfaces of curves and surfaces. The level set function 
is expressed in an implicit form of a high dimensional 
function, and then the boundary changes are traced by the 
deformation of this function. In shape optimization, the design 
boundaries are changed to minimize or maximize an objective 
function. 

Generally, for a given region Ω  with arbitrary boundary, 
we assume the implicit function )(xφ as 

+Ω∈> xx 0)(φ         : free space 
Ω∂∈= xx 0)(φ        : boundary (1) 
−Ω∈< xx 0)(φ         : dielectric 

To compute an evolving domain, one can define the function 
and determine the evolution of domain −Ω  via 

{ }0),()( <=Ω− tt xφ . (2) 
The boundary )(tΓ of  )(t−Ω is given by the zero level set,  

{ }0),()( ==Γ tt xφ  (3) 
The evolution of the shape is determined by a velocity V .  

)),(()( tt
dt

td xVx
= , (4) 

Since the zero level set holds at any time t , its total derivative 
is expressed by using an Eulerian formulation and chain rule 
as 

0|| =∇+
∂
∂ φφ

nV
t

 (5) 

This is called Hamilton-Jacobi equation and the level set 
function is determined by solving it. The velocity V  has to be 
given depending on each objective of design problem. 
 

III. OPERATION OF ELECTROSTATIC ACTUATOR 
Fig. 1 shows the initial shape of electrostatic actuator with 

16 electrodes around the dielectric materials. The actuator is 
driven by switching the voltages clockwise. The initial shape 
of actuator is given 19 dielectric regions that will be 
topologically modified to generate maximum torque.  
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6. OPTIMIZATION 

 

IV. FORMULATION OF OPTIMIZATION PROBLEM 
To generate maximum torque, the electrostatic energy of 

switching A position must be maximized and be minimized at 
switching B position. In other words, the energy difference 
between two positions is maximized. Therefore an 
optimization problem in this case can be defined as 

Maximize : )( BA WWF −=  
Subject to :  (6) 

 )(/2 φερ−=∇ V   : electric field equation 
*)( SdH =Ω∫Ω φ    : constraint of constant area 

where the design domain is represented by Ω . The Poisson 
equation for electrostatics is used to calculate the electric 
scalar potential V  and the electric permittivity ε  is determined 
by using 

01 ))(1()()( εφφεφε HH −+=  where 
1ε  is the material 

permittivity and 
0ε  is the permittivity of free space.  

Design variables are the movable boundary between 
dielectric and free space. The design boundary Ω∂  is 
represented using the level set function such that 

0),( =txφ   : zero level set (7) 
The velocity field determines shape variation and it results in 
variation of the objective function through the Poisson's 
equation.  In order to impose a constraint condition of 
constant volume, the velocity field is modified from  

nV  to 
nV̂  

using Lagrange multiplier technique as 

0
ˆ VVV nn −=      where ∫∫ ΓΓ=

γγ
ddVV n /0

 (8) 

 

V. CONTINUUM SENSITIVITY ANALYSIS FOR SHAPE 
DERIVATIVE 

The total derivative of any objective function in 
electromagnetic systems can be derived in a closed form using 
the material derivative concept of continuum mechanics and 
an adjoint variable technique.  

Firstly, the continuum sensitivity formula of switching 
position A is represented as   

∫ Γ=
γ

λ dVVG
dt
dF

nAA ),(  (9) 

where 

[ ])()()()(1),( **
2

**
1

2

1 λελε
ε
ε

λ ttnnA EVEEVEVG +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=  (10) 

  
nAV  the normal component of the velocity field vector, λ  an 

adjoint variable, γ  design boundary. 
The sensitivity of switching A position represents the 

relation between the objective function and the velocity field. 
If the velocity field is taken as 

),( λVGV AnA =     :  switching A position, (11) 
the system energy will increase since it is in a gradient 
direction. Also, if the sensitivity of switching B position is 
chosen as 

),( λVGV BnB −=     :  switching B position, (12) 
the system energy will decrease. The velocity field is inserted 
into the level set equation (5) in order to obtain a maximum 
torque of electrostatic actuator. 

0||)],(),([ =∇−+
∂
∂ φλλφ VGVG

t BA
 (13) 

Here we can see that the iterative optimization procedure 
is transformed to a first-order PDE in time domain. 

VI. NUMERICAL RESULTS 
In order to generate a maximum torque, the difference of 

the electrostatic system energy between two voltage switching 
positions has to be maximized. Numerical results showed that 
the proposed algorithm produced the optimal shape and 
topology of the salient pole actuator without previous 
information of dielectric layout as in Fig. 2. 
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(a) Switching A                      (b) Switching B 

  
Fig. 1. Initial shape of electrostatic actuator containing 19 dielectric regions.
Voltage switching position of (a) maximizing and (b) minimizing an
electrostatic energy. 

     
 (a)                                        (b)  

 
Fig. 2. (a) Final shape of dielectric area and (b) electrostatic energy variation
with time. 

333

 



6. OPTIMIZATION 

Abstract — The objective of this research is the 
electromagnetic characterization of biological tissues in 
radiofrequency domain. In this aim, a measurement bench 
including a vector network analyzer and an open-end coaxial 
probe was introduced. The complex permittivity identification of 
the middle under testing is performed by solving an inverse 
problem. A quadratic fitness function that represents the 
difference between reflection coefficient measurement and 
reflection coefficient acquired with the normalized aperture 
admittance is minimized. The optimization is based on a heuristic 
algorithm: particle swarm. The approach is validated on well 
known dielectric middle and then tested on biological tissues. 

I. INTRODUCTION 
Numerical simulations of electric field distribution in the 

human body exposed to radiofrequencies waves require the 
knowledge of dielectric tissues properties [1]. In the 
radiofrequency domain, several experimental techniques can 
be used for measuring permittivity (ε*=εr–iεi=εr+iσ/ε0ω): free 
space, resonant technique, transmission/reflection line and 
open-ended coaxial [2]. In our study, the open-ended coaxial 
probe has been selected for its suitability for liquid or soft 
materials such as biological materials without specific 
preparation. Temperature can be easily controlled and after the 
bench calibration several samples can be rapidly treated. This 
point is crucial since biological samples can be easily altered 
or desiccated. The bench measurement provides an electric 
Scattering (S) parameter or reflection. The permittivity is 
identified on the base of an inverse method that using Particle 
Swarm Optimization (PSO) procedure for minimizing the 
quadratic difference between the measured and the calculated 
reflection from a direct model. In the first part, the global 
procedure measurement is described and the method to 
identify the permittivity of the Middle Under Testing (MUT) 
is exposed. In the second section, the proposed approach is 
validated on MUT known and then tested on biological 
tissues. 

II. PROCEDURE 
The characterization contents two parts, the reflection 

coefficient measurement from probe aperture/MUT interface 
and the identification of permittivity from the reflection 
coefficient measured. A sensitivity analysis has been 
performing so as to optimize the experiments. Calibration, 
sensitivity and identification procedure are in C-language. 

A. Measurement bench and calibration 
The experimental radiofrequency bench is composed of a 

Vector Network Analyzer (VNA), an open-ended coaxial 

probe and an optical fiber thermometer. The probe is a semi-
rigid coaxial line (UT85) mounted on a N connector. The 
probe is 200 mm long, inner and outer radius are respectively 
a=0.255mm and b=0.84mm. The reflection coefficient (S11 
parameter) of the MUT is obtained with VNA in the frequency 
range fixed (0.5 to 4 GHz) and for each frequency imposed by 
the linear step. 

To determine the correct reflection coefficient of MUT, it 
is necessary to apply to the measured parameter *

m,11S
 
some 

correction coefficients [3]. These coefficients are obtained 
from three additional measurements, on well known middles, 
respectively j=short circuit ( 1S*

m,11 ), air (εr=1, εi=0) and 
de-ionized water (εs=25, ε∞=4.3, τ=170ps) (1). The corrected 
S11,c,MUT is then calculated for each frequency (1). 

*
S

*
R

D
*

j,c,11

j,c,11

j,m,11 SE1

SE
ES        (1) 

B. Inverse problem 
The identification of the MUT permittivity is based on the 

normalized aperture admittance [4]: 

b

a

b

a 0

232

*
0*

d.d.d.cos
6

rk
icos

2

rk
cosik

r

cos

a/bln

2i
Y

    (2)             

with *
00k  , the propagation constant for the MUT, 

cos2r 22  , the distance between the source 
point and the field point, ρ' and ρ are respectively the radial 
coordinates of these points at the aperture of coaxial probe. 
The reflection coefficient is related to the normalized probe 
admittance (3) with Y0=1/50. 

*
0

*
0*

adm,11
YY

YY
S          (3) 

The Fitness Function (FF) to minimize is given by (4).  
2

*
MUT,c,11SIm

*
MUT,c,11S*

adm,11SIm
2

*
MUT,c,11SRe

*
MUT,c,11S*

adm,11SRe
FF (4) 

This minimization problem is solving with PSO technique. 
PSO involves simulating social behavior among individuals 
(particles) “flying” through a multidimensional search space, 
each particle representing a single intersection of all search 
dimensions [5]. Particles in a swarm move in discrete steps 
based on their current velocity, memory of where they found 
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6. OPTIMIZATION 

their best fitness value, and a desire to move toward where the 
best fitness value was found so far by all of particle during a 
previous iteration (Fig. 1). Each particle has a position and a 
velocity: their values are randomized initially. The position 
with highest fitness score in each iteration is set to be the 
entire swarm’s global best (gbest) position, towards which 
other particles move. In addition, each particle keeps its best 
position that it has visited, known as the particle’s personal 
best (pbest). Each particle n of the swarm is defined as a 
potential solution to the problem. 
 

 
Fig.1. The Particle Swarm Optimization algorithm. 

 

The particle dynamics are governed by the following rules 
which update particle positions xn and velocities:  

t

xgbest
2randc

t

xpbest
1randcwvv n

2
nn

1nn  
(5) 

After a new velocity for each particle, the position is 
calculated according to tvxx nn1n . Where xn is the 
current position of particle n, t the time step equal to 1, xpbest 
is the best position attained by particle n, xgbest is the swarm’s 
global best position, vn is the velocity of particle n, w is a 
random inertia weight, c1 and c2 are two positive constants, 
called the social and cognitive parameter, rand1 and rand2 are 
random numbers between 0 and 1. 

III. VALIDATION AND RESULTS 
All the measurements presented in the following are 

realized on MUTs at 23°C for 1 000 frequencies linearly 
spaced. The swarm size is fixed to 10 particles. In a purpose of 
comparison an ethanol MUT has been tested and our proposed 
approach has been compared to Debye model (6) with these 
parameters ε∞=4.3, εs=25 and τ=170ps (Fig. 2). 

i1
)( s*            (6) 

Validation results are presented, a good agreement is found 
between the Debye model and our model approach results, the 
impact of calibration is also studied (Fig. 2). Then our 
approach is used on pork skin tissues (Fig. 3), since a 
sensibility analysis with reduced sensitivity functions has 
shown the ability to easily identify both imaginary and real of 

the permittivity in the range of frequencies by using the 
imaginary part or the phase of the reflection coefficient. 
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Fig.2. Validation on ethanol sample with and without calibration. 
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Fig.3. Complex permittivity of pork skin tissues. 

IV. CONCLUSIONS AND PERSPECTIVES 
Several perspectives of this work are considering. Firstly, a 

comparison in term of efficiency between the Levenberg 
Marquardt and the genetic algorithm will be done with 
application of the sensitivity conclusions. Secondly, the mono-
layer approach presented in this paper will be enhanced for 
applications on bi-layered or multi-layered MUT and thirdly a 
micro coaxial probe will be developed. 
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Update global best 
if(FF(x)>FF(gbest)) 

Update personal best 
if(FF(x)>FF(pbest)) 
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While termination 
condition is not meet 

(Maxiter) 

Initialize population with random position and velocity 
vectors 
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Abstract—his paper studies the relevance of features in time-
and frequency-domain given a scattered Ground Penetrating
Radar (GPR) wave. This wave is used to identify inclusions,
such as reinforment bars and fissures, in concrete structures.
The right choice of features is fundamental to the design of
intelligent machines to support the detection, qualification and
quantification of fissures. This work analyses the problem of
classifying the material inside a concrete structure, which may
be conductor, water or air. Both noiseless and features selected
given a white Gaussian noise are considered. Many features were
extracted and those selected are presented, indicating that the
features in the frequency-domain are the most relevant.

Index Terms—Ground Penetrating Radar, Inverse Problems,
Noise, Neural Networks, Multiobjective Training Algorithms.

I. INTRODUCTION

As existing concrete structures age, effective inspection has
become a greater issue due to environmental, economical
and socio-political aspects. Virtually all concrete structures
exposed to natural environments experience deterioration over
time. Consequently, passive concrete facilities will have to
demonstrate that they are capable of continuing to fulfil their
intended function with an adequate level of safety when
seeking to extend their operating life. Better ways of doing this
evaluation can avoid tragedies and decrease maintenance cost.
This paper is based on the use of Ground Penetrating Radar
(GPR) techniques together with machine learning techniques
to support the detection of faults in a non-destructive way.
This is known as one of the best options to detect fissures in
concrete structures [1]. Even though the reflected wave ampli-
tude is a good feature to detect the presence of inclusions, it
is not sufficient to determine properties such as its geometry.

In [2] it was empirically proposed the use of three features
to train a Neural Network (NN) classifier. Even though they
proved useful in a homogenous problem, they were not suc-
cessful when non-homogenous host media were considered
[3]. The non-homogenous medium is a better representation
of a real concrete structure but it brings more variables to
the problem. The most important problem when working with
many variables and NN is the difficulty to process the vast data
set in high-dimensional space. The Parallel Layer Perceptron
(PLP) network [4] was applied as the main classifier in [3].

The approach presented here is to use the feature selection
algorithms, Simba and Relief [5], to select parameters from a
scattered GPR wave. These are based on the concept of margin

to define the relevant features of the data. Both algorithms have
selected similar parameters as the most important, and these
are presented. The inclusions were considered to be conductor,
water or air given both noiseless and noisy situations. The
results show that features in the frequency-domain are the most
relevant and that they are also more robust in the presence
of noise than those in the time-domain. The purpose of this
work is to increase the level of information extracted in
the non-destructive evaluation of concrete structures by using
intelligent systems and electromagnetic field computation.

II. FEATURE SELECTION

Feature selection (also known as subset selection) is a pro-
cess commonly used in machine learning, wherein a subset of
the features available from the data are selected for application
of the learning algorithm. The best subset contains the least
number of dimensions that most contribute to accuracy; we
discard the remaining, unimportant dimensions. This is an
important stage of pre-processing and is one of two ways of
avoiding the well known curse of dimensionality (the other
is feature extraction). Feature selection is, therefore, the task
of choosing a small subset of features which is sufficient to
predict the target labels. This step is fundamental to build
reliable classifiers.

Feature selection aims at choosing for a given data set a
sub-set which can capture the relevant information. The choice
of features is important to avoid the curse of dimensionality
and, therefore, guarantee good convergence of the learning
machines. It can also provide some understanding concerning
the nature of the problem, as it indicates the main physical
properties needed to classify an underground target.This paper
will consider feature selection algorithms based on the filter
model to feature selection, Relief and Simba [5]. In this case
the feature selection is a type of pre-processing, using some
pre-defined cost function, suchh as the separation margin of
classes.

III. THE GPR PROBLEM

For radar assessment of concrete, the objective is to de-
termine the features needed to characterize inclusions in a
dielectric slab by identifying electrical (permittivity and con-
ductivity) and geometrical (depth and radii) properties. The
computation of the electric field is done by the FDTD method
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as forward solver. A data set obtained with a FDTD model with
1071 samples of the reflected wave from cylindrical inclusions
buried in a non-homogeneous concrete model was considered
[3]. The depth was defined in the range [0.05:0.010:0.25]m
and the radius [0.02:0.005:0.1]m. Water, air and conductor
inclusions were considered. From the reflected wave, 14
features were selected. The following were selected in the
time-domain:

• delay of the first reflection (Delay) [2],
• maximum amplitude (max(W)) [2],
• reflected wave mean (mean(W)),
• reflected wave standard deviation (std(W)),
• mean of the wave derivative (mean(dW)),
• standard deviation of the wave derivative (std(dW)).

Using the Fourier Transform of the reflected wave the
following features were extracted in the frequency-domain:

• maximum amplitude of the Fourier transform (mFFT),
• frequency of maximum amplitude of the Fourier trans-

form (fmFFT),
• energy in six different bands (B1, B2, ..., B6) of the

Fourier transform.

Some features are shown in Fig. 1.
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Fig. 1. Parameters considered for Simba and Relief algorithms in both time-
and frequency-domain.

IV. RESULTS

The experiments produced the reflected waves from cilyn-
drical inclusions with and without a white Gaussian noise of
6 dB signal-to-noise ratio. Water/Air/Conductor discrimination
was evaluated, taken in pairs. The results are outlined in Tables
I and II were F1 indicates the most relevant feature and F4

the fourth one. The remarkable point is that both algorithms,
which are based on different concepts of feature selection, have
selected the same set of features but with different ordering.
This can help separate the clutter from the target reflections

since each feature is related with a different aspect of the
problem. It is also interesting that most of the features are
related to the frequency-domain. In the noisy situation they
are more robust than, for instance, the amplitude and the first
delay, which are hard to calculate given some noise.

TABLE I
SUMMARY OF THE RESULTS WITHOUT NOISE.

Inclusions Method F1 F2 F3 F4

Water/Air Relief mFFT fmFFT Delay B1

Water/Air Simba fmFFT Delay mFFT B1

Water/Cond. Relief mFFT fmFFT max(W) Delay
Water/Cond. Simba mFFT fmFFT B1 B2

Air/Cond. Relief fmFFT Delay mean(dW) mean(W)
Air/Cond. Simba fmFFT Delay mFFT B1

TABLE II
SUMMARY OF THE RESULTS WITH A 6DB SNR WHITE GAUSSIAN NOISE.

Inclusions Method F1 F2 F3 F4

Water/Air Relief mFFT B1 fmFFT std(W)
Water/Air Simba mFFT fmFFT B2 B6

Water/Cond. Relief mFFT fmFFT B1 B3

Water/Cond. Simba mFFT B1 fmFFT std(W)
Air/Cond. Relief fmFFT mFFT max(W) Delay
Air/Cond. Simba fmFFT mFFT B1 max(W)

V. CONCLUSION

This paper introduced the use of feature selection algo-
rithms in the study of the GPR reflected waves. The feature
subset selection problem in supervised learning for a non-
homogeneous GPR problem was described, which involves
identifying the relevant or useful features in a dataset obtained
by electromagnetic field computation and providing only that
subsets to the learning algorithm. In addition, the relevance
and irrelevance of features was investigated, and two degrees
of relevance: weak and strong were defined.

Water, air and conductor inclusions were considered as non
homogeneous media. Teh conditions were considered in the
presence of Gaussian noise as well as in the absence of noise.
Many features were considered in the study. Some features
were extracted in the time-domain, others in the frequency-
domain. Two different algorithms were applied and showing
consistent results. The results indicate that the features in the
frequency-domain are more relevant and more robust in the
presence of noise. These results support our claim that subset
selection can improve accuracy, and that this approach can
help separate clutter from buried targets information.

REFERENCES

[1] D. J. Daniels, Ground Penetrating Radar, The Institute of Electrical
Engineers, London, 2004.

[2] S. Caorsi and G. Cevini, An electromagnetic approach based on neural
networks for the GPR investigation of buried cylinders, IEEE Geoscience
and Remote Sensing Letters,v.2, n.1, pp. 3-7, January 2005.

[3] L. Travassos, D. A. G. Vieira, N. Ida, C. Vollaire and A. Nicolas,
Characterizing inclusions in a non-homogenous GPR problem by Neural
Networks, IEEE Trans. on Magnetics, v. 44, pp 1630-1633, 2008.

[4] W. M. Caminhas, D. A. G. Vieira and J. A. Vasconcelos, Parallel layer
perceptron, Neurocomputing, v. 55, n.3-4, pp. 771-778, October 2003.

[5] K. Kira and L. Rendell, Feature selection: Evaluation, application and
small sample performance. IEEE PAMI, v. 21, n. 3, pp. 153-158, 1997.

337

 



Recent achievements on a DGTD method
for time domain electromagnetics

Hassan Fahs, Loula Fezoui and Stéphane Lanteri
INRIA Sophia Antipolis-Méditerranée
06902 Sophia Antipolis Cedex, France

Hassan.Fahs@inria.fr, Loula.Fezoui@inria.fr
Stephane.Lanteri@inria.fr

Victorita Dolean and Francesca Rapetti
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Abstract—We report on recent results concerning the develop-
ment of a discontinuous Galerkin time domain (DGTD) method
for the solution of the system of Maxwell equations in general
domains and heterogeneous propagation media. This DGTD
method is formulated on simplicial meshes (triangles in 2D and
tetrahedra in 3D). Within each mesh element, the electromagnetic
field components are approximated by an arbitrarily high order
nodal polynomial interpolation while time integration is achieved
either by an explicit or an hybrid explicit-implicit scheme.

I. INTRODUCTION

Nowadays, a variety of methods exist for the numerical
treatment of the time domain Maxwell equations ranging from
the well established finite difference time domain (FDTD)
methods [1] to finite element time domain (FETD) methods
[2] and discontinuous Galerkin time domain (DGTD) methods.
In the recent years, there has been an increasing interest
in the latter methods due their ability to easily deal with
unstructured meshes. Besides, when combined with explicit
time stepping schemes, DGTD methods lead to block di-
agonal mass matrices, a feature which is often recognized
as one of the main advantages with regards to classical
FETD methods. Such DGTD methods have been developed
on quadrangular/hexahedral [3] and triangular/tetrahedral [4]
meshes. In this paper, we report on some recent achievements
concerning the development of a high order DGTD-Pp method
on simplicial meshes that was originally introduced in [5]. We
first present results regarding the design of a hp-like DGTD
method that allows for both a non-conforming local refinement
of the mesh and a local definition of the approximation order.
Then, we discuss issues related to the definition of a time
stepping strategy for overcoming grid-induced stiffness in a
DGTD method. The works discussed here are continuations
of preliminary studies respectively presented in [6] and [7].

II. NON-CONFORMING DGTD METHOD

One of the distinguishing features of a DGTD method is that
it can easily accommodate a non-conforming locally refined
mesh (i.e. h-refinement) as well as a local definition of the
approximation order (i.e. p-enrichment), or of both of them in
the context of hp-adaptive solution strategy. In [6] we have
reported on the lessons from a preliminary investigation of
a h-refinement non-conforming DGTD method, by mainly

concentrating on stability issues. The non-conforming DGTD
method discussed in [6] combines a centered scheme for
the evaluation of the integral term defined on the interface
between neighboring elements of the mesh, with a second
order leap-frog scheme for time integration. The resulting
DGTD method is non-dissipative and stable under a CFL-like
condition. Thereafter, this initial study has progressed towards
the development of a hp-like DGTD method combining h-
refinement and p-enrichment, in the context of the solution of
the 2D Maxwell equations.
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6 6(ε  ,µ  )

Fig. 1. Scattering of a plane wave by a multi-layered dielectric cylinder.
Problem setting and computational domain.

We illustrate the capabilities of the resulting hp-like DGTD
method by considering the simulation of the scattering of
a plane wave (F=300 MHz) by a multi-layered dielectric
cylinder (see Fig. 1). Each layer consists of a dielectric
non-magnetic material, with ǫi > 1 for 2 ≤ i ≤ 5 and
ǫ1 = ǫ6 = 1 (relative values). We first construct a conforming
mesh consisting of 14401 nodes and 28560 triangles and
we use different DGTD-Pp methods, where the interpolation
order p is uniform in space. Then, a non-conforming mesh is
obtained by locally refining a coarse conforming mesh where
the level of refinement depends on the local wavelength in each
region. The resulting non-conforming mesh consists of 27640
triangles and 14441 nodes in which 920 are hanging nodes.
In that case, the interpolation order is allowed to vary across
the layers. Results are shown on Fig. 2 in terms of the x-wise
1D distribution along y = 0.0 m of the Ez component. One
can observe that the proposed non-conforming DGTD method
treats very well the steep variations of the field at the material
interfaces.
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Fig. 2. Scattering of a plane wave by a multi-layered dielectric cylinder.
1D distribution of Ez along y = 0. Conforming (top) and non-conforming
(bottom) DGTD-Ppi

methods.

III. HYBRID EXPLICIT-IMPLICIT DGTD METHOD

Existing DGTD methods generally rely on explicit time
integration schemes and are thus constrained by a stability con-
dition that can be very restrictive on highly refined meshes, and
when the local approximation relies on high order polynomial
interpolation. An implicit time integration scheme is a natural
way to obtain a time domain method which is unconditionally
stable, but at the expense of the inversion of a global linear
system at each time step. A more viable approach consists
in applying an implicit time integration scheme locally in the
refined regions of the mesh, while preserving an explicit time
scheme in the complementary part. Such an hybrid explicit-
implicit DGTD method has been proposed by Piperno in [8].
In this method, the elements of the mesh are assumed to be
partitioned into two subsets, Si and Se, on the basis of an
appropriate geometrical criterion. Then, the elements of Si

are handled using a Crank-Nicolson scheme while those of
Se are time advanced using a variant of the classical leap-
frog scheme known as the Verlet method (see [8] for more
details). We have recently completed a stability analysis of
this method and subsequently implemented it for the solution
of the 2D and 3D time domain Maxwell equations discretized
in space by a high order conforming DGTD-Pp method on
simplicial meshes.

The effectiveness of the resulting hybrid explicit-implicit
DGTD-Pp method is demonstrated here by considering the
simulation of the propagation of an electromagnetic wave
emitted by a localized dipole type source in a heterogeneous
geometrical model of head tissues (see Fig. 3). The underly-
ing tetrahedral mesh consists of 61358 vertices and 366208
elements. The non-uniformity of this mesh can be assessed
by evaluating the ratio between the maximum and minimum
values of the local time step which is approximately equal to
135 in the present case. In particular, the smallest elements

of the mesh are in the vicinity of the source (localized near
the right ear) and in the skin thickness. For the particular
choice of geometric criterion adopted for this simulation, the
distribution of mesh tetrahedra is such that |Se| = 5142 and
|Se| = 361066 and the implicit elements are time advanced
with a global time step which is approximately 4.7 times larger
than the smallest time step of the mesh. The linear system of
equations associated to the implicit elements is solved using
an optimized sparse direct solver. The factorization of the
implicit matrix is performed once for all before entering the
time stepping loop and the resulting L and U factors are used
for triangular solves at each time step. The simulations have
been carried out on a workstation equipped with an Intel Xeon
2.3 GHz and 16 GB of RAM. The simulation time for the
fully explicit DGTD-P1 method is 14 h 22 mn for a total of
42940 time steps, while the corresponding time for the hybrid
explicit-implicit DGTD-P1 method is 1 h 49 mn for a total
of 2780 time steps. The memory overhead induced by the
use a sparse direct solver is 774 MB and the time for the
factorization of the implicit matrix is 98 sec.

XY

Z

Fig. 3. Head tissues exposure to an electromagnetic wave emitted from a
localized source. Contour lines of the normalized SAR in log scale.
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3. Wave Propagation 

Abstract — A new technique is proposed to reconstruct faulty 
wiring networks from the time domain reflectometry response. 
The developed method is also for characterization of defects in 
the branches of the network. The direct problem (propagation 
along the cables) is modelled by RLCG circuit parameters 
computed by finite elements (FEM) and the Finite Difference 
Time Domain (FDTD) method. Genetic Algorithms (GAs) are 
used to solve the inverse problem. The proposed method allows 
to accurately locating wire faults. Some examples are presented 
to validate and illustrate the ability of this reconstruction 
method. 

I. INTRODUCTION

Aging wiring in cars, aircraft, trains, and other 
transportation mean is identified as a critical security area. 
Fault location in wiring is a major cause for concern in 
automotive health maintenance. As automotive wires age 
increases they become brittle and are subject to several 
electrical, chemical and mechanical stresses. This leads to the 
occurrence of defects in the wiring. Wiring networks can be 
affected with two types of faults: “soft ones” are created by 
the change of the impedance along the line due to simple 
deformation in the wire, “hard faults” such as open and short 
circuits. For the first type of faults, the reflectometry response 
of the faulty network presents a simple deviation or variation 
versus the impedance of the fault, in the defects location. In 
the case of hard faults the structure of network as well as the 
response changes. According to the application domain, the 
defects of cables may have catastrophic consequence [1]. 

There are several emerging technologies that may help to 
locate and characterize the fault on the wires [1]-[3]. The most 
widely used technique for testing wires is reflectometry. It is 
based on the same principle that radar. A high frequency 
electrical signal is sent down the wire, where it reflects from 
any impedance discontinuity such as open or short circuits. 
The difference (time delay or phase shift) between the incident 
and reflected signal is used to locate the fault on the wire. 
However the reflectometry response itself is not self-sufficient 
to identify and locate the defects in the wire. There is the need 
to solve efficiently the inverse problem which is to deduce 
knowledge about the defects from the response at the input of 
the line. For such analysis an adequate wave propagation 
model is required in order to simulate the response of the line. 

The novelty of this paper is to propose an efficient method 
for the detection, characterization and localization of defects 
in faulty wiring networks using the time domain reflectometry 
response and genetic algorithms. As a first step a suitable 
model describes the propagation of the electromagnetic wave 
along multiconductors transmission lines (MTL) in the time 
domain: the model is based on the telegrapher’s equations 
where the per-unit-length electrical parameters matrices of R, 
L, C and G are computed by a finite element technique. Then 
the wave propagation equations are solved with the Finite 
Difference Time Domain (FDTD) method. In order to deal 
with the inverse problem a genetic algorithm is used to 
minimize the error between the reflectometry response and the 
response given by the direct model. Several examples 
illustrate the ability of the proposed approach.  

II. WAVE PROPAGATION MODEL

The propagation in a multiconductor transmission line 
(including n conductors) can be modelled by a RLCG circuit 
model [4] and is governed by the telegrapher’s equations 
(MTL equations):  

                )t,z(I
t

.L)t,z(I.R)t,z(V
z ∂

∂
−−=

∂
∂

         (1) 

                )t,z(V
t

.C)t,z(V.G)t,z(I
z ∂

∂
−−=

∂
∂

     (2) 

where V and I are n x 1 vectors of the line voltages and line 
currents, respectively. The position along the line is denoted 
as z and time is denoted as t. The n x n matrices R (resistance), 
L (inductance), C (capacitance) and G (conductance) contain 
the per-unit-length parameters. The coefficients of these 
matrices are computed either with a 2D finite element 
approach for the case of uniform transmission lines or with a 
full wave approach for more complex configurations [5]. The 
case of twisted wire cables is treated with the approach 
developed in [6]. The time-domain analysis of the MTL is 
determined by the Finite Difference Time Domain (FDTD) 
method which converts the differential equations into 
recursive finite difference equations. 

III. RESULTS

   In the problem, both the reflectometry response 
(measured or simulated) and the direct model are used to 
characterize the defects or reconstruct the wiring network. 

Detection of Defects in Wiring Networks  
using Time Domain Reflectometry 
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3. Wave Propagation 

From the reflectometry data of the wiring network under test, 
the methodology leads to solve an inverse problem: GA’s are 
used to minimize the objective function F given by:  

2/1
T

0
2TDR

2ModTDR

dt
)t(v

)t(v)t(v
)v(F

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧ −

= ∫       (3) 

where vTDR(t) is the given initial impulse response and vMod(t) 
the response given by the direct model. 

A. Identification of modified local impedance 

The faulty network shown in figure 1 is first considered. 
The terminations of the branches are open circuits. It is 
assumed to be affected by a single defect. The reflectometry 
response used as the input of GA corresponds to a defect 
located at 2 m from the input. The change of impedance (due 
to the defect) is respectively of the order 10%, 20% and 60% 
of the characteristic impedance of the healthy wire. Figure 2 
illustrates the time variation of the signals corresponding to 
the characteristics of the defects deduced from GA. 
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B. Reconstruction of a wiring network 

This second example illustrates the performances of the 
approach for the reconstruction of a network (location of hard 
faults). The healthy wiring network of figure 1 is considered. 
The reflectometry response used as the input is obtained from 
measurements provided by a vector network analyzer in 
frequency domain. The parameters of GA are the lengths of 
the different branches L = [L1, L2… Li] with i is the total 
number of branch. Figure 3 shows the reconstructed network 
and Figure 4 compares the reflectometry response of the 
healthy network (measurements data) and the reconstructed 
one.
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IV. CONCLUSION

This paper describes a numerical model and an inverse 
procedure dedicated to time domain reflectometry for the 
location and characterization of defects in wiring networks. 
The work addresses both the modification of local impedance 
and the reconstruction of faulty wiring networks affected by 
hard faults. 
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Abstract—In this paper, we present a multiharmonic model
able to take into account general nonlinear optical media [1].
As a particular example, two- and three-photon processes are
considered here. The numerical model is based on the finite ele-
ment method that allows to take into account the inhomogeneities
of the refraction index due to the nonlinearities. It consists of
several harmonic equations at various frequencies coupled via
some nonlinear terms.

I. MULTIHARMONIC NONLINEAR MODEL

In this paper, we propose a numerical model for nonlinear
optics based on a systematic approach of the nonlinearity in
the frequency domain together with a very general setting via
the finite element method. This model aims at applications
in nanophotonics since the size of the scattering objects are
of the same order of magnitude as the wavelength of the
incident waves that are infrared or visible light. Considering
a given incident monochromatic electric field of pulsation ωI ,
we would like to solve the nonlinear vector wave equation:

∇× (µ−1∇× E) + ∂2
t D = 0.

for a given geometry and where the material properties are
D = ε0E + P and B = µ0H. We assume here that the
polarization P is of the form:

P(s, t) = P(0)(s)+


n∈N
ε0

 ∞

−∞
dω1 · · ·

 ∞

−∞
dωn χ

(n)(s, ω1, · · · , ωn)

Ê(s, ω1) · · · Ê(s, ωn)e−i(ω1+···+ωn)t ,

where Ê(s, ω) is the Fourier transform of Ê with respect to
time. We set Ep := Ê(s, pωI) and we note that E−p =
Ep . The χ(n) tensors describe the physical behaviour of
the media. We now make the simplifying assumption that
χ(n)(ω1, · · · , ωn) = 0 if ωi = pωI , p ∈ Z so that the electric
field is E(s, t) =


p∈Z Ep(s)e−ipωIt. To further simplify and

to obtain tractable problems, we set χ(n) = 0 if n > 3.
We introduce the following notations for the nonlinear terms
involving the χ(n):

Ep1 , · · · ,EpnωI := χ(n)(p1ωI , · · · , pnωI)Ep1 · · ·Epn
and for the linear part Mlin

p of the wave operators:

Mlin
p (Ep) := −c2∇× (∇× Ep) + (pωI)2ε(1)r (pωI)Ep

where ε(1)r = 1+χ(1). With the previous assumptions, the time
domain problem becomes an infinite set of coupled harmonic
equations:

Mlin
p (Ep) + (pωI)2



q∈Z
Eq,Ep−q+



(q,r)∈Z2
Eq,Er,Ep−q−r


= 0, for p ∈ Z.

Moreover, we limit our nonlinear phenomena to two- and
three-photon processes. The corresponding problems are en-
countered in numerous nonlinear optics experiments involving
second and third harmonic generation. Therefore we have
p ∈ {−3,−2,−1, 1, 2, 3}, and a system of three coupled
nonlinear equations is obtained:

Mlin
1 (E1)

+ ω2
I


2E3,E−2+ 2E2,E−1

+ 6E3,E1,E−3+ 3E3,E−1,E−1+ 3E2,E2,E−3
+ 6E2,E1,E−2+ 3E1,E1,E−1


= 0,

Mlin
2 (E2)

+ (2ωI)2

2E3,E−1+ E1,E1

+ 6E3,E2,E−3+ 6E3,E1,E−2+ 3E2,E2,E−2
+ 6E2,E1,E−1


= 0,

Mlin
3 (E3)

+ (3ωI)2

2E2,E1

+ 3E3,E3,E−3+ 6E3,E2,E−2+ 6E3,E1,E−1
+ 3E2,E2,E−1+ E1,E1,E1


= 0.

A geometry invariant along the z-axis and an appropriate
principal axis for the χ(n) tensors are considered here together
with a polarization of the electric field along this axis in
order to reduce the problem to a scalar two-dimensional one.
The numerical implementation is performed in COMSOL
Multiphysics with triangular finite elements. The incident field
is a plane wave imposed via a virtual antenna [2], a special
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(a) e{E1 · ẑ}, λ = 1064 nm .

(b) e{E2 · ẑ}, λ = 532 nm .

(c) e{E3 · ẑ}, λ = 355 nm .

Fig. 1. Ai = 109 V/m : non-linear effects are present in the second
harmonic but the retroaction on the fundamental frequency is negligible.

numerical technique specially designed for these nonlinear
scattering problems. Fig. 1 shows a circular cylinder (radius=
1µm) made of BBO (the inner circle). The amplitude of the
incident electric field is 109V/m. A second harmonic field
appears but the third harmonic field is negligible. On Fig.
2, the amplitude of the incident electric field is 3.109V/m
and the second and the third harmonic fields are present with
peak values of the same order of magnitude as the one of
the fundamental frequency. In this case, a significant amount
of energy is transferred from the fundamental frequency to

the higher harmonics and the usual assumption of the non
depletion of the pump wave is no more valid.

(a) e{E1 · ẑ}, λ = 1064 nm .

(b) e{E2 · ẑ}, λ = 532 nm .

(c) e{E3 · ẑ}, λ = 355 nm .

Fig. 2. Ai = 3.109 V/m : depletion of the pump wave.
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Abstract— We present a multiple-scattering solver for non-
convex geometries obtained as the union of a finite number of
convex surfaces. The algorithm is a finite element reformulation
of the high-frequency integral equation technique proposed in [1].
It is based on an iterative solution of the scattering problem,
where each iteration leads to the resolution of a single scattering
problem in terms of a slowly oscillatory amplitude.

I. INTRODUCTION

Solving multiple-scattering problems at high frequencies
is a challenging problem, especially when the wavelength is
significantly smaller than the size of the scattering obstacles.

For non-convex geometries obtained as the union of a
finite number of convex surfaces, an efficient algorithm was
proposed in [1] based on three main elements: 1) an iteratively
computable Neumann series for the currents induced on the
scattering surfaces, which accounts rigorously for multiple
scattering; 2) a generalized ansatz that allows for a priori
determination of the highly oscillatory phase of the currents
in each term of the series; and 3) use of the single-scattering
boundary-integral solver from [2] for the efficient evaluation
of each one of the terms in this series.

In this paper we present a reformulation of this algorithm
using a finite element approach, which requires a fundamental
rethinking of steps 2) and 3) since the fields are to be
computed in the volume instead of only on the boundary
of the scatterers. This new finite element approach exhibits
many interesting features, amongst which possible extensions
to non-homogeneous media and more complex geometries.
Also, the proposed finite element formulation uses standard
basis functions and can thus be easily implemented in existing
finite element codes.

II. MULTIPLE-SCATTERING ITERATIONS

We investigate the numerical solution of the time-harmonic
acoustic scattering problem of a plane wave uinc(x) = eikα·x,
|α| = 1, by a collection of impenetrable obstacles Ω−p ⊂ R2,
p = 1, . . . , N , with closed boundaries Γp (this is equivalent
to solving a TE- or TM-electromagnetic problem in 2D).
Setting Ω− = ∪N

p=1Ω
−
p , Γ = ∪N

p=1Γp and Ω+ = R2\Ω−,
the boundary value problem reads:

∆u+ k2u = 0 in Ω+,

u = −uinc or ∂nu = −∂nuinc on Γ,

lim
|x|→+∞

|x|(∇u · x
|x|

− iku) = 0.
(1)

This work was supported by the Belgian Science Policy under grant IAP
P6/21 and by NSF under grant DMS-0609824.

Instead of trying to solve (1) directly, we look for the
solution in terms of the series u =

∞
m=1

N
p=1 u

(m)
p , where

u
(m)
p is the solution of the problem:

∆u(m)
p + k2u(m)

p = 0 in R2\Ω−p ,

u(m)
p = s(m)

p or ∂nu(m)
p = ∂ns(m)

p on Γp,

lim
|x|→+∞

|x|(∇u(m)
p · x

|x|
− iku(m)

p ) = 0,
(2)

with

s(m)
p =


−uinc −

p−1
q=1 u

(m)
q for m = 1,

−
p−1

q=1 u
(m)
q −

N
q=p+1 u

(m−1)
q for m > 1,

.

(3)
In other words, we perform a Gauss-Seidel-type iteration
where at each step we solve a scattering problem around the
single obstacle Ω−p , using the fields scattered from the other
obstacles as boundary condition [3]. As each correction u

(m)
p

can be interpreted as the correction introduced by the m-th
wave reflection [1], [3], the iteration can be stopped when the
norm of all corrections at step m is smaller than a prescribed
tolerance.

Note that instead of performing this Gauss-Seidel iteration,
other iterative schemes can be used as well. Indeed, the Dirich-
let or Neumann boundary condition in (2) can equivalently be
written in vector form as:

U (m+1) −AU (m) := F =


−U inc m = 1
0 m > 1

, (4)

where A is the iteration operator acting on the traces of the
field, mapping the traces at iteration (m) onto those at iteration
(m+ 1). The desired solution of this problem satisfies

(I −A)U∗ = F, (5)

which can be solved iteratively e.g. with a Krylov subspace
method like a preconditioned GMRES. An explicit expression
of the iteration operator A in the context of integral equations
was given in [1].

III. FINITE ELEMENT SOLUTION

A standard finite element code could be used to solve
(2), but the cost of each iteration would be similar to the
cost of solving the original problem (1) and this would thus
present little practical interest. However, if the obstacles Ω−p
are convex each step in the iterative process can be accelerated
with the phase reduction (PR) procedure proposed in [4],

344

PB3.5



−0.675 1.28

(a
(1)
1 )

−0.0252 0.0655

(a
(2)
1 )

−0.000212 0.000388

(a
(6)
1 )

−0.262 0.418

(a
(1)
2 )

−0.0176 0.0347

(a
(2)
2 )

−0.000111 0.000205

(a
(6)
2 )

−1.19 1.2

(u)

Fig. 1. Iterative solution around two circular cylinders of unit radius R for an incident plane wave arriving from the left, with kR = 25. Left: Real part
of the amplitudes a(m)

p for p = 1 and p = 2 (top to bottom) and m = 1, 2, 6 (left to right). On each graph iso-curves of the approximate phase φ(m)
p are

superimposed. Right: Real part of the final solution u =
P6

m=1

P2
p=1 a

(m)
p ei25φ

(m)
p .

[5]. Indeed, if Ω−p is convex then (2) amounts to solving
a single scattering problem in R2\Ω−p . The PR procedure
approximates the phase φ(m)

p of the solution of the p-th single
scattering problem at iteration m and replaces the original
unknown u

(m)
p of the single scattering problem with a slowly

oscillatory amplitude a
(m)
p = u

(m)
p e−ikφ

(m)
p , which can be

represented on a coarse grid.

IV. NUMERICAL TEST

As an example, we consider the scattering of a plane wave
eikx by two circular cylinders of unit radius R, separated by
a distance d = R. We use a Bayliss-Gunzburger-Turkel-like
radiation condition to truncate the infinite domain. Using a
prescribed tolerance of 10−3 the iterative process converges
after 6 iterations. Figure 1 shows, for kR = 25, the amplitude
a
(m)
p and the phase φ(m)

p for m = 1, 2, 6 and p = 1, 2, as well
as the final solution u.

Of particular notice is how each term in the series is not
highly oscillatory and can thus be computed on a coarser grid
than the final solution. In this example we used about 2 points
per wavelength to compute the approximate phase and the
slowly oscillating amplitude, leading to a mesh containing
4300 nodes. The original problem would have required a mesh
density of at least 10 points per wavelength, leading to about
25 times more unknowns.

The full paper will provide details on the variational for-
mulation and analyze the results on different geometrical
configurations.
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Abstract— Solving scattering problems using the finite ele-
ment method (FEM) introduces two sources of error: from the
discretization and from the truncation boundary. Here both
errors are addressed in an iterative, balanced way. For the
discretization error, p-adaption is used. An a posteriori error
indicator automatically determines which elements should be
increased in order to reduce and equi-distribute the discretization
error. For the boundary error, an iterative absorbing boundary
condition is applied. The overall scheme starts with low order
polynomials and a first order absorbing boundary condition
and progressively improves the quality of the solution by a
combination of p-adaption and updating the boundary condition,
so that both the discretization and the boundary errors are
similar at each stage. Results are presented to show the reduction
of computation time when p-adaption is used as opposed to an
earlier approach of uniformly increasing the element orders.

I. INTRODUCTION

When the finite element method (FEM) is applied to the
scattering of electromagnetic waves, the infinite domain has
to be reduced to a finite volume by the introduction of a
truncation boundary, S1. Maxwell’s equations are solved in
the finite volume, subject to a condition on S1 that absorbs
the scattered field. Of the many ways of doing this, one of the
most appealing is the iterative absorbing boundary condition
(IABC) [1], [2], because at each iteration it is computationally
inexpensive and yet it can converge to a highly accurate
absorber. Initially, a first-order ABC is applied to S1; then
the fields inside are computed, and the boundary condition
on S1 is updated by making use of the computed fields on an
inner surface, S2 (which may be on the surface of the scatterer
itself). The fields inside are computed again, and so on.

At every iteration there is a solution error introduced by the
IABC, called the boundary error. This is in addition to the
error arising from the finite elements themselves, called the
discretization error. The latter can be controlled by adaption,
which can be carried out at each iteration of the IABC.
In the present work, p-adaption is chosen, making use of
the hierarchical properties of the vector tetrahedral elements
described in [3]. A control scheme is used to balance the two
sources of error, so that the overall error reduces as rapidly as
possible with increasing computational cost.

The present contribution builds on earlier work [4] in
which the element orders, while varying from one iteration
to the next, were kept uniform throughout the mesh, i.e.,
no p-adaption was involved. The incorporation of p-adaption
requires changes to the control scheme, and the development
of a suitable error indicator, described next.

II. ERROR INDICATOR

The implicit indicator presented here is related to the goal
oriented error indicator described in [5]. In this paper, a similar
approach is used to yield a general indicator of the field error.
A formulation employing the magnetic field H is used for the
solution of the 3-D electromagnetic scattering problem. The
weighted residual formulation is of the form [6]:

a(H,w) = b(w) ∀w (1)

where w is a weight function; a and b are bilinear and linear
forms, respectively [2]. Suppose that H is a computed solution
of (1). We aim to estimate the error arising from element k
by the following expression:

ek = Hk −H (2)

where Hk is the computed field when the order of element k
is incremented by 1. The error indicator ηk for element k is
based on the ’energy norm’ of ek and is defined by [7]:

ηk = eka =

|a(ek, ek)| (3)

which can also be evaluated as:

ηk =
b(ek)− a(H, ek)

 (4)

When ek is exactly as given by (2), expressions (3) and (4)
are identical. However, (4) is less sensitive than (3) to errors
in ek when ek is approximated.

III. APPROXIMATING THE ERROR INDICATOR

Equation (1) can be discretized using the Galerkin method
with a set of functions Ni used as both weight and trial
functions. The result will have the form [6], [7]:

[K]

H


= {b} (5)
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where [K] is a symmetric matrix, {b} is the source term
arising from the incident plane wave, and


H


is the vector
of coefficients to be determined. After evaluating


H


, the
field H can be found:

H = {N}T

H


(6)

where superscript T denotes the transpose. After incrementing
the element order of the kth element, (5) becomes:


[Koo

k ] [Kno
k ]

[Kon
k ] [Knn

k ]

 
{Ho

k}
{Hn

k }


=


{bo

k}
{bn

k}


(7)

where {Ho
k} is the vector of coefficients corresponding to

the original (old) DOFs. {Hn
k } is the vector of coefficients

corresponding to the new DOFs added to element k to raise
its order by 1. bo

k and bn
k are the corresponding old and new

source terms. A reasonable approximation can be made by
putting {Ho

k} =

H


. Equation (7) then gives the following
small matrix equation, which can be solved for each element
k, in turn:

[Knn
k ] {Hn

k } ≈ {bn
k} − [Kon

k ]

H


(8)

After substituting {Hn
k } in (2), the error of element k is:

ek ≈ {Nn}T {Hn
k } (9)

where {Nn} is a column vector of the trial functions associated
with the new DOFs. Then b(ek) and a(H, ek) can be evaluated
as:

b(ek) ≈ {Hn
k }

T {bn
k} (10)

a(H, ek) ≈

H
T
[Kon

k ] {Hn
k } (11)

Then the error indicator (4) can be calculated.

IV. CONTROL SCHEME

The control scheme used here is similar to the one used
in [4]. In this paper, instead of increasing the order of all
elements uniformly, only a certain percentage of the elements
are adapted. Also in [4], after increasing the element order,
a boundary update was always performed as it was found
that this was needed following an increment of the order of
all elements by one. But, with the p-adaptive scheme, it is
not needed. A modified flow chart will be presented in the
extended paper.

V. RESULTS

The example consists of two dielectric spheres, as shown
in Fig. 1. The incident plane wave propagates in the −x-
direction, with y-polarized electric field. The truncation bound-
ary is a rectangular box placed l = 0.1λ away from the
spheres (Fig. 1). 6,685 elements are used. The problem is first
solved at order 3 and the radar cross section (RCS) obtained
after 10 iterations is used as the reference solution. Then the
same FE problem is solved twice using the p-adaptive control
scheme. First, at each p-adaptive step, 75% of elements with
the highest error (4) are increased in order; this is the curve
“75% adaption”. In the second solution, all of the elements
are increased in order (“100% adaption”). Fig. 2 also shows

Fig. 1. Two dielectric spheres along with the truncation boundary S1. All
the dimensions are in wavelengths. The dielectric constant of each sphere
is r = 2. l = 0.1 is the separation between the spheres and truncation
boundary.

the error when the order is fixed at 3 throughout. Total
time is the summation of the field solution time and the
boundary update time for all the solutions up that point.
Average error (dB) is the average error in the value of
10 log10(RCS/λ2) over the range (φ = π/2, 0 ≤ θ ≤ π).
From the graph it is clear that the new p-adaptive scheme is
more effective at reducing the error than either the use of an
element order that is fixed order throughout the iteration (i.e.,
just boundary iteration) or the use of an order that changes
but is uniform throughout the mesh.

Fig. 2. Average error in the bistatic RCS in the plane φ = π/2 (the yz plane)
as a function of total time. Triangles represent results using 75% adaption;
circles represent the results using uniform order; crosses represent the results
obtained using 3rd order elements at every iteration.
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Abstract —By using the method of time domain integral 
equation (TDIE) and equivalent principle, the shading effect of 
reinforced concrete construction to lightning radiation field is 
analyzed. The reinforced concrete surface is assumed to be 
metallized and modeled based on the equivalent principle. The 
electromagnetic field inside and out of the reinforced concrete 
are both calculated by using the time domain electric field 
integral equation. The proposed technique, which is efficient to 
analyze the far field, is more applicable to evaluate the shading 
effect of reinforced concrete construction to lightning radiation 
magnetic field in time domain. 

I. INTRODUCTION

Due to the widespread existence of tall reinforced concrete 
constructions in city, the lightning radiation electromagnetic 
field detected by nearby lightning location sensor may be 
influenced. Accordingly the peak value and derivative of the 
corresponding lightning current derived from the measured 
lightning radiation magnetic field may deviate from their real 
values. In order to obtain lightning current reliable enough, it 
is necessary to investigate the shading effect of the reinforced 
concrete construction to the lightning radiation magnetic field 
and determine the minimum distance from the lightning 
detection system to nearby tall building further. 

Generally the shielding effect of reinforce concrete 
construction on the radiation electromagnetic field in space is 
concerned in literature, typically as discussed in [1, 2]. There 
are two approaches widely used to identify the shielding effect 
of the reinforced concrete buildings exactly. The first is based 
on FDTD or TLM method [1], which is complicated for 
reinforce concrete despite the relatively simple separation of 
space. Additionally, it is not convenient to determine the 
electromagnetic field of any point in space. The Second one, 
using volume cell MoM to investigate the scattering field of 
concrete block or analogical lump medium [2], is also not 
applicable for reinforce concrete. In the analysis of the 
shading performance of reinforced concrete construction to 
electromagnetic field in space, both the influence of steel grid 
and that of concrete should be taken into account, thus more 
efficient calculation is of requirement.  

In this paper, a method in time domain to investigate the 
shading effect of reinforced concrete construction to lightning 
radiation magnetic field is developed based on the time 
domain integral equation (TDIE) and equivalent principle. 
The electromagnetic response caused by the interaction 
between the inner surface and the outer surface of the concrete, 
which is usually not easy to be identified, is modeled by 

  This work was supported by the National Natural Science Foundation of 
China (No. 60601013). 

introducing electric currents on the surface. With the concrete 
surface taken to be metallized, an equivalent surface electric 
current is introduced on the surface. The field in the concrete 
is resulted from the equivalent surface electric current on the 
concrete surface and the line current flowing on the steel grid 
buried in the concrete. While the field out of the concrete is 
generated by the equivalent surface electric current and the 
incidence lightning radiation electromagnetic wave. On the 
concrete surface, the fields inside and outside the concrete 
satisfy the continuity of tangential electric field. 

Thus the spatial electromagnetic field intensity can be 
determined to evaluate the shading effect of reinforced 
concrete construction. Since the inversion of lightning current 
is mainly dependent on the lightning radiation magnetic field 
intensity, only the waveform of the radiation magnetic field is 
displayed. At last, the proposed method is used to analyze the 
effect of a simplified reinforced concrete building to the 
lightning radiation magnetic field. 

II. DESCRIPTION OF THE APPROACH

A. Basic Model of Reinforce Concrete Block 
In order to reasonably simplify the calculation model of 

reinforced concrete construction, the following two 
assumptions are necessary. 1) The medium of the concrete is 
uniform and isotropic; 2) Compared with the thickness of the 
concrete, the steel conductors buried in the concrete is of 
radius small enough that can be modeled as thin wire. 

Fig.1 The model of a section of concrete

The geometry of the simple reinforce concrete block model is 
shown in Fig.1. The steel grid is buried in concrete. The concrete 
surface separates the whole space into two sections, namely the 
space in and outside the concrete, with the interior surface O-and 
exterior surface O+.

Based on the two assumptions, an equivalent electric current 
pair Jc is introduced on the exterior surface O+ and interior 
surface O- of the reinforced concrete block. The outside field, 
therefore, is the sum of the field produced by the equivalent 
current source Jc and that from outer excitation source Jinc, while 
the field in the concrete is yielded by Jc plus the scattering field 
of current Iw flowing on the steel grid.  

According to the equivalent theorem, the scattering field 
from the metal conductor buried in the concrete can be analyzed 
as that in the uniform medium.  

Investigation on the shading effect of reinforced concrete 
construction to lightning radiation field based on TDIE method 

Zhibin ZHAO, Mingxia ZHANG, Xiang CUI, Lin LI, and Tiebing LU 
North China Electric Power University 

619 Yonghuabei Street, Baoding City, Hebei Province, 071003, P. R. C 
E-mail: zhibinzhao@yahoo.com 
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Since electric field intensity is continuous on the concrete 
surface and the tangent electric field component on the surface of 
steel grid is equal to the voltage drop in the conductor, the 
continuity discussed above on the surface of reinforced concrete 
yields the following equations. 

( ) ( ) ( ) ( )o inc o c i c i w
t t t t+ = +E J E J E J E J                      (1) 

( ) ( )w c w w w
t t I ZI+ =E J E                                (2) 

Equation (1) and (2) are for the concrete surface and the steel 
surface respectively. Where Eo

t(J
inc) and Eo

t(J
c) are the 

tangential electric field at O+ due to Jinc and Jc respectively.
Ei

t(J
c) and Ei

t(Iw) are the tangential electric field given by Jc

and Iw respectively at O-. The tangential component Ew
t(J

c)
and Ew

t(Iw) on steel surface is resulted from Jc and Iw

respectively. And Z is the impedance per unit length of the 
steel grid.  

By using the method of moment equation (1) and (2) can 
be solved. Since the reinforced concrete construction is 
supposed to be rectangular volume, the surfaces are 
discretized into a lot of rectangular patches. The roof-top basic 
functions are adopted to expand the unknown electric currents 
on these patches and wire segments. 

B. Electromagnetic Field out of the Concrete Block 
In order to simplify the calculation, the ground out of the 

concrete is supposed to be perfect electric conductor.  
As illustrated by the engineer model of lightning return 

stroke, the lightning current flows in the lightning channel as 
does in transmission line. The following is the most simple 
relation expression  

( ', ) ( '/ )i z t i t z v= −                        (3)
where z’ is the height of return stroke front along the lightning 
channel，v is velocity of return stoke. The double exponential 
function is adopted to represent the channel base current in our 
calculation. Since the lightning channel concerned here is 
relatively very far from the involved building, the effect of the 
scattering from the building on lightning current is neglected, 
namely the original lightning radiation field is considered to be 
incidence field. The calculatin equation for the field out of the 
concrete can be established based on following formula. 

2
2

2
tantan

ic
tt

⎛ ⎞∂ ∂
− ∇∇ =⎜ ⎟ ∂∂⎝ ⎠

A Ei                      (4) 

where c is the lightning speed in free space, Ei is the lightning 
radiation electric field, and A(r,t) is the vector potential 
generated from the surface electric current in free space. 

C. Electromagnetic Field in the Concrete Block 
The surface current Jc on the inside surface of the concrete 

and the current Iw flowing on the steel grid of the concrete 
produce the electric field in the concrete block. The concrete is 
modeled as lossy medium with permittivity ε, conductivity σ, and 
permeability μ. There is no inject field existing in the reinforce 
concrete block, thus the integral equation of time domain electric 
field is given by 

2 2
2 2 2

2 2

tan

0a c c
t t

⎛ ⎞∂ ∂
+ − ∇∇ =⎜ ⎟∂ ∂⎝ ⎠

Ai                (5)

where a μσ= , 1/c με= . The vector potential A(r,t) is 

expressed as 

( ) ( ) ( ), ', ' , '
s

t J t g t dμ= −∫A r r r r r                (6) 

where ( )' ,g t−r r  is the three dimensional scalar Green 

function for the lossy medium wave equation [3] . 

III. ANALYSIS OF THE INFLUENCE 

In view of the irregular outline and various dimension of 
constructions, some usually used hypotheses are necessary, 
they are:  

1) The construction is rectangular volume; 
2) The steel grid is in the center of the construction; 
3) The lightning channel is also vertical to the ground. 
Based on these assumptions, the profile of calculation 

model can be expressed in Fig.2 as  

Fig. 2 Calculation model profile 
Suppose that lightning channel is 150km far from the 

building, Fig.3 shows the lightning radiation magnetic field 
waveform calculated on ground level at 50m from the building 
for the cases that the width of building is 50m, 100m, 150m, 
200m, and 500m, as well as that without the existence of the 
building. The resistivity and relative permittivity of the 
building, which is 50m high, are 50Ω⋅m and 8 respectively. 
The steel grid in the concrete is 1×1m2.
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Fig. 3 Lightning radiation magnetic field 50m far from the building
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Abstract – In this work, we apply a meshless-based method to a 
set of integral equations arising in electromagnetic wave 
propagation and scattering. The objective is not only to solve 
these equations through a meshless-based method, but also to 
find a way to build shape functions that could work for any 
cross-sectional geometry. We have found that the Moving Least 
Squares (MLS) approximation is not able to provide useful 
shape functions in every situation. This technique relies on 
matrix inversions and, according to the geometry, singular 
matrices can occur. In order to avoid this problem, we have 
taken the Improved Moving Least Squares (IMLS) 
approximation, that doesn’t depend upon matrix inversions 
and works well in a number of cross-sectional geometries. 
 

I.  INTRODUCTION 
 

Meshless methods have successfully been applied in 
Mechanics as an alternative to the traditional finite element 
method (FEM). Now they are being brought to the study of 
electrodynamics and presented as an additional aid in the 
solution of high-frequency [1] problems. In this work we 
take a different approach by applying a meshless 
discretization directly into the classical integral field 
equations instead of applying it to the weak form. We have 
already solved the problem for a circular cylinder using the 
MLS approximation [2], but the solution is not as general as 
to be applied to every cross-section form. For other 
geometries (e.g. rectangular) the MLS approximation fails in 
providing accurate results, because singular local matrices 
are obtained, leading to an inconsistent outcome. The IMLS 
approximation thus seemed to be the right one; despite 
having to build an orthogonal basis first, the associated 
matrices are diagonal, there is no need for inversions and the 
shape functions could then be built consistently for any 
cross-sectional geometry. 

 
II. PROBLEM DESCRIPTION 

 
In the investigated problems, a monochromatic incident 

plane wave is scattered by perfect electric conductor (PEC) 
cylinder infinite in the z-direction. For a TMz polarized 
incident wave, the electric surface current density 𝐽𝐽𝑠𝑠    is 
directed along the z-direction. One of the equations 
governing the phenomenon is the electric field integral 
equation (EFIE): 
 

𝐸𝐸𝑧𝑧
𝑖𝑖 𝜌𝜌  = 𝜔𝜔𝜇𝜇

4  𝐽𝐽𝑠𝑠 𝜌𝜌 ′ 𝐻𝐻0
(2) 𝑘𝑘𝑅𝑅 𝑑𝑑𝑙𝑙′              (1)  

𝐸𝐸𝑧𝑧
𝑖𝑖 𝜌𝜌   is the incident electric field at 𝜌𝜌 , 𝑅𝑅 =  𝑅𝑅   =

 𝜌𝜌 − 𝜌𝜌 ′ , 𝜌𝜌  and 𝜌𝜌 ′ locate the observation and source points 
at the perimeter, respectively, 𝜔𝜔 = 2𝜋𝜋𝑓𝑓, where 𝑓𝑓 is the 

wave frequency, and 𝐻𝐻0
(2) is the zero-order Hankel function 

of the second type. The other is the magnetic field integral 
equation (MFIE): 
 

 𝑛𝑛 × 𝐻𝐻   𝑖𝑖 𝜌𝜌   . 𝑧𝑧 =
1
2 𝐽𝐽𝑠𝑠 𝜌𝜌 ′ 

+ 𝑗𝑗𝑘𝑘
4  𝐽𝐽𝑠𝑠 𝜌𝜌 ′ 𝐻𝐻1

(2) 𝑘𝑘𝑅𝑅  𝑛𝑛 . 𝑅𝑅  𝑑𝑑𝑙𝑙′      (2) 

where 𝐻𝐻   𝑖𝑖 𝜌𝜌   is the incident magnetic Field at 𝜌𝜌  , 𝐻𝐻1
(2) is the 

first-order Hankel function of the second type and  𝑛𝑛  is the 
unit surface normal. The EFIE and MFIE formulation can be 
seen in [3]. To avoid spurious resonant solutions one can 
form the combined field integral equation (CFIE) through a 
linear combination from the EFIE and MFIE: 

 
𝐶𝐶𝐹𝐹𝐼𝐼𝐸𝐸 = 𝛼𝛼 𝐸𝐸𝐹𝐹𝐼𝐼𝐸𝐸 +  1 − 𝛼𝛼  𝜂𝜂 𝑀𝑀𝐹𝐹𝐼𝐼𝐸𝐸                (3) 

where  is a parameter ranging from zero to one and  is the 
intrinsic impedance of the exterior medium [3]. 
 

III. THE MESHLESS APPROACH 
 

The meshless approach begins by spreading nodes over 
the domain of the problem to be solved. In the present study, 
the domain of interest is the perimeter of the cylinder cross 
section. To each node a shape function with compact 
support is associated. The vicinal region in which the shape 
function is different from zero is called the influence domain 
of the corresponding node [4]. The main difference between 
meshless methods and mesh-based methods (like the FEM) 
is that the element concept is not present. The influence 
domains are arbitrary (the only restriction is that the set of 
influence domains must cover the entire domain) and can 
overlap. So, the nodes can be distributed arbitrarily without 
generating an element mesh. 

Once the shape functions have been determined, the 
approximated value of a function 𝑢𝑢 in a point 𝑥𝑥  is given by 
𝑢𝑢  and is expressed as 
 

𝑢𝑢 𝑥𝑥  =  𝜙𝜙𝐼𝐼 𝑥𝑥  𝑁𝑁
𝐼𝐼=1 𝑢𝑢 𝐼𝐼                             4    

where 𝐼𝐼 = 1…𝑁𝑁 are the nodes whose influence domains 
include the point 𝑥𝑥  and the numbers 𝑢𝑢 𝐼𝐼 associated to each 
node are called the nodal parameters. 

There are several ways to build the shape functions [4]; 
among them we chose the moving least squares 
approximation (MLS). The MLS approximation begins by 
expressing 𝑢𝑢  as 
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𝑢𝑢 𝑥𝑥  =  𝑝𝑝𝑖𝑖 𝑥𝑥  𝑎𝑎𝑖𝑖 𝑥𝑥  = 𝑝𝑝𝑇𝑇 𝑥𝑥  𝑎𝑎 𝑥𝑥                 5  𝑚𝑚

𝑖𝑖=1   
where 𝑝𝑝𝑖𝑖 , 𝑖𝑖 = 1…𝑚𝑚 are monomial functions, 𝑚𝑚 is the 
number of terms in the basis 𝑝𝑝 and 𝑎𝑎𝑖𝑖  are coefficients (e.g., 
in two dimensions, one could have 𝑝𝑝𝑇𝑇 =  1, 𝑥𝑥, 𝑦𝑦 ). The next 
step is to force the difference between the approximation 𝑢𝑢  
and the exact value at the nodal points to reach a minimum 
through the minimization of a weighted functional; this 
takes several matrix manipulations whose detailed 
descriptions can be found in [4]. The results are: 
 

 𝜙𝜙1 𝑥𝑥  , 𝜙𝜙2 𝑥𝑥  ,… , 𝜙𝜙𝑁𝑁 𝑥𝑥  = 𝑝𝑝𝑇𝑇 𝑥𝑥  𝐴𝐴−1 𝑥𝑥  𝐵𝐵 𝑥𝑥  ,       6  
 

𝐴𝐴 𝑥𝑥  = 𝑃𝑃𝑇𝑇𝑊𝑊 𝑥𝑥  𝑃𝑃 and  𝐵𝐵 𝑥𝑥  = 𝑃𝑃𝑇𝑇𝑊𝑊 𝑥𝑥                 7   
 

𝑃𝑃 =  
𝑝𝑝1 𝑥𝑥 1 ⋯ 𝑝𝑝𝑚𝑚  𝑥𝑥 1 

⋮ ⋱ ⋮
𝑝𝑝1 𝑥𝑥 𝑁𝑁 ⋯ 𝑝𝑝𝑚𝑚  𝑥𝑥 𝑁𝑁 

                       8  

 
and 𝑊𝑊 is a diagonal matrix whose elements are 
 

 𝑊𝑊 𝑥𝑥   𝐼𝐼𝐼𝐼 = 𝑤𝑤 𝑥𝑥 − 𝑥𝑥 𝐼𝐼                             9  
𝑤𝑤 𝑥𝑥 − 𝑥𝑥 𝐼𝐼  is a weight function with compact support (i.e. a 
cubic spline [4]). 

The MLS approximation doesn’t always provide useful 
shape functions, because sometimes the 𝐴𝐴-matrices become 
singular, preventing inversion. This phenomenon occurs for 
some geometries, like the rectangular one. The reason is that 
for points lying in regions along the sides, away from the 
corners, the parameter that describes the contour line 
experiments variation only in one variable (𝑥𝑥 only or 𝑦𝑦 
only).  For a given point 𝑥𝑥  in the rectangle upper side, for 
example, the 𝑦𝑦-variable is a constant 𝑦𝑦 = 𝑐𝑐. So the basis 
becomes 𝑝𝑝𝑇𝑇 =  1, 𝑥𝑥, 𝑐𝑐 . One sees that all 𝑁𝑁 nodes whose 
influence domains act upon 𝑥𝑥  have the 𝑦𝑦-coordinate equal to 
𝑐𝑐. Consequently, 𝑃𝑃 has two constant columns. So, the 
product 𝐴𝐴 = 𝑃𝑃𝑇𝑇𝑊𝑊𝑃𝑃 will have two linearly dependent 
columns. Hence, 𝐴𝐴 is singular.  

One way to solve that is to make the nodal influence 
domains bigger than the side of the rectangle, in order to 
assure that inside this domain there will be points distributed 
along two adjacent sides. By doing this, both 𝑥𝑥 and 𝑦𝑦 will 
vary, 𝑃𝑃 will no longer have two linearly dependent columns 
and  𝐴𝐴 shall not be singular. But it revealed to be a bad 
approach: one sees that as the influence domains become 
larger, the local perspective of the method is destroyed. 
Besides that, the results are not so much accurate. 

To remedy this problem, a different approximation was 
developed: the improved moving least squares (IMLS) [5]. 
In the IMLS, it is required that the terms of the basis 𝑝𝑝 be 
orthogonal to each other. In order to do so, they are viewed 
as belonging to a Hilbert space in which the following inner 
product between functions 𝑓𝑓and 𝑔𝑔 is defined: 
 

 𝑓𝑓, 𝑔𝑔 =  𝑤𝑤 𝑥𝑥 − 𝑥𝑥 𝐼𝐼 𝑓𝑓 𝑥𝑥 𝐼𝐼 𝑔𝑔 𝑥𝑥 𝐼𝐼 𝑁𝑁
𝐼𝐼=1                    10    

The orthogonality condition is assured through the property 
 𝑘𝑘, 𝑗𝑗 = 1,2,… , 𝑚𝑚 : 
 

 𝑝𝑝𝑘𝑘 , 𝑝𝑝𝑗𝑗  =  𝑤𝑤 𝑥𝑥 − 𝑥𝑥 𝐼𝐼 𝑁𝑁
𝐼𝐼=1 𝑝𝑝𝑘𝑘 𝑥𝑥 𝐼𝐼 𝑝𝑝𝑗𝑗  𝑥𝑥 𝐼𝐼 =  𝐴𝐴𝑘𝑘 , 𝑘𝑘 = 𝑗𝑗

0,   𝑘𝑘 ≠ 𝑗𝑗
     11   

After some matrix manipulations [5], one concludes that 
inversions are no longer necessary. The shape functions are 
 

 𝜙𝜙1 𝑥𝑥  , 𝜙𝜙2 𝑥𝑥  ,… , 𝜙𝜙𝑁𝑁 𝑥𝑥  = 𝑝𝑝𝑇𝑇 𝑥𝑥  𝐴𝐴  𝑥𝑥  𝐵𝐵 𝑥𝑥         12  
where 𝐴𝐴  is a diagonal matrix whose elements are given by 
 

 𝐴𝐴  𝑥𝑥   𝑖𝑖𝑖𝑖 = 1
 𝑝𝑝𝑖𝑖 , 𝑝𝑝𝑖𝑖 

                               13  
 

IV. PRELIMINARY RESULTS 
 

For a rectangular cross-section cylinder, we have begun 
by spreading nodes over the contour and applying the IMLS 
approximation to build the shape functions. We can express 
the unknown surface current density at a nodal point 𝜌𝜌 𝑖𝑖  
along the contour as in (4), with 𝑢𝑢  replaced by 𝐽𝐽 and 𝑥𝑥  by 
𝜌𝜌 𝑖𝑖 . The next step is to insert that expression for 𝐽𝐽 in (3) and 
get a linear system that can be solved in order to find the 
nodal parameters. The following results were obtained 
(scattering by a square cylinder with sides 2𝑎𝑎, where 
𝑎𝑎 = 1/𝑘𝑘 and 𝑘𝑘 = 2𝜋𝜋/𝜆𝜆 is the wave number, 𝜆𝜆 being the 
wavelength): 

Fig. 1. Normalized current density along cylinder contour 
 
The figure above shows the absolute value of the normalized 
current density (with respect to the incident magnetic field 
𝐻𝐻𝑖𝑖 ) along the path ABCD. One sees that the result is 
accurate when compared to the method of moments (MoM). 
The peaks in the current density at the vertices B and C are 
theoretically predicted for a TM incident wave.  

 Further studies on the precision and the convergence of 
the method will be presented in the final paper. We have 
found out that the MLS approximation is not general enough 
to deal with any cross-sectional geometry. It should be noted 
that the IMLS approximation runs faster than the MLS, as 
there is no need for matrix inversion.  
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Abstract—The synthesis of a dual-frequency band Inverted-S 
Antenna (ISA) using low profile PCB configuration is studied. To 
manipulate the multi-objectives and the huge amount of turning 
work involved in the synthesis of a dual-frequency band 
Inverted-S Antenna, special numerical techniques such as 
approaches to integrating different objectives, an improved 
vector genetic algorithm and a modified radial basis function 
based response surface model are proposed. Numerical results as 
reported serve to demonstrate the pros and cons of the proposed 
techniques.  

I. NUMERICAL TECHNIQUES FOR ISA SYNTHESIS 
Nowadays, a large amount of commercial PC cards are 

operating at 2.4 GHz and 5 GHz. Consequently, the compact 
dual-frequency antenna becomes a topical research subject in 
both academic researches and engineering applications. In this 
point of view, the Inverted-S Antenna (ISA) is a promising 
candidate since it can achieve an adjustable dual frequency 
with omnidirectional radiation patterns. In contrast to the 
inverted-F antenna (IFA), which is now widely used in 
handsets, ISA is a kind of micro-strip antennas with a 
centrally located parasitic element between a folded and feed 
element, originally developed in the early 1990’s and patented 
in Australia [1] and USA [2]. In this smart configuration, the 
folded element connected to the ground line and the feed 
element connected to the feed produce an adjustable dual 
frequency and provide omnidirectional radiation patterns at 
two different frequency bands. Moreover, the element 
connected to ground determines the lower operating frequency, 
and the feed element the higher one. In addition, the two 
operating-frequencies of the antenna are found to have the 
same polarization plane and broadside radiation patterns. 
However, as a large number of objectives, decision parameters 
and considerable parameter tuning work are involved, as well 
as the field coupling between different elements is required to 
take into consideration in the synthesis of an ISA, the 
promising performances of an ISA can only be pursued when 
some specified robust synthesis methodologies are applied. 

A. Mathematical Model   

To design an ISA with desirable performances, apart from 
the minimization of the volume of the antenna, the goals of 
the optimization are proposed further to include: maximize the 
bandwidth of S11 and minimize the return loss at the two 
resonant frequencies. Such synthesis problem is a many-
objective synthesis, which might result in dramatic 
deteriorations of the selective pressure when a vector genetic 
algorithm is employed. Therefore, it would be desirable if the 
objectives could be reduced without sacrificing the solution 
quality. In this point of view, the bandwidth and return loss 

requirements for each resonant frequency are integrated into a 
new fitness function of the bandwidth of S11. Mathematically, 
the proposed fitness functions are formulated as: 

11[1 ( )][ ( ) 10]( 1, 2)
N

j i cj i
i

f f f S f jδ= + − − =∑            (1) 

where, fcj is a resonant frequency, i.e. 2.4GHz or 5GHz, δ (f-fcj) 
is the Dirac function, N is the number of sweeping frequency 
points within 5% bandwidth of the resonant frequency.  

By using this new defined fitness function, the fitness 
assignment mechanism will favour trying on different 
intermediate solutions when these solutions, other things being 
equal, have the same bandwidths, which will sustain the 
necessary diversity of the population in the optimization process.  

After introducing the two new fitness functions fj (j=1,2), the 
optimal goals of the synthesis of an ISA read as: minimize fj 
(j=1,2) and the volume of the antenna. 

B. An Improved Vector Optimizer 

The Non-dominated Sorting Genetic Algorithm-II 
(NSGA-II) [3] is extended as the vector optimizer for solving 
the ISA synthesis in this paper. Since the penalty-
parameterless constraint-handling approach of NSGA-II often 
gives unfeasible geometric parameters for finite element 
modeling, one introduced and incorporated some geometrical 
constraints into the optimal model. Moreover, these 
constraints are transformed into two linear constraints with 
preconditioned variable bounds, resulting in a simple 
randomly iterative sampling procedure in the numerical 
implementation. Finally, thanks to the success in the 
development of some specific intermediate recombination 
manipulator as the crossover operator, all the individuals 
generated are automatically met these linear constraints. 

C. Field Computation and the Application of a Response 
Surface model 

To consider the coupling effect of different elements, the 
finite element method is used to determine the performance 
parameters of an ISA. However, the heavy computational 
burdens of a considerable large number of total finite element 
analysis required by NSGA-II are unaffordable for some 
engineering applications. In this regard, the multiquadric 
radial basis function [4] based response surface model is 
extended and used. It should be pointed out when the number 
of sampling points employed is within certain limits, a small 
shape parameter is better in view of constructing the profile of 
the response surface. However, this will lead to inaccurate 
numerical results. Moreover, with the increase of sampling 
points, an ill-conditioned matrix will appear. To alleviate 
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these deficiencies, some regularization technique, or the 
introduction of smoothness parameter together with a 
stabilizing function, are proposed. In this regard, Engl’s 
criterion to optimize the smoothness parameter is introduced, 
resulting in not only a more smoothed response surface, but 
also an improvement of the condition number for the 
interpolation matrix. 

II. NUMERICAL EXAMPLE AND CONCLUSION 
The proposed numerical techniques are employed to 

optimize a dual-frequency band inverted-S antenna operating 
at 2.4 GHz and 5 GHz. In the numerical experiments, the 
finite element method is used to determine the performance 
parameter of the antenna.  

To start with, 800 sampling points are firstly generated and 
the performance parameters of these sampling points are 
determined by means of finite element analysis; and the 
improved multiquadric radial basis function is then used to 
reconstruct the optimal problem; finally, the NSGA-II is run 
on the reconstructed problem to efficiently find the Pareto 
optimals of the optimal problem. If no proper solutions are 
searched in the current iterative cycle, some sampling points 
are added and the aforementioned procedures are repeated 
until some good solutions are attainable. In the numerical 
implementation of NSGA-II, the size of population is set to 
100, and the number of maximum generations is set to 1000. 

The final Pareto solution searched by using the proposed 
methodology is shown in Fig. 1. To compare performances of 
the optimized configuration and the original design which is 
obtained by using a rule of thumb, of the ISA, a solution in the 
Pareto front as marked in red circle is selected and the details 
are tabulated in Table I. The corresponding curves for 
Parameter S11 are depicted in Figs.2~3. From these numerical 
results, it is obvious that the proposed methodology can find a 
set of best compromising solutions of a many-objective design 
problem in a single run. Moreover, the performance 
parameters for the selected specific solution are much better 
than those of the original design. Therefore, the paper 
provides not only robust synthesis technique for an ISA 
design, but also provide more freedoms for a decision maker 
to select a specific solution from these Pareto solutions 
according to his/her preferences. 

2 ( B)f d

1( B)f d
 

Fig. 1 The searched  Pareto solution of the proposed methodology: the red 
circle is a specified solution highlighted in this paper  

TABLE I 
COMPARISON BETWEEN THE ORIGINAL AND THE OPTIMAL DESIGN FOR A 
SPECIFIC SOLUTION SELECTED FROM THE SEARCHED PARETO SOLUTIONS 

 Bandwidth
(2.4GHz) Return loss (2.4GHz) Bandwidth

(5GHz) 
Return loss

(5GHz) 
Original 5.3% -15dB 10.7% -20dB 
Optimal 6.97% -33.6dB 14.97% -34dB 

11
(

B
)

S
d

 
Fig 2. The return loss of the optimized dual frequency ISA. 
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(

B
)

S
d

 

Fig. 3. The return loss of the original dual frequency ISA. 
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6. OPTIMIZATION 

Abstract —This work presents an alternative method of 
electromagnetic (EM) optimization applied to design frequency 
selective surfaces (FSSs) with Koch island patch elements and 
desired stop band filter specifications. The problem is addressed 
by means of the natural optimization algorithm based on particle 
swarm optimization (PSO). Multilayer perceptrons (MLP) 
artificial neural network (ANN) was trained for FSS modeling 
with the efficient resilient backpropagation (RPROP) algorithm. 
The resultant MLP model for FSS design was used for fast and 
accurate evaluation of cost function in PSO iterations. The 
results for one FSS design example are presented and the 
advantages of the PSO-ANN algorithm are discussed. 

I. INTRODUCTION 
The design of frequency selective surfaces using fractals 

was originally proposed in [1] through the use of space-filling 
properties of certain fractals, such as the Minkowski loop and 
the Hilbert curve, in order to reduce the overall size of the 
FSS elements. The self-similarity property of these fractals 
enables the design of multiband fractal elements or fractal 
screens [2]-[4]. 

This work investigates the use of periodic arrays of Koch 
island patch elements to design FSS stop band filters. In order 
to control the FSS resonant frequency and bandwidth we 
modify the metallic shape of Koch elements adjusting the 
fractal iteration-factor and iteration-number. A parametric 
analysis is accomplished through the use of the Ansoft 
DesignerTM commercial software. To verify the simulations 
some FSS prototypes were fabricated and measured through a 
network analyzer (model N5230A, Agilent Technologies).  

The obtained EM-dataset from full-wave parametric 
analysis of FSS filters was used for the training of the MLP 
model. The training dataset comprises 48 examples that 
correspond to the input parameter values: the substrate 
dielectric constant (εr = 2.2, 3.0, 4.0, 4.8, 6.15, 7.0), iteration-
factor (a = 3, 4, 6, 9) and iteration-number (k = 1, 2). The FSS 
filter resonant frequency (fr) and bandwidth (BW) were 
defined as design output parameters.  

The Koch FSSs were constructed from a conventional array 
of rectangular patch elements on a single substrate layer. The 
Koch island patch elements are illustrated in Fig. 1, where W, 
W1 and W2 are the width and L, L1 and L2 are the length of the 
patch at levels 0, 1 and 2, respectively. For the Koch island 
fractal initiator, we consider a rectangular patch printed on a 
FR-4 fiberglass substrate (εr = 4.4, thickness = 1.5 mm), with 

dimensions: W = 4.93 mm, L = 8.22 mm, tx = 8.22 mm and ty 
= 12.32 mm, resulting a resonance of 16.57 GHz.   

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1. Periodic array of rectangular patch elements. 

II. PARTICLE SWARM OPTIMIZATION 

PSO is a natural algorithm inspired by the social behavior 
of animals, such as bird flocking or fish schooling. Each PSO 
swarm individual (or particle) moves about the cost surface 
with an individual velocity. The velocities and positions of the 
particles are update based on the local and global best 
solutions [5]. A flow chart of the proposed PSO algorithm is 
shown in Fig. 2(a). The innovation is the introduction of the 
MLP model for PSO cost function evaluation. The used MLP 
network configuration is shown in Fig. 2(b). Only five hidden 
neurons were enough to solve the modeling learning-task with 
the RPROP training algorithm [6]. The outputs of the MLP 
model are computed by means of (1): 
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where x = [-1, k, a, εr]T is the input vector, W and V are the 
MLP weight matrix, and y = [fr, BW]T is the output vector. 

Given a Koch FSS filter desired specification (frdesired, 
BWdesired), the goal is the minimization of the quadratic cost 
function as defined in (2) in terms of absolute percent errors: 
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6. OPTIMIZATION 

The integers n and m take into account the n-th particle at the 
m-th PSO iteration. The PSO algorithm updates the velocities 
and positions of the particles based on the local and global 
best solutions according to (3) and (4), respectively.   
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Here, nv  is the particle velocity, np  is the particle position, 

0r , 1r  and 2r  are independent uniform random numbers; 1Γ  
is the cognitive parameter and 2Γ  is the social parameter, 

)(mbestlocal
np  and )(mbestglobal

np  is the best local and global 
solution, respectively and C is the constriction parameter.  
 

 
 

Fig. 2. (a) Flow chart of PSO-ANN algorithm; (b) MLP configuration. 

III. RESULTS AND DISCUSSION 

In the design example presented in this section we tested 
PSO-ANN algorithm implementation with the input/output 
parameters: εr = 4.4, k = 2, a = 5, fr = 10 GHz and BW = 2.1 
GHz. Fig. 3 shows the cost surface contours, the initial, 
intermediate and final swarms, as well as the best path 
obtained from the PSO-ANN simulations, which converges 
for the optimal solution: εr = 4.4 and a = 5.  Fig. 4 shows the 
evolution of the average cost and best global cost for the PSO 
swarm. It is observed that the best-fit individual of the PSO 
final swarm converges to the global minimum of the cost 
function given in (1) and the algorithm is limited in precision 
to the round off error of the computer. Fig. 5 presents a 
comparison between the simulated and measured results for 
the transmission coefficient (in dB) of the Koch fractal FSS 
used as design example.  A good agreement can be verified 
between simulated and measured data. 

IV. CONCLUSION 

The PSO-ANN algorithm showed to be faster and easier to 
implement as a global design tool in synthesizing FSS 
structures. These technique main advantages are related to its 
great flexibility of application in structures that do not have an 
explicit analytical cost function. It also presents a very low 
time processing, which is a very desired characteristic. 

 

 

Fig. 3. PSO simulation for the Koch fractal FSS. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. PSO cost function for the Koch fractal FSS. 

 

 

 

 

 

 

 

 

 
 

 

Fig. 5. Simulated and measured transmission coefficient (dB). 

V. REFERENCES 

[1] E. A. Parker and A. N. A. El Sheikh, “Convoluted array elements and 
reduced size unit cells for frequency-selective surfaces,” IEE 
Proceedings-H, Vol. 138, No. 1 (1991), 19-22. 

[2] B. Hou, G. Xu and W. Wena, “Tunable band gap properties of planar 
metallic fractals”, Journal of Applied Physics, Vol. 95, No. 6 (2004), 
3231–3233. 

[3] A. R. Chandran et al., “Scattering behaviour of fractal based metallo-
dielectric structures”, Progress in Electromagnetics Research, PIER 69, 
2007, 323-339. 

[4] J. P. Gianvittorio, J. Romeu, S. Blanch and Y. Rahmat-Samii, “Self-
similar pre-fractal frequency selective surfaces for multiband and dual-
polarized applications”, IEEE Transactions on Antennas and 
Propagation, Vol. 51, No. 11 (2003), 3088-3096. 

[5] L. Kennedy and R. C. Eberhart, “Particle swarm optimization”, Proc. 
IEEE Conf. Neural Networks IV, Piscataway, NJ, 1995. 

[6] M. Ridmiller and H. Braun, “A direct adaptive method for faster 
backpropagation learning: the RPROP algorithm”, Proceedings of the 
IEEE International Conference on Neural Networks, San Francisco, 
EUA, 1993, 586–591. 

355

 



3. WAVE PROPAGATION

Abstract —The accuracy of the NS-FDTD method is dependent 
on the coefficients of the finite difference (FD) operators, 
however, they have not been derived analytically for rectangular 
cells. It is therefore necessary to obtain the coefficients 
numerically such that the phase velocity error is minimized, as 
we have previously reported. However, the calculation cost is 
very expensive. In this paper, we propose a new method to obtain 
the coefficients with a far lower computational cost. It is shown 
that the method reduces the computational time to 1/360 or less 
compared to the previous one. 

I. INTRODUCTION

   The NS-FDTD method is a time-domain analysis 
technique for electromagnetic waves with a fixed frequency 
[1]-[3]. A superior feature of the NS-FDTD method is the 
high accuracy based on the excellent isotropy. The quality of 
the isotropy is dependent on the coefficients  , where the 

special FD operators [1] with opposite anisotropic phase 
velocity errors are combined. Therefore, obtaining proper 
for the best error cancellation is very important to guarantee 
the high accuracy of the NS-FDTD method. Analytical 
expressions for   for cubic cells have been given [1], but the 

  for rectangular cells have not yet been presented. 

Previously, we reported a method to obtain   numerically in 

a rectangular cell [3]. However, the method employs a stable, 
but an inefficient direct search technique, so the calculation 
cost may be more expensive than the NS-FDTD calculation 
itself in three-dimensions. 

  In this paper, we propose a semi-analytical method to 
obtain   with a low computational cost in three dimensions. 

Our proposed method can reduce the computation time to 
1/360 or less compared with the previous method [3]. 

II. PRESENT METHOD

       We consider the normalized FD Laplacian in the NS-
FDTD, (1) (0) 2 2[ / ( )] /( )kd d s k  



  , where (0) ( )

1,2,3

d d 
  






 
is the special FD operators [1],   the spatial increments, 

( ) 2sin( /2) /ks k k    , and ie  ･k r  with k  the physical 

wavenumber and r  the position. If we assume that the 3D 
normalized FD Laplacians correspond to the 2D normalized 
FD Laplacians on ( , )x y  , ( , )x z  and ( , )y z    for /2  ,

0  and / 2  , respectively, it yields the relations 
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where , , ,x y z    and   . From (1), we can obtain the 

following relations by the definition 1 2 3 1     [1]: 

           2 0 11 2     , 3 0 12( )    .                     (2) 

Using the relations (2), it is only necessary to determine 1  in 

three dimensions, although the two-dimensional coefficient 

0  should be obtained according to [3] prior to the calculation. 

Next, using (2), we define the error in the normalized FD 
Laplacian as 
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where , , , ,x y z     and     . Using (3), the 1( , )  
in the semi-analytical solution that satisfies ( , ) 0     is 

given by 
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Here, we define the average error for 1( , )    by 
2
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    ,   (5) 

where 1( , , ( , ))        is given by equation (3) but with 

1( , )    instead of 1 . In our proposed method, we select the 

1( , )    which minimizes the average error (5) as the 

coefficient 1 . Our proposed algorithm is shown in Fig. 1. 

III. NUMERICAL VERIFICATION 

   Using the algorithm shown in Fig. 1, 1 coefficients were 

obtained for various rectangular cells, as shown in Table I.  

Coefficients of Finite Difference Operator for 
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3. WAVE PROPAGATION

Here,   is the wavelength. In the calculations, the angular 

steps,   and  , were set to 1 , so the number of 

calculation loops was 3×91×91. The calculation time was 7 
seconds on an Intel Core 2 Duo processor (2.4 GHz) and is 
independent of N , the number of significant digits of  .  In 

the previous method, the computational cost is proportional to 
210 91 91N    for 1,2   and it took 42 minutes to obtain 

Fig. 1. Search algorithm for 1  in three dimensions. To obtain the best 1 ,

2D coefficient 0  that gives minimum value of 1( ( , ))Average     from three 

cases of ( , )x y  , ( , )x z  , and ( , )y z   is selected at the 2nd decision part. 

for 4N , i.e. the cost was 360  times. We found that 6N
was necessary to maintain the high accuracy of the NS-FDTD, 
so the computational time becomes 442 10  minutes for the 
previous method. Note that the computing time to derive 0  is 

negligible in Fig. 1. Thus our new method can reduce the 
calculation time dramatically. 
   Fig. 2 shows the minimum and maximum values of the 
normalized numerical phase velocity 0/nc c  obtained from the 

numerical dispersion equation [3] for propagation angle  ,
where the cell size is ( /10x   , /20y   , /40z   ) as an 

example. For comparison the results are shown when the 
coefficients 1,2,3  are obtained using the previous method [3] 

and 1,2,3  for cubic cells [1], [2] are used. It is clear that the 

NS-FDTD has high accuracy and isotropy when our 
coefficient 1  is used, as was also the case with the previous 

method. Consequently, the validity of our proposed method 
for   has been verified. 

TABLE I

1  IN THREE DIMENSIONS

Fig. 2 Minimum and maximum values of the normalized numerical phase 

velocity 0/nc c  versus propagation angle   in 0 90   range. The 

subscript “cubic” means 1,2,3 of cubic cell was used [1], [2], “previous” 

means 1,2,3 of the previous method [3] was used. 0c  is the physical phase 

velocity. 

IV. CONCLUSION 

       We have proposed an efficient method to obtain the 
coefficients   of the finite difference operators for the 

rectangular cell NS-FDTD method. As a result, our method 
reduces the computing time dramatically for obtaining the 
three-dimensional  while maintaining the accuracy of the 

NS-FDTD. 
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12. DEVICES AND APPLICATIONS 

 Investigation of UHF Circular Loop Antennas 
for RFID 
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Abstract — In Radio Frequency Identification (RFID), the 
design and investigation of UHF circular loop antennas used as 
reader antennas as well as tag antennas is of growing 
importance. Since these antennas are electrically short, a 2D 
FEM analysis using a single-component magnetic vector potential 
together with PML’s at the boundary is proposed in this paper in 
order to perform very fast and accurate axisymmetric 
simulations compared with very time consuming 3D calculations. 
In addition, the capacitances of the tag loops have been 
calculated using a 3D quasi-static electric approach taking the 
gap of the loops into account. 

I. INTRODUCTION 

UHF-RFID systems [1] consisting of a reader and one or 
more tag antennas are working at frequencies of about 1 GHz. 
In  case of axisymmetric reader loops, tag loops and objects to 
be identified, a 2D axisymmetric FEM analysis using a one 
component magnetic vector potential and Perfectly Matched 
Layers (PML’s) at the boundary can be used with advantage 
(high accuracy combined with minimal computational effort 
compared with 3D solutions [2]). However, the axisymmetric 
assumption is only valid, if the loops are small enough 
compared with the wavelength (electrically short). 

In Fig. 1, the half model of a tag loop is shown. It consists 
of a loop with a gap where the IC is placed. The loop is on the 
surface of a substrate. Typical parameters of such a tag loop 
made of copper are a mean radius of 9mm, a cross section of 
500 x 35μm and a substrate permittivity of 4. The thickness of 
the substrate is assumed to be 0.6mm. The gap width is taken 
to be 400μm and is neglected in case of solving the wave 
equations but not for calculating the capacitances. 

 
 

Fig. 1. Half model of a circular tag loop. Gap in the axisymmetric solution 
neglected 

 
Reader loops are built similarly. Due to their larger radius 

(radius = 40 mm in the example), they have several gaps 
equally spaced along the circumference, whereby appropriate 
lumped capacitances are connected to the gaps in order to 
provide a constant current along the loop.   

II. FORMULATIONS 
Wave propagation phenomena can be described by 

Maxwell’s equations using a magnetic vector potential A and 
an electric scalar potential v (A,v formulation). The field 
quantities E and B and the governing differential equations 
using a complex conductivity cσ are then given by: 

  
curl=B A )           and          (1) (= − +j gradωE A v

 
( ) + +c ccurl curl j j gradν ωσ ωσA A v = 0

) 0

 (2) 
  

(− +c cdiv j j grad =ωσ ωσA v  (3) 
 
together with the appropriate boundary conditions. 
    In the axisymmetric case, (2) and (3) reduce to 
 

( ) ( )
2

∂ ∂ ∂ ∂
+ − = −

∂ ∂ ∂ ∂
ν ν ωσ σ

π
e

c c

UrA A
j A

r r z z r
, (4) 

 
where  is the impressed voltage per loop. '

eU

Applying the superposition principle yields the admittance 
matrix Y of the loop system. To get the matrix, as many 
calculations as there are loops in the system must be 
performed. Using a direct solver, only multiple right hand 
sides have to be taken into account. The loops can be voltage 
or current driven a fact that can be taken into account with the 
aid of the expression 
 
=I YU , (5) 

 
where I and U are the vectors of the loop currents and 
voltages, respectively. 

The capacitances of the tag loops are neglected in the 
axisymmetric model. They can be taken into account by 
additional 3D quasi-static electric field calculations. The 
differential equation for these analyses is 

Substrate 

Loo

Gap y
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12. DEVICES AND APPLICATIONS 

 
0=σ cdiv gradV  (6) 

 
together with the appropriate boundary conditions. The loops 
are excited in the gap by a given voltage. The capacitance of 
the loops can be obtained from the electric energy. The 
capacitances thus computed can be used to update the 
admittance matrix Y. This quasi-static approach is possible, 
since the dimension of the tag loops (radius = 10mm) is small 
compared with the wavelength of 300mm at 1GHz.   

III. EXAMPLES 

To verify the method, a circular loop antenna with a mean 
radius of 9.625mm with rectangular cross section of 0.25 x 
0.25mm (conductivity = 5.7 107 S/m) has been analyzed at a 
frequency of 1GHz. By integration of the Poynting vector 
over a closed surface, a radiation resistance of 0.3273 Ω 
results. The analytical result for a circular filament loop with a 
radius of 9.625mm given by 
 

3 2
2

2

2 2(
3

=R

r
R

ππη
λ

)

1

 (7) 

 
is 0.3257 Ω showing an excellent agreement.  In addition, the 
eddy current losses in the loop result in an AC resistance of 
0.6267 Ω which is almost two times higher then the radiation 
resistance. 

In the example shown in Fig. 2, the loop system consists of 
a reader and a stack of two close coupled tag loops (10mm 
distance) at a distance of 70mm from the reader. The reader is 
driven by 1V. The tag loops are terminated by Z1  = 50Ω and 
Z2 = 50Ω. From the admittance matrix and with 1 1=U Z I  and 

, the currents in the tag loops and in the reader can 
be obtained from (5). 

2 2=U Z I21

 

 
Fig. 2. System of a reader loop and two close coupled tag loops. Up to 100 tag 
loops can be stacked in special arrangements. 
 

The results are shown in Table 1. The currents and the 
phases in the tag loops are quite the same. In this example, the 

capacitances of the tag loops are not taken into account. They 
Z2. can be considered by updating Z1 and

 
TABLE I 

CURRENTS IN THE READER AND TAG LOOPS 

 Current (μA) Phase (deg) 

Tag-loop 1 8.316 46.37 

Tag-loop 2 10.94 53.41 

Reader 692.1 -88.06 

 
The capacitances of the tag loops can be calculated using 

the quasi-static electric approach solving equation (6). In Fig. 
3, the potential distribution is shown at the surface of a single 
loop and at the surface of the substrate.  

 Substrate thickness = 0.6mm 

Substrate permittivity = 4 y

 
Fig.3. Single tag loop: C = 0.138 pF (without substrate: C = 0.0661pF).  

 
The capacitance obtained from the 3D quasi static electric 

field calculation is 0.138pF and the inductance from the 
axisymmetric approximation is 47nH. 

For comparison, the 3D full wave solution for the single 
loop at f = 868MHz results in C = 0.135pF and L = 47.3nH.  

In the second case (Fig. 4), a close coupled tag loop system 
(distance = 1.54mm) is shown. In this case the lower loop is 
driven and the upper loop is at floating potential. The 
capacitance is more than twice as high as that of the single 
loop without substrate. 

Frequency = 868MHz 

Loop cross sections = 500 x 35μm

Loop material = copper    

Tag loop 1 and tag loop 2
are terminated by 50Ω 

Substrate permittivity = 4 

The reader loop is driven by 1V 
Tag loop 1 

Tag loop 2 

Reader loop 

40mm 

9mm 

10mm

Symmetry axis 

70mm 

Substrate (radius = 60mm) 

Substrate (radius = 13mm) 

 

y

Fig. 4. Stack of two close coupled tag loops. The distance of  the loops is 
1.54mm. The lower loop is driven. C = 0.159 pF 
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13. EDUCATION 

Abstract — This paper describes large-scale full wave analyses 
of electromagnetic fields by the finite element method with an 
iterative domain decomposition method. A stationary Helmholtz 
equation for the high-frequency electromagnetic field analyses is 
solved taking an electric field as unknown functions. Then, to 
solve subdomains by the direct method, the direct method based 
on the LDLT decomposition method is introduced in subdomains. 
If the direct method is applied for solving subdomain problems, 
the computation time seems to be reduced by the improved 
accuracy of subdomain problems, and storing matrices that are 
results of the decomposition on main memory. 

I. INTRODUCTION 
The finite element method has been used to solve the 

Helmholtz equations in high-frequency electromagnetic 
problems, resulting in solving large-scale systems of 
simultaneous linear equations. Dealing which such large-scale 
problems is a crucial issue in solving system of equations 
derived from finite element discretization of the Helmholtz 
equations in high-frequency electromagnetic problems[1].
Currently, we are conducting research on large-scale finite 
element analyses for electromagnetic fields in the range of 
several MHz to several GHz by using parallelization 
techniques based on the iterative domain decomposition 
method (IDDM). The IDDM based on the conjugate 
orthogonal conjugate gradient (COCG) method is applied to 
solve the interface problem. Previously, an iterative method 
was applied to the subdomain problem. However, the 
convergence property of the interface problem was not good 
in solving large-scale problems of over 10 million complex 
DOFs. In this study, the direct method based on the LDLT 
decomposition method is applied to the subdomain problem. 
In this paper, we provide the numerical examples of about 50 
million complex DOFs based on the formulation of the E 
Method[2].  

II. FINITE ELEMENT FORMULATION 
Let Ω be a domain with the boundary ∂Ω. The Helmholtz 

equations which describe an electromagnetic field with single 
angular frequency ω [rad/s] are drawn from Maxwell’s 
equations containing the displacement current. The Helmholtz 
equations describing an electric field E [V/m] are given by 
(1a) and (1b) below, using the current density J [A/m2] and 
the electric field E, and assigning j as an imaginary unit: 

( ) Ω=− in rot/1rot JEE ωεωμ j2                          (1a) 
Ω∂=× on0nE                                                         (1b) 

EJ ˆσ=                                                                     (1c) 
Permittivity and permeability are given by ε [F/m] and 
μ [H/m], respectively. In this formulation, permittivity 
becomes complex permittivity ε=ε’+σ/j. The electric field Ê  
on known points is substituted into (1a) by equation (1c), 
where the electrical conductivity is denoted as σ. By solving 
equation (1a), with imposing the boundary condition of (1b), 
we calculate the electric field E. The magnetic field H is then 
calculated from the electric field E by post-processing using 
equation (2) bellow, which is one of Maxwell's equations[2].  

0HE =− rj μωμ0rot                                                       (2) 

Finally, we assume that 
Ω= in                           0div J                                   (3) 

Next, we describe the finite element discretization. The 
electric field E is approximated with Nedelec elements (edge 
elements)[3]. The finite element approximation is performed 
as follows.
Find Eh such that 
( ) ( ) ( )*** ,,rot,rot1 hhhhhh EJEEEE ωεωμ j2 =−            (4) 
where (・,・) denotes the complex valued L2-inner product. 
Here, hJ is a corrected electric current density with 
consideration of the continuity[4]. 

III. ITERATIVE DOMAIN DECOMPOSITION METHOD   
We introduce the IDDM to high-frequency problems using 

the E method. Let us put the finite element equations of (4) in 
matrix form, as follows: 

fKu =                                                                          (5) 
where K denotes the coefficient matrix, u the unknown vector, 
and f the known right-hand side vector. The domain Ω is 
partitioned into non-overlapping subdomains. Then the linear 
system (5) is rewritten as follows: 
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where subscripts I, B correspond to nodal points in the 
interior of the subdomains and on the interface boundary, 
respectively. Here, Ti

BR )(  represents the internal DOFs )(i
Bu  of 

subdomain Ω(i) about Bu . It is a 0-1 procession to restrict.  
At first, the unknown vector Bu  is obtained from the 

application of the COCG method. After solving Bu , the vector 
)(i

Iu  is solved by the direct method with the LDLT 
decomposition method, and can also be solved independently 
in each subdomain. Hence, we can get the unknown in the 
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whole domain[2][4]. The IDDM is implemented in a parallel 
computing environment using the hierarchical domain 
decomposition method (HDDM). In this paper, we use P-
mode that is one of the parallel data handling types of HDDM, 
see [2] and [4]. 

IV. NUMERICAL EXAMPLES 
A reentrant resonator model is used to verify the accuracy 

and performance of the parallel computation, of our proposed 
method. It is one of the benchmark problems defined as 
TEAM (Testing Electromagnetic Analysis Method) Workshop 
Problem 29[5]. The verification is performed on three kinds of 
meshes, as described in Table I. Mesh(1)-(4) are divided into 
first-order tetrahedral Nedelec elements. 

TABLE I 
MESHES FOR VERIFICATIONS 

Mesh Element DOF Num. of Subdomain  
(1) 108,787 134,889 60 x 11 
(2) 5,043,711 6,792,202 60 x 494 
(3) 17,367,244 23,213,252 60 x 1,703 
(4) 40,349,688 54,236,667 60 x 3,956 

A.  Accuracy Verification 

Accuracy verification is performed using Mesh (1). To 
detect the resonant frequency and to compare solutions with 
actual measurements, the resonance state is investigated. The 
frequency band of 60 [MHz]-140 [MHz] is calculated for 2 
[MHz] steps, and the response for every frequency step is 
investigated. All calculations are performed on a 15-node (60-
core) PC cluster with Core2Quad Q6600 (2.40 GHz / L2 8 
MB) and 8 GB RAM. A comparison between the measured 
resonant frequencies and the solutions obtained by the FDTD 
method in each mode is shown in Table II. The obtained 
solutions are in very good agreement. The maximum error rate 
between the obtained solution and the measurement is 4.96% 
in the 1st mode. As the mode becomes higher, the error rate 
decreases. The same tendency is shown in the comparison of 
the error rate with solution of the FDTD method. Therefore, it 
is proved that the solution obtained by the proposed method 
has sufficiently high accuracy. 

TABLE II 
RESONANT FREQUENCIES IN MHz (( ): ERROR RATE BETWEEN 

MEASURED DATA AND NUMERICAL SOLUTIONS [%]) 

Mode Measured(5) FDTD(5) 

25mm mesh Result 

1st 68.6 67 (2.33) 65.2 (4.96)
2nd 110 110  109 (0.91)
3rd 134 134  134  

B. Performance  Verification 

Performance verification by large-scale computation using 
Mesh (2)-(4) is described next. In the analyses, the 1st mode 
(65.2 [MHz]) frequency is analyzed. Other calculation 
conditions are the same as those for Mesh (1). Average CPU 
time and average memory requirements are shown in Table III. 
For Mesh (2) solving with the direct method based on the 
LDLT decomposition method to the subdomain problem, the 
CPU time is reduced by 56% as compared to that of the 
incomplete Cholesky conjugate orthogonal conjugate gradient 
(ICCOCG) method to the subdomain problem. For Mesh (3) 

and (4), solving with the ICCOCG method to the subdomain 
problem does not converge, but the direct method successfully 
converges to compute a result. Although the direct method 
uses approximately 40% more memory, the total amount used 
exceeds 65% of the available RAM, even for Mesh (4). 
Therefore, we do not consider memory usage to be a problem. 
The residual norm convergence history of COCG iterations in 
the interface problem is shown in Fig. 1. In the calculations 
with Mesh (4), we can see the convergence behavior of the 
ICCOCG method to the subdomain problem. Here the 
interface problem does not converge even after 40,000 
iterations. In contrast, by the direct method, convergence is 
achieved after 29,235 iterations with a calculation time of 20.7 
[h]. Those results confirm the superiority of the direct method 
to the subdomain problem in large-scale computations. It is 
also demonstrated that the proposed method using a direct 
method for subdomain problems is able to solved high-
frequency electromagnetic field problems of more than 50 
million complex DOFs. 

TABLE III 
CPU TIME AND MEMORY REQUIRMENTS FOR EACH MESH 

 Solver for 
Subdomains 

Iteration 
counts 

CPU 
time[h] 

Memory size
[M Byte] 

Mesh(2) LDLT 5,625 0.8 83 
ICCOCG 6,532 1.8 59 

Mesh(3) 
LDLT 8,513 3.0 294 

ICCOCG ― ― ― 

Mesh(4) 
LDLT 29,235 20.7 683 

ICCOCG ― ― ― 
 

 

Fig. 1. Residual norm on the interface (Mesh(4)) 
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Abstract — Results of a simplified experimental apparatus used 
to obtain in situ optoelectrochemical measurements of the 
anodizing voltage versus time versus especular reflectance are 
used to design a new type of waveguide. The application of 
experiment was used to determine the thickness and refractive 
index (for wave-length of 0.6329 µm) of the waveguide. The 
proposed structure exhibits a simple geometry, and has been 
analyzed through a vectorial finite element BBP, FE-VBPM. 

  Keywords ⎯ Numerical Techniques, Waveguide, Thin Films. 

I. INTRODUCTION

It’s well  known that thin films of niobium and tantalum 
pentoxides and its mixed oxides (Nb,Ta)2O5 can be grown 
anodically on the surface of metals, Nb, Ta and its alloys Nb-
Ta, by placing samples in an electrochemical cell containing 
aqueous solution and three  electrodes under a suitable anodic 
voltage. The anodizing process occurs under direct current 
until the applied voltage is no more sufficient to produce it. 
These films exhibit several colors depending upon the 
thickness [1, 2]. The anodic oxide films grown on the 
substrate surface of niobium and tantalum and its alloys may 
be applied as electronic devices just as: store condenser of 
random access memory [3], gate in transistors [4], electronic 
holes [5], electroluminescent panels [6], pH and humidity 
sensors [7], and optical waveguide [8]. The anodic oxide films 
have accepted attention in last decades due its good dielectric 
properties. These films constitute the proposed structure that is 
formed by one fine layer of (Nb20%wTa)2O5  on a niobium 
pentoxide substrate as showed in Fig. 1. The new waveguide 
proposed has been analyzed by efficient vectorial finite 
element method [9].  

ns

ns

x
y

z
t

w

hL

air

Fig. 1. Rib waveguide   

II. FINITE ELEMENT FORMULATION

We start from the second order vectorial Helmholtz 
equation in two dimensions, including the perfectly matching 
layers in order to avoid reflections, 
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where, ε1=k , with ε  being the relative permissivity tensor. 

Considering the dielectric media with transverse anisotropy, 
and defining the

xû ,
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Consequently the transverse tensors in (1) are defined as, 
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where αx, and αy are parameters linked to the PML or virtual 
loss media. Since the waves are assumed to propagate along 
the z direction, the parameters αx, and αy have to be 
determined in such a way that the wave impedance is 
continuous across the interfaces formed between the inner 
computational domain and the PML. This ensures perfect 
wave matching over such interfaces, allowing the undesired 
radiation to leave the effective computational domain freely 
without any reflection. The PML parameters are specified 
from the parameter S given by 

)1ln())(23(1 2
0 RdndcjS ρω−=  [9], where 0ω  is the 

angular frequency, d is the thickness of the PML, n is the 
refraction index of the adjacent medium, ρ is the distance 
from inner PML’s interface, R is the reflection coefficient, and 
c is the free-space speed of light.  

Applying the conventional finite element method to the 
transverse variation of (2), the following differential equation 
is obtained: 
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where {
Th
r

} represents a column vector containing the 

unknowns hxj and hyj, {0} is the null column vector, and [M]
and [K] are the so-called global matrices, defined in [9]. 
Applying the Padé (1,1) approximation [9], to (4) the matrix 
equation given below is obtained, 
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III. NUMERICAL RESULTS 

The results of a simplified experimental apparatus used to 
obtain in situ optoelectrochemical measurements of the 
anodizing voltage versus time versus especular reflectance, 
while the oxide films were growing by galvanostatic 
anodizing, has been used to design a new waveguide type. The 
results of the experiment were used to determine the thickness 
and refractive index (for wave-length of 0.6329 µm) of the 
films. The Table I shows that characterization of experiment 
to obtain the refractive indexes. 

TABLE I 
REFRACTIVE INDEX AND THICKNESS OF ANODIC OXIDE FILMS 

GROWN IN Nb AND Nb-Ta SUBSTRATE 

Material Thickness (Å) Wavelength 
(µm) 

Refractive index 

Nb2O5 2.025 ± 64 0.6329 2.02 ± 0.06 
Nb20%wTa 1.652 ± 32 0.6329 2.64 ± 0.05 

In order to confirm the application of the FE-VBPM for 
analysis of the waveguide shown in Fig. 1, we consider ns =
2.02, ng = 2.64, L = 500 µm, t = 0.1 µm, w = 1.4 µm and h = 
0.85 µm. The substrate thickness was 3.5 µm and the 
computational domain considered was 9 μm (x direction) x 9 
μm (y direction) surrounded by PML’s with thickness d = 1 
μm covered by 12,000 linear elements with a propagation step 
size Δz = 0.1 μm. The structure was excited with one gaussian 
beam, given by ( ) σ2/exp 22 yxAhy +−= , where A is the 

amplitude of the beam and σ  is the spot beam. The 
wavelength considered was λ = 0.6329 μm. Fig. 2 shows 
magnetic-field distributions of the y-polarized guide, Fig.2a 
shows the y-component of magnetic field launched in the 
structure, Fig. 2b shows the y-component of magnetic field 
after 500 µm propagated.   

(a) (b) 

Fig. 2. Magnetic-field distributions of the y-polarized mode rib waveguide for 
(a) z = 0 µm, (b) 500 µm. 
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Fig. 2. Reference refractive index variation along the propagation distance 

Fig. 3 shows the convergence of the reference refractive 
index along the propagation direction in comparation with the 
results obtained using the modal analysis [10].   The loss in 
the waveguide after 1.0 km of the propagation is around 
2.56x10-16 dB. This value has been obtained through of the 
subtraction between the maximum value of the magnetic field 
after 1.0 km of propagation and the maximum value of the 
magnetic field obtained through the modal analysis. 

IV. CONCLUSIONS

A vectorial finite-element BPM for transverse anisotropic 
media was applied successfully to the analysis of a rib 
waveguide constituted by Nb and alloy of Nb-Ta. The 
refractive indexes used for constitute the waveguide was 
obtained thought experiments using anodic oxide films grown 
on Nb and alloy of  Nb-Ta substrates by in situ monitoring. 
The resulting structure has a simple geometry and its 
optimization by using genetic algorithms is under 
consideration for applications in Passive Polarization 
Converter.  
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3. WAVE  PROPAGATION

Abstract — Numerical and experimental investigations are 
presented for a dual-band frequency selective surface (FSS) with 
perfectly conducting rectangular patch elements. The work was 
developed in two steps. In the first step two single-band FSS 
screens were designed to obtain resonant frequencies at 9.5 GHz 
and 10.5 GHz, each one with about 1.5 GHz bandwidth. In the 
second step these single FSS screens were cascaded and separated 
by an air gap layer to achieve a dual-band response. The Moment 
Method is used to analyze the structures single band. After this, a 
numerical cascading technique is used to analyze the effect of the 
air gap between the cascading structures. 

I. INTRODUCTION

Recently, we can observe an increasing demand on the 
multifunctional antennas for communication that requires the 
development of FSS with multi-band characteristics [1]. The 
use of frequency selective surfaces (FSS) has been 
successfully proven as a mean to increase the communication 
capabilities of satellite platforms. In space missions such as 
Voyager, Galileo, and Cassini, the use of dual-reflector 
antennas with FSS sub-reflectors has made it possible to share 
the main reflector among different frequency bands. 

Therefore frequency selective surfaces with dual-band and 
multi-band responses have been studied by several 
researchers. Hill and Munk in [2] used a perturbation 
technique in a single-band FSS to obtain a single-layer dual-
band FSS, but attenuation lower than -10 dB was obtained. 

Wu in [3] designed and measured a four-band FSS with 
double square loop patch elements. The designed structure 
was complex with two layers separated by a honey comb. The 
structure was designed to reflect the Ka-band signal and 
transmit the S-, X-, and Ku-band signals. In [4], Wu and Lee 
designed a FSS with with circular concentric non symmetric 
rings. A very complex structure was developed, with three 
layers and with cells out of phase. 

This paper shows that a dual-band or multi-band FSS 
response can be obtained by cascading two or more single-
band FSS screens with simple elements, such as rectangular 
conducting patches. Two prototypes were analyzed, fabricated 
and measured. These prototypes were cascading to obtain a 
dual band response. A numerical cascading technique was 
used to analyze the effect of the air gap between the FSSs with 
single response. A good agreement between numerical and 
experimental results was obtained. 

II. SINGLE BAND STRUCTURE ANALYSIS

The single band analyzed structure is shown in Fig. 1. It is 
composed by an array of rectangular patch elements on a 
dielectric isotropic layer. A low cost fenolite dielectric 
substrate with height (h) equal to 1.5 mm and relative 
permittivity equal to 3.9 was used. The unit cell can be seen in 
Fig. 1(b). The cell has periodicity Tx and Ty in x and y
directions, respectively. The rectangular conducting patch has 
width W and length L.

Fig. 1. FSS geometry: (a) Single band structure and (b) Unit cell.. 

The analysis of scattering from a bi-dimensional FSS 
involves the solution of the induced surface current on the 
conducting element of FSS by an incident plane wave. The 
response of the FSS on the frequency domain is obtained as a 
sum of the incident field and the scattered field radiated by the 
induced surface current density. It can be seen in (1) [5]: 

0+ =s inc
t tE E (1) 

We assume that the FSS is infinitesimally thin and the 
entire domain basis functions are employed to represent the 
unknown induced surface current density in the patch 
elements. The scattered field is related to the surface current 
density using the components of the Green’s function as we 
can see in (2) [5]: 

+
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
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where xJ  and yJ  are the x and y components of the Fourier 

transforms of the current density; and xxZ , xyZ , yxZ , and 

yyZ  are the components of the Green’s function. The 

parameters mα and nβ  in (2) may be expressed as [5]: 
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3. WAVE  PROPAGATION

( )2 inc
m x xm / T kα π= + (3) 

( )2 inc
n y yn / T kβ π= + (4) 

where inc
xk and inc

yk  are the projections of the incident plane 

wave vector along the x and y directions, respectively. 

III. DUAL BAND STRUCTURE ANALYSIS

The interaction among the N structure can be accounted 
for by using the scattering matrices. To be exact, the matrices 
are of infinite order. Here, we use the so-called "one-mode 
interaction." It means that only the main beam is used in 
calculating the interaction. Using the one-mode interaction, 
the final results of reflection and transmission coefficient for 
the cascading structure in Fig. 2 are [6] 

( )T A BC / D= − (5) 

( )R C / D= − (6) 

Fig. 2. Cascading FSS Structures. 

The coefficients (A, B, C, D) are calculated in the 
following steps. First, for each sheet, we determine a 2 x 2 
scattering matrix S, here 

( ) ( )
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IV. RESULTS

Fig. 3 shows a comparison between numerical and 
experimental results and a good agreement is observed. The 
structure 1 has a resonance that occurs at 9.3 GHz, with – 
26.96 dB for the results obtained with MoM, and it occurs at 
9.55 GHz, with – 54.08 dB for the measured results. The 
structure 1 has a resonance that occurs at 10.40 GHz, with – 
20.6 dB for the results obtained with MoM, and it occurs at 
10.27 GHz, with – 26.42 dB for the measured results. 

Fig. 4 shows a comparison between numerical and 
experimental results for a cascading structure. We can observe 
a little difference between the results. The air gap was 1.5mm. 

Fig. 3. Single band structure responses. 

Fig. 4. Dual band structure response. 

V. CONCLUSIONS 

In this paper, a simple dual-band frequency selective 
surface was analized, fabricated and measured. We can see 
that the use of simple elements such as rectangular conducting 
patches can be used to obtain dual-band response. Numerical 
and experimental results were presented for single and dual-
band FSSs. The agreement observed between experimental 
and numerical results validates the various analysis 
approaches described in this paper. The air gap can be used to 
control the separation between the cascaded FSS bands. 
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Abstract—In this paper we consider the interaction of an
electromagnetic wave with an homogeneous dielectric material.
The numerical model of the interaction is described by a surface
integral equation obtained by using the Calderón projector. This
approach allows to improve signicantly the condition number
of the resulting linear system of equations as well as allows to
develop an efcient preconditioner.

I. INTRODUCTION
In the last few decades we have experienced an unpreceded

growth in the numerical methods for computing the electro-
magnetic eld. Despite the intense effort made by researchers
all around the World, the demands for faster and reliable
numerical models is continuously increasing with the com-
plexity of the devices such as electronic circuits, IC etc.
Currently, computer aided design is entered in the common
practice of electronic and electrical design and, moreover,
the computational power of modern computers provides the
resources to face problems of unpaired complexity. A current
trend is in the development of numerical methods for the
simulation of multiscale problems in a broad frequency range.
In this context, surface integral equations are very attracting

for solving problems involving impenetrable bodies (usually
PEC) or piecewise homogeneous penetrable materials [1]-[3].
Surface integral equations require the discretization of only
the surfaces of PEC and/or the interfaces between different
penetrable materials and incorporate the radiation condition.
Moreover, fast numerical methods such as fast-multipole
methods and SVD compression (see [4]-[7] and references
therein) can be successfully used to reduce the computational
cost when using iterative solvers to solve the related linear
algebraic systems characterized by fully populated stiffness
matrices.
The present contribution deals with frequency domain sur-

face integral equations (EFIE type) for evaluating the full-
wave 3D interaction of an electromagnetic wave with a ho-
mogeneous (eventually lossy) dielectric body. Classical EFIE
operator present singular values accumulating at zero and

Antonello Tamburrino is also with the department of Electrical and Com-
puter Engineering, Michigan State University, USA.

innity [8]. Therefore, the condition number of the stiffness
matrix arising from the discretization grows rapidly with
the discretization thereby compromising the accuracy when
applied to structures with subwavelength geometric features.
In this framework, the role of the preconditioner is crucial.
Recently, it has been show that the EFIE equation written
by exploiting the Calderón projector operator bring to very
effective preconditioners [9], [10]. These techniques exploit
that the square of the EFIE operator does not have eigenvalues
accumulating at zero or innity [11]-[14]. In this contribution
we want to lay the basis for: (i) a broadband numerical
model for treating homogeneous dielectric bodies by using
the Calderón projector operator and (ii) the related precon-
ditioner. The integral equation is those proposed in [16] and
will be coupled with a proper choice of shape functions to
overcome the arise of the low-frequency breakdown problem
[15]. Homogeneous dielectric materials have also been treated
by means of Calderón projector operator in [17]. Here we are
considering the integral model of [16], that is of minimum or-
der, and we are developing the related efcient preconditioner.

II. NUMERICAL MODEL
The reference problem, sketched in gure 1, consists of the

evaluation of the interaction of an electromagnetic eld with
a penetrable scatterer. The scatterer is homogenous, charac-
terized by the material properties ε1 and µ1 and hosted in a
homogenous innite space (having material properties char-
acterized by ε2 and µ2). The incident eld is

¡
Einc2 ,Hinc

2

¢
,

the scattered eld is (E2,H2) and the transmitted eld is
(E1,H1).
The integral equation follows from the concept of Calderón

projector applied to full wave Maxwell equations as proposed
in [16]:

·
M1 +M2 α1C1 + α2C2

α−11 C1 + α−12 C2 M1 +M2

¸ ·
m2
j2

¸
=

·
I/2−M1 I/2− α1C1

I/2− α−11 C1 I/2−M1

¸ ·
m0
j0

¸
(1)

where m2 = n̂×E2|Σ+ , j2 = jω n̂×H2|Σ+ , m0 =
n̂×Einc¯̄

Σ+
, j0 = jω n̂×Hinc

¯̄
Σ+
, αj , k−1j µj , Mk and
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Σ

ε2, µ2
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ε1, µ1 Ωc

n̂

Fig. 1. The reference conguration: an incident electromagnetic eld
Einc2 ,Hinc

2 produced in the homogeneous region Ωc impinges on an
homogenelous obstacle Ω. (E1,H1) is the total (transmitted) eld in Ω
whereas (E2,H2) is the scattered eld in Ωc. The material properties are
(ε1, µ1) in Ω and (ε2, µ2) in Ωc. The problem is full-wave and 3D.

Ck are properly dened operators and Σ+ is the external page
of Σ. It is worth noting that the unknowns of (1) are the tan-
gential components of the electric and magnetic eld onto Σ.
Moreover, all the tangential traces are element of the functional
space X dened as X ,

n
λ ∈ V

0
π|∇S · λ ∈H−1/2 (Σ)

o
, V

0
π

being the dual space of Vπ ,
³
n̂×H1/2 (Σ)3

´
× n̂.

The discrete model is obtained by means of the following
non-standard Galerkin projection onto the test functions m̃
and j̃ ∈ X:

B

µ·
(M1 +M2)m2 + (α1C1 + α2C2) j2¡
α−11 C1 + α−12 C2

¢
m2 + (M1 +M2) j2

¸
,

·
m̃

j̃

¸¶
=

B

µ·
(I/2−M1)m0 − α1C1j0
−α−11 C1m0 + (I/2−M1) j0

¸
,

·
m̃

j̃

¸¶
(2)

where

B

µ·
m
j

¸
,

·
m̃

j̃

¸¶
=

Z

Σ

m̃· (j× n̂) dS−
Z

Σ

m·
³̃
j× n̂

´
dS.

(3)
By applying (3) to (2) and after some manipulations we obtain:Z

Σ

m̃· £¡α−11 C1 + α−12 C2
¢
m2 + (M1 +M2) j2

¤×n̂dS+
Z

Σ

j̃ · [(M1 +M2)m2 + (α1C1 + α2C2) j2]×n̂dS = v0
where v0 is known and depends onm0 and j0. The elementary
contributions are

R
Σ
ã·Cja× n̂dS and

R
Σ
ã·Mja× n̂dS that,

as shown in [16], are symmetric (i.e.
R
Σ
ã·Cja× n̂dS =R

Σ
a·Cj ã× n̂dS and

R
Σ
ã·Mja× n̂dS =

R
Σ
a·Mj ã× n̂dS).

Finally, the numerical models is obtained by a nite di-
mensional approximation of X by means of div-conforming
Whitney elements dened onto the surface Σ. One advantage
for this formulation is that it is possible to adapt the existing
preconditioners for the Electric Field Integral Equation (EFIE)
as the one proposed in [18] and implemented and tested in [9].
Indeed, in (1), the operators Ci are the ones of the EFIE with
coefcients from outside and from inside, whereas the opeators
Mi can be seen as compact perturbations. This last statement
is valid in the case of sufcient regular dielectric interface, as it

is proved, e.g., in the book [8]. If we denote by Ah the matrix
associated to the proposed numerical method, the construction
given in [18] leads to a uniform multiplicative preconditioner
i.e., to the construction of a matrix Ah such that the spectral
radius for B�−1

h AhB
−1
h Ah is uniformely bounded, where Bh

denotes here a stable discretization of the bilinear form B(·, ·).
In the full paper we will discuss the details of the numerical

formulation, together with its coupling with proper shape
functions and the development of the preconditioner.
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Abstract—A time integration scheme based on Taylor expan-
sion using the higher order discontinuous Galerkin finite element
method (DG-FEM) is presented. The special properties of the
scheme allow for using explicit time integration as well as local
timestepping. The algorithm is introduced, it’s characteristics are
analyzed and first benchmarks are presented.

Index Terms—Time Domain, Local Timestepping, Discontinu-
ous Galerkin, FEM.

I. INTRODUCTION

The simulation of radio frequency and microwave engineer-
ing problems requires the solution of the Maxwell equation.
The semidiscrete formulation of DG-FEM allows for using
explicit time integration schemes, which are more efficient
compared to implicit implementations. However, explicit time
integration is not unconditionally stable. The maximum sta-
ble time step can be computed by evaluating the Courant-
Friedrichs-Lewy (CFL) condition for every finite element. To
guarantee global stability, the smallest time step has to be used
for the computation. Since grids of many physical applications
have a diversity of element sizes, a local timestepping strategy
provides the opportunity of minimizing computation time.

Local timestepping for DG-FEM has been published by
Piperno [1], Warburton [2] and Montseny [3]. A 3D local
timestepping scheme with the linear multistep method using
DG-FEM was presented in [4] based on results in [5], where
a third order Adams-Bashforth (AB) time integration method
was used. In addition to the fixed AB order, the stability region
is smaller than well-established explicit Runge-Kutta (ERK)
methods [6], which are based on Taylor expansion.

In this paper a local timestepping algorithm based on a
Taylor expansion is presented. Relevant results of using Taylor
series have been published in [7]. This approach combines
the larger time stability and a flexible scheme with a variable
order.

II. DESCRIPTION OF THE MODEL

Starting from Maxwell’s two curl equations the conversion
in a weak formulation and DG-discretization, as published in
[2], can be summarized as:

d
dt

εE = M−1SH−M−1F [n̂ · (fE − f∗E)] , (1)

d
dt
µH = −M−1SE+M−1F [n̂ · (fH − f∗H)] . (2)

Here, M and S denote mass- and stiffness-matrices. The
numerical flux F [n̂ · (f − f∗)] defines the integration over
adjacent face values f∗ of neighboring finite elements. The
fields can be approximated by using local high-order multi-
dimensional Lagrange polynomials. To simplify equations (1)
and (2),Q is defined as

Q =

E
H


resulting in

d
dt
Q = L(Q). (3)

The right-hand-side (RHS) terms of (1), (2) are summarized
by the linear operator L.

III. TAYLOR EXPANSION

A time integration scheme with Taylor expansion [2] has, in
addition to the good stability properties, a further advantage:
adaption to local timestepping. The temporal evolution of the
electromagnetic fields can be approximated using Taylor series
of order P

Q(t) = Qn +
P
p=1

(t− tn)p

p!
LpQn : t ∈ [tn, tn +∆t]. (4)

in the discrete time steps. To find a solution for (3) an explicit
timestepping scheme, like

Qn+1 −Qn =
 tn+1
tn

L (Q(t)) dt (5)

is necessary. This method uses Taylor series with the deriva-
tives LpQn of the order P + 1 for a time step from tn to
tn+1. The straightforward implementation of the time discrete
formulation

Qn+1 = Qn +
P+1
p=1

(∆t)p

p! L
pQn (6)

is another advantage. The maximum stable time step is defined
by the CFL condition as ∆t = C ·


∆xmin
v


, with C being the

Courant number, xmin the characteristic size of the smallest
element and v the wave speed.

IV. LOCAL TIMESTEPPING STRATEGY

Most physical applications have large aspect ratios in el-
ement sizes, shown in Fig. (1). The finest element dictates
the global time step for the entirety of the mesh, however
most numerical costs are contributed by considerably coarser
elements. To simplify the investigation a less complicated
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strategy is used. Domain decomposition is necessary for the
local timestepping approach, splitting the set of all elements
into two subsets, ΩC and ΩF, referring to the coarse and the
fine elements, respectively. First all elements are classified

Fig. 1. Grid and histogram of an airplane with 227 960 elements and a aspect
ratio of 634.

in levels of element size 2(level−1) · ∆xmin in Fig. 1. As
preprocessing, an algorithm calculates the best position for
the fine-to-coarse boundary, in this case between Level 4 and
5, to obtain minimal effort. All elements up to level 4 are
summarized in ΩF and advance in time with the microstep.
All coarse elements advance in time every 16th microstep.
The majority of the finite elements use a larger time step and
a bulk of unnecessary computation is economized. In addition,
problems of multi-level local timestepping with complex level
coupling [4] are prevented.

Qn+1
F −Qn

F =
 tn+1

tn
(LFFQF + LFCQC) dt (7)

Qn+1
C −Qn

C =
 tn+1

tn
(LCCQC + LCFQF) dt (8)

In (7) and (8) a full time step ∆tC = tn+1 − tn is presented,
whereas the integral in (7) has to be split up in microsteps.
The RHS operation on the coarse and on the fine grid is
denoted by LCC and LFF. The terms LCF and LFC adopt
the coupling of both grids. The boundary of coarse and fine
elements are the focus of further investigation and need a
special implementation.

V. FIRST NUMERICAL RESULTS

First numerical results are presented for stability and accu-
racy of the Taylor time integration with order 4 and polynomial
order 4 for a cavity, discretised with 398 tetrahedrons, in Fig.
2. The normalized energy at the top shows minimal dissipative
behavior, resulting in a loss of 0.05 per 1000 periods and
1 329 673 micro time steps. The local timestepping scheme
with C = 2.124, which equates 90% of the maximum stable
time step, shows most dissipation. This effect is reducible in
combination with an improvement of the maximum local error,
if the Courant number C is decreased. The same accuracy
of the global and local timestepping scheme with the same
factor C is obvious in the diagram, highlighting the maximum
E-field error. In Fig. 3 the maximum stable time step for
the global and local timestepping algorithm for the cavity is
illustrated. With higher Taylor order the stability of the scheme
is increasing. The gap between the maximum local and global
time step in Fig.3 was also encountered by Montseny et al.
[3], who used a leapfrog scheme and proposed a factor of
0.8. For this academic example of a cavity a speedup of 1.3
is encountered, for further physical applications higher speed
ups are estimated.

Fig. 2. Energy and accuracy of a cavity with 398 elements, the energy is
normalized to the analytic solution. Due to an oscillatory behavior of both
graphs, a fitting is used for better visibility.
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Fig. 3. Maximum Courant number for a stable microstep of Taylor time
integration method.

VI. CONCLUSION

In this paper, a local timestepping technique based on Taylor
expansion was presented. The one step one stage method
is more suitable for local timestepping than ERK methods.
Additionally, better stability characteristics than previously
used one stage methods like AB schemes have been encoun-
tered. First simulation results were shown for a cavity to
validate the timestepping scheme. The full paper will provide
a more detailed description of the algorithm as well as further
simulations of realistic examples.

ACKNOWLEDGMENT

The authors gratefully acknowledge the support of AFOSR
under grant number FA9550-05-1-0473. The opinions ex-
pressed are the views of the authors. They do not necessarily
reflect the official position of the funding agencies.

REFERENCES

[1] S. Piperno, “DGTD methods using modal basis functions and symplectic
local time-stepping application to wave propagation problems,” M2AN,
vol. 40, no. 5, pp. 815–841, 2008.

[2] J. S. Hesthaven and T. Warburton, Nodal Discontinuous Galerkin Meth-
ods: Analysis, Algorithms, and Applications. Berlin: Springer-Verlag,
2008.

[3] E. Montseny, S. Pernet, X. Ferriéres, and G. Cohen, “Dissipative terms
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Abstract — The paper deals with the numerical prediction of 
the specific absorption (SA) of ultra wideband (UWB) radio 
systems for wireless body area network (BAN). The electro-
magnetic analysis is performed by the frequency-dependent finite 
difference time domain (FDTD) method in which the first order 
Debye approximation is used to model the frequency-dependent 
properties of the human body in the frequency range of the UWB 
signals. Different models of the human bodies are considered.  

I. INTRODUCTION

Body Area Network (BAN), consists of a set of radio 
sensors, either wearable or implanted into the human body, 
which monitor body parameters and movements [1]. These 
devices, communicating through wireless technologies, 
transmit data from the body to a home base station, from 
where the data can be forwarded to a remote network.  

The safety of radio sensors for BAN applications must be 
compliant with the IEEE standard C95.1 [2] in the USA and, 
up to now, with ICNIRP [3] in Europe. The IEEE 1-g specific 
absorption (SA) peak limit for a 6-min exposure is 576 J/kg, 
while 2 mJ/kg averaged over 10 g of tissue is settled in the 
ICNIRP safety guideline. Due to their characteristics, ultra 
wideband (UWB) radio sensors will be widely used in future 
BAN applications, and therefore they are analysed in this 
study to evaluate the critical aspect of safety. Different human 
head models excited by an UWB antenna are analyzed by the 
frequency-dependent finite difference time domain (FDTD) 
formulation ((FD)2TD) in order to predict the SA.

II. MODELS AND METHODS

A. Frequency-Dependent FDTD Method 

Electromagnetic field in frequency domain are described by 
Maxwell's curl equations: 

)(j-)( ωωμ=ω×∇ HE                           (1a) 

)()(j)( r0 ωωεωε=ω×∇ EˆH                      (1b) 

where E(ω) is the electric field, H(ω) the magnetic field, μ the 
permeability, ε0 the free space permittivity, )(r ωε̂ the 

frequency-dependent complex relative permittivity given by:  

)(
)(

-)()(ˆ
0

0

0
rr ωχ+

ωε
σ

−ε=
ωε
ωσ

ωε=ωε ∞ jj  (2) 

with εr(ω) and σ(ω) the frequency-dependent relative 
permittivity and conductivity, respectively, ε∞ the permittivity 
as ω→∞, σ0 the conductivity as ω→0, and χ(ω) the electric 
susceptibility. The dielectric properties of biological tissues 
vary with frequency owing to relaxation process [4]. In the 
frequency range of interest for UWB applications (i.e., 3.1-
10.6 GHz), it is a satisfactory approximation to consider a 
single relaxation process that can be modelled by the first 
order Debye dispersion relation. For such a medium the 
electric susceptibility is given by [5]: 

0

s

j1
)(

ωτ+
ε−ε

=ωχ ∞                                                           (3) 

where εs is the static permittivity and τ0 the relaxation time. 
Moving (1) to the time-domain, it yields: 

H
 -E

t

t
t

∂
∂

μ=×∇
)(

)(  (4a) 

[ ]
t

t

t

t
tt

∂
χ∂

ε+
∂

∂
εε+σ=×∇ ∞

(t)*)()(
)()( 000

EE
EH  (4b) 

where the symbol * denotes the convolution operator. Time-
domain Maxwell’s equations (4) can be numerically solved by 
the (FD)2TD method as described in [5]. 

B. Human Body Models 

The electro-geometrical configuration of the human body is 
a critical point for the numerical analysis. The body models 
considered in the proposed investigation are (see Fig. 1):  
- Visible Human Project (VHP) model, which is public and 

therefore has the advantage to be widely used and permits 
the benchmark of different numerical techniques [6]; 

- CAD model obtained by the atlas of the human body, 
which permits to modify in a simple way the electro-
geometrical configuration (scaling, anatomical detail 
modification, …) [7]. 

- Specific Anthropomorphic Mannequin (SAM) model, 
which is obtained by homogenizing the CAD model with a 
unique tissue of dielectric properties similar to the brain 
and therefore suitable for comparison with measurements.  

C. SA Calculation 

The field distribution calculated by the (FD)2TD is used to 
evaluate the SA by [8]: 

Safety Assessment of UWB Radio Systems for 
Body Area Network by the FDTD Method 
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dt
tt

SA
T
∫ ρ

⋅
= max

0

)()( JE
 (4) 

where Tmax is the maximum calculation time, ρ the mass 
density and J(t) the transient current density obtained by the 
inverse Fourier transform as [8]: 

[ ])()( 1 ω= − JJ Ft  (5) 

where  

)()()( ωωσ=ω EJ . (6) 

It should be noted that the SA calculated by (4) must be 
averaged over a portion of tissue to be compared with the 
standard limits, as described in the Introduction Section. 

III. NUMERICAL RESULTS 

We consider the configuration of an UWB patch antenna 
whose characteristics are reported in [9]. It is placed at 2 mm 
from the ear of the three different human head tri-dimensional 
models (i.e., CAD, VHP and SAM), as shown in Fig. 1. These 
configurations are analyzed by the (FD)2TD when exciting the 
antenna by the UWB doublet signal shown in Fig. 2.  

The presence of the human head affects the field radiated 
by the UWB patch antenna. The return loss |S11| calculated by 
the (FD)2TD for the three head models is reported in Fig. 3. It 
should be noted that the different geometries (see the 
simulations for the VHP and CAD models) influence the 
solution much more than the different tissue composition (see 
the simulations for the CAD and SAM models). 

Finally, the SA distribution inside the human head is 
numerically calculated on the different models for a single 
UWB pulse, as shown in Fig. 4, where the SA maps are 
reported in dB defined as SAdB = 10 log10 (SA / 1 pJ/kg). From 
this figure you can note as the higher values of SA are located 
in the human tissues characterized by higher water content or 
in close proximity to the UWB antenna. In the extended 
version of the paper, further human body-antenna configura-
tions will be examined and several UWB modulation schemes 
will be considered. The SA calculated for a train of UWB 
pulses will be also presented under the IEEE and ICNIRP 
safety limits. 

(a)                                     (b)                                       (c) 

Fig. 1. Human head models: (a) VHP, (b) CAD, (c) SAM. 
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Fig. 2. UWB doublet pulse. 
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Fig. 3. Return loss |S11| of the UWB patch antenna
for the three different head models. 

 Fig. 4. SAdB maps inside the head models: (a) VHP, (b) CAD, (c) SAM. 
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Abstract — In this paper, a detailed method for computing the 
transient voltage distribution in underground cables is described. 
The proposed model is based on RLCG lumped frequency-
dependent parameters for time-domain analysis. The numerical 
Laplace transform in s-complex plane is used. The method is 
appropriate to solve underground cable systems at high 
frequencies (HFs) with lossy ground-return path included. 
Numerical results confirm good agreement with reference 
solutions taken from the literature.

I. INTRODUCTION 
Computation of very fast electromagnetic transients 

(VFETs) plays a crucial role in the determination of 
overvoltage stresses on electrical equipment. Nowadays, 
special attention is paid to power transmission underground 
cables by utilities who are concerned with accurate and 
efficient computation methods for ensuring the insulation 
coordination and the mitigation of transients.  

A large variety of computing programs for overhead lines 
based on very well established methodologies is readily avai-
lable. There is no alternative for underground cables, since 
their electrical characteristics are significantly different from 
overhead lines. Their parameters have to be properly calcu-
lated from the cable geometry and frequency dependent. 
Proximity and skin effects, as well dielectric losses have to be 
taken into account with real lossy earth return path (ERP). 

In this paper, modal analysis, numerical Laplace transform 
technique and lossy earth Machado´s solution are applied to 
compute transient voltage and current oscillations in cable 
conductors. Numerical solutions at HF are more accurate than 
classical Pollaczek’s approach when the outer cable radius and 
the influence of earth-air surface cannot be negligible. 

II. CALCULATION OF PARAMETERS WITH LOSSY EARTH PATH 
 Maxwell’s equations for power transmission system can be 
formulated in frequency domain by [1] 

,ZIV −=
dx

d

     
YII −=

dx

d ,                 (1) 

where Z and Y are the frequency dependent (FD) series 
impedance and shunt admittance matrices per unit length, 
respectively, and V and I are the voltages and currents vectors 
at a distance x along the cable. For the case of underground 
cables system due to the soil acting as an electrostatic shield 
between cables, Y only represents the capacitive coupling 
between elements of each cable itself [2]. However, Z may be 
expressed according to [3] by 

soilps ZZZ += ,                       (2) 

where Zps is obtained by Schelkunoff´s [2] formulas and 
repre-sents the FD series-impedance matrix under a perfect 
soil, which means a perfect conducting earth (σps= ∞). Whe-
reas the matrix Zsoil accounts for the influence of the lossy ERP 
due to a finite electric conductivity of the real soil. The form 
and dimensions of above matrices depend on the number of 
conducting cable system elements (core, sheath, armour, etc.).  

The proposed model is valid for homogenous semi-infinite 
earth, where Machado’s ground-return impedance approach 
was implemented [3]. Thus, the diagonal submatrix elements 
of Zsoil are the self-impedance of the ERP of each conductor 
calculated by 

dc
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o
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The non-diagonal submatrix elements of Zsoil represent the 
mutual impedance of ERP between conductors which are 
obtained by 

dc
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,                  (4) 

where xc, Jo, J1, Go, Co, Ho and Rdc are specified in [3]. Cla-
ssical Pollacezk’s approach is a particular solution when the 
outter cable radius is smaller than skin earth depth penetration. 

III. MATHEMATICAL MODEL FOR MODAL APPROACH 

 From equations (1), a transmission system with N phases is 
partitioned as 

,∑
=

−=
N

1j
dx

d
jIijZiV

  
,jVijYiI ∑

=

−=
N

1j
dx

d

   
N...,1,i = .      (5) 

Equations (5) are applied to discretize cables into sections in a 
equivalent π-circuit given by (6) and (7). The cables are 
divided into K homogenous sections according to 

( ) ( ) ( ) ( ),
K

1kr
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+= =
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  k = 0,1,…,K-1,     (6)                
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k = 0,1,…,K,     (7)                  
where, i=1,…,N, Za,ij, Yb,ij and Yc,ij are the overall series 
impedance and overall shunt admittance of the rth section 
between ith and jth cables given by [4]. Operating (6) and (7) 
the following set of matrix equations are defined : 
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Fig.  1. Underground transmission system. a) Geometric configuration. 
 b) Cable system connection diagram. 

 
 

TABLE I 
 PHYSICAL DATA OF TESTED CABLE SYSTEM 

 

Dimensions Properties 
h 0.762 m εr1 3.5 
d 0.1524 m tanδ1 0.002 
ro 0 m εr2 3.3 
r1 0.0127 m tanδ2 0.0005 
r2 0.0282 m σsoil 0.05 S/m 
r3 0.293 m σcopper 5.81E7 S/m 
r4 0.345 m σlead 7.25E6 S/m 

 
 
where VB represents the voltage at cable terminals, IB is the 
current entering each terminal of cable, and V’ is the voltage 
at the internal nodes. The matrices A, B, C, and D are 
functions of the impedance Za,ij, and the admittances Yb,ij and 
Yc,ij as specified in [5].  

Manipulating (8), the modal form of the solution is obtained 
from 

 

BtBL VPhQVCV' += , 

BBBtBBBB VYVPhξPVYI =+= ,       (9) 
 

where the matrices CL, Q, h, Pt, YBB, P, ξ, h and YB are 
specified in [5]. The time domain solution is computed 
applying the numerical Laplace transform [6]. 

IV. TESTED CASES AND SIMULATION RESULTS 

 The proposed method is tested with underground cable 
system of the Fig. 1, applying a unit impulse to the core of 
phase 1 [7]. The data of the transmission line is given in Table 
I.  Figure 2 shows the transient waveforms obtained for the 
remote node in core 1 of phase 1 for three different lengths of 
cable (10, 20 and 40 miles). Figure 3 shows the induced vol-
tage obtained for the remote node in the sheath of each phase, 
evaluating the influence of the dc resistance of the lead sheath 
(Rdc-lead ). Those numerical results are compared with the 
solution computed by Wedepohl & Wilcox [7] and Uribe [8]. 

  
 

Fig. 2. Voltages for the remote node in the core 1 of the phase 1. 
 

 
 

Fig. 3. Voltage of the remote node in the sheaths for 10 miles.  

V. CONCLUSION 

 The proposed method implements the lossy earth 
Machado’s solution for computing VFETs in cable systems 
with success for firts time. While Ametani approach works up 
to 10 kHz, and Wedepohl & Wilcox method up to 100 kHz, 
the Machado’s solution does up to 1-10 MHz. The proposed 
methodology becomes an alternative for solving cable systems 
with lossy ERP at VFETs.   
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Abstract — In this work, we analyze a metamaterial with 
particles of cubic geometry described by Oh point group 
symmetry. We investigate the case of the negative refraction 
index, and we demonstrate that the material does not have 
isotropic behavior, when the dimensions of the particles of the 
metamaterial are of the order of the operating wavelength. The 
analysis is performed with FDTD method implemented in 
FORTRAN 90 code. 

I. INTRODUCTION 
Metamaterials are artificial media with the properties which 

are not met in natural substances. One of them intensively 
studied in the last years is the materials with negative 
refraction index. The electromagnetic response of such a 
material is characterized by simultaneously negative 
permeability and negative permittivity [1,2]. Some 
consequences of these unusual properties of the medium are 
the inverse Cherenkov and Doppler effects, negative 
refraction and a theoretical possibility of construction of a 
“perfect lens” [3]. However, a realization of such effects 
depends on the design of isotropic metamaterials. By using 
theory of groups [1,2], it was demonstrated that isotropic 
materials can be obtained using elements with cubic 
symmetries, such as the element with Oh symmetry shown in 
Fig. 1. This element is a cubic particle that has four-gap 
single-split-ring on each side. 

 

 
Fig. 1. Particle with Oh symmetry   

 

II. FDTD ANALYSIS OF PERIODIC STRUCTURES 

The finite difference time domain (FDTD) method has been 
frequently used to analyze periodic structures. As a result, a 
variety of FDTD technique modifications to analyze 

electromagnetic scattering for periodic structures in arbitrary 
incident angles are available in literature [4]. These techniques 
are divided in two classes: direct field methods (sine-cosine 
method, multiple unit cell method, and angle update method), 
and field transformation methods (multispatial grid method, 
and split-field method). Amongst these methods, split-field 
method is the most popular technique. Recently, F. Yang et al. 
[5] developed a new FDTD technique to analyze these 
structures and it is called as constant wavenumber method. In 
this work we implemented this technique in FORTRAN 90 
code to simulate electromagnetic scattering for metamaterials. 

In Fig. 2, it is shown the FDTD computational scheme used 
in our simulations. Note that the computational domain is 
truncate with convolutional perfectly matched layers (CPML) 
and periodic boundary conditions (PBC), respectively, in z 
and horizontals directions x and y. The periodicity of the 
structure is a, and the angle between the incident wave vector 
and the z direction is θ. 
 

 
Fig. 2. FDTD computational domain 

 
The periodic boundary condition in frequency domain is 

given by the expression (1) 
 

,                  (1) 
 

where kx is the horizontal wavenumber, which is provided by 
the following equation:                   

.                            (2) 
 

In the constant wavenumber method, (1) is not transformed 
in time domain, but instead both electric and magnetic fields 
are declared as complex variables, and the value of kx is taken 
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as a constant. After the simulation is complete, we can choose 
a value for θ, and it will be possible to obtain the results in 
function of ω. 

The main advantages of the constant wavenumber method 
are the simplicity of implementation (no change in the 
formulation of the conventional FDTD method is necessary) 
and computational efficiency (same stability condition of 
conventional FDTD, i.e, time step is independent of incident 
angle and horizontal wavenumber, which is not the case for 
other techniques).  

III. RESULTS 

In [2], the author suggested the use of particles with Oh 
symmetry, as shown in Fig. 1, to produce isotropic 
metamaterials with negative refractive index, however, we 
will demonstrate that the isotropy can not be realized when the 
dimensions of these particles are of the order of the operating 
wavelength. One layer of cubic particles was analyzed in this 
work; the unit cell of this structure is illustrated in Fig. 1. The 
edge size of cube is 1.8 mm, size gaps are 0.2 mm, and edge 
size of unit cell is 2.6 mm. The reflection coefficient in 85-95 
GHz obtained with FDTD, for some values of kx, and CST 
Microwave Studio for normal incidence is showed in Fig. 3. 
This structure presents negative refractive index in 83.3-92.5 
GHz, and the periodicity is about 76% of the wavelength. In 
order to obtain the refractive index, we used the procedure 
proposed in [6]. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

In spite of cubic symmetry of the particles, the material does 
not have isotropy, it is observed in TABLE I, for angles 
greater than 10º, we obtained a difference of reflection 
coefficient above 10%, in relation to reflection coefficient for 
normal incidence. For the highest analyzed frequency (92.5 
GHz), the structure has a less isotropic behavior. 

 
 
 
 
 
 

 
 

IV. CONCLUSIONS 

When the wavelength is of the order of its dimensions, in 
spite of cubic symmetry of the particles, these structures does 
not have isotropy. In the full paper we will analyze isotropic 
metamaterials for other relations between the wavelength and 
the dimensions or periodicity of the structure.  
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kx 
Frequency 

(GHz) 

 
 
θ 

 
Reflection 
Coefficient 

Difference 
from Normal 

incidence 
(%) 

0 83.3 0º 0.9908 - 
167.55 83.3 5.5º 0.9536 3.75 
335.10 83.3 11.1º 0.88611 10.56 
502.65 83.3 16.7º 0.75615 23.68 

0 92.5 0º 0.61386 - 
167.55 92.5 5.0º 0.61832 0.72 
335.10 92.5 10.0º 0.49457 19.40 
502.65 92.5 15.0º 0.12019 80.42 

TABLE I 
REFLECTION COEFFICIENT FOR SOME VALUES OF kX 
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Fig. 3. Reflection coefficient of the analyzed  structure 
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Abstract—As a first step, we will investigate the extent of the
consistency error for an hexahedral primal grid due to the use
mass matrices of Finite Elements within the Discrete Geometric
Approach (DGA) as discrete counterparts of the constitutive
relations. Such matrices are constructed by resorting to mixed
elements edge and face vector functions. Then we will propose a
novel set of geometric vector basis functions for hexahedra which
guarantee consistency and stability of the constitutive matrices
for the DGA constructed according to the so called energetic
approach.

Index Terms—Discrete geometric approaches, constitutive ma-
trices, hexahedral meshes.

I. INTRODUCTION

The Finite Integration Technique (FIT) [1], the Cell Method
(CM) [2] and the geometrical reinterpretation of Finite El-
ements demonstrated by A. Bossavit [3] suggest a Discrete
Geometric Approach (DGA) for discretizing an electromag-
netic field problem with respect to a pair of interlocked grids
in the spatial domain of interest.

A grid is a collection of oriented nodes, edges, faces and
volumes [2]. The grids are one dual of the other, since the
oriented nodes, edges, faces and volumes of the primal grid
one-to-one correspond with the oriented volumes, faces, edges
and nodes of the dual grid respectively. Now, integral variables
can be univocally associated with the geometric elements of
the pair of dual grids [2]. For instance, circulations of electric
field are associated with the primal edges, while electric
currents are associated with the faces of the dual grid.

The fundamental laws of electromagnetism, formulated as
balance equations, are discretized into sets of exact equations
relating circulations and fluxes associated with the geometric
elements of each of the grids [2], [4]. For instance, Ampere’s
law relates the current through a dual face with the circula-
tions of the magnetic field along the dual edges forming the
boundary of that dual face. The discrete counterparts of the
constitutive relations are introduced as approximate algebraic
equations which relate either the circulations along the primal
edges with the fluxes through the dual faces or viceversa. For
instance, the magnetic constitutive relation is a matrix mapping
the fluxes of magnetic induction through primal faces to the
circulations of magnetic field along dual edges [2], [5].

As a known result [4], in order to ensure the consistency
and the stability of the overall final system of algebraic
equations, the discrete constitutive relations have to satisfy

both stability and consistency requirements. The stability re-
quirement prescribes that the constitutive matrix is symmetric
and positive definite. The consistency requirement prescribes
that the constitutive matrix exactly maps either circulations
along primal edges into fluxes through dual faces or viceversa,
at least for element-wise uniform fields.

Stable and consistent discrete constitutive matrices can be
easily obtained for pairs of grids in which the primal grid is
composed of tetrahedra and the dual grid is obtained according
to the barycentric subdivision of the primal. The recipe is to
construct the so called “Galerkin Hodge”, where Whitney’s
edge and face basis functions are used to compute the mass
matrices [3]; for such a pair of grids, where the primal is sim-
plicial, both Whitney’s basis functions and the Galerkin Hodge
admit a simple geometric interpretation, [5], [6]. Alternatively,
we proposed in [6] novel constitutive matrices not only for
tetrahedra but also for (oblique) prisms with triangular base;
this result was achieved with the introduction of a novel set
of purely geometric edge and face vector functions combined
with an energetic approach.

Therefore, if we limit to tetrahedra, Finite Elements and
DGA are akin each other, so that the mass matrices of Finite
Elements can be borrowed as constitutive matrices for the
DGA.

However difficulties arise when discrete constitutive matri-
ces for hexahedral primal grids need to be considered within
the DGA. A simple theoretical counter-example, described in
[7], shows that the mass matrices constructed by means of
the mixed elements edge and face vector functions [8] for
hexahedra, do not satisfy the consistency property for any
choice of the dual grid. Thus, such mass matrices cannot be
borrowed as constitutive matrices for the DGA. In this paper
the consistency error of mass matrices introduced by the mass
matrices of Finite Elements will be evaluated by numerical in-
vestigations. Moreover, to overcome this difficulty, a novel set
of edge and face basis vector functions, suited for hexahedral
primal grids, will be presented, capable to exactly represent a
uniform field and satisfying a geometric consistency property.
In this way, novel stable and consistent constitutive matrices
can be easily derived, resorting to the energetic approach.

II. INCONSISTENCY OF MASS MATRICES OVER

HEXAHEDRAL GRIDS

We will present a numerical study to evaluate the extent
of the consistency error when the standard mass matrices of
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Finite Elements are used in DGA as discrete counterparts of
the constitutive relations over an hexahedral primal grid.

In a domain D, consisting of a cube of unitary edge, we
consider a primal grid made of nodes ni, edges ej , faces fh
and hexahedra vk, Fig. 1. A dual grid is constructed from it
according to the barycentric subdivision of the boundary of
the the primal grid: a dual node ñk is chosen1 within vk, a
dual edge ẽh is a broken line joining the pair of dual nodes,
within the pair of hexahedra having the primal face fh in
common, and passing through the barycenter gfh

of the primal
face fh. A dual face f̃j is a non planar surface consisting of
the union of four portions; each of the portions is tailored
inside an hexahedron and it has the barycenter gej

of edge
ej as common vertex. We will consider a pair of reference

de

ge

df

dn gf

vk
fh

ej

Fig. 1. On the left side: Grid of hexahedra filling the domain of interest D.
On the right side: An hexahedron v

k
is shown, together with a primal face

f
h

a primal edge ej a primal node ni; a dual face f̃j , a dual edge ẽ
h

and a
dual node ñ

k
. Moreover the barycenters gej

of edge ej and g
fh

of face f
h

are shown.

static problems characterized by a uniform field solution: a
magnetostatic (MS) and a current conduction (CC) problems,
which can be formulated in a discrete way [9] as

CT
νCA = 0 (MS), GT

σGV = 0 (CC), (1)

where C, G are the faces-edges and edges-nodes incidence
matrices of the primal complex respectively, A is the array
of the circulations of the magnetic vector potential associated
with the primal edges and V is the array of the electric scalar
potentials associated with the primal nodes. The sources are
assigned by specifying proper boundary conditions; for this
reason the right hand sides in (1) are null. Finally, ν, σ are
matrices representing discrete counterparts of the constitutive
relations, of dimension dim(ν) = F and dim(σ) = E
respectively, where F , E are the number of faces or edges of
the primal grid. The matrix ν or σ is obtained by assembling
local constitutive matrices computed for each hexahedron vk
of the grid. The entry of a local constitutive matrix is now
computed by forming the mass matrices with an element-wise
uniform reluctivity ν or conductivity σ as

ν
km
ij =

�

wk

wf

i · ν wf

j dv, σ
km
ij =

�

wk

we
i · σwe

j dv, (2)

1In the full paper, we will see that ñ
k

can be in an arbitrary location inside
v

k
.

where wf

i , we
i are the mixed elements edge and face vector

functions [8] for hexahedra. The boundary conditions have
been set in order to generate in D a uniform magnetic
induction field of amplitude B=1 T and a uniform current
density field of amplitude J = 4 107 A/m2 respectively, both
directed as the z axis.

Correspondingly, the consistency error for volume vk is
computed as follows

e
kMS = ν

kmCk Ak − Fk
, e

kCS = σ
kmGk Vk − Ik,

(3)
where the subscript k attached to an array, represents the local
subarray for volume vk and (Fk)i =

�
ẽi

H·dl, (Ik)i =
�
f̃i

J·ds
are the circulations and fluxes of the actual uniform magnetic
field H or uniform current density J in v

k respectively.
Considering the primal grid presented in Fig. 1, the maximum
extent of |ekMS |, |ekCS | is about 5.5 %.

III. NEW VECTOR BASE FUNCTIONS

In order to guarantee consistency of the constitutive matrices
ν or σ at least for element wise uniform fields, we will
propose a novel set of vector base functions vei , vfi attached
to a primal face or to a primal edge of hexahedron vk
respectively. These vector base functions will be described in
detail in the full paper, can be constructed in purely geometric
way and comply with the following properties: i) they form a
base, ii) they can represent a uniform field (magnetic induction
B, electric field E) from the Degrees of Freedom (fluxes or
voltages) and iii) they comply with the following geometric
consistency properties [4]

�

vk

vfi dv = ẽi,

�

vk

vei dv = f̃i, (4)

where ẽi, f̃i are the edge and face vectors associated with ẽ,
f̃ respectively.
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Abstract — Non-overlapping domain decomposition (DD) 
methods with complex first-order Robin-type transmission 
conditions (TCs)  provide an efficient iterative solution for 
Maxwell's equation. Unfortunately, the first order TCs do not 
effectively account for some eigenmodes of the system matrix, 
which limits the scalability of the methods. In this work, we 
derive a new type of Robin TCs with second order tangential 
derivatives to improve the performance. We then investigate the 
use of this new second order TCs for non-conformal and non-
overlapping DD methods. Numerical results illustrate their 
effectiveness of the proposed methods on some model problem 
and on several  large scale problems of practical interest.   

I. INTRODUCTION 
Finite Element based DD methods have recently garnered 

considerable attention due to their ability to accurately and 
efficiently solve large and multiscale electromagnetic 
radiation and scattering problems [2]-[4]. The methods are 
attractive because they allow the solution of large problems 
with only modest computational resources. They are also 
inherently parallel, an important consideration in keeping with 
current trends in computer architecture. In general, the DD 
method derives its efficiency by modifying the original large 
FEM problem by decomposing it into several smaller, more 
manageable sub-domains. The sub-domains are solved 
individually and the interactions between the sub-domains are 
communicated through a proper transmission condition (TC). 
TCs not only enforce the continuity of tangential fields on the 
interfaces, but also play a crucial role in the convergence 
performance of DD method. 
     For the vector wave equation, the majority of non-
overlapping DD methods employ complex first-order Robin-
type transmission conditions (FOTCs). The FOTCs provide a 
simple, efficient, and parallel preconditioner for the DD 
matrix equation that yields fast and robust iterative solution. 
Unfortunately, it is recognized that there are two types of 
eigenmodes of the DD system matrix, which are propagative 
and evanescent modes. the FOTCs provide a convergent 
solution for propagative modes, but do not effectively account 
for evanescent modes of the system matrix. This limits the 
scalability of the method and one must turn to higher order 
TCs to further improve the performance. Similar to the higher 
absorbing boundary conditions, the complete second order 
TCs and higher order TCs are hard to implement and the 
reason of that is the surface divergence terms. Instead of 
complete second order TCs, this work adds a second order 
tangential differential operator to the FOTC. We refer this 

family of TCs as second order TCs (SOTCs). Here we 
investigate non-conformal, non-overlapping DD methods with 
the use of SOTCs at the interfaces of sub-domains. Numerical 
results demonstrate that by using the SOTCs, the convergence 
of DDM can be greatly improved. 

 

II. DDM BOUNDARY VALUE PROBLEM 
For simplicity , we consider only partitioning the problem 

domain into two sub domains. The particular DDM that we are 
interested in this application is the non-overlapping DDM. 
Thus the problem domain Ω is partitioned into two non-
overlapping sub-domains, Ω1 and Ω2. We shall denote the 
boundary that separates Ω1 and Ω2 by Γ12. Thus, the proposed 
non-overlapping DDM can be formulated through the 
following iteration process: given 𝐸𝐸  1

0 and 𝐸𝐸  2
0 , for  𝑛𝑛 ≥ 1 solve 

∇ × 1
𝜇𝜇𝑟𝑟1

∇ × 𝐸𝐸  1
𝑛𝑛 − 𝑘𝑘2𝜀𝜀𝑟𝑟1𝐸𝐸  1

𝑛𝑛 = 0                    𝑖𝑖𝑛𝑛 Ω1 

𝑛𝑛  1 × 1
𝜇𝜇𝑟𝑟1

∇ × 𝐸𝐸  1
𝑛𝑛 + 𝛼𝛼𝑛𝑛  1 × 𝐸𝐸  1

𝑛𝑛 × 𝑛𝑛  1 + 𝛾𝛾∇𝜏𝜏 × 1
𝜇𝜇𝑟𝑟1

∇𝜏𝜏 × 𝐸𝐸  1
𝑛𝑛  

= −𝑛𝑛  2 × 1
𝜇𝜇𝑟𝑟2

∇ × 𝐸𝐸  2
𝑛𝑛−1 + 𝛼𝛼𝑛𝑛  2 × 𝐸𝐸  2

𝑛𝑛−1 × 𝑛𝑛  2 + 𝛾𝛾∇𝜏𝜏 × 1
𝜇𝜇𝑟𝑟2

∇𝜏𝜏 × 𝐸𝐸  2
𝑛𝑛−1  𝑜𝑜𝑛𝑛 Γ12 

 

∇ × 1
𝜇𝜇𝑟𝑟2

∇ × 𝐸𝐸  2
𝑛𝑛 − 𝑘𝑘2𝜀𝜀𝑟𝑟2𝐸𝐸  2

𝑛𝑛 = 0                    𝑖𝑖𝑛𝑛 Ω2 

𝑛𝑛  2 × 1
𝜇𝜇𝑟𝑟2

∇ × 𝐸𝐸  2
𝑛𝑛 + 𝛼𝛼𝑛𝑛  2 × 𝐸𝐸  2

𝑛𝑛 × 𝑛𝑛  2 + 𝛾𝛾∇𝜏𝜏 × 1
𝜇𝜇𝑟𝑟2

∇𝜏𝜏 × 𝐸𝐸  2
𝑛𝑛  

= −𝑛𝑛  1 × 1
𝜇𝜇𝑟𝑟1

∇ × 𝐸𝐸  1
𝑛𝑛−1 + 𝛼𝛼𝑛𝑛  1 × 𝐸𝐸  1

𝑛𝑛−1 × 𝑛𝑛  1 + 𝛾𝛾∇𝜏𝜏 × 1
𝜇𝜇𝑟𝑟1

∇𝜏𝜏 × 𝐸𝐸  1
𝑛𝑛−1  𝑜𝑜𝑛𝑛 Γ21 

(1) 
α and γ are parameter to choose. It is straightforward to show 
that the two TCs imply the needed field continuities on the 
interface. Compare to the FOTC in [2],  the new interface 
conditions add two second order tangential differential 
operators.  

III. CONVERGENCE ANALYSIS 

 By using Fourier analysis [3], we can obtain the following 
convergence factors for the new SOTCs . 

 𝜌𝜌𝑇𝑇𝐸𝐸  =  𝑗𝑗 𝑘𝑘𝑧𝑧+𝛼𝛼+𝛾𝛾 𝑘𝑘2−𝑘𝑘𝑧𝑧2 
𝑗𝑗 𝑘𝑘𝑧𝑧−𝛼𝛼−𝛾𝛾 𝑘𝑘2−𝑘𝑘𝑧𝑧2  

2
                     (2) 

for the TE modes, and 

 𝜌𝜌𝑇𝑇𝑀𝑀  =  
𝑗𝑗𝑘𝑘2
𝑘𝑘𝑧𝑧

+𝛼𝛼
𝑗𝑗𝑘𝑘2
𝑘𝑘𝑧𝑧

+𝛼𝛼
 

2

                               (3) 

for the TM modes, where we have made use of the dispersion 
relation 𝑘𝑘2 = 𝑘𝑘Γ

2+𝑘𝑘z
2. 𝑘𝑘z

2 is the z-directed wave number. 
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     By choosing 𝛾𝛾 = 0, we will obtain the first order Robin 
type TC. Normally we will choose 𝛼𝛼 = −𝑗𝑗𝑘𝑘0 to guarantee all 
the TE and TM propagating modes converge. However, for 
the evanescent modes,  𝜌𝜌𝑇𝑇𝐸𝐸  =  𝜌𝜌𝑇𝑇𝑀𝑀  = 1. This is the reason 
FOTC has the issue of scalability with respect to mesh density 
or polynomial order. 

 
Fig. 1. Convergence factor of first order Robin TC 

For the new SOTC, we still choose 𝛼𝛼 = −𝑗𝑗𝑘𝑘0 to obtain the 
same convergence rate for all the TE and TM propagating 
modes. Now we have an additional degree of freedom for the 
second order tangential differential term. This parameter is 
chosen to accelerate the convergence for the TE evanescent 
modes. We refer this type of SOTC as SOTC-TE. 

 
Fig. 2. Convergence factor of second order TC TE 

There are other forms of SOTC [5,6] by choosing different 
value of α and γ. The details are omitted here and will report 
in the future. 

IV. NUMERICAL EXPERIMENT 

A. Eigenspectra of DD Matrices 
    The first numerical experiment involves a small cubical 
waveguide with size of 0.5 𝜆𝜆, which is partitioned into two 
sub-domains.  We use it to examine the eigenspectra produced 
by the DD methods using the FOTC, SOTC. From Fig. 3(a) 
we can see that many eigenvalues lie on the shifted unit circle, 
which are the evanescent modes. The remaining eigenvalues 
within the unit circle are the propagating modes. As the mesh 
is refined, the number of evanescent modes increases and the 
eigenvalues quickly approach zero. These small but non-zero 
eigenvalues will significantly degrade the performance of 
iterative Krylov subspace method. It is clearly seen from Fig. 
3(b) the eigenspectra of the SOTC shows improvements over 
FOTC. The evanescent modes which are nearest to zero are 
brought well within the shifted unit circle and the eigenvalues 
are clustered in the center. We also note that some eigenvalues 
remains unchanged and these correspond to the TM modes. 
However, as SOTC take care of the most troublesome 
evanescent modes, it is very effective in improving the 
condition number of the DD matrix. 
    Next we use an "COBRA" cavity [7] excited by plane wave 
and operating at 4GHz to examine the accuracy and scalability 
of the methods with respect to mesh size. The mesh size 
decreases from ℎ = 𝜆𝜆 5  to 𝜆𝜆 12 . Fig. 4 shows the 

convergence of the FOTC and SOTC for different mesh size. 
We see that the performance of FOTC significantly degrade as 
the mesh is refined. The SOTC however, provides a near 
constant number of iterations as the mesh is refined. 
 

  
(a)                                                         (b) 

Fig. 3. Eigenspectra for a waveguide (a) FOTC; (b) SOTC 

 
(a)                                  

 
(b)                                  

Fig. 4. Iterative solver convergence for "COBRA" Cavity (a) FOTC; (b) 
SOTC 
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Abstract — The meshless local Petrov–Galerkin method 
(MLPG) with a mixed formulation to impose Dirichlet boundary 
conditions is investigated in this paper. We propose the use of 
Shepard functions for inner nodes combined with the radial point 
interpolation method with polynomial terms (RPIMp) for nodes 
close to the Dirichlet boundaries. Whereas the Shepard functions 
have lower computational costs, the RPIMp imposes in a direct 
manner the essential boundary conditions. Results show that the 
technique leads to a good trade-off between computational time 
and precision.  

I. INTRODUCTION 
Meshfree methods do not need any connectivity structure 

among nodes, avoiding the mesh generation problem. It is a 
very attractive choice, especially when solving problems that 
involve movement, boundary and shape deformation. 
However, because of the absence of a mesh, a few drawbacks 
are introduced such as neighbour search, local matrix 
inversions and other computations that ultimately increase the 
computational cost. Consequently, in order to increase the 
methods efficiency special techniques should be employed. 
Other problem with meshless methods is the imposition of the 
essential boundary conditions since some of the meshless 
shape functions do not satisfy the Kronecker delta condition. 

In [1] a mixed formulation to impose boundary conditions 
is presented. The moving least squares (MLS) is used for inner 
nodes and the radial point interpolation method with 
polynomial terms (RPIMp) is used for boundary nodes. 
However, the MLS functions are more expensive than RPIMp 
when the number of neighbors is low. To reduce the 
computational time, in this work we propose a faster shape 
function instead of MLS, namely Shepard functions.  

In 1968 Shepard introduced shape functions in the context 
of data interpolation that can be interpreted as an inverse 
distance weighting [2]. Actually, Shepard's method is a 
subcase of the MLS procedure with 0th order consistency. 
Using the Shepard method to construct shape functions has the 
important advantage of low computational cost and simplicity 
of computation. However, the low order of consistency makes 
the Shepard shape functions fail for the solution of even 
second order boundary value problems [2]. Moreover, both 
MLS and Shepard have low precision when the essential 
boundary conditional is not well imposed. In this paper we 
show that when using the penalty method [3] to impose 
boundary conditions the results present high oscillation over 
the whole domain. When using the proposed mixed 

formulation, the results show that the mixed method is still 
faster than using only RPIMp and maintains good precision. 
This is true even in cases where a few nodes are used for the 
integration of subdomains. 

II. MLPG 
MLPG uses a procedure named local weak form [3]. In this 

technique, each node defines its own sub-domain that is 
independent from the remaining. Those sub-domains are 
allowed to have any size and shape (Fig. 1) and they eliminate 
the need of a grid for numerical integration. Furthermore, the 
Petrov–Galerkin method allows the trial and shape functions to 
be chosen from different spaces. These two features make this 
method very flexible and distinguishes MLPG as a truly 
meshfree method. 
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Fig. 1. Domain representation 

 
 

For electrostatic problems, the local weak form can be 
written as  
 0)())((  

 q q

dVVwdVw u
hh   (1) 

whrere w is the test function chosen to be the Heaviside step 
functions which leads to a MLPG5 variant of MLPG [4]. The 
second integral is used to enforce Dirichlet boundary 
conditions by the penalty method, where 

 

is a constant with 
high value (106). 

III. SHAPE FUNCTIONS 
In a broad sense, shape functions are interpolation functions 
[3]. The approximation function hV is obtained by taking the 
sum of the known values at some points weighted by their 
respective shape functions. Therefore, at any point of the 
domain, the approximated value of the function is given by 
 




n

i
ii

h VV
1

)( x  (2) 
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where iV  is the fictitious nodal value of the unknown function 

at ix , n  is the number of known  points and i  is the shape 

function of node ix . 

A. Radial point interpolation method with polynomial terms    
Amongst the approximation techniques commonly used in 
meshless methods, the RPIMp is one of the few that will lead 
to a shape function that possess the Kronecker delta property 
[1]. However, its computational cost is higher if compared 
with the other approaches: 
 

i
t

i
t

i ba SxpSxRx )()()(   (3) 
 bba PSRRPSRS 1

0
1

0
1

0 ]1[    (4) 
 1

0
11

0 ][  RPPRPS ttb  (5) 
 t

n )]()()([ 21 xpxpxpP   (6) 
 )]()()([)( 21 n

t www xxxxxxxR    (7) 
 )]()()([ 210 n

t xRxRxRR   (8) 
where w(x–xi) is some weight function centered at xi, usually a 
Radial Basis Function (RBF), and p(x) is a vector containing 
monomials of a complete polynomial basis with m  terms. In 
this work we used pt(x) = [1 x y].  

B. Moving least squares [1]  
MLS shape functions are given by: 

 )()()()( 1 xBxAxpx i
t

i
  (9) 

 
)()()()(
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n

k
kw xpxpxxxA 



  (10) 

 )()()( kki w xpxxxB   (11) 

C. Shepard  
The Shepard functions can be interpreted as a MLS 

simplification with p(x) = [1] which leads to 
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1
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xx
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(12) 

IV. MIXED FORMULATION 

The mixed formulation [1] uses RPIMp to define the 
approximation for the nodes along the boundaries (boundary 
nodes) with Dirichlet boundary conditions and those close to 
them, and a faster shape function for the remaining nodes 
(inner nodes). This approach eliminates the need of using the 
penalty method to enforce essential boundary conditions. 

 j

ji k

i

1
j k

 m

m nl

ml n

 
Fig. 2. Mixed Formulation: black nodes are classified as boundary nodes and 

white nodes are classified as inner nodes. Integration of inner nodes uses a 
faster shape function and integration of boundary nodes uses a shape function 

with Kronecker delta property. 

V. RESULTS 

To test the approach, the problem described by Fig. 3a was 
simulated with an uniform 100x100 node distribution. Table I 
shows the relative times for the various shape functions. Using 
only Shepard functions we obtain the best times but due to the 
lower consistence order and the penalty method to impose 
boundary conditions, the result has lots of oscillation (Fig. 3c). 
The same problem occurs with MLS but in minor scale. When 
using mixed formulation with RPIMp + Shepard functions, the 
time consuming is a little higher than using only Shepard but 
the precision is much better (Fig. 3d).    

TABLE I 
COMPARISON AMONG METHODS, BASED ON RELATIVE TIMES 

n 9 16 
RPIMp 1.94 7.54 
MLS 2.26 3.25 

Shepard 1.00 1.21 
RPIMp + MLS 2.20 3.86 

RPIMp + Shepard 1.07 2.15 
n is the number of neighbour nodes used to build the shape function 

approximation in a sub-domain. 
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(b) MLS 
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(c) Shepard 
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(d) RPIMp + Shepard 

 
Fig. 3. Sample results. (a) defines de test problem. (b) result using MLS (c) 
results using Shepard (d) results using mixed formulation with RPIMp and 

Shepard. An uniform grid of 100x100 nodes over the domain and 9 nodes in 
the neighborhood of each domain (1st column of Table I) were used for all 

tests.   
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Abstract — The accuracy of the time domain magnetic field 
analysis occasionally dropped when the first order backward 
difference (backward Euler) is adopted as time integration 
technique. Backward Euler technique is widely applied to the 
analysis of various electrical machines. In this paper, the 
effectiveness of higher order time integration is investigated 
against the time domain analysis using finite element method. 

I. INTRODUCTION 
The magnetic field analysis in time domain is indispensable 

to the practical design of electric machines. The first order 
backward difference technique (Backward Euler method) is 
widely applied to the magnetic field analysis [1], [2] 
according to the stable characteristic in the time domain. 
However, the computation accuracy occasionally gets worse. 

In this paper, we applied the GEAR’s stiffly stable 
algorithm [3] to the eddy current analysis of magnetic 
shielding model with magnetic nonlinearity [4]. The accuracy 
of the higher order time integration is compared with the one 
of backward Euler method. 

II. FORMULATION 
The weighted residual Ge and Gn in the time t = t0 is given 

as follows: 
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where A is the magnetic vector potential, φ is the electric 
scalar potential, Ni is the edge-based vector shape function, Ni 
is the nodal scalar shape function, the material constant ν and 
σ are the magnetic reluctivity and conductivity, J0 is the 
source current density, respectively. The boundary integral 
term can be omitted here. 
 The time derivative term using backward Euler method is 
given as follows: 
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where Δt is the time step size. Introducing GEAR’s stiffly 
stable algorithm (2nd or 3rd order) to the implicit time 

integration, and then the time derivative term is expressed by 
multi magnetic vector potentials obtained in past several time 
steps as follows: 
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The A-φ formulation of Newton-Raphson method in each time 
step is given as follows: 
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where δA and δφ are the increment of A and φ, and SA A – Sφ φ 
are the components of the Jacobian matrix. In the case of 
second order, left side matrix of (6) becomes symmetry when 
(2) is multiplied by 2Δt / 3 in both sides. For example, 
components of Sφ A, Sφ φ , and Gni are described as follows: 
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In the case of third order, left side matrix of (6) becomes 
symmetry when (2) is multiplied by 6Δt / 11 in both sides. The 
components Sφ φ and Gni are transformed as follows: 
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Above formulation is same applied into more higher order 
time integration. 
 At the 1st step computation using GEAR’s 2nd order, 
backward Euler method is adopted. Similarly, at the use of 
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GEAR’s 3rd order computation, 1st order and 2nd order time 
integrations are adopted as the 1st and 2nd step computation. 

III. VERIFICATION 

A. Analyzed model and condition 
 The finite element mesh of magnetic shielding model [4] is 
shown in Fig. 1. The shield thickness is 1 mm, and the 
magnetic material is SS400. The nonlinear magnetic property 
of SS400 is considered. The number of elements, nodes, and 
unknowns of the edge-based first order hexahedral elements 
are 60,950, 65,753, and 185,276, respectively. 
 The linear equations in NR steps were solved by ICCG 
solver under the convergence criterion ||rn||2 / ||r0||2 < εcg, 
where ||rn||2 is a 2-norm of the residual of linear equation at the 
n-th iteration, here, εcg was set up as 10-2. The line search 
technique (functional NR [0, 1.0]) [5], [6] is introduced to 
improve the nonlinear convergence characteristics. The 
Newton-Raphson iteration is terminated under the condition 
|δB| < 10-3 T, where δB is the increment of magnetic flux 
density B on the element center. The waveform of current is 
sinusoidal with the frequency 50 Hz, and the current is 
imposed during two cycles. 

B. Analyzed results 
 The numerical error and convergence characteristics in 
higher order time integration are compared with backward 
Euler method. The instantaneous eddy current loss (t = t0) is 
computed by using 
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Time step size Δt is set as 0.5556 ms, and number of time 
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Fig. 1.  Finite element mesh (shield thickness: 1 mm). 
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Fig. 2.  Behavior of instantaneous eddy current loss (d = 1.0 mm). 

steps is 72. The temporal behavior of instantaneous eddy 
current loss is shown in Fig. 2. The standard solution is 
obtained from the 1,440 steps computation with the backward 
Euler method. Maximum value obtained from backward Euler 
method in steady state is improved by the utilization of 2nd or 
3rd order time integration as shown in TABLE I. The 
nonlinear and ICCG convergence characteristics in using the 
higher order time integration are almost same as conventional 
1st order characteristic as shown in TABLE II. It is shown that 
the accuracy of eddy current loss is improved by higher order 
time integration on the condition of nearly same CPU time. 
 

TABLE I 
INSTANTANEOUS EDDY CURRENT LOSS (t = 30.556 ms) 

1st 2nd 3rd
P Je  [W] 1.915 1.733 1.938 1.926

relative errror [ %] － 9.5 1.2 0.6

the order of GEAR's algorythmstandard

 
 

TABLE II 
CONVERGENCE CHARACTERISTIC 

1st 2nd 3rd
total ICCG ite. / ave. 51,324 / 712.8 53,635 / 744.9 50,707 / 704.3
total NR ite. / ave. 458 / 6.4 474 / 6.6 457 / 6.3

CPU time [h] 2.1 2.3 2.3

the order of GEAR's algorythm

 
CPU: Intel Core 2 Duo E6850 processor / 3.0 GHz & 2.0 GB RAM 

IV. CONCLUSIONS 

In this paper, GEAR’s stiffly stable algorithm (2nd or 3rd 
order) is introduced to the time integration in the nonlinear 
eddy current analysis using finite element method. The 
accuracy of instantaneous eddy current loss is improved by 
utilization of higher order time integration, and convergence 
characteristics of ICCG and Newton-Raphson method is 
almost same as conventional backward Euler method. The 
effectiveness of GEAR’s algorithm is more investigated in the 
practical analysis such as motor in the full paper. 

V. REFERENCES 

[1] T. Yamaguchi, Y. Kawase, S. Suzuki, K. Hirata, T. Ohta, and Y. 
Hasegawa, “Dynamic analysis of linear resonant actuator driven by DC 
motor taking into account contact resistance between brush and 
commutator”, IEEE Trans. on Magn., vol. 44, no. 6, pp. 1510-1513 
(2008). 

[2] K. Yamazaki, S. Tada, H. mogi, Y. Mishima, C. Kaido, S. Kanao, K. 
Takahashi, K. Ide, K. Hattori, and A. Nakahara, “Eddy current analysis 
considering lamination for stator ends of turbine generators”, IEEE 
Trans. on Magn., vol. 44, no. 6, pp. 1502-1505 (2008). 

[3] G. William GEAR, Numerical Initial Value Problems in Ordinary 
Differential Equations. Prentice-Hall, Inc. Englewood Cliffs, New Jersey 
(1971) 

[4] Y. Takahashi, S. Wakao and A. Kameari, “Large scale and highly 
accurate magnetic field analysis of magnetic shield,” J. Applied Physics, 
99, 08H904, (2006). 

[5] Y. Okamoto, K. Fujiwara, and R. Himeno, “Exact minimization of 
energy functional for NR method with line-search technique,” IEEE 
Trans. on Magn., vol. 45, no. 3, pp. 1288-1291 (2009). 

[6] K. Fujiwara, Y. Okamoto, A. Kameari, and A. Ahagon, “The Newton-
Raphson method accelerated by using a line search – comparison 
between energy functional and residual minimization –,” IEEE Trans. on 
Magn., vol. 41, no. 5, pp. 1724-1727 (2005). 

 

383

 



9. NUMERICAL TECHNIQUES 

Abstract — A novel meshfree point collocation method for the 
solving of electromagnetic potential problems with layered 
singularity is presented. The approximation based on the moving 
least squares technique is extended by introducing jump, scissor 
and wedge functions. It is able to model discontinuities 
electromagnetic potential and gradient fields. Discretization of 
the partial differential equations yields a linear system consisting 
of residual equations. Solving the system provides the nodal 
solutions together with jump strengths on the singular layer. 
Numerical experiments for electrostatic problems with layered 
singularity show that the developed method is highly efficient and 
reliable.  

I. INTRODUCTION 
The meshfree method [1] has been actively applied to 

singular problems like crack propagation problem because it 
has strong advantages in changing geometry modeling. It 
requires no connectivity among nodes in construction of the 
approximation function so that geometry change involves 
minimal node operation. However, the drawbacks such as 
expensive computational cost in derivative calculation, 
numerical quadrature and essential boundary treatment have 
been major obstacles to extension of the Galerkin based 
meshfree method to more various applications. Therefore, 
despite of the advantageous geometry modeling, application to 
the interface problems like electrostatic problem with layered 
singularity rarely appeared.  

The meshfree point collocation method overcomes the 
drawbacks stated above. It was already applied to fluid and 
solid problems [2]-[3] and proved to be simple and fast in the 
formulation and computation, respectively. Kim and Kim [4] 
solved electromagnetic problem with complex geometry by 
using the meshfree point collocation method. Furthermore, 
heat conduction problem with interface has been successfully 
solved using only regular node set [5]; special functions 
generating derivative discontinuity across the interface was 
devised and immersed in the approximation so that numerical 
complexity due to the singularity was effectively eliminated. 

This study presents a novel meshfree point collocation 
method for solving electrostatic problem with layered 
singularity. This work is an extension of [5]. New meshfree 
approximation to be proposed here is able to model jumps not 
only in the potential field but also in the normal and tangential 
derivative fields. Nodal operation is very easy since it does not 
require grid structure. The numerical scheme inherits the 
framework of the conventional meshfree point collocation 
method. The discretization of partial differential equation is 

straightforward. In the next, the brief review and important 
numerical features of the method are presented. 

II. EXTENDED MESHFREE APPROXIMATION  
An electrostatic problem with layered singularity is 

considered. The layered singularity brings about jumps in the 
potential and the gradient fields. For easy awareness of the 
approximation, let us take one dimensional case into account. 
For a given function ( ) ( )mu CÎ Wx , m-th order Taylor 
polynomial at arbitrary position y is given by  

( ) ( )
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which yields the local approximation of ( )u x . The 
components of ( )ya  include the derivative of ( )u x  at y up to 

m-th order and ( )2( ) 1, ( ), ( ) , , ( )x y x y x y x yT m
m r r r r

- - - -=p L . r  

indicates the radius of influence; it turns into the radius of 
weight function in the Moving Least Squares procedure. The 
unknown vector ( )ya  is obtained from the stationary 
condition of the weighted residual constructed at each node as 
is in the conventional meshfree methods. 

Let us consider the approximation near singular layer. For 
the jump modeling in potential field, heavy-side step function  

( )bG x  is introduced into the approximation; for the jump 
modeling in the normal and tangential derivative fields, wedge 
function ( )nb x  and scissor function ( )tb x  are employed 
respectively. The regular approximation in (1) takes the form 
as following 

( ) [ ]1
2

1 1
2 2
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u u
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r G
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where [ ]1
2 u

G , 1
2

u¶
¶ G
é ùë ûn , and 1

2
u¶
¶ G
é ùë ût  stands for the strengths 

of the jumps in potential, normal derivative and tangential 
derivative fields, respectively. The strengths are obtained from 
the governing equations. n and t are the normal and tangential 
vector to the singular layer G . The mathematical background 
can be referred to [5]. The unknown vector ( )ya  can be 
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calculated by the same manner as in regular approximation. 
The derivative of the extended meshfree 
then be written as 
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where multi-index notation is used for the sake of convenience
The differential operator denotes : x x xD a a= ¶ ¶ ¶a

x

is the regular meshfree shape function
derivative of the shape function. 

III. DISCRETIZATION

The Poisson type partial differential
electrostatic problem with layered singularity 

( )u fbÑ × Ñ =  in \W G  
u u=  on ¶W   
[ ]u g

G
=  on G   

u hb ¶
¶ G

é ù =ë ûn  on G   

where f and b  denotes electromagnetic 
permeability, respectively. Discontinuous 
across G  in the potential and the gradient fields
discontinuous. It should be noted that Laplace equation 
without permeability term can also be solved easier than the 
PDE given in (4)-(7). 

The governing equations are discretized 
Difference equations (or residual equations)
each node. The equations involve 
approximation of (3) and set up the linear 
Solving of the system yields nodal solution and jump s

IV. NUMERICAL RESULTS

  For numerical validation of the developed 
electric potential function ( , )u x y  governed by (4)
1(a) depicts the geometry and boundary of the problem. 
computing the meshfree shape function, we used second
basis polynomial, i.e. m=2. The singular layer is discretized 
with sufficient number of points that are 
Nodal solutions are obtained at the nodes
strength of jumps at the layer points. The conjugate gradient 
solver is used. As shown in fig 1(b), the number of 
iterations for this problem with 6400 nodes is around 180
which achieve the successive tolerance
stiffness matrix is well conditioned. Fig 2(a) shows the 
convergence rate of L¥  relative error for the potential and 
gradient. The order of accuracy appears to be more than 
second order. Fig 2(b)-2(d) illustrates surface plots for the 
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is the regular meshfree shape function; ( )IFα x  is tha -  

 

partial differential equations for the 
layered singularity are given by  
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involve the derivative 
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the system yields nodal solution and jump strengths.  

ESULTS 
For numerical validation of the developed method, an 
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shape function, we used second-order 
. The singular layer is discretized 
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relative error for the potential and 
gradient. The order of accuracy appears to be more than 

2(d) illustrates surface plots for the 

electrostatic potential, x and y components of the gradient, 
respectively. Note that the jumps are captured sharply without 
smearing. These computational results reveal that the 
developed method is efficient, accura
electromagnetic problems with layered singularity
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9.  

Abstract — This paper details the derivation of the Jacobian 

matrix and the residual vector in terms of the T- formulation. 

Then, a scheme is proposed to efficiently find the optimum 

relaxation factor for improving global convergence. Further, a 

local damping factor is introduced to address some local 

convergence issues by damping the updating of the nonlinear 

material property during nonlinear iterations.  

I. INTRODUCTION 

The Newton sequence with an arbitrary initial guess may 

converge at a very slow rate, or oscillate, or even diverge. It is 

also known that convergence is more difficult with the 

magnetic scalar potential than with magnetic vector potential 

[1]. Hence, under-relaxation is commonly used to improve 

convergence. If an optimum relaxation factor is used, 

convergent solution can always be obtained using a linear 

search algorithm [1]. However, it may take a very long time to 

find the optimum relaxation factor. [2] uses linearization to 

reduce the computation cost based on two values of the 

residual. However, the assumption that the residual changes 

quadratically with the relaxation factor is far from reality for 

most practical applications. In addition, the use of the optimum 

relaxation factor does not guarantee fast convergence because 

the “optimum” is only in the global sense and thus may not be 

suitable for some local elements. This may lead to poor local 

convergence due to large over-shoot correction or possible 

oscillation. This undesirable local convergence behavior may 

also have a significant impact on solution accuracy, such as in 

the case of considering eddy current in the nonlinear region.  

In this paper, the Jacobian matrix and the residual vector 

are first derived in terms of the T- formulation. Then, a 

method is proposed to efficiently find the optimum relaxation 

factor for improving global convergence performance. Further, 

to address the local convergence issue, a local damping 

scheme is introduced to damp the updating of the nonlinear 

material property for a small portion of elements that exhibit 

the largest changes in the equivalent dynamic permeability.  

II. NEWTON NONLINEAR T- FORMULATION  

To apply Newton’s method, let us define 
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where Hp is the source field component. The corresponding 

Newton iteration forms are 
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Taking the Frechet partial derivative of ( )T,ΩF  and 

performing some manipulations, we arrive at  
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where tensor [ ]µ̂  can be considered as an equivalent dynamic 

permeability and derived by [3] 
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where µ′ is the permeability derivative. After discretization of 

(2), applying the Galerkin method, and integrating over the 

problem domain V, we have 
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where J11, J12, J21 and J22 are the blocks of the Jacobian matrix 
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and 1R  and 2R are the residual vector 

dVFRdVFR
kk  −=−=
 

2211        αt               (7) 

The details of derivation will be provided in the full paper. To 

consider the material property variations within the element, 

Gauss quadrature numerical integration is used in (6) and (7).  

III. OPTIMUM RELAXATION FACTOR SEARCHING ALGORITHM 

In order to reduce computation time, the following 

searching algorithm for the optimal under-relaxation factor is 

proposed: Let the relaxation factor  (between 1 and zero) be 

equally sampled with step of 0.2 as shown in Fig. 1. Here, α=0 

corresponds to the previous Newton iteration solution and α=1 

to the ordinary nonlinear Newton iteration scheme. The 

residuals at these two values of α are already available as part 

of the regular solution process. Thus, the evaluation of the 

residual can start from =0.8. For each , after the solution 

candidate is obtained, we update the permeability and compute 

the residual. If the current residual is smaller than the previous 

one, we continue to the next value of . If the current residual 

is greater, we use the current and the previous two values of  

to construct a quadratic polynomial and find the optimal 

under-relaxation factor associated with the minimum residual 

value. If for =0.2, the corresponding residual value still does 

not increase, the sub-region of  between 0.2 and 0 is further 

sub-divided with a step of 0.05 and the search is continued.  
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9.  

  
Fig. 1 Search for the optimal under-relaxation factor  

In order to improve efficiency, a large step size of 0.2 is 

used in the above algorithm. This has the added advantage of 

making the algorithm less sensitive to local minimum. 

However, the large step size may lead to a large error in the 

computed optimal under-relaxation factor. To address this, we 

can insert two additional  points in between the above 

obtained three points and compute corresponding residuals. 

This will effectively reduce the step size to 0.1 and the optimal 

under-relaxation factor will be determined based on the 

appropriately selected set of three points: the point with the 

smallest residual and two neighbouring points on each side.  

IV. LOCAL MATERIAL UPDATE DAMPING ALGORITHM 

A local damping factor  is introduced for updating [ ]µ̂  

[ ] [ ] [ ] [ ]( )kkkk

actual

 1  1 
 

ˆˆˆˆ µµβµµ −+=
++                       (8) 

It should be emphasized that this modification should be 

applied to only a very small percentage of elements with the 

highest rate of change in the equivalent dynamic permeability 

tensor. This ensures that the efficiency of Newton-Raphson 

approach will not be adversely affected. The number of 

elements to be damped can be determined by 

           when            ln*3 0
0

nN
n

N
n e

e
>








=           (9)                                 

where Ne is the total number of nonlinear elements in the 

solved domain and n0 is the nonlinear element size threshold. 

The local damping algorithm is only applied if the element size 

is greater than this threshold.  

The first step is to identify the n elements with the highest 

values of ek out of entire set of nonlinear elements, where ek  

is the change rate of [ ]µ̂ . Next, the smallest ek  in the list is 

used as the reference damping rate refk . Thus, the damping 

factor for each element of the n elements is determined by 

 ref

e

k

k

e
−

+= 5.135.0β                               (10) 

The range of  from (10) is approximately between 0.35 and 

0.9. The lower bound is used to avoid over damping; the upper 

bound is used to prevent altering of the convergence property 

of the Newton-Raphson method due to a trivial modification.  

V. BENCHMARK EXAMPLE 

The benchmark problem No. 10 of TEAM Workshop is 

used here to check the nonlinear convergence and simulation 

accuracy [4]. The investigation includes three scenarios: 

constant under-relaxation factor; the adaptive optimal 

relaxation factor without local damping; and the adaptive 

optimal relaxation factor with local damping.  Table 1 shows 

the comparison of the computation time for the three cases. 

TABLE   I. COMPUTATION TIME COMPARISON (37,385 ELEMENTS) 

Relaxation algorithm Time 

Constant relaxation factor  = 0.1 

 (greater than 0.1 does not converge) 

32 hours 47 minutes 

Optimal relaxation factor without 

local damping 

3 hours 2 minutes 

Optimal relaxation factor with 

local damping 

2 hours 14 minutes 

Fig. 2 shows the comparison of the computed average flux 

densities over the cross sections S1, S2, and S3 [4] between the 

cases with local damping and without local damping. Fig. 3 

compares the induced eddy current densities at the points P1, 

P2, and P3 of the nonlinear conducting steel channels [4] for the 

cases with and without local damping. Measurement profiles 

for both average flux densities and the induced eddy current 

densities can be found in [4]. It is clear that while the local 

damping algorithm does not show obvious effects on the 

computed flux densities, it does have an significant impact on 

the more sensitive induced eddy current densities. The local 

damping algorithm has effectively eliminated the unphysical 

noises which also appeared in other researches’ results [4]-[5].  

 
Fig. 2 Comparison of average flux densities over cross sections S1, S2, and S3  

       
Fig. 3 Comparison of induced eddy current densities in points P1, P2, and P3  
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9. NUMERICAL TECHINIQUES 

 
 

 

 

 

 
 
 
 
 
 (a) Final mesh of last time step     (b) Removing elements protecting movement      (c) Rotation of rotor            (d) Connection of stator and rotor 

Start
Adaptive
Meshing

Fig. 1. Mesh modification due to rotation. 

Abstract — A time-stepping adaptive finite-element method is 
proposed for shape optimization of rotating machines. In the 
proposed method, different mesh-modification procedures are 
applied to the core and the other regions, respectively, for the 
purpose of the fast iron-loss calculation. A method of automatic 
separation and connection between the stator and rotor meshes 
are introduced for the rotation. The proposed method is applied 
to the shape optimization of a permanent magnet motor for the 
loss reduction. The usefulness of the proposed method is clarified. 

I. INTRODUCTION 
It is well known that most of the electrical energy is 

produced by rotating generators and that nearly half of the 
energy is consumed by the rotating motors in industrialized 
countries. Owing to environmental problems, the optimization 
of the rotating machines from viewpoint of the loss 
minimization has become one of the important subjects.  

In these cases, automatic mesh-generation techniques and 
time-stepping analyses that consider the harmonics in the 
machines are often required. The adaptive finite element 
method [1]-[5] must be effective in automatically obtaining 
the appropriate mesh for each shape. In the method, the finite 
elements are iteratively generated due to the error estimations 
of the electromagnetic field. 

However, few papers applied the adaptive finite-element 
meshing to the optimization of the rotating machines using the 
time-stepping analysis. One reason is the vast computation 
time by the multiple loops of the time stepping and adaptive 
finite-element meshing. Reference [4] proposed the mesh 
modification at each time step. It can reduce the number of the 
iterative calculation. However, the estimation of the iron loss 
in the stator and rotor cores requires the fixed mesh during 
one time-period [6]. In addition, more generalized mesh-
modification technique for the rotation of the rotor is desired. 

From these viewpoints, we propose a novel procedure of 

the time-stepping adaptive finite-element method for the shape 
optimization of the rotating machines. In the method, different 
mesh-modification procedures are applied to the core and the 
other regions, respectively, for the purpose of the fast iron-loss 
calculation. A method of automatic separation and connection 
between the stator and rotor meshes are also introduced in 
order to take the rotation into account. The proposed method is 
applied to the shape optimization of a permanent magnet motor 
for the loss reduction. The usefulness is confirmed. 

II. MESH GENERATION PROCEDURE 

A. Mesh modification due to rotation 
Fig. 1 shows the modification method of the adaptive finite-

element mesh due to rotation of the rotor. First, the stator and 
rotor meshes used in the last time-step are separated. After 
rotating the rotor, the stator and rotor regions are automatically 
connected. This mesh is used for the initial mesh of the 
adaptive-mesh iteration in the next time-step. In the separation 
of the stator and rotor regions, only the elements that cross the 
center line of the air gap are removed. By using this procedure, 
most of the elements in the last time-step can be utilized for the 
next time-step. As a result, the number of the adaptive-mesh 
iteration can be reduced because the difference in the 
electromagnetic field during one time-step is slight. 

B. Mesh modification due to elemental error estimation 
The error estimations of the finite elements [2] are carried 

out at each time-step. The finite element meshes at each part 
of the machine is modified due to the estimated errors. In the 
proposed method, different mesh-modification procedures are 
applied in the core and the other regions as shown in Table I.  
      In the core region, a fixed mesh during one time-period is 
required for the iron-loss calculation [6]. Therefore, following 
procedure are employed during two time-periods of the 
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9. NUMERICAL TECHINIQUES 

TABLE I 

METHOD OF MESH MODIFICATION DUE TO ERROR ESTIMATION 
 1st time period 2nd time period 

Core region Addition of nodes Fixed 
Other regions Addition and cancellation of nodes 
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Fig. 2. Number of elements during optimization. 
 

Fig. 3. Fixing mesh in core for iron-loss calculation 

 
 

   
(a) Conventional                   (b) Optimized (106th optimization step)

Fig. 4. Conventional and optimized stator teeth (Meshes and photographs).
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Fig. 5. Experimental and calculated iron losses (Current 300 A, 80deg). 

rotation: In the first time-period, nodes are simply added on 
the elements whose estimated error is larger than the 
permissive error at each time-step. Consequently, the number 
of the finite elements in the core increases in this time-period. 
The final mesh obtained by this procedure can be regarded as 
satisfying the permissive error at any angle of the rotor. 
Therefore, in the second time-period, the mesh in the core is 
fixed to the final mesh of the first time-period. Then, the iron 
loss is obtained from the solution of the second time-period. 
         On the other hand, in the other regions including the air 
gap, the fixed mesh is not required. Therefore, not only the 
node addition but also the node cancellation [4] is applied to 
avoid increasing the number of the elements in both the first 
and the second time-periods. 
        Although the proposed method requires the analysis 
during the two time-periods, practical results and computation 
time are expected because the method can reduce the number 
of the adaptive-mesh iterations.   

III. APPLICATION 

The proposed method is applied to the shape optimization 
of an interior permanent-magnet motor. The Rosenbrock’s 
method is combined with the proposed method. The design 
variables are the coordinates on the top of the stator teeth. The 

objective function is the efficiency of the motor. The total 
calculation time is 8h 48m using a Pentium 4, 3.6GHz PC. 

Fig. 2 shows the number of the finite elements. It can be 
observed that the number of the elements increases in the first 
time-period and becomes constant in the second time-period. 
Fig. 3 shows the variation in the finite element mesh during the 
second time-period. It indicates that the meshes in the core are 
fixed during this period for the iron-loss calculation in the core.  
         Fig. 4 shows the conventional and optimized stator tooth. 
Fig. 5 shows the measured and calculated iron losses 
including the magnet eddy current loss. The loss is reduced to 
70% by the optimization, while the toque is nearly the same. 
The usefulness of the proposed method is confirmed.  
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Abstract—This paper proposes a concurrent ray tracing al-
gorithm for rotationally symmetric problems improving central
parts from O(log(n)) to O(1) time complexity. Rotationally
symmetric problems arise naturally when computing the heating
generated by high frequency wake fields in cryogenic particle
accelerator structures.

I. INTRODUCTION

Ray tracing methods are well researched for general three
dimensional problems, but relatively little efford has been
spend to develop improved ray tracing algorithms for purely
rotationally symmetric cases. However, these cases do occur
when computing the wall heating generated by high frequency
wake fields in particle accelerator structures. For this purpose
ray tracing has been used e.g. in [1].

Fig. 1. A modern particle accelerator structure

Modern particle accelerator structures require an elaborate
cryogenic infrastructure [5]. To estimate the required cooling
capacity, it is necessary to estimate all effects heating the
structure. The algorithmic improvements proposed later in this
paper are used to estimate the heating energy generated by
high frequency wake fields. Wake fields are usually spurious
electromagnetic fields generated by the accelerated particles.
(For details see [2],[3] or [5]). Wake fields will lower the
kinetic energy of the particles that get accelerated, heat the
cryogenic structure and lower the efficiency of the accelerator.

II. LINEAR OPTICS

Using the Lorenz gauge, Maxwell’s equations can be trans-
formed into a set of wave equations (see e.g. [6][4]). Therefore
every solution of Maxwell’s equations can be constructed from
plane waves. For sufficiently high frequencies the acceler-
ator structures can be assumed being large in comparison
to the wavelength. Therefore the approximations done by
linear optics are applicable. As usual in linear optics the
electromagnetic field is approximated by rays. These rays are
interpreted as the trajectories of photons. It is further assumed
that the shape of the accelerator structures is smooth and

Fig. 2. Example trace generated by the proposed algorithm

that its curvature is small in relation to the wave length.
Reflections on the surface of the structure are then sufficiently
approximated as reflections on a flat surface tangent to the
reflection point. For an incoming ray with energy Ein and
angle θin and the outgoing ray with energy Eout and angle
θout the central equations are:

θin = θout

Ein = t(ω)Eout

where t(ω) ∈ [0, 1] is the energy transmission coefficient and
1 − t(ω) is the energy heating the structure.

III. OPTIMIZED CONCURRENT RAY TRACING FOR

ROTATIONALLY SYMMETRIC STRUCTURES

The first step in building an efficient algorithm for this
problem is the development of an efficient representation of
the rotationally symmetric cavity in which the wake field is
propagating. Mathematically, the cavity is simply represented
as a curve

γ : [0, e] → R
2

e ∈ R

that will be rotated around the x-axis. For an efficient computa-
tional representation a curve should be build from simple pre-
defined curves like lines or elliptical arcs. These curve building
blocks are called segments. The curve is then constructed using
the following concatenation rule where γ1 : [0, e1] → R

2 and
γ2 : [0, e2] → R

2 with γ1(e1) = γ2(0):

γ := t �→

�
γ1(t) if t ∈ [0, e1)

γ2(2) if t ∈ [e1, e1 + e2])
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Using this rule is simple if all segment types (e.g. lines or
elliptical arcs) are defined relative to a starting point. Building
the curve of the structure becomes:

1) set current start point to initial start point
2) add new segment relative to current start point
3) set current start point to end point of new segment
4) if not finished repeat with 2.

This sequence resembles the building of a list of segments.
Thus the most efficient way to store this list is as a plain
array of an algebraic data type called segment. Algebraic data
types are types that combine a finite number of parameterized
choices. In our implementation a segment is either a line or
an elliptical arc. Further details on algebraic data types can be
found in [8]. Despite their usefulness algebraic data types are
not directly supported by commonly used languages like C.
However they can be easily expressed by using a union type:

Listing 1. Algebraic Data Type Mimicry in C

union s e g m e n t t {
enum { ELLIPSE SEG , LINE SEG } t y p e ;
s t r u c t {

s i z e t padd ing ; / ∗ enum s t o r a g e ∗ /
. . . / ∗ e l l i p s e da ta ∗ /

} e l l i p s e ;
s t r u c t {

s i z e t padd ing ; / ∗ enum s t o r a g e ∗ /
. . . / ∗ l i n e da ta ∗ /

} l i n e ;
} ;

The code that generates the example trace in Fig. 2 uses this
technique, which is more awkward to use then a natively
supported algebraic data type, but works fine. With this type
the whole geometry is storeable as a compact array. For
generic 3D ray tracers the best memory structure representing
the scene is a tree structure. In this case we are able to
use an array and therefore improve time complexity from
O(log(n)) to O(1). Besides of having an O(1) read and write
time complexity the array has a higher locality of the data and
is therefore more cache efficient as well.

To achieve an efficient concurrent implementation it is
important to remember that data written by several threads
should not be near each other since otherwise the requirement
of cache coherency in concurrent systems will cause a lot of
cache reloads. Therefore concurrency is exploited by assigning
each thread the task to compute the trace of a given initial ray.

IV. THE TRACE OF A RAY

The trace of a ray is represented as an array of rays with
some additional data, where the start point of each ray is the
collision point of the previous ray with the structure. There
are two additional values that should be recorded in the trace
for fast trace analysis. First the index number of the segment a
ray collides with, second the arc length from the beginning of
the curve to the point of collision. If the collision is at γ(tcoll)
it is necessary to compute the integral

scoll =

� tcoll

0

�
γ′

x(t)2 + γ′

y(t)2dt

where γx and γy denote the x and y component of the curve
describing the whole structure. Even if it is not computation-
ally cheap to integrate this for certain segments like for the
elliptical segments of our code, it is straightforward to compute
a numerically cheap approximation of this arc length function,
when the geometry is build up. Thus, during the ray tracing
process evaluation of the integral is computationally efficient.

V. OPTIMIZED TRACE ANALYSIS

Given several traces of rays, the next and final step is to
count the rays hitting every surface element summing up the
energy transfered onto these elements of the structure. For this
part of the algrorithm the computed arc length can be used
cheaply to store this data in an array (Fig. 2) where again
usually a tree structure would be required. This improves the
time complexity from O(log(n)) to O(1) for this part of the
algorithm.

0 1 2 3 4 5 6 7 8 9

γ(0)

Fig. 3. storage organisation of final result data

VI. CONCLUSION

Rigorously exploiting the benefits a rotationally symmetric
problem allows strong simplifications for central parts of the
ray tracing algorithm. Commonly required tree data structures
can be replaced with arrays, improving time complexity from
O(log(n)) to O(1) for operations on these structures. The up-
coming full paper will contain more details on the algorithm,
simulation results and benchmarks for realistic linear particle
accelerator.
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Abstract—The paper proposes a new approach for the efficient
modeling of the substrate in integrated circuits. The approach
is valid at intermediate frequencies, the electroquasistatic field
being used in conjunction with the magnetostatic field. The
main idea is to perform a hierarchical sparsification based on
an exponential partitioning scheme of the substrate with an
impressive impact on the model extraction time. A circuit model
of linear complexity is extracted.

I. INTRODUCTION

With the continuous downscaling of CMOS devices analog,
RF and digital circuitry are integrated on a single chip. How-
ever, due to the conducting nature of the common substrate,
noise generated by the digital circuitry can be easily injected
into and propagate through the silicon substrate. Accurate
and efficient modeling of the electromagnetic effects in the
semiconductor substrate is an important still open problem for
the EDA community [1], [2].

The IC substrate is a semiconductor body represented by
computational domains of rectangular shapes. It is usually
structured in homogeneous layers, with constant material
parameters. The traces of the circuit devices on the top
surface of the substrate are called connectors or contacts.
The bottom surface of the substrate is the backplane contact,
which is usually a grounded or a floating metallic layer [3].
The top surface of the computational domain and its lateral
surfaces have a virtual character, being conventional cuts in
the real semiconductor substrate body. The contacts are also
conventional surfaces [1], [3]. The number, shapes and sizes of
the contacts are very much dependent of the actual circuit layer
as well as of the modeling approach. Inhomogeneous high-
conductivity layers and structures such as the epi-layer, wells,
diffusion gradients, and buried layers are usually included in
the substrate models, but a simpler solution we will consider
is the one in which the modeled substrate contains only the
homogeneous Silicon bulk.

The substrate models are based on electromagnetic (EM)
field modeling. The choice of the most appropriate EM field
regime for a particular model of the substrate is dependent
on the values of the material constants, as well as on the
required operating frequency-range. In the low frequency case,
the substrate behavior is well described by static regimes, the
most appropriate model being obtained by using in conjunction
electrostatics (ES), electric conduction (EC) and magnetostat-
ics (MS). Only for inhomogeneous substrate structures the

use of electroquasistatic (EQS) in conjuction with MS can be
justified. Numerical studies in [4] show that the EQS assump-
tions are not valid in the case of high-resistivity substrates
at frequencies above 20 GHz. In the case of low-resistivity
substrates EQS can be used at least for frequencies up to 100
GHz.

Even in the simplest static regimes, the complexity of the
extracted model with n connectors is O(n2), since the number
of lumped circuit elements linking the connectors is given by
n(n + 1)/2. For instance, millions of R, L or C elements are
required to model 2000 connectors in EC, MS or ES regimes.
RC ”equivalent” circuits are extracted from the EQS field
solution. Fortunately, not all these elements have a similar
importance in the model, as many of them describe weak
interactions. Typical examples are links between far connectors
or connectors screened by other connectors. The procedure to
approximate a model with another of smaller size (with fewer
elements) is called sparsification. The name is inspired by the
fact that the admittance matrix of the new model is a sparse
one, whereas the original matrix is dense. Several hierarchical
approaches are described in [1], [5].

II. HIERARCHICAL APPROACH

The substrate modeling approach we propose is valid at
frequencies where the EQS regime may be considered valid.
In order to model also the magnetic/inductive field effects, we
consider in the substrate the EQS field in conjunction with
the MS one. Thus two independent models are extracted, to
be connected in the global model of the IC. We use for this the
domain partitioning (DP) technique as described in [6]. The
IC devices and the substrate interact by means of EM hooks
[6]. The hierarchical sparsification we propose is based on an
exponential partitioning scheme of the substrate (Fig. 1).

Virtual contacts (hooks) are buried in the substrate at

Fig. 1. Partitioning of the substrates in macro-cells.
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different depths (according to their levels), thus realizing
a domain-partitioning of the substrate in horizontal layers
structured in rectangular super-elements (macro-cells). The
cell-walls generate thus an adapted discretization macro-grid,
progressively refined from bottom to top. Unlike the literature,
in our approach, the equivalent contacts have a physical
meaning, being the terminals of the macro-cells. Thus, sparse
hierarchical circuit-models with reduced number of lumped
elements are generated. Moreover, since the macro-cells have
similar geometries, the field has to be computed (and conse-
quently the circuit model has to be extracted) only in one of
them, the standard cell. For instance, considering such a cell
with 14 terminals, 9 on the top face and one on bottom, the
number of levels is ln(n)/ ln(9) and the total number of cells
is (n− 1)/8, while the complexity of the equivalent circuit is
O(11n). A model with six levels can handle about one million
top-connectors, using about ten millions lumped elements. The
linear order of the extracted model is another great advantage
of this approach.

The main reason which makes our hierarchical sparsification
approach valid is the exponential decay of the field variation on
deeper horizontal planes. For instance, in EC, ES and MS field
regimes, the scalar potential satisfies in homogeneous media
the Laplace equation. By imposing zero Dirichlet boundary
conditions on the bottom surface (z = 0), zero Neumann on
vertical sides (x = 0, x = a, y = 0, y = b) and by using a dou-
ble Fourier series, it can be proved that the Fourier coefficients
of the solution V (x, y) =

�n

i=0

�n

j=0 Vij cos(λix) cos(µjy)

satisfy |Vij/V0| ≤ ab/(4π2ij) exp
�

−
�
λ
2
i + µ2j (c− z)

�
.

The Fourier series may be truncated, but in order to keep a
minimal accuracy on the top surface (z = c), the number of
retained terms (spatial harmonics along each direction) should
be at least the total number of contacts in that direction. On
deeper planes z < c, for same accuracy ε, only a lower number
of terms nz , mz may be retained:

ε =
ab

4π2nm
≥

ab

4π2nzmz

exp
�

−
�
λ
2
i + µ2j (c− z)

�
. (1)

Going down in the substrate, the number of degrees of
freedom (dofs) necessary to describe the solution decreases
exponentially. A lower number of dofs means a lower number
of hooks (contacts) on deeper layers. Hence, the grid necessary
to describe field may be coarser, deeper in substrate. In any
layer, the number of contacts can be decreased from its top to
bottom q times:

q =
ncmc

n0m0
= exp

�
π

�
(n/a)2 + (m/b)2c

�
. (2)

For instance if q = 9, a = b and n = m it follows that
∆z ≈ a/n. Consequently, the standard cell of top layer should
be a parallelepiped having its height at least the size of the
top contacts. By increasing q, the approximation error of the
hierarchical sparsification becomes higher.

III. RESULTS

In order to verify the proposed approach, a simple study case
of a micro-strip dual conductor line in SiO2 over a lossy Si

Fig. 2. Computational domain partitioned in three parts. Conform grids are
shown.
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Fig. 3. Hierarchical approach is as accurate as DP with conform grids.

substrate was considered. The line admittance was computed
by FIT, using DP with conform grids (Fig. 2) and with the
hierarchical modeling for the substrate. The result shown in
Fig. 3 validates the latter approach.

The substrate was decomposed into 10 layers having pro-
gressive increasing thicknesses with a constant rate. The CPU
time needed to extract the admittance matrix by hierarchical
sparsification was 0.093 sec, whereas the same time when us-
ing DP with conform grids was 42.4 sec. This result illustrates
the important reduction of the extraction time.
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Abstract— The calculation of motion-induced eddy currents
in massive conductors yields a 3D convection-diffusion problem.
Up-winding and SUPG formulations are well-established methods
to obtain stable discretizations of the scalar convection-diffusion
equations in the case of singular perturbation, but there is very
little reported experience with the stability of convection in the
vector case, i.e. in electromagnetism. Numerical experiments with
the up-winding method proposed by Xu et al. [1] has proven
its efficiency to be limited, and an alternative approach based
on a consistent discretization within the finite element Galerkin
context of the material derivative implied by the convection
phenomenon is proposed.

I. INTRODUCTION

The problem of electromagnetic braking can solved by a
quasi-stationary approach by discretizing the model in the rest
frame. According to e.g. [1], the governing equations are b =
∇ × a, e = −∂ta − ∇V and ∇ × h = j with the material
constitutive relations b = µh and

j = σ(e+ v × b), (1)

where the velocity field v is different from zero in the moving
domain. There are several interpretations found in literature for
formulae like (1). The interpretations of Xu [1], Bossavit [5],
Thorne [6] and Van Bladel [7] will be discussed and compared
in the full paper.

On the other hand, it would seem natural, by analogy with
mechanics to work with Eulerian coordinates, i.e. to replace
the equation

σ∂ta+ curl νcurla = js (2)

Fig. 1. Geometry of the 3D braking system.

valid when there is no motion, with the equation

σDta+ curl νcurla = js (3)

where Dt denotes the convective derivative. This would be a
justification for importing stabilization SUPG scheme from
Mechanics, in particular computational fluid dynamics [2],
[3], into electromagnetic problems. We therefore have first to
answer the question : Is electromagnetic braking a convection
problem ?

Given a placement map pt : M → N , one can define
the co-moving time derivative as the derivative operator that
fulfills

∂t



Ω

α =


Ω

Lv α.

The co-moving time derivative of differential forms of various
degrees write as follows

Lv f = ∂tf + v · (grad f) (4)
Lv a = ∂ta+ grad (a · v)− v × curla (5)
Lv b = ∂tb+ curl (b× v) + v divb (6)
Lv ρ = ∂tρ+ div (ρv) (7)

in terms of classical vector and tensor analysis operators.
The co-moving derivative of 0-forms (5) and 3-forms (7) are
commomnly used in computational fluid dynamics where they
are called (amongst many other names) convective derivative,
Lv ≡ Dt.

The electric field writes in the absence of motion e =
−∂ta− gradu becomes in an Eulerian representation,

e = −Lv a− gradu
= −(∂ta+ grad (a · v)− v × curla)− gradu

in the presence of motion. One observes the introduction
through the co-moving time derivative of the classical v × b
(1). But one observes also a motion induced correction to the
electric scalar potential, grad (a · v), which is not considered
in the classical definition of motion induced eddy currents.
The electric field can actually be rewritten

e = −∂ta − gradu

with the auxiliary fields : e = e − v × curla, a = a and
u = u+a ·v. The co-moving time derivative appears thus to
be related with the Lorentz invariance of Maxwell’s equations,
as can be shown in a slightly extended theoretical context.
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Fig. 2. Current density computed in the mover.

Fig. 3. Arbitrary finite element Ω and its upwind element Ω−.

II. XU’S SUPG APPROACH

Assuming a stationary process, ∂ta = 0, the scheme pro-
posed by Xu et al in [1], directly inspired from computational
fluid dynamics, is as follows :


Ω

µ−1curla · curlw dΩ+


∂Ω

(w×µ−1curla) ·n d∂Ω =

−


Ω

σ (−v × curla+ gradu) ·w dΩ

In analogy with the upwind scalar shape functions (with a free
parameter τ ) :

w = w0 + τ
v · gradw0
||v||2

, τ =
vh

2
(coth

Pe

2
− 2

Pe
)

upwind vector shape functions are defined as

w = w1 − τσv × curlw1

Numerical 3D simulations done with this approach, Fig. 2,
show that a stabilization effect is indeed observed, but leaves
still a severe limitation on the convection speed v.

III. A GEOMETRICAL SCHEME

In their report [4], Heumann and Hiptmair have successfully
exploited differential geometry concepts to obtain a geomet-
rical discretization of the convection operator in 2D. Their
approach is based on the extrusion operator introduced by

Bossavit [5]. The purpose of this paper is to generalize their
2D scheme to 3D finite element computations.

Consider the situation depicted in Fig. 3. Let Ω be an
arbitrary finite element in a 3D mesh. A particular edge of that
element ei is considered, at both ends of which the velocity
vector has been represented. This edge ei represented in the
figure is such that its upwind extrusion lays outside Ω, i.e. in
a neighbour element Ω− = Ω. For the FE discretisation, one
has to evaluate :

Ω

σLv a · ωe
l dΩ =


i



ei

Lv a(Ω−i )


Ω

σωe
i · ωe

l dΩ,

(8)
where ωe

l is and edge-based trial function. But the tangential
component of Lv a is not continuous. The fact that the
derivative Lv is a limiting process involving the upwind
extrusion of ei, which lays in the upwind element Ω− relative
to the edge ei under consideration, imposes thus to evaluate
the circulation of Lv a in that element, i.e.


ei
Lv a(Ω−i ).

In the evaluation of the residual (8) of the finite element Ω,
the adjacent upwind elements Ω−i plays thus a role. This is
incompatible with the classical element by element assembly
of FE elementary matrices, hence an implementation difficulty.

An algorithm to evaluate

ei
Lv a(Ω−i ) will be described in

the full paper. This expression has 3 terms (5). In particular,
it will be shown that

ei

v × curla =

jl

Aj
V l
1 + V l

2

2
Tilj

with
Tilj = iei ielcurlω

e
j (x)

a constant matrix with ±1 and 0 elements that only depends
on the topology of the tetrahedron.

IV. CONCLUSION

We have discussed the validity of introducing convection
based concepts in context of electromagnetism, and shown that
this is done by the co-moving time derivative. The concept of
extrusion yields a geometrical upwind scheme without free
parameter that can however not be assembled element by
element. More numerical results will be given in the full paper.
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Abstract—This paper presents a method for the computation
of magnetostatic problems based on finite element and boundary
element coupling. In our method, we are introducing a reduced
scalar magnetic potential in the unbounded air region. This
enables the treatment of multi-connected domains in contrast to
formulations based on total scalar magnetic potentials. Moreover,
the computation of materials with high permeability is possible
without stability problems, because of the usage of a vector
potential in the solid parts.

I. INTRODUCTION

Similar methods have been proposed in the past. In [1]
a vector potential is used in the solid parts and a total
scalar approach for the unbounded domain, respectively. This
approach is restricted to simple connected conductors. Other
approaches are based only on total scalar potentials and/or
reduced scalar potentials instead, see [2], [3], [4]. These
methods suffer from cancellation errors and lack stability in
presence of high permeability (e.g. µr = 500) if the reduced
scalar magnetic potential is used inside the permeable bodies,
[6], [2]. Our proposed method circumvents these problems
and enables simulations of highly permeable parts of general
topology.

Thus, let us consider an inner domain Ω of general topol-
ogy that consists of magnetic or non-magnetic parts. The
unbounded outer air region is Ω+ = R3\Ω̄, with µ = µ0.
The interface boundary is assigned by Γ = ∂Ω. We search
a magnetic flux density B that solves the magnetostatic field
equations

curl
1
µ
B = j in Ω, (1)

curl
1
µ0
B = j in Ω+, (2)

divB = 0 in Ω ∪ Ω+. (3)

In order to solve the equations we are applying a finite element
(FEM) formulation based on the magnetic vector potential for
the inner domain. In the outer domain we are introducing
a reduced potential, which is treated by a boundary element
method (BEM). Taking into account the interface conditions,
we are coupling both approaches and obtain an overall system
of equations that has to be solved.

II. INNER DOMAIN Ω
In the inner domain Ω we are introducing the mentioned

vector potential B = curlA, and obtain

curl
1
µ
curlA = j in Ω. (4)

For regularization we apply Coulomb gauge

divA = 0. (5)

In order to derive a variational formulation we multiply (4) and
(5) with a testfunction v and q, respectively. After integration
by parts and introducing a new variable p we obtain a weak
formulation. Taking into account the correct function spaces,
we have to find (A, p) in H(curl)×H1(Ω)



Ω

1
µ
curlA · curlv dΩ −



Γ

(
1
µ
curlA× n) · v dΓ

+


Ω

∇p · v dΩ =


Ω

j · v dΩ (6)


Ω

A · ∇q dΩ−


Ω

p



Ω

q dΩ = 0. (7)

for all (v, q) in H(curl)×H1(Ω). It can be shown, that this
new unknown function p has the property p = const = 0, see
[1].

III. OUTER AIR DOMAIN Ω+

Assuming that there are no magnetic materials, i.e. µ =
µ0 in the entire R3, then a solution B0 of (1), (2) and (3)
can be found by Biot-Savart integration. Considering the real
configuration, we find the relation

curl(
1
µ
B − 1

µ0
B0) = 0 in R3. (8)

That means, we are now allowed to introduce a reduced scalar
magnetic potential ϕ with

∇ϕ = B −B0 in Ω+ (9)

without topological restrictions on Ω+. Considering equation
(3) and taking into account that divB0 = 0, the so-called
reduced scalar potential ϕ can be found by solving a Laplace
equation in the outer domain

ϕ = 0 in Ω+. (10)

It is well known that a solution for the Laplace equation can
be obtained by an indirect single layer approach

ϕ = V ρ with (11)

(V ρ)(x) =


Γ

ρ(y)G(x, y)dsy
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and the kernel G(x, y) = 1
4πx−y−1. The normal derivative

at the boundary Γ is given by

∇ϕ · n = (K  − 1
2
I)ρ with (12)

(K ρ)(x) =


Γ

ρ(y)
∂G

∂nx
(x, y)dsy

where the appearing boundary integral operator K  is the ad-
joint double layer potential, I denotes the identity operator and
n is the outward unit normal vector. For mapping properties
of the integral operators see e.g. [5].

IV. COUPLING FEM/BEM

At the interface between the solid parts Ω and the outer
region Ω+ we have to fulfill the interface conditions

[Bn] = 0, [H × n] = 0. (13)

If we are inserting the vector potential A and the reduced
scalar potential ϕ we obtain from the continuity of the normal
component of the B-field

curlA · n = ∇ϕ · n+B0 · n, (14)

and from the continuity of the tangential component of the
H-field

1
µ
curlA× n = 1

µ 0
(∇ϕ+B0)× n. (15)

Now we can replace the boundary integral in formula (6)
with our boundary operators (11) and (12). Finally, we have
to find a solution (A, p, ϕ, ρ) in H(curl,Ω) × H1(Ω) ×
H1/2(Γ)×H−1/2(Γ) that fulfills the final summarized system
of equations



Ω

1
µ
curlA curlv dΩ+



Ω

∇pv dΩ−


Γ

1
µ0

ϕ(curlv n) dΓ =


Ω

j v dΩ+


Γ

(
1
µ 0
B0 × n)v dΓ



Ω

A∇q dΩ−


Ω

p



Ω

q dΩ = 0


Γ

(curlAn)w dΓ−


Γ

(K  − 1
2
I)ρw dΓ =



Γ

(B0 n)w dΓ

−


Γ

ϕw̃ dΓ +


Γ

(V ρ)w̃ dΓ = 0 (16)

for all (v, q, w, w̃) in H(curl,Ω) × H1(Ω) × H1/2(Γ) ×
H−1/2(Γ).

The corresponding discrete spaces are the standard space of
edge elements Wh, the space of piecewise linear elements Vh,
the space of piecewise linear and constant boundary elements
Xh and Yh, respectively. Hence, the resulting system in matrix
notation is given as



A B C 0
B −P 0 0
C 0 0 1

2I −K 

0 0 −I V







A
p
ϕ
ρ


 =




f
0
g
0


 . (17)

V. NUMERICAL RESULTS

Our model problem consists of a cylinder made of copper
(σ = 5.7 ∗ 107(Ωm)−1, µ = µ0) with a current excitation
of I = 100A. The surrounding core is non-conductive with
a relative permeability µr = 500. Let us remark, that the
cylinder is not in the center of the core, but a bit moved
towards a corner. In Fig. 1 the solution of the system of
equations (16) for the B-field is shown. The magnetic flux

Fig. 1. B-field, FEM-BEM, magnetostatic

density is concentrated in the high permeable core. At the
reentrant corners we have singularities, which are difficult to
compare with our reference solution, that has been computed
by a pure FEM solver for magnetostatics, see Fig. 2. Note,

Fig. 2. B-field, FEM, magnetostatics

that the scale was set to the same range as in Fig. 1. The
results of both methods match very well, which confirms the
validity of our proposed general FEM-BEM approach. In order
to compute using finer meshes we have to apply compression
methods, which are currently under implementation.
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Abstract — A geometric multigrid method for the efficient 
solution of time-harmonic three-dimensional non-linear eddy-
current problems is presented. A finite element method with 
scalar potentials and vector potentials is used to describe the 
problems. The iteration time of the multigrid solution is 
compared to a standard conjugate gradient with incomplete 
Cholesky factorization iteration. 

I. INTRODUCTION 
In recent years, edge elements have become state of the art 

for the calculation of linear or non-linear time-harmonic eddy-
current problems with finite elements [1]. Particularly in the 
three-dimensional (3-D) case the finite element method (FEM) 
formulation results in a large system of equations. Iterative 
methods like the conjugate gradient method with incomplete 
Cholesky factorization (ICCG) as preconditioner are normally 
used for solving these systems of equations. However, the 
number of iterations increases substantially with the number 
of unknowns. A very fast method for solving a system of 
equations is the geometric multigrid (MG) method [2]. 

In this paper, the eddy-current problem is described by the 
FEM using the A, V formulation. To decrease the solution 
time of non-linear problems we present a nonlinear geometric 
multigrid algorithm for edge elements which is based on a 
modified Picard-Banach method [3]-[4].  

II. FEM-FORMULATION 
An eddy current problem involves two regions: a 

conducting region Ωc with an unknown current density 
distribution and a non conducting region Ωn with a given 
source current density J0. 

In the non conducting region, the magnetic vector potential 
A is defined as usual by curl=B A . Neglecting the dielectric 
displacement leads to the differential equation 

0curl( curl )ν =A J  in Ωn, where  is the reluctivity of 
the material, J

( )v v= x

0 can be described as the curl of a vector 
potential T0. 

In the conducting region, an additional modified electric 
scalar potential V is introduced as gradj j Vω ω= − −E A  
where ω is the angular frequency of the current excitation. 

Since there are two unknowns, A and V, an additional 
equation has to be used. It is common to use the divergence 
free property of the total current density, . This leads 
to the following system of differential equations: 

div 0=J

0curl( curl ) grad curlν ωσ ωσ+ + =j j VA A

( )-div grad 0j j Vωσ ωσ+ =A                                (2)                  

where σ is the conductivity in the conducting region. 
Using ne edge basis functions Ni for the vector potential and 

nn nodal basis functions Ni for the scalar potential, the 
Galerkin equations can be written as 

( ) ( ) ( )
0

curl , curl , , grad
           ( , )                   1,2, ,

i h i h i h

e

j j
curl i n
ν ω σ ω σ

T                   (1)                            

V+ + =

= Ki

N A N A N

N T
    (3)                 

( ) ( )grad , grad , grad 0   
                                                1,2, ,

i h i h

n

j N j N V
i n

ω σ ω σ+ =

= K

A
               (4)                  

where  and  are the approximations 

of the vector potential and scalar potential respectively. The 
resulting system of equations is singular, since applying the 
divergence operator to (1) will result in (2). 

1

en

h i
i

a
=

= ∑A N i iN
1

nn

h i
i

V V
=

= ∑

III. MULTIGRID 
A geometric multigrid algorithm is used for solving this 

singular system of equations. One iteration step of the 
classical two-grid algorithm applied to the solution of the 
equation system h h hA =x b  can be described as follow 

1
1

1

( , )  pre smoothing operations       
 calculation of the defect                 

 restriction of the defect on the coarser grid 

 solution of the coarse grid eq

n
h h h

h h h h

H h

H H H

S n
A
R

A−

= − −
= − −

= −

= −

%

%

x x b

d x b

d d

e d

2
2

uation      
 correction of 

( , )   post smoothing operations
h h H h

n
h h h

P

S n

= − −

= − −

% %x x e x

x x b

 (5) 

where  denotes n1nS 1 iterations using a smoother S, and the 
subscripts h and H refer to the fine and coarse grids, 
respectively. The linear mapping H hR=d d  is called 
restriction and the coarse-to-fine interpolation h HP=e e  
prolongation. The multigrid algorithm can be obtained by 
replacing step 4 in the two-grid algorithm (5) by another two-
grid step. This idea can be applied recursively, using coarser 
and coarser grids, generating a MG V-cycle. 

For edge elements, the entry of the  prolongation 
matrix 

h Hn n×
eP  is defined as [4] 

,

,
global edge

( , , )
h i

e
ij H jp x
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y z d= ⋅∫ N l                   (6)                   
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In Table I, the solution time for solving the non-linear 
eddy-current problem, using ICCG and MG, have been 
compared. Especially for finer finite element mesh the 
multigrid method is faster than the ICCG. 

where 1  and 1e
hi n≤ ≤ e

Hj n≤ ≤ .  
Using nodal elements, the natural choice for the entries of 

the prolongation matrix nP  are the values of the coarse grid 
basis functions NH at the fine grid nodes xhj: 

 
, ,(n

ij H i h jp N= x )

⎥

                                  (7) 

In a formulation using both nodal and edge elements, the 
prolongation matrix can be written as 

0
0

e

n

P
P

P
⎡ ⎤

= ⎢
⎣ ⎦

                                     (8)  

The transpose of P has been used as the restriction matrix 
R, i.e., .  TR P=

For the A, V-formulation described in section II, a Gauss-
Seidel type smoother can be applied to the nodal element and 
edge element space respectively. This is due to the fact that 
(4) takes care of the kernel of the curl operator [5].  

In ferromagnetic materials the connection between B and H 
is nonlinear. For nonlinear problems, a modified Picard-
Banach method has been used. This means a series of linear 
problems has to be solved 

, , 1( )h h i h i hA + =x x b                                  (9)                          

coil
Iron plate

coil
Iron plate

 
Fig. 1.  Geometry and discretization of 3-D problem.  

 
Fig. 2.  Non-linear magnetization of the iron plate.  

In each nonlinear iteration step, the nonlinear reluctivity ν 
has to be calculated in the Gaussian points of the finite 
elements, using the previous approximation for xh.  

 Since the matrices Ah depend on the reluctivity ν, they have 
to be reassembled in every nonlinear iteration step. For the 
MG method, the only meaningful solution for calculating ν is 
the solution xh on the finest grid, which is used to compute ν 
on a coarser grid as well. This yields the corresponding 
reluctivity at each MG level resulting in a proper hierarchy of 
finite element grids and systems of equations which can be 
described by the following algorithm [4]. It is assumed that 
the number of multigrid levels l and starting value 0ν  are 
given: 

TABLE I 
COMPUTATION TIME OF ICCG AND MULTIGRID 

Computation time (seconds) Number of equations ICCG MG 
275797 1318 1266 
618657 4310 2374 

V. CONCLUSION 
In this paper we have presented a solution by an MG 

method for nonlinear eddy-current problems described by a 
system of nonlinear equations obtained by an edge finite 
element. Numerical results have shown the advantage of MG 
method for non-linear eddy-current problems.  

, 1

1 , 1

1 max

Assemble the matrices ( ),  1,2, ;  

Solve ( )  with MG algorithm;
Calculate ( );  

If ,  1,  back to step 2. 

q i

l i l i l

i l i

i i

A q l

A

i i

ν

ν

ν

ν ν ε

+

+ +

+

=

=

≥ = +

K

x b

x
          (10)    
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8. COUPLED PROBLEMS 

Abstract — Magnetic particle is used in various areas from 
engineering to biomedical field. The particles are controlled by 
external magnetic field and the magnetized particles interact 
between themselves to show some interesting behaviors. Various 
computational analysis works have been recently presented. But, 
since most of them are based on a point-dipole model, the 
accurate effects of finite volume and mutual interactions are not 
calculated. In addition, full field analysis has serious problem in 
remeshing for moving particles. This paper propose a new 
approach, where the movement of particles is captured using 
level set function on a fixed background mesh for magnetic field 
analysis. The magnetic force on each particle by body force 
density are inserted into driving forces in dynamic equations.  

I. INTRODUCTION 
Recently, magnetic particle is attracting much attention 

because their role is increasing in various areas from 
engineering to biomedical field. Some typical examples 
include site-specific drug delivery, separation of tagged DNA, 
enhanced magnetic resonance imaging, hyperthermic cell 
treatment, magnetorheological fluids for controllable linear 
dampers, rotary brakes, and vibration dampers, etc. Therefore, 
the accurate analysis for their particle dynamics is required for 
appropriate estimation of the particle behaviors before a real 
test procedure, which needs a lot of cost and time. Applied 
magnetic field controls the particles in a fluid domain by 
exerting magnetic force on the particles. But, the magnetized 
particles also interact between themselves to produce other 
complex phenomena.  

Various computational works have been presented recently 
for its characteristics analysis: molecular dynamics 
simulations, density functional theory, particle dynamics 
method, Monte Carlo method [1]. However, since they are 
based on a point-dipole model, the accurate effects of finite 
volume and mutual interactions are not calculated. So, it turns 
out that full magnetic field is required for accurate calculation 
of nonlinear dynamics with many particles. But, the existing 
finite element method has a serious problem of remeshing for 
evolving geometrical modeling for many moving particles. 
Therefore, in this paper we propose a new approach, where 
the movement of particles is captured using level set function 
on a fixed background mesh for magnetic field analysis. The 
magnetic forces on each particle are calculated by body force 
density and inserted into driving forces in dynamic equations. 
The proposed method is applied to estimation of chain 
aggregation of ferromagnetic particles under external 
magnetic field.  

II. BOUNDARY AND MATERIAL SETTING  
For arbitrary region Ω  with boundary, the implicit function 
)(xφ  is assumed as follow 

    particle:0)(
boundary :0)(

         fluid:0)(

−

+

Ω∈<
Ω∂∈=
Ω∈>

rr
rr
rr

φ
φ
φ

 (1) 

Magnetic particle region can be defined the boundaries of 
domain −Ω  via 

{ }0),()( <=Ω− tt rφ . (2) 
The boundary )(tΓ of  )(t−Ω is then given by the zero level set,  

{ }0),()( ==Γ tt rφ  (3) 
The boundaries of particles can be expressed the zero level set 
using the signed distance function and the boolean union 
function min. Fig. 1(a) shows the distributions of level set 
function [2]. 

Ω∂∈=
Ω∂∈−=

rr
rrrr

whereboundarytheon
allfor II

0)(
)min()(

φ
φ  (4) 

 

 
Heaviside function is proper to set the material property of 

magnetic particle. It is not strict but continuously changes on 
the boundary in numerical processing because the boundaries 
can intersect an element. So, we used a smeared Heaviside 
function that gives a continuous permeability distribution near 
the zero level set. But, the material density near the boundary 
can be as abrupt as possible by regulating the tunable 
parameter h . 

00 )),(1(),( μμφφμμ rhHhH −+=  (5) 

⎩
⎨
⎧

>
≤

=
0
0

),(
0

0

φμμ
φμ

φμ
r

h  (6) 

where 
rμμ,  and 

0μ denote permeability, relative permeability 
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                       (a )                                                               (b) 

Fig. 1. (a) Level set function and (b) smeared Heaviside function. 
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8. COUPLED PROBLEMS 

and permeability of free space(fluid) respectively. Fig. 1(b) 
represents a smeared form of Heaviside function that is used 
in the proposed algorithm. By introducing the level set 
function to material setting process, we don’t have to remesh 
the model geometry that is changed by moving objects. 
The integration of surface and boundary integral are 

expressed using Heaviside function )(φH  and Dirac-Delta 
function )(φδ . 

∫∫ Ω
Ω= dHfdSf

S
))(()()( rrr φ  (7) 

∫∫ ΩΓ
Ω∇=Γ dfdf |)(|))(()()( rrrr φφδ  (8) 

III. FORCE ON PARTICLE AND DYNAMICS ANALYSIS 
To calculate force on moving magnetic particles we employ 

a body force density that can be easily integrated for a total 
force using the level set function. The velocities and 
displacements of magnetic particles are calculated by the 
motion equation. Collision with other particles is assumed to 
be elastic and friction between particles is ignored to simplify 
the problem. The total forces on each particle are an 
integration of the force density [3].  

∫Ω Ω+
+

= dHmm )()
22

(
2 2

0

2212 φ
μ

σσ nHHF  (9) 

where, H  is field intensity of each side, 2mσ  is magnetic 
charge of fluid, 2n  is the normal unit vector on surface and Ω  
is a region of magnetic particles. The velocities and positions 
of particles are analyzed by the motion equation  

Fvs
=+ D

dt
dm 2

2
 (10) 

where m  is mass of a particle, D  is damping coefficient such 
as viscosity or friction, and s  and v  denote position  and 
velocity of particles.  

 
When the particles come into collision with other particle or 

boundary wall, collision involves forces that are a change in 
velocity as in (11) and (12). Collision is assumed to be elastic, 
meaning they conserve energy and momentum. The 
magnitude of the velocity difference at impact is called the 
closing speed. The state variables of dynamics are concerned 
with moving and colliding objects. The above analysis 
procedure is executed until movement of particle is small 
enough for convergence.  

'' 22112211 vvvv mmmm +=+  (11) 

2
22

2
11

2
22

2
11 ''

2
1

2
1

2
1 vvvv mmmm +=+  (12) 

The overall flow chart of this procedure is shown as in Fig. 3. 
The dynamic equations of particles are numerically solved 
using Runge-Kutta algorithm for nonlinear ordinary 
differential equations. 

 

IV. NUMERICAL RESULTS 
The proposed modeling method for evolving geometry is 

numerically tested for a magnetic particle dynamics analysis. 
The test problem is dynamics of 228 magnetic particles in a 
box as Fig. 4(a) which shows the initial distributions of 
particles in absence of external field. After a uniform 
magnetic field of 1(T) is applied, the particles are redistributed 
and clustered to form long chains along the applied field 
direction as in Fig. 4(b). Using this model we can also predict 
the changed material property of the system in the presence of 
interactions. These results are consistent with experimental 
data [4]. 
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Fig. 2.  Collision diagram between particles. 

 
Fig. 3.  Flow chart of particle dynamics analysis.

    
 (a)                                        (b)  

Fig. 4. Magnetic particles in (a) zero field and (b) a uniform field
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Abstract — This paper presents a progress in the development 
of a recent and promising wavelet-based Algebraic Multigrid 
method with the use of the lifting technique. This new approach 
allows creating an algorithm with smaller memory requirement 
and a reduced number of floating point operations, if long filters 
are used, keeping the efficiency of the multigrid technique. The 
performance of the proposed approach is verified by solving the 
three-dimensional Poisson equation defined in a uniform grid 
and also in the TEAM 28 Problem. The standard Incomplete 
Cholesky Conjugate Gradient solver and the Incomplete LU 
preconditioner are used for comparison. 

I. INTRODUCTION

A combination of the Discrete Wavelet Transform (DWT) 
and the Algebraic Multigrid method (AMG) was introduced 
recently in [1] producing a new method called WAMG. In that 
new approach a modified DWT, using only low-pass filter 
bank, was applied to the original matrix to produce an 
approximation of it in each level of the multiresolution 
process.

The WAMG has revealed to be a very efficient and 
promising method for several problems related to computation 
of electromagnetic fields, in both serial and parallel 
computation [1],[2]. The method can be either used as an 
iterative solver or as a preconditioning technique, presenting 
in many cases a better performance than some of the most 
advanced and current AMG algorithms. 

Due to the WAMG efficiency and potentiality further 
researches have been carried out for its improvement and this 
paper is part of this effort. In order to accomplish this task this 
work build a modified discrete wavelet transform using the 
tool called the lifting scheme [3]. The lifting technique is a 
method introduced by W. Sweldens [4], which allows some 
improvements on the properties of existing wavelet 
transforms. The technique has some numerical advantages as a 
reduced number of floating point operations which are 
fundamental in the context of the iterative solvers. Actually, it 
is known that the lifting algorithm is asymptotically twice as 
fast as the standard algorithm for long filters [2]. 

II. THE WAVELET-BASED ALGEBRAIC MULTIGRID

The key point of the WAMG is the application of a 
modified (incomplete) DWT, as a filter bank with only low-
pass filters, to generate the hierarchy of matrices in the AMG 
method. 

This approach is very interesting mainly because it avoids 
the coarsening process and the heuristic parameters present in 

the standard AMG, simplifying the use of the method as well 
as its parallel implementation in distributed memory 
computers [1],[2]. 

III. THE IMPLEMENTATION USING THE LIFTING TECHNIQUE 

In [5] Daubechies and Sweldens have shown that every 
wavelet filter can be decomposed into lifting steps. Therefore, 
all discrete wavelet transforms used for WAMG can be 
implemented with the lifting scheme. The main algorithmic 
advantages of this technique are: 

a) Smaller memory requirement – the calculations can be 
performed in-place; 

b) Efficiency: reduced number of floating point operations; 
c) Parallelism –inherently parallel feature; 
More details about these advantages as well as others 

important structural advantages of the lifting can be found in 
[3],[4]. 

In fact, there are basically three forms for representing a 
wavelet transform: equation form (lifting), filter form (filter 
bank) and matrix form. However, only the first two are 
appropriate in the multigrid implementation. 

The representations of the Daubechies 4 wavelet in the 
lifting form and in the filters form are presented in (1)-(3). 
These representations were extracted from [3], which shows 
the details for converting between these two forms (one can 
also see [4]). 

A. Lifting form 
(1)

(1) (1) (1)

(2) (1) (1)

(2) (1)

[ ] [2 ] 3 [2 1],

1 1
[ ] [2 1] 3 [ ] ( 3 2) [ 1],

4 4

[ ] [ ] [ 1],

3 1 3 1
[ ] [ ], [ ] [ ].

2 2

s n S n S n

d n S n s n s n

s n s n d n

s n s n d n d n

= + +

= + − − − −

= − +

− +
= =

(1)

B. Filter Form 

4
1

1 3,3 3,3 3,1 3 ,
4 2

h ⎡ ⎤= + + − −⎣ ⎦           (2)

4
1

1 3, 3 3,3 3, 1 3 .
4 2

g ⎡ ⎤= − − + + − −⎣ ⎦ (3)

The coefficients s[n] and d[n] in (1) are, respectively, the 
approximation and the details coefficients of the input signal 
S. Therefore, for the multigrid implementation in the Lifting 
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form the last equation in (1) is not necessary. In (2) and (3) h4

and g4 are the low-pass and high-pass filter bank, respectively. 

IV. THE NUMERICAL TEST PROBLEM

The performance of the proposed approach is verified by 
solving the three-dimensional Poisson equation defined in a 
uniform grid on the cube [-1,1]3. The spatial discretization of 
the Poisson equation uses Lagrange finite-element functions 
and second order elements, both implemented in the C++ 
Finite Element Library - LibMesh [6]. The resulting 
symmetric positive definite matrix has 29791 rows and 
1771561 nonzero entries. 

The WAMG method with the lifting implementation 
(LAMG) was used as a stand-alone solver and as a 
preconditioner for Bi-Conjugate Gradient Stabilized 
(BiCGStab). The results are shown in Table I. For 
comparison, the standard Incomplete Cholesky Conjugate 
Gradient (IC-CG) solver is used. 

TABLE I 
RESULTS FOR THE TEST PROBLEM 

Time in seconds 
Method

Number of 
steps Setup Solver Total  

LAMG 5 3.85 7.50 
LAMG-BiCGStab 3 4.58 8.23 
LAMG-CG 3 

3.65 
4.04 7.69 

IC-CG 10 2.59 9.37 
IC-BiCGStab 5 

6.78 
2.08 8.86 

V. APPLICATION IN THE TEAM 28 PROBLEM

The performance of the LAMG is also verified in the 
steady-state analysis of Compumag TEAM 28 Problem. This 
problem relates to the modeling of an electrodynamic device 
which consists of two stationary concentric exciting coils 
interacting with a moveable round conducting plate. The used 
model, which was created using the Finite Element Method 
Magnetic (FEMM) [7], applies the Kelvin transformation [8] 
for investigating the steady-state levitation height of the plate. 
The resulting complex symmetric matrix has 54723 rows and 
380957 nonzero entries. 

The LAMG method was used as a preconditioner for 
BiCGStab. Again, the Incomplete Cholesky and the 
Incomplete LU preconditioners were used for comparison. 
The results are shown in Table II. 

TABLE II 
RESULTS FOR THE TEAM 28 PROBLEM 

Time in seconds 
Method

Number of 
steps Setup Solver Total  

LAMG-BiCGStab 42 1.11 15.92 17.03 
ILU-BiCGStab 244 0.36 81.17 81.53 
IC-BiCGStab 223 0.58 33.99 34.57 

The Magnetic flux density B (module) for this problem is 
presented in Fig. 1. 

VI. CONCLUSION

The proposed approach seems to be very promising. The 
numerical advantages of the lifting technique allow an 
efficient computational implementation of the method, as can 
be seen from the setup time for the test problem in Table I. On 
the other hand, the LAMG presented a small convergence rate 
for the TEAM 28 problem, especially when it is used as a 
preconditioner, when compared with the incomplete Cholesky 
and incomplete LU preconditioners. The number of steps in 
Table II illustrates this superiority. This LAMG performance 
for this problem is especially interesting because the 
corresponding matrix is complex symmetric and, curiously, 
there is not much literature available on iterative solvers for 
complex symmetric problems, given the number of diverse 
applications in which these problems arise. 

Fig. 1. Magnetic flux density B (module). 
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9-NUMERICAL METHODS 

Abstract — A method to solve stochastic partial differential 
equations in random domains consists in using a one to one 
random mapping function which transforms the random domain 
into a deterministic domain. The randomness is then supported 
by the behavior law of the material. This paper addresses an 
application of this method for an electrokinetic problem with 
uncertain dimensions. An example is presented to illustrate the 
method. 

I.  INTRODUCTION 
In several models used to predict the behavior of a 

physical phenomenon, the available information is known 
with a finite level of confidence. Since the numerical models 
are more and more accurate thanks to the availability of new 
numerical methods (in 3D for example) and also to the 
increasing of computer performances, some of these 
uncertainties can not be considered negligible any longer. In 
several works, random variables were used in order to taking 
into account of these uncertainties. There are three kinds of 
uncertainties: Those on the terms sources, those on the 
material behavior and those on the dimensions. In [2], 
methods proposed in literature [4] to account for uncertainties 
on the material behavior were used to solve static field 
problems. However, the case of uncertainties on the geometry 
is much less studied. In [1], a method to solve differential 
equations in random domains based on a one to one random 
mapping function which transforms the random domains to a 
deterministic one is proposed.  

In this paper, we propose to use such approach to solve a 
static field problem with random dimensions. In the first part 
of this paper, we present the approach that consists in 
transferring the randomness on the dimensions on the material 
behaviors. Then, known methods can be used to solve the 
stochastic problem. A numerical example will be presented in 
the second part. 

II. PROBLEM DESCRIPTION 

A. Deterministic problem 
The electrokinetic problem defined in domain D can be 

written: 

 
( ) 0
( ) 0

div x
curl x

=⎧
⎨ =⎩

J

E
 (1) 

with J the current density and E the electric field. The 
constitutive law is given by ( ) ( ) ( )J Ex x xσ= ⋅ , where ( )xσ  is 

the conductivity of the domain D. If we denote ( )xϕ the scalar 
potential such that ( )grad xϕ= −E , equation (1) can be 
written: 

 ( ( ) ( )) 0Div x grad xσ ϕ⋅ =  (2) 
 
We assume that the domain D is bounded by the surface 

1 2 3Γ = Γ ∪Γ ∪Γ where the boundary conditions are given by: 

 
1

2

3

( ) 0 on
( ) 0 on
( ) on

J nx
x
x V

ϕ
ϕ

⋅ = Γ⎧
⎪ = Γ⎨
⎪ = Γ⎩

 (3) 

where n is normal unity vector and V the imposed voltage. A 
weak formulation is used to solve numerically (2): 

 ( ). ( ). ( ).d ( ) 0T

D

grad x x grad x xϕ σ λ Ω =∫  (4) 

where ( )xλ is a scalar test function that is equal to zero on 

2Γ and 3Γ . To approximate the scalar potential and also for 
the test functions, nodal shape function are used.  

III. PROBLEM WITH UNCERTAINTIES ON THE BEHAVIOR LAW  
 As will be shown later, the solution of a problem with 

random dimensions can be equivalent to a problem with 
random behavior laws. In the following, we will recall shortly 
how this kind of randomness can be taken into account.  The 
uncertainties on behavior law can be modeled by the random 
fields ( , )xσ θ , where θ is the outcome. The scalar potential 
becomes now a random field ( , )xϕ θ . The weak formulation 
becomes: 

 ( , ) ( , ) ( ).d ( ) 0t

D

grad x x grad x xϕ θ σ θ λ⋅ ⋅ Ω =∫  (5) 

This problem can be studied using Monte Carlo Simulation 
Method (MCSM) that is a very reliable method but very time 
consuming. Alternative methods can also be used that were 
studied in [2-4]: Spectral Stochastic Finite Element Method 
(SSFEM) and Non-Intrusive Method (NIM). SSFEM and 
NIM consist in projecting the field ( , )xϕ θ  on space 

( , ) ( ) ( )K x S x Hθ θ= ⊗  where ( )S x  is spatial space spanned by 
the set of nodal shape functions λ(x) (see section II) and ( )H θ  
is spanned by a set of orthogonal polynomials{ }( )iH θ . The 
main difference between SSFEM and NIM is that with 
SSFEM, the projection ( , )xϕ θ  is undertaken simultaneously 
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9-NUMERICAL METHODS 

on ( )S x  and ( )H θ  while with NIM we project ( , )xϕ θ  firstly 
on ( )S x and secondly on ( )H θ . 

IV.  PROBLEM WITH UNCERTAINTIES ON GEOMETRY 
In SSFEM, MCSM and NIM, one difficulty in case of 

random domains compared to the case with random behavior 
law is that, a priori, geometric variation leads to the re-
meshing of the system. Furthermore, the space S is no longer 
independent on H(θ), therefore the random scalar potential 

( , )xϕ θ can not be directly approached by the projection in 
these spaces. To overcome that difficulty, an idea based on a 
one to one random mapping function that transforms the 
random domain to a deterministic domain is proposed in [1]. 
We will clarify this in following part. We use a one to one 
random mapping function ( , )X X xθ= which transforms the 
random domain D to deterministic domain E. Thus, 
formulation (5) becomes: 

 
( , ). ( ). ( , )( , ) ( ) ( ) 0

det( ( , )

t
t

E

T X X T Xgrad X grad X d X
T X

θ σ θϕ θ λ
θ

Ω =∫    (6) 

where T is the Jacobian matrix of the transformation. If we 
denote the conductivity: 

               ( , ). ( ). ( , )( , )
det( ( , )

tT X X T XX
T X

θ σ θσ θ
θ

′ =       (7) 

the problem with geometric uncertainties on the domain D can 
be considered equivalent to a problem with uncertainties on a 
modified behavior law with a conductivity σ’(X,θ) on the 
domain E. Methods have been already proposed to solve such 
kind of problems. One can note that to use the method, a one 
to one random mapping function has to be defined that is not 
necessarily always obvious. 

V. NUMERICAL APPLICATION 

We focus now on the following electrokinetic problem 
presented in figure 1. It is a cubic domain D2 with a 
conductivity σ2 = 1 (Ω.m)-1 with an edge length (2a = 4m). 
This domain surrounds another cube D1 with random 
dimensions (l1, l2, l3) with a conductivity σ1 = 10 (Ω.m)-1. 
l1(θ), l2(θ) and l3(θ) are independent uniform random variable 
in the interval [1;1,5](m). On two opposite sides of the domain 
D2 a voltage difference V = 2 (Volt) is prescribed. Since the 
dimensions of D1 are random so does the energy. 

We define a transformation X = X(θ,x) to transform the 
domain D into a domain E with l1 = l2 = l3 = 1m. On the 
domain E, the conductivity is then random and given by (7). 
To determine the Jacobian transformation matrix (6), we 
divide the domain D into several sub-domains. We apply a 
linear transformation (dilation) in each sub-domain which 
leads to  a constant Jacobian transformation matrix. 

To study the problem, we use both the NIM and the 
MCSM.  In MCSM, we use a sample of length 10000. With 
NIM we use an expansion of order 4 for the multivariate 

Legendre polynomials. The Legendre Gauss quadrature 
method is used to calculate the coefficients of the polynomial 
expansions (43 = 64 points are calculated). 

We compared the statistical moments of a global random 
variable (energy) given by the two methods. The statistical 
moments are reported in the Table I. We notice that that the 
NIM gives statistical moments that belong to the 95% 
confidence interval obtained with the MCSM.  

 

 
Fig. 1. Electro-kinetic system  

 
TABLE I 

MONTECARLO SIMULATION METHOD COMPARED WITH NON-
INTRUSIVE METHOD 

 

VI.    CONCLUSION 

We have presented a method to treat the problem with 
uncertainties on the geometric dimensions. This method 
consists in using a geometric transformation that allows 
transferring the randomness on the behavior law. The choice 
of the transformation is however a delicate point of this 
method. Further investigations should be undertaken to find 
and to specify this transformation in a simpler way.  

 

VII. REFERENCES 

[1] Dongbin Xiu et Daniel M. Tartakovsky. Numerical methods for   
differential equations in random domains.  SIAM J.SCI COMPUT. No 
3, pp.1167-1185. 

[2] R.Gaignaire, S.Clenet, O.Moreau, and B.Sudret.  3D spectral stochastic 
finite element method in electromagnetism. IEEE Trans.Magn. vol.43, 
no.4, pp. 1209-1212,2007. 

[3] R.Gaignaire, S.Clenet, O.Moreau, B.Sudret. Current Calculation in 
Electrokinetics Using a Spectral Stochastic Finite Element Method.
Magnetics, IEEE Transactions Volume 44, Issue 6,  June 2008 
Page(s):754 - 757.

[4] R. Ghanem, Spanos P.D, “Stochastic Finite Elements: A spectral 
approach”, Dover, New York, 2003 

         
 

Monte Carlo  method 
(95% confidence interval) Non-intrusive method 

Information 
Energy (J) Energy (J) 

Mean  [28.86 : 28.99] 28.91 
Standard 
deviation [3.34 : 3.42] 3.38 

Skewness [0.43 : 0.56] 0.49 
Kurtosis [2.40 : 2.69] 2.55 

D1 σ1 

 
D2 σ2 

2a 

2l1 

2l2

2l3

Г1 : φ = 0 
 

Г2 : φ = V  

2a 

2a 
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9. NUMERICAL TECHNIQUES: (A) MESH GENERATION 

Abstract — We have previously proposed an automatic 
hexahedral mesh generator. It is necessary to understand about 
the quality and characteristic of mesh to perform hexahedral 
edge finite element analysis in electromagnetic. Therefore, we 
have compared high-quality mesh with poor-quality mesh, and 
investigated about the factors that affect the accuracy and the 
computation time. We will conclusively apply the result to 
improving the automatic hexahedral mesh generator. 

I. INTRODUCTION 
In order to perform a finite element analysis (FEA), the 

analysis domain has to be divided into finite elements. 
Hexahedral mesh has advantages over others at accuracy and 
speed. Therefore, we have previously proposed an automatic 
hexahedral mesh generator [1], [2]. The quality of mesh 
generated by the proposed mesh generator is affected by the 
smoother, i.e. the Laplacian smoothing in [2]. 

The quality and density of mesh are the most important 
factors to perform FEA in electromagnetic. In order to achieve 
highly accurate analysis and short computation time, a high-
quality hexahedral mesh with graded mesh densities should be 
employed. In common, it is known that the regular hexahedral 
element is the best. However, the generation of mesh with 
only regular hexahedron is very difficult under various 
conditions. Therefore, we have to investigate about the 
characteristic of generated mesh. 

In this paper, some evaluation functions are defined to 
check the element shape. It was investigated whether those 
evaluation functions correlate with the accuracy and the 
computation time. The result of this paper helps to improve 
the smoothing process in the proposed automatic hexahedral 
mesh generator [2]. 

II. EVALUATION METHOD 

A. Orthogonality Evaluation 
It is empirically known that the regular hexahedron and the 

rectangular parallelepiped are the high-quality element. 
Therefore, the orthogonality of element is an important factor.  
The orthogonality evaluation value φ is defined as follows: 

∑=
=

N

i
i N

1
φφ , ∑=

=

24

1
24

j
iji φφ , ( )( )cba eee ×⋅= −1cosijφ ,   (1) 

where N is the number of elements, and e is the unit vector 
along the edge, as shown in Fig. 1. When φι is 0 deg., the 
element is a rectangular parallelepiped. On the other hand, 
when φι is large, the element is distorted with poor quality. 

 
Fig. 1. Conceptual Illustration of Orthogonality Evaluation Method. 

B. Planarity Evaluation 
In the method proposed in [2], the conclusive position of 

nodes depends on the smoothing arrangement. Then, 4 nodes 
of a hexahedral facet might not be on plane. Therefore, the 
planarity evaluation function δ is defined as follows: 

∑=
=

N

i
i N

1
δδ , ∑=

=

6

1
6

j
iji δδ ,                        (2) 

( ) ( ) ( )[ ]
( ) ( ) 2

bdac

bdacab
ij

PPPP

PPPPPP

−×−

−×−⋅−
=δ ,             (3) 

where P is the located vector of the node, as shown in Fig. 2. 
When δι is large, the facet of the element is curved. 

 
Fig. 2. Conceptual Illustration of Planarity Evaluation Method. 

C. Diagonal Length Ratio Evaluation 
The diagonal length ratio evaluates the distortion of 

element. The evaluation function of the ratio between the 
longest and the shortest diagonal of the element, λ, is defined 
as follows: 

∑=
=

N

i
i N

1
λλ , 

min,

max,1
i

i
i l

l
−=λ ,                       (4) 

where l is the length of the diagonal, as shown in Fig. 3. When 
λι is large, the element is distorted. 

 
Fig. 3. Conceptual Illustration of Diagonal Length Ratio Evaluation Method. 
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9. NUMERICAL TECHNIQUES: (A) MESH GENERATION 

D. Volume Ratio Evaluation 
The ratio between the volume of the element and the cube, 

whose edge length is that of the longest edge of the element, is 
defined as the volume ratio evaluation ε. It is calculated as 
follows: 

∑=
=

N

i
i N

1
εε , 

3
1

31 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

i

i
i h

V
ε ,                  (5) 

where h is the length of the longest edge and V is the volume 
of the element, as shown in Fig. 4. When ει is large, the 
element is flat or slender. 

 
Fig. 4. Conceptual Illustration of Volume Ratio Evaluation Method. 

III. EVALUATED MODEL AND MESHES 

In this paper, a simple model consisting of a permanent 
magnet (1.0 T) and an iron is tested, as shown in Fig. 5. The 
ICCG is used as a solver. The properties of the generated 
mesh are shown in Table I. The Mesh (A) consists of only 
regular hexahedron, as shown in Fig. 6(a). For comparison, 
some distorted meshes are prepared. The Mesh (B) is 
generated by randomly moving the nodes of Mesh (A), as 
shown in Fig. 6(b). The Meshes (C) and (D) are generated by 
zigzag moving the nodes of Mesh (A) into z- and x-direction, 
respectively, as shown Figs. 6(c) and (d). 

 
Fig. 5. Test Model consisting of a permanent magnet and an iron. 

TABLE I 
MESH PROPERTIES 

Nodes Elements Edges of Unknown
438,976 421,875 1,232,100

 

 
       (a)                  (b)                      (c)                      (d) 

Fig. 6. Conceptual Illustrations of Meshes. 

IV. EVALUATION OF MESH QUALITY 

First, the convergence properties of ICCG are investigated, 
as shown in Fig. 7, where “Mesh (B)-5” means that the 
randomly moving distance of nodes is 5.0 mm at longest in 
Mesh (B). In Fig. 7(b), the degradation of convergence 
properties of Mesh (C) is prominence. Secondly, the 

correlativity between the evaluation values of mesh quality 
and the number of ICCG iteration is investigated, as shown in 
Fig. 8, where the convergence criterion of ICCG is 1.0e-6. In 
Fig. 8(c), the diagonal length ratio is strongly correlated. 
Finally, the error of the solution is compared. The maximum 
error values are 0.0433 T at Mesh (B), 0.0374 T at Mesh (C) 
and 0.0215 T at Mesh (D) as compared with Mesh (A). All the 
solutions are accurate enough. 

The mesh quality strongly affects the ICCG convergence. 
To decrease the diagonal length ratio λ  lends to the speed-up. 
Therefore, in the smoothing process of the proposed mesh 
generator [2], the nodes should move so as to decrease the 
diagonal length ratio λ . 
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Fig. 7. ICCG Convergence Properties. 
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Fig. 8. Evaluation of Mesh Quality. 

V. SUMMARY 
It was clarified that the diagonal length ratio evaluation 

correlates with the ICCG convergence. In the future, the 
smoothing process in the proposed mesh generator [2] has to 
be developed to decrease the diagonal length ratio. 
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Abstract—Nowadays, several industrial applications are being
ported to parallel architectures. In fact, these platforms allow
acquire more performance for system modelling and simula-
tion. In the electric machines area, there are many problems
which need speed-up on their solution. This paper examines the
parallelism of sparse matrix solver on the graphics processors.
More specifically, we implement the conjugate gradient technique
with input matrix stored in CSR, and Symmetric CSR and
CSC formats. This method is one of the most efficient iterative
methods available for solving the finite-element basis functions of
Maxwell’s equations. The GPU (Graph Processing Unit), which
is used for its implementation, provides mechanisms to parallel
the algorithm. Thus, it increases significantly the computation
speed in relation to serial code on CPU based systems.

I. INTRODUCTION

An electromagnetic field analysis is one of the most com-
plex problems of physics. And, the modeling and simulation of
electrical systems use a very large computational algorithms to
solve their problems. One of this algorithms is based on the
conjugate gradient (CG) method [2]. The CG method is an
effective technique for symmetric positive definite systems. It
is suitable for systems of the form Ax=b, where A is a known,
square, symmetric, positive-definite matrix, x is a unknown
solution vector and b is a known vector. Iterative methods
like CG are suited for use with sparse matrices.

The solution of large, sparse linear systems of equations
is the single most computationally expensive step. Thus, any
reduction in the linear system solution time will result in a
significant saving in the total process time. This need demands
for algorithms and software that can be used on parallel
processors.

This paper describes the use of the GPU as platform to
implement a CG method to solve a linear system. The sample
inputs are matrix stored in Symmetric CSR (compressed
sparse row) [2] format obtained from a simulation of electric
machines. The algorithms use standard BLAS library and two
implemented kernels for matrix-vector product (SpMV). The
next section describes the GPU which is the platform used
and how to program it with CUDA. Section 3 depicts the
matrix used and how to implement the solver. A execution
performance is discussed in following section. Finally, some
concluding remarks are made about obtained results.

II. GPU

GPU (Graphics Processing Unit) is a manycore processor
attached to a graphics card dedicated to calculating floating
point operations. Even if GPUs are a manycore processors,
their parallelism continues to scale with Moore’s law. It is nec-
essary to develop application software that transparently scales
its parallelism. CUDA (Compute Unified Device Architecture)
[3] is a parallel programming model and software environment
designed to overcome this challenge while maintaining a
low learning curve for programmers familiar with standard
programming languages such as C.

A. Processor Architecture

The GPU devotes more transistors to data processing rather
data caching and flow control. This is the reason why the
GPU is specialized for compute intensive. NVIDIA GPU,
specifically, is composed of array of SM(Streaming Multipro-
cessors), each one is equipped with 8 scalar cores (the SP or
Streaming Processors), 16834 32-bit registers, and 16KB of
high-bandwidth low-latency memory shared for up to 1024 co-
resident threads. GPUs such as the NVIDIA GeForce GTX 280
contain 30 multiprocessors, so 30K threads can be created for
a certain task. Further, each multiprocessor executes groups,
called warps, of 32 threads simultaneously.

B. Memory Architecture

In the NVIDIA GPU memory model, there are per-thread lo-
cal, per-block shared, and device memory which comprehends
global, constant, and texture memories. Shared Memory can
be only accessed by threads in the same block. Because it is
on chip, the Shared Memory space is much faster than the
local and Global Memory spaces. But only 16KB of shared
memory are available on each SM.

C. CUDA Programming Model

CUDA is a C language extension developed by NVIDIA to
facilitate writing programs on GPUs. It allows the programmer
to define C functions, called kernels, that, when called, are
executed N times in parallel by N different CUDA threads,
as opposed to only once like regular C functions. One of the
main features of CUDA is the provision of a Linear Alge-
bra library(CuBLAS) and an Fast Fourier Transform library
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(CuFFT) [3]. The next section describes the implementation
of CG on the GPU and the use of CuBLAS library.

III. IMPLEMENTATION

The Conjugate Gradient was applied to 30880x30880 sym-
metric sparse matrix A with 449798 nonzero double precision
elements. It is stored in full or symmetric CSR format files
which include the unknown elements vector x and the result
vector b. The CG algorithm used to implement the program
is below.
Require: init variables

1: for all k such that 1 ≤ k ≤ N do
2: α⇐ (rTr)

(pTAp)
3: x⇐ x+ αp
4: break if convergence
5: r ⇐ r − αAp

6: β ⇐ (rTk rk)

(rT
k−1rk−1)

7: p⇐ r + βp
8: end for
All the internal loop operations are executed on GPU. The

scalar product and axpy functions on lines 3,5,7 use CuBLAS
functions. Since BLAS is only for dense matrix, naturally it
is necessary to create a CUDA kernel for sparse matrix. For
that reason, a SpMV algorithm for matrix-vector multiplication
should be implemented to execute the Ap product on line 2.
Let A = (L+D+U), where D is the main diagonal part of
A, L is its strictly lower triangular part and U is its strictly
upper triangular part. Since A is symmetric, UT = L. Thus,
A can be stored in CSR format of (L+D).

Three algorithms were implemented in this work. The first
one is a trivial solution of y = Ax in which each thread
executes y[tid]+ = A[i − 1] ∗ x[jA[i − 1] − 1], where tid is
the thread identify, and [i,jA] are obtained from vectors of the
stored matrix. The two other solutions explore the symmetry
characteristic. The aim is to cut down the time and memory
allocation cost. The figure 1 shows the procedure of algorithm
conception. The kernels are composed of blocks and each
block has certain threads. Only one kernel can execute in same
time on same device and there are a few blocks in execution
simultaneously in each SM. Sequentially the kernel 1(SCSR)
and kernel 2(SCSC) are executed and they take care of L+D
and U respectively. To avoid writing conflicts on y vector in
global memory, the kernel 2 calls atomic functions and that
allows just one thread write in a memory address at given
moment. As the number of elements of a column or a row can
be greater than the number of threads in a block, it is necessary
that the algorithm calculates the quantity of elements for each
thread.

IV. RESULTS

A double precision version of CG was created on a contem-
porary conventional CPU and this one was used as a reference
to calculate the speed-up. Two other versions were developed
on the GPU. The first one is a single precision version which
was tested on a NVIDIA Tesla C870 card. The second one is

Fig. 1. SpMV on Symmetric CSR and CSC storage format

a double precision version which was executed on a NVIDIA
GeForce GTX 280.

The matrix reading from files takes time to be done properly.
Approximately 6ms in our tests. Because this operation is
basic for all experiments, it is not necessary to evaluate it. It
is important to examine the Scalar Product, AXPY, and SpMV
execution time because these functions are called repetitively
in each loop interaction. Yet, all the time that the interactive
CG loop takes. The table I shows the operations and their
respective spent time values. The application not use the sym
SpMV, its times are there just for benchmarking.

TABLE I
SPEED-UP RESULTS

Operation CPU Time Single Prec. C870 Double Prec. GTX280
dotProd 0.290ms 0.529ms 0.450ms
AXPY 0.109ms 0.014ms 0.008ms
SpMV 5.966ms 0.013ms 0.005ms

SpMV(sym) - 0.040ms 0.035ms
CG/ # int 2392ms/328 400ms(5.8x)/324 370ms(6.4x)/323

V. CONCLUSION

This approach issues the viability of using GPU on sparse
matrix solvers. The obtained results allow us to evaluate
two important impacts in finite-element method of Maxwell’s
equations using Conjugate Gradient algorithm. The first one
is concerned to speed gain. On the GPU, the CG arrives faster
than on the CPU due its parallel architecture. The second
one is the impact of storing symmetric matrix in memory.
Although it can store in memory almost half of the matrix,
the performance of algorithm decreases as shown in table of
speed-up results. This is due the repetitive way that the kernel
computes and accumulates the y = Ax result. However, both
cases contribute significantly to accelerate the computation of
basis functions.
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6. OPTIMIZATION

Design of Conventional C-core Magnets Using
a Multi-Step Optimization Procedure
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We consider, in this work, the design of conventional C-core magnets for particle accelerators, focusing primarily on the shape
design of the iron core. We propose an integrated technique that uses topology and parameter optimization, which are connected
by a model generation module. Specific characteristics of this kind of device are also considered in the definition of the final shape,
particularly in the final parameterization of the pole shape.

Index Terms— C-core magnet, multi-step optimization, electromagnetic design.

I. INTRODUCTION

Conventional C-core dipole magnets are important compo-
nents in the design of some particle accelerators, where this
kind of device is employed for changing the trajectories of
charged particle beams [1]. Such devices usually consist of
one or more excitation coils, or in some cases, permanent
magnets, placed around a C-shaped core, hence the name, of
ferromagnetic material, shaped in a way such as to provide
a highly homogenous magnetic field within a certain region
where the charged particles are to pass. Particles moving at
high speeds through this region are subject to the magnetic
component of the Lorentz force,

F = q (v × B) (1)

where F is the force vector, q and v are respectively the
charge and speed vector of the particle, and B is the magnetic
flux density vector. The trajectories of the particles are bent
perpendicularly to their speed and the direction of the field,
and a ring arrangement of several magnets is capable of
maintaining the particle beam in a stable circular trajectory.

Despite the lower field intensities of conventional electro-
magnets, when compared to the more impressive supercon-
ducting ones, conventional, copper-coil C-core magnets still
provide an interesting alternative to the superconducting solu-
tion. First, the costs involved in building, maintaining, operat-
ing, and replacing conventional magnets are sensibly smaller
than those of a superconducting one; also, in cases where
multi-Tesla magnetic fields are not required, conventional C-
core magnets are capable of providing the intensities and
performance needed. One such example is the Large Electron-
Positron (LEP) collider from CERN, predecessor to the current
Large Hadron collider (LHC) [1], with its 3, 280 dipole mag-
nets. Better designs for C-core dipoles can, therefore, lead to
cheaper or more efficient particle accelerators, two interesting
goals for organizations developing such experiments.

Manuscript received April 6th, 2009.
Corresponding Author: F. Campelo (pinto@em-si.eng.hokudai.ac.jp)
This work was supported by the Ministry of Education, Culture, Sports,
Science and Technology of Japan.

II. DESIGN REQUIREMENTS

It is regarded that one of the most important requirement
of a C-core dipole in an accelerator is field homogeneity
within the target region (see figure 1), which must be within
a few parts per million in order to keep the particles in stable
trajectories. Matematically, the design problem can be stated
as:

minimize: f =
max (|Bm − Bref |)

10−6
+ Vcore

subject to: max |Bm − Bref | ≤ 10−5
(2)

where Bm and Bref = [0.0, 0.13]
T are respectively the

observed and ideal magnetic flux densities within the target
region (in Tesla); and Vcore is the observed volume (in m3) of
the variable portion of the core, figure 1. While the reduction
of the volume is not an essential requirement in this particular
problem, a volume term is included in the objective function
as a regularization term.

In this particular design case, the core is manufactured
as series of laminated low-carbon steel plates embedded in
cement mortar, following the LEP design [2]. The excitation
of the magnet is provided by two solid copper bars carrying
a total current of 4480A. A detailed description of the device,
along with the specifications of all materials used, will be
provided in the full paper.

III. DESIGN PROCEDURES

In order to obtain an optimal shape for the magnet core
a multi-step optimization procedure [3] is performed. These
design steps are briefly presented in this section, and will be
discussed in depth in the full paper.

A. Topology optimization

The design process starts with the topology optimization
(TO) step to find a rough estimate of the size and shape of
material required for the fulfillment of the design requirements.
An evolutionary TO algorithm [3] is, then, applied on the
design model shown in figure 1, in order to obtain a good
initial distribution of steel within the L-shaped design region.
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6. OPTIMIZATION

Fig. 1. Design layout (upper half) for the C-core dipole magnet, showing the
fixed and variable portions of the core, the coils, and the design region (30mm
half circle under the magnet pole). This device presents linear symmetry, with
a depth of 3000mm. All units are in millimeters.

Fig. 2. Rough shape obtained after topology optimization

B. Shape refinement

The result obtained by the topology optimization algorithm
is used to generate a parametric model of the device, in order
to allow for further refinement of the shape. The parameter-
ization of the TO result is done by means of an automated
feature-recognition routine, based on simple edge- and corner-
detection techniques [3]. This parameterization routine is able
to represent the shape obtained by the TO process by means
of a series of connected lines and Bézier splines.

Fig. 3. Core shape after parameterization and parametric shape optimization.

The parametric model is, then, optimized by means of a
regular evolutionary algorithm, yielding the shape shown in
figure 3.

C. Pole Design

It has been shown that optimal pole shapes for C-core
dipoles present shims in order to compensate for the effects
of finite pole lenght. Following the recommendations given
by Russenchuck [1], the dimensions of the pole shims were

obtained by means of numerical algorithm, in this case an
evolutionary method. The final pole shape obtained is shown
in figure 4.

Fig. 4. Detailed view of the pole after shim optimization.

Table I describes the characteristics obtained at the end of
each step in the design process for the device of interest.

TABLE I

RESULTS OBTAINED AFTER EACH STEP OF THE DESIGN PROCESS

max |Bm − Bref | Vcore

[T ]
�
m3

�

Topology Optimization 2.11 × 10−5 0.2532
Shape refinement 1.68 × 10−5 0.2762
Pole design 1.25 × 10−5 0.2764

The results in Table I show that the use of a multi-step
design methodology was able to yield progressively better
characteristics for this particular device, considering the mag-
netic field characteristics that are the main focus of the current
design procedure. While the final result obtained after the
optimization of the pole shims is still slightly over the 10µT
threshold, this small constraint violation should be within the
tolerance limits for the intended application. The full paper
will discuss the results in greater depth.

IV. CONCLUSIONS

In this paper the design of a conventional C-core dipole
magnet was considered. A multi-step optimization procedure
was employed, including the initial topological design; the
parameterization of the topology obtained; the refinement
of the parametric model: and the determination of the pole
shims. The characteristics obtained at each of the design
steps illustrate the potential of this multi-step methodology
to generate progressively better designs for the dipole under
consideration. A discussion on the manufacturability of the
shapes obtained and on the optimization techniques employed
are included in the full paper.
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Abstract —This work presents a self-consistent optimization 

approach of multi-quantum well structures. A Genetic Algorithm 

meta-heuristic is used for the search mechanism. The computer 

code, based on the solution of both the Poisson and the 

Schrödinger equations self-consistently by using the Finite-

Element Method, obtains the characteristics of each individual. 

The results of two tests are presented and discussed.  

I. INTRODUCTION 

Commercial CAD tools for simulating semiconductor 

devices usually do not deal with the quantizing effects of 

nanometric heterostructures. When they deal with 

heterostructures, they do it in a quite limited way. A number 

of commercially available or developing devices, such as  

quantum-well infrared photodetector [1], QWIP, quantum dot 

infrared photodetector [2], QDIP, and quantum cascade laser 

[3], QCL, depend on a detailed design of its band structure, in 

what has become known as band engineering [4]. Many 

structures of academic interest have also been intensively 

studied, in the past decades, improving the understanding of 

fundamental physics involved in such devices [5]-[9]. Since 

many of the used heterostructures have free charges from 

doping, a more precise calculation of the quantum levels 

should include the effect of charge distribution, solving the 

Poisson and Schrödinger equations self-consistently. 

More recently, computational optimization techniques 

have been used to the design of nanostructured semiconductor 

devices. A brute force technique was employed  to optimize an 

InGaAsN/GaAs multi-quantum well structure, MQW, in order 

to obtain a QCL of high operation frequency [3]. The 

simulated annealing meta-heuristic was used to maximize the 

optical rectification  of an AlGaAs/GaAs MQW, varying the 

Al concentration of each barrier [10]. 

In this work, we present the optimization of MQW 

structures by using the Genetic Algorithm meta-heuristic, GA. 

II. OPTIMIZATION APPROACH 

The design optimization is an iterative process in which 

candidate solutions are successively generated by an 

optimization, or search, algorithm and evaluated by an 

analysis tool.  

In this work, the GA selects tentative solutions, i.e., 

design parameters of the quantum wells that are responsible 

for specific characteristics of the structure. Each design 

parameter is represented by a binary code and the number of 

bits of this code is associated to the search space of the 

parameter. The binary codes of each design parameter are 

appended one after another to form the individual, or 

chromosome. The individuals of the initial population are 

generated randomly. The core of the optimization tool used in 

this work has been used in the optimization of electrooptic 

modulators and of electrooptic sensors [11]. 

When analyzing periodic semiconductor MQW, the 

calculation of energy levels without taking into account charge 

redistribution usually gives reasonably results [8],[9], since the 

changes in the relative energy position of the subbands are not 

dramatic. Otherwise, if the periodicity is broken with a well of 

different width, charge separation increases and a self-

consistent calculation becomes essential even for a qualitative 

understanding of electrical dynamics in the structure [12]. In 

this work, the analysis tool is based on the Finite Element 

Method, FEM, and solves the Poisson and Schrödinger 

equations self-consistently. The complete formulation is 

presented in [13] and the computational tool we developed 

was already presented in [14]. This tool is already in use for 

research purposes [12], [15].  

III. RESULTS 

In this section, results from two cases are presented. The 

genetic operators used in the test cases are: elitism of one 

individual, the roulette wheel technique for the reproduction 

operator with one crossover point chosen randomly, the 

occurrence probability for the crossover is set to 0.8 and for 

the mutation is set to 0.05. 

The first case is a very simple problem: a symmetric 

heterostructure of GaAs/AlxGa1-xAs, composed by two wells 

surrounding a third, larger one. A doped barrier is allowed 

between the external wells and the substrate. Fig.  1 illustrates 

the structure. In a periodic MQW, the current at low bias is 

believed to occur via tunneling between the first subband of 

adjacent wells [9],[8]. A larger well introduced in the structure 

should generate a charge accumulation and consequently a 

potential increase. The final subband alignment between the 

larger well and neighbor wells is important for understanding 

the charge transport in the structure. 

The exercise is to choose design parameters to obtain a 

symmetric structure in which the energy of the second 

subband of the central well, E2c, is equal to the energy of the 

first subbands of the right and left lateral wells, E1r and E1l. 

The objective function is given by: 

   −  −   E − E                     (1) 

where α is a constant. Therefore, we try to minimize the 

difference among the energy of these subbands. As additional 

constraints, we impose that the structure has to be symmetric 

in terms of the thickness of the layers with respect to the 

central one. Also, all barriers must have the same 

concentration of aluminum. The doping concentration can be 
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different in each well and barrier. Additional penalty is 

imposed if there is less than 2 subbands in the central well. 

The range of variation of each design parameter is: 

0.2  x (aluminum concentration)  0.5, 

1 nm  thickness of the lateral well  10 nm, 

10 nm  thickness of the central well  50 nm, 

5 nm  thickness of the inner barriers  10 nm, 

1 nm  thickness of the doped external barriers  5 nm, 

10
15

 cm
-3  doping concentration   9.0x10

16
 cm

-3 
or zero, and 

thickness of the non doped substrate layer = 50 nm. 

Fig.  1 shows the best individual obtained after 100 

generations of 26 individuals each. As expected, the best 

individual presents almost a symmetric doping concentration. 

 

 
Fig. 1. The best solution is almost symmetric in terms of the doping 

concentration.  

 

The second case is also a symmetric structure, a MQW 

composed by ten identical internal wells, surrounded by larger 

wells. The larger well aims to simulate the effect of the 

electric contact on MQW structures, which is an acceptable 

approximation if the number of subbands confined is high 

enough. In this case, the objective is to obtain a structure in 

which the energy of the first subband of each internal well, Ei , 

is as close as possible to the Fermi energy, EF:  

     
                              (2) 

where n is the number of inner quantum wells. In this 

example, n = 10. The alignment is a necessary condition to 

obtain a device presenting a quasi-ohmic behavior when 

submitted to low (quasi-zero) voltages. 

In this case the aluminum concentration, the thickness of 

the non doped substrate layer, the thickness of the inner 

barriers, and the thickness of the inner wells are kept constant. 

The range of variation of the other design parameters is: 

21 nm  thickness of the lateral wells  50 nm, 

10
16  ρin   9.9 10

18
 cm

-3
 or zero, and ρin  ρla  9.9 10

18
 cm

-3
, 

where ρin and ρla are the doping concentration of the inner 

wells of the lateral wells, respectively. 

Fig.  2 shows one of the best solutions found that 

minimizes the objective function (2). The contact layers (the 

larger wells) are strongly doped with respect to the MQW 

inner structure.  

The main objective of the test was to verify the 

convergence of the GA for this problem. The test is very hard, 

because the self-consistent computation converges rapidly 

when doping concentrations are lower than 5.0 10
17

cm
-3

, but 

the time of convergence increases for higher doping 

concentrations and it is very high for concentrations about 

10
18

cm
-3

.  

 

 
Fig. 2. One of the best solutions obtained.  

IV. FINAL COMMENTS 

The module of optimization of nanostructured 

semiconductors based on quantum wells is operational and in 

the early stage of testing. The optimizations process was 

executed in a distributed computational environment with up 

to nine processing units. Nowadays, the main effort is to 

improve the convergence process of the self-consistent 

computation for structures with high doping concentrations, 

characteristic desired for the design of QWIPs. In the next 

steps, we intend to optimize structures minimizing or 

maximizing some features of interest for QWIPs. 
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Abstract—Algorithms and methods to solve inverse problems
in Electric Field Tomography (EFT) often use a quasi-static
model assumption. At higher measurement frequencies where
wave propagation effects appear these simplifications of the
model could lead to corrupted reconstruction results. In this
work we investigate the impact of un modeled physical effects
in electrical impedance tomography. We recapitulate physical
considerations about the emerge of wave propagation effects and
perform simulations to verify these results.

I. INTRODUCTION

The usability of electric fields for industrial and medi-
cal tomography applications is commonly known and for a
longer period a field of applied and theoretical research. By
measurements of electrical impedances these methods aim
at the reconstruction of the spatially distributed electrical
material parameters and present them as an image. Typically
the electric conductivity σ or the relative permittivity εr are
reconstructed. Also methods that evaluate the both quantities
together have been implemented [1], [2]. These methods aim
at the complex impedance σ + jωε0εr which is appropriate
if the ohmic current and the displacement current are in the
same order of magnitude. For the physical modeling of the
problems in most cases an elliptic differential equation for
the electric scalar potential is used. However, in the case of
high working frequencies also wave propagation effects could
appear. If these effects are not negligible in their amplitude
the relatively simple models fail and a lost in the quality of
the reconstruction results has to be expected. In this paper we
investigate the physical effects within the sensor and give a
statement about the choice of a model. For this we recapitulate
the theoretical background and compare our considerations
with previous results. We perform field simulations to compare
the electrical quantities of different models and monitor the
impact of un-modeled physical effects on reconstruction tasks.

II. SENSOR SETUP

Figure 1 depicts a possible hardware scheme for complex
electrical impedance tomography. 16 electrodes are mounted
equidistantly on the exterior of a plastic pipe. The sensor is
based on current measurements which means that the electrical
potential on the electrode is fixed. It is aim to reconstruct
material distributions with relative permittivities up to εr = 80
and conductivity values of about σ = 0,2 Sm−1 (saline water).
The measurement frequency of the sensor is 40 MHz. For this

Controller
LAN

PVC tube

Inclusion
Electrode

Shield

I/U

HF

I/Q I/UI/Q

I/UI/Q I/UI/Q

HF

Fig. 1. Schematic of the sensor system.

frequency σ is in the same order of magnitude as ωε0εr, which
is a precondition for complex impedance tomography [3].

III. PHYSICAL CONSIDERATIONS ABOUT WAVE
PROPAGATION

A decision rule for the consideration of wave propagation
is given by [3]

ωµσLc


1 +

ωε

σ


 1, (1)

where Lc is defined as a characteristic distance over which the
electric field E varies significantly. If equation (1) is satisfied
then a quasi-static formulation can be used. From transmission
line theory it is known that a criterion for the occurrence of
wave propagation effects is given by the ratio of object size
to wavelength λ. Typically at a ratio of one over ten of object
size to wavelength it is said, that wave propagation effects
can not be neglected. The wavelength λ of an electromagnetic
wave can be calculated by the complex propagation constant

p =

jωµ (σ + jωε) = α+ jβ, (2)

which ends up in

λ =
2π
β

=
2πc
ω

=
2
√

2π
ωµ

�√
σ2 + ω2ε2


+ ωε

. (3)

Table I lists the results of the left hand side of equation (1)
and (3) for different materia. The parameter Lc has been set
to Lc = 0,01 m. This value was found by the evaluation of
field simulations. The results in table I give a hint that already
for distilled water wave propagation effects should not be
neglected.
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TABLE I
WAVELENGTHS AND THE LEFT HAND SIDE OF EQUATION (1) FOR

DIFFERENT FILLINGS AT A FREQUENCY OF f = 40MHz (µr = 1).

Nr. Filling σ εr λ Equation (1)
Sm−1 1 m 1

1 Air 0.0 1 7.49 0.007
2 Distilled water 0.0 80 0.84 0.562
3 Saline water 0.2 80 0.75 1.194
4 Sea water 5 80 0.22 16.354

IV. FIELD SIMULATIONS

To give precise statements about the appearance of wave
propagation the sensor has been modeled with a finite element
software tool. For a saline water filled sensor (σ = 0,2 Sm−1,
εr = 80) a quasi-static and a full simulation of the Maxwell’s
equations have been performed for a shielded and a unshielded
sensor. Figure 2 depicts the ratio of the induced current density
to the potential driven current density in the interior of the
sensor. One can see that the induced current density is almost a
tenth of the potential driven current density. The impact sounds
not to be negligible. Bode diagrams figured a first significant
spread between the quasi-static and the full simulations at a
frequency of 30MHz.

 

 

 |Jμ/(Jσ + Jε)|
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Fig. 2. Ratio of the induced to the potential-driven current for a saline water
(σ = 0,2 Sm−1, εr = 80) filled sensor at f = 40MHz.

V. RECONSTRUCTION ALGORITHM

For the reconstruction a Gauss-Newton formulation is used.
The inverse problem is solved by

argmin
σ,εr

rcHrc + ασ||Lσ||22 + αεr ||Lεr||22, (4)

where rc denotes the complex-valued residual vector. The vec-
tors σ and εr contain the material values of the finite elements
which are in the interior of the pipe. The parameters ασ and
αεr are regularization parameters. A detailed description of
the algorithm and the used calibration method can be found
in [2].

VI. RECONSTRUCTION RESULTS

Figure 3 depicts the result of a reconstruction task for a
material distribution of two oil bubbles (σ = 0Sm−1, εr = 2)
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(b) εr

Fig. 3. Reconstruction of the measurement data obtained by a simulation of
the full Maxwell’s equations.

within saline water (σ = 0,3 Sm−1, εr = 80). The positions
of the two inclusions are marked by dashed circles. The
measurement data was obtained by a full simulation of the
Maxwell’s equations. By defining the error measure

x =


Γ
|xWave − xQstat|dΓ

Γ
|xQstat|dΓ × 100, (5)

the impact of wave propagation effects amounts σ = 8,89%
and εr = 7,87% compared to a reconstruction of measure-
ment data which was obtained by a quasi-static simulation.

VII. CONCLUSION

Although the obtained reconstruction result looks quite
accurate an appreciable difference appears. To demonstrate the
impact of unmodeled effects a synthetic setting of calibration
and measurement data has been used. In the normal case better
reconstruction results can be achieved as all measurements
imply the same characteristics. The results about the appear-
ance of wave propagation in section III are a hint that wave
propagation effects should not be neglected. Especially equa-
tion (1) suggests an evidence for wave propagation effects.
An explanation for the small impact in the reconstruction
results is the geometry of the sensor. Considerations about
wave propagation are typically for free space propagation.
Due to the large cover angle of the electrodes the sensor is
nearly completely screened. The results of the simulations of
the unshielded sensor confirm this. The shielding causes a
suppression of wave propagation effects. Conventional rules
of thumb for a prognosis of the model have therefore be
handled carefully. In combination with a suitable calibration
an expansion of the frequency range or the dimensions of
the sensor should be possible by a retention of a quasi-static
model.
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13. EDUCATION

Abstract — This paper presents the design optimization of new 
electromagnetic engine valve in a limited space of the entire by 
multidisciplinary simulation using MATLAB and MAXWELL. 
This aims to maximize the frequency of vibration in order to 
reduce the transition time of engine valve. The results show the 
enhanced performance of optimized actuator. 

I. INTRODUCTION

The variable valve timing is a key technology in 
combustion engine of automobile to improve fuel efficiency 
up to 15%, enhance torque output up to 10% and reduce CO2 
emission up to 15% because VVT makes possible the 
optimization of these outputs at different engine operating 
conditions [1][2]. Kim and Lieu introduced a new design of 
electromagnetic engine valve actuator using permanent 
magnet [3] to achieve VVT in combustion engine. It saves a 
large amount of electric power for operation compared with 
conventional solenoid-driven actuator  two main advantages. 
First, the residual induction of the permanent magnet can hold 
the valve at the closed position at the initial stage. In addition, 
no power is needed between valve events and current is only 
fed into system at each valve transition period.  

Fig. 1 shows the schematic diagram and operating principle 
of newly suggested actuator. This actuator is composed of two 
pieces of permanent magnet, electromagnetic coil (solenoid), a 
laminated steel core and armature, two springs and valve body. 
The armature and the valve are one continuous body.  
Accordingly, the engine valve closes and opens as the 
armature moves up and down a. The total travel distance of 
armature is 8 mm. The solid arrows show the magnetic flux 
generated by the permanent magnets and the dotted arrows 
show the flux generated by the electromagnetic coil. At start, 
the permanent magnets latch the armature at the upper 
position, i.e. the valve is closed because the magnetic force 
exceeds the spring force. To open the engine valve, the coil is 
energized. As the flux of permanent magnets is partially 
cancelled, the spring force exceeds the magnetic force and the 
armature is released and accelerated by the stored energy in 
the springs. Thus, the engine valve starts opening. After the 
armature passes neutral position of stroke, the electromagnetic 
coil is reversely energized. Then, the permanent magnets and 
the electromagnetic coil catch the armature at the lower end 
position. The motion from the lower end to the upper end is 
the inverse operation of the steps above.  

Magnetic Flux by PM

Magnetic Flux by Coil

a�atu�e

���ing

PM

�M

�al�e

(a)                                     (b)                                      (c) 

Fig.1.  Schematic diagram and operating principle of suggested actuator (a) at 
the upper end (b) at starting and (c) at the lower end  

The transition time is defined as the duration for the valve 
to move from closed position to opened position or from 
opened position to closed position and as the transition time is 
smaller, the engine valve actuator can accomplish higher 
maximum engine speed. The transition time of valve is 
shortened by the increment of the frequency of vibration 
because the actuator is mainly operated by mass-spring 
oscillation. The frequency of vibration is called by natural 
frequency ( )nω that is defined by mk / . Here, k is the 

equivalent spring stiffness and m is the moving mass.  
In this paper, actuator design is optimized to maximize the 

frequency of vibration, which results in the reduction of the 
transition time of stroke.  

II. DESIGN OPTIMIZATION

Fig. 2 shows design variables for optimization and the goal 
of this structure is to maximize the frequency of vibration 
expressed by (1). 

vsa

Latching
n mv

xF

m

k

+×

−
==

ρ
ω max/)100(                (1) 

where,
k : Spring stiffness 
m : Moving mass including armature and engine valve 

nω : Frequency of vibration (natural frequency) 
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LatchingF : Magnetic latching force  

maxx : Distance from neutral to lower end of stroke 

av : Volume of armature 

steelρ : Mass density of steel 

vm : Mass of engine valve 

N S

Wac

Lac

Wm Wco

Ha

Hm
Hac

Ht

Ht

Hc

Wc Wt

Wa

Hbi_1
Hbi_2

Fig. 2.  Design optimization variables for maximizing frequency of vibration 
at bottom end position of armature 

The optimization is achieved by multidisciplinary 
simulation of MAXWELL and MATLAB based on finite 
element analysis (FEA) that is widely used in design of 
electromagnetic devices and the generic algorithm (GA) that is 
a robust stochastic search methods based on natural selection 
and mutation which drives biological evolution [4]. First, a 
population of actuator is randomly generated. Each individual 
in the population is a series of binary string (chromosome) 
that representing one complete actuator. Then, each gene in 
the chromosome is decoded to actual parameters using a 
binary-decoding method The decoded parameters are passed 
to the Maxwell for evaluation. The goodness of each 
chromosome is determined by MAXWELL. In the simulation 
platform, MATLAB writes a VBScript to execute 
MAXWELL for electromagnetic simulation and reads the 
value of latching force to determine the frequency of vibration. 
Upon the completion of simulation for a given population, GA 
acts on the chromosomes to generate a new population 
through crossover and mutation operation. Several 
independent runs are performed varying population sizes, ratio 
of crossover and mutation to assure the convergence to the 
optimal design. Fig. 3 shows a good convergence to some 
optimal values. 

III. OPTIMIZATION RESULTS

Table Ⅰ shows the optimized dimension of actuator and 
Table Ⅱ shows the comparison of characteristics of existing 
design and optimal design. The magnetic latching force at end 
position of stroke falls from 1525 N to 1262 N that reduces 
the obtainable maximal stiffness of spring by 18.4 % from 358 
kN/m to 292 kN/m and at the same time, the moving mass 

including armature and engine valve falls by 52.1 % from 284 
gram to 136 gram. In results, the natural frequency is 
improved by 30 %. 

Fig. 3.  The best fitness values in each generation  

TABLE I
COMPARISON OF EXISTING DESIGN AND OPTIMAL DESIGN 

Characteristics Existing design Optimal design 
Magnetic latching force  1525 (N) 1262 (N) 
Available Spring stiffness  358 (kN/m) 292 (kN/m) 
Moving mass  0.284 (kg) 0.136 (kg) 
Natural frequency  1123 1465 

TABLE Ⅱ
ACTUATOR DIMENSIONS (ALL DIMNENS IN MILLIMETERS)

Symbol Quantity 
Exiting

dimensions 
New optimized 

dimensions 

Lac Thickness of actuator 38.1 38.1 
Wac Width of actuator 120.65 120.65
Hac Height of actuator 93.34 95 
Wco Width of coil 31.75 31.75 
Wm Width of magnet 44.45 44.45 
Hm Height of magnet 4.7625 4.7625 
Wa Width of armature 44.45 30.216 
Ha Height of armature 19.03 12 
Wt Width of teeth 34.29 27.325 
Ht Height of teeth 19.05 19 
Wc Width of core 19.05 28 
Hc Height of core 27.05 20 
Hbi_1 Height of back iron 1 19.05 28.75 
Hbi_2 Height of back iron 2 4.7625 3.5 
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Abstract — The main targets of a Multi-Objective Evolutionary 
Algorithm (MOEA) is to find a uniformly distributed and well-
spread non-dominated solution set (NDSS) close to the true 
Pareto optimal front (TPOF). This paper presents a new MOEA 
called Niched Pareto-Archived Evolutionary Programming 
(NPAEP). It is able to find a good NDSS with few  objective 
function evaluations. During the selection and reproduction 
processes it uses information about the uniformity distribution 
and extension of the NDSS. Comparisons were made with other 
well-known MOEAs on different test problems. 

I. INTRODUCTION

In industrial applications optimized design is often 
problematic because of the simultaneous occurrence of many 
conflicting targets. Real-world optimization problems, in fact, 
often exhibit multiple optima, hence it is suitable to give the 
decision maker a wide range of solutions to choose from. 
Some optimization methods solve a single multi-objective 
function obtained by a weighted sum of targets [1]-[2]. The 
main difficulty in using this approach is setting a good value 
for the weights so as to scale the objectives appropriately [1]. 
Other MOEAs search for a set of multiple equivalent solutions, 
called a non-dominated solution set [1]-[3]. Unfortunately, 
they can be extremely expensive. This is especially harmful in 
the optimization of electromagnetic devices, where each 
estimation of the objective function calls for a numerical 
solution by means of the Finite Element Method (FEM) [4].  

In this paper we present a new MOEA called Niched 
Pareto-Archived Evolutionary Programming that is able to 
obtain the same results as well-known MOEAs with fewer  
objective function evaluations. 

II. THE NPAEP ALGORITHM

The main target of a MOEA is to find an NDSS close to 
the TPOF, uniformly distributed and maximally extended. 
During the selection and reproduction processes, NPAEP uses  
information about the degree of satisfaction of these targets 
and it maintains an archive of the best solutions found so far. 

Fig. 1 shows the pseudo-code of the algorithm, where Q is 
the set of dominated individuals, P is the archive of the best 
solutions, npop is the population size, ngen is the number of 
generations and nQ is the number of individuals in Q at 
generation t.  

Fig. 2 shows the pseudo-code for the fitness assignment, 
where nP is the number of individuals in P at generation t, dfi,j

is the normalized [0,1] Euclidean distance between individuals 

Fig. 1. Pseudo-code of  NPAEP algorithm 

i and j in the search space, OP is the subset of P containing  
the best solutions of every objective function, rand is a random 
number ∈ [0,1] and it has a uniform probability density 
function, nDOM,i is the number of individuals that dominate i. 
The fitness is assigned to an i-individual of P as follows:  









>








⋅

=
= ∑

=

)min(
11

)min(1

1
, i

n

j
ji

ii

i

i ddfmifdf
dfmnn

ddfmif

F i       (1) 

where ni is the number of  j-individuals belonging to P for 
whom dfi,j is less than dfm and dfm is maxmin(df).  

The NPAEP algorithm uses a maximum mutation 
displacement computed as follows: 
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where ρk is the range of the k-th design parameter, Fmin and 
Fmax are the minimum and maximum values of F respectively. 
Hence, the mutation operator is obtained as: 

kparentkparentkparentkoffspring randxxmx ____ *)( σ+==   (3) 

where rand∈ [-1, 1] and  has a uniform probability density. 
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Programming for Multi-Objective 
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begin 
Create npop random solutions
Move the non-dominated individuals to P and the others to Q
Set the age of every individual belonging to Q to zero 
do t=1 to  ngen 

Increase the age of individuals belonging to Q 
Compute the fitness F of each individual  
Select one parent among them by means of a roulette wheel   
if  then  (parent belonging to Q) then 

Reset the age of  the parent to zero 
endif
Mutate xoffspring= m(xparent)   
if (offspring dominates some individuals of P) then 

Move them to Q and their ages are set to zero  
Move offspring to P 

elseif (offspring and P are non-dominated by each other) then 
  Move offspring to P 

else
  Move offspring to Q and set its age to zero 

endif 
 if (nQ>npop) Delete the eldest nQ-npop individuals of Q
enddo

end
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 Fig. 2. Pseudo-code of  the fitness assignment  

TABLE I 
CONVERGENCE METRIC Υ  

SCH FON 

mean variance mean variance
NSGA II 

real-coded 
0.003391 0 0.001931 0 

NSGA II 
binary-coded 

0.002833 0.000001 0.002571 0 

SPEA 0.003403 0 0.125692 0.000038 
PAES 0.001313 0.000003 0.151263 0.000905 

NPAEP 0.003266 0 0.002439 0 
NPAEP 2500 0.003559 0 0.006126 0 

III. MATHEMATICAL RESULTS 

In multi-objective optimization there are several 
performance metrics [5]. We adopt the metrics and objective 
functions described in [3] to compare NPAEP with the results 
given in the same paper. The convergence metric Υ measures 
the degree of convergence to a known TPOF. The diversity 
metric  measures  the extent of spread achieved among the 
NDSSs obtained. 

Tables I and  II show the mean value and variance of the 
convergence metric Υ and the diversity metric  respectively: 
a lower value means better performance.  Performance  was 
obtained with 25000 function evaluations averaged over 10 
runs, as in [3]. Moreover, in the last row we show the NPAEP 
performance with only 2500 function evaluations.  

Fig.3 shows the true Pareto optimal set for the SCH 
function [3] and the non-dominated solution set obtained by 
means of NPAEP using 25000 function evaluations. 

IV. CONCLUSION 

Many MOEAs exist in the literature but they can be 
extremely expensive. This is especially harmful in 
electromagnetic problems,  where each estimation of the 
objective  function  calls for a numerical  solution by means of

Fig. 3. Non-dominated solution set obtained 
 by means of  NPAEP on the SCH function 

TABLE II 
DIVERSITY METRIC 

SCH FON 

mean variance mean variance
NSGA II 

real-coded 
0.477899 0.003471 0.378065 0.000639 

NSGA II 
binary-coded 

0.449265 0.002062 0.395131 0.001314 

SPEA 1.021110 0.004372 0.792352 0.005546 
PAES 1.063288 0.002868 1.162528 0.008945 

NPAEP 0.201082 0.000007 0.208932 0.000047 
NPAEP 2500 0.464268 0.000051 0.211756 0.000166 

the Finite Element Method (FEM). Hence the proposed 
MOEA is more suitable for solving this class of problems 
because, using fewer objective function evaluations than well-
known MOEAs, it achieves similar or better performance. 

More results and electromagnetic examples will be 
presented  in the full paper.  
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begin 
do i=1 to nP  (xi∈P)

dmini = 1
do j=1 to nP  (xj∈P, i ≠ j)

  if (dmini > dfi,j) dmini = dfi,j

enddo 
enddo 
dfm = max(dmini)  (xi∈P)
do i=1 to nP  (i∈P)

  use (1) to compute Fi

 if (i∈OP) then 
  if (Fi==1) then 
   Fi= Fi + rand
  else 
   Fi= Fi + (1-Fi)* rand

endif
 endif 
enddo 
nT = nP + nQ

do i=1 to nQ  (xi∈Q)
Fi= min(Fj)*(nT – nDOM,i) / nT      (xj ∈P and xj dominates xi)

enddo 
end 
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Abstract — The aim of this paper is to propose a methodology 
to optimize the design of cylindrical electromagnetic devices 
regarding to the vibration phenomena. This approach combines 
the Artificial Intelligent (AI) and Finite Element (FE) analysis to 
solve the electromechanical inverse problem for identifying the 
material proprieties (Young modulo and mass density) in 
different regions of the studied system. Thus, a multilayer 
perceptron neural network (MLP) is used as forward model and 
Genetic Algorithm (GA) is used to solve the Optimization 
Problem (OP) in the Inverse Problem (IP).  

I. INTRODUCTION

IPs in electromagnetic are usually formulated and solved 
as OPs, so iterative methods are commonly used approaches 
to solve this kind of problems [1]. The numerical models such 
as FE model are used to represent the forward process. 
However, iterative methods using the numerical based 
forward models are computationally expensive. Neural 
networks (NNs) are utilized for solving the forward process in 
the iterative methods [2]. Parameters identification using NNs 
can be recast as a problem in multidimensional interpolation, 
which consists of finding the unknown nonlinear relationship 
between inputs and outputs in a space spanned by the 
activation functions associated with the NN nodes. The input 
space corresponds to the material characteristics (Young 
modulo and mass density) and the output corresponds to the 
dynamic response of the electromagnetic device [3]. This 
paper proposes a GA based inverse algorithm for parameters 
identification of electromagnetic devices, witch induce a 
minimum level of vibration (noise). In the proposed 
algorithm, a MLPNN is used as forward model, and GA is 
used to solve the OP in the IP. 

II. NEURAL NETWORK ARCHITECTURE

An ANN is an information processing system that has 
certain performance characteristics in common with biological 
neural networks and therefore, each network is a collection of 
neurons that are arranged in specific formations. The basic 
elements of neural network comprise neurons and their 
connection strengths (weights). One of the attractive features 
of ANNs is their capability to adapt themselves to special 
environmental conditions by changing their connection 

strengths or structure. One of the most influential 
developments in ANN was the invention of the back-
propagation algorithm, which is a systematic method for 
training multilayer ANNs [4]. The standard back-propagation 
learning algorithm for feed-forward networks aims to 
minimize the mean squared error defined over a set of training 
data. In feed-forward ANNs neurons are arranged in a feed-
forward manner, so each neuron may receive an input from 
the external environment or from the neurons in the former 
layer, but no feedback is formed. The network always has an 
input layer, an output layer and at least one hidden layer. In 
our case, there is only one hidden layer. A neuron's activity is 
modeled as a function of the sum of its weighted inputs, where 
the function is called the activation function, which is 
typically nonlinear, thus giving the network nonlinear decision 
capability. Each layer is fully connected to the succeeding 
layer. The arrows indicate flow of information (Fig.1) [5]. 

Output layer Input layer Hidden layer 

.
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1x

l k m
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nx
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nz
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Fig. 1 Feed forward neural network 

where ln is the number of neurons in the input layer, Hn is

the number of neurons in the hidden layer, On is the number 

of neurons in the output layer, lx are the inputs to the input 

layer where lnl ,...,1= , ky  is the value of the hidden layer 

where Hnk ,...,1= , mz  is the value of the output layer where 

Onm ,...,1= . ]1[
lkw  is the weight connecting the thl  neuron in 

the input layer to thk neuron in the hidden layer, and ]2[
kmw is

the weight connecting the thk  neuron in the hidden layer to 

the thm neuron in the output layer. The nodes of the hidden 

and output layer are: 
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where the activation function f  is traditionally the Sigmoid 

function defined as 
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The back-propagation method is based on finding the 
outputs at the last (output) layer of the network and 
calculating the errors or differences between the desired 
outputs and the current outputs. When the outputs are 
different from the desired outputs, corrections are made in the 
weights. 

III. GENETIC ALGORITHM

GAs are probabilistic parallel search algorithms based on 
natural selection. GAs are capable of finding a global 
optimum among multiple local optima. A GA usually begins 
with a randomly generated set of potential solutions, called the 
initial population [6]. A fitness function is used as a measure 
of the closeness of each member in the population to the 
global optimum solution. Then, members from the population 
are selected to produce new members, called descendents or 
children, by applying stochastic operators to the selected 
members. The most common genetic operators are crossover 
and mutation. A crossover operator combines the features 
presented in parents to produce descendents. A mutation 
operator slightly perturbs a selected member in a random 
manner. Crossover operations ensure that the new population 
inherits highly fit features while mutation operations may add 
previously unexploited features into the population. 

IV. STUDIED ELECTROMAGNETIC DEVICES 

Two electromagnetic cylindrical devices are studied in this 
paper. So, the first one consists on the determination of the 
optimal mechanical parameters of the ferromagnetic cylinder 
shown in fig. 2, regarding to the vibratory behavior. The 
second one is an application of the developed model on an 
electrical machine. The data are generated by means of a 2D 
FE model, implemented under Matlab software. Fig 3 and 4 
show respectively the evolutions of the objective function and
the mass density with respect to the identification iterations.  

Fig.2 geometry of the studied cylinder  
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Fig.3 Evolution of the objective function 

Fig.4 Evolution of the mass density with iterations 

The obtained results for the studied electrical machine and 
their validation will be presented in the full paper.

V. CONCLUSION 

Material approach is advantageous because it offers the 
possibility to optimize mostly a given geometry. In fact, in the case 
of electrical machines, the geometry is usually determined after an 
optimization process. The combination finite element-neural network 
has permitted to reduce the computing time needed to resolve the 
electromechanical problem. The obtained results are satisfactory and 
open interesting prospects for the vibratory optimisation in electrical 
machines. In the full paper, more details will be given on the finite 
element model, the optimization method and the obtained results. 
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11. ELECTRIC MACHINES AND DRIVES

Abstract — This paper deals with identification of thermal 
parameters for transformer's FEM model. The identification 
technique is based on stochastic optimization algorithm called 
differential evolution (DE). As the accuracy of the model depends 
on its parameters, the goal of DE is to identify adequate thermal 
parameters, in order to achieve best possible agreement between 
measured and model-calculated values of temperature. The 
inclusion of identified/optimal thermal parameters into the model, 
results in good model's accuracy. 

I. INTRODUCTION

Operational reliability of electric power system strongly 
depends on transformers, therefore to predict and to determine 
thermal phenomena in its compounding parts is an important 
step in machine designing process. Distribution of thermal 
field in transformer can be determined by using FEM model 
[1], [2]. Building of a model requires data of device geometry, 
sources and boundary conditions. Data of material properties 
are also required. These are usually obtained from different 
sources and thus contain some amount of uncertainties. 
However, this data affects model's accuracy. To achieve model 
behavior as close to real object, the mentioned data needs to be 
precisely identified. The novelty of this paper is DE-based 
technique for identification of model thermal parameters. The 
goal of DE [3], [4] is to minimize the difference between 
measured and model-calculated temperature.  

II. MODEL OF A POWER TRANSFORMER

Fundamental criterion, which limits the transformers 
degree of loading and its lifetime, is temperature. 
Consequentially, the correct determination of temperature 
distribution in machine design process is important and it can 
be obtained by using an accurate FEM model. Many physical 
phenomena are described by similar partial differential 
equations (PDE). Two examples are equations for magnetic  

( ) ( ) ( )v T T V
t

σ σ∂∇ ⋅ ∇ − = −
∂
A

A  (1) 

and thermal field 

( ) 0l

T
k T c q

t
ρ ∂∇ ⋅ ∇ − + =

∂
 (2) 

where v is the magnetic reluctivity tensor, A the magnetic 
vector potential,  the electric conductivity, V the source 
voltage, T the temperature,  the mass density, c the specific 
heat, k the thermal conductivity and ql the total losses.  

FEM is widely used for solving PDE. In this paper the FEM 
based programme tool FLUX2D [5] is used for this purpose. 
For modeling of the thermal processes in transformer, the FEM 
model that describes coupled electromagnetic and thermal 
field is used [1], [2]. Coupled electromagnetic-thermal field 
basically presents two FEM problems (electromagnetic and 
thermal) and two functions of coupling (losses and temperature 
dependency of materials).  

III. IDENTIFICATION OF THERMAL PARAMETERS BY DE

Modeling process in FLUX2D requires precise data of
device geometry, boundary conditions and heat sources, which 
are quite easy to obtain. On the other hand, required data of 
material thermal properties and coefficients of convection and 
radiation are not. As some of these thermal parameters are 
hard or even impossible to measure, they are usually accessible 
through catalogues and literature [6]. Consequentially, their 
accuracy is questionable.  

Fig. 1.  Schematic presentation of parameters identification process 

However, all device data entered in FLUX2D command 
window is stored in file f3d_log.spi (Fig. 1) in command log 
form. On the basis of this file, the preprocessor preflu.exe
creates proj_name.tra file, which contains all information 
regarding the model. Calculation parameters such as time step 
and calculation time are defined in file proj_name.dif and used 
by solver resgen.exe. After the calculation completes, the 
postprocessor expgen.exe is employed to display results for 
various quantities. Desired quantities (in our case temperature) 
are defined in expgen.esp and their calculated values are 
printed out in file proj_name.lst. The important step, after the 
model simulation completes, is evaluation of the difference 
between measured and model-calculated values. 

Search for optimal thermal parameters is realized by 
iterative procedure of updating the FEM model with new 
thermal parameters, calculating the temperature and evaluating 
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11. ELECTRIC MACHINES AND DRIVES

the difference regarding the measured values. New thermal 
parameters for each update of the *.tra file are generated by 
DE, which iteratively searches for better solution. Generating 
the parameters, updating the *.tra file and the automation of 
the FLUX's calculation process is realized in program tool 
MATLAB.  

Optimal thermal parameters presented in Table I were 
identified by DE. The goal of the optimization was best 
possible agreement between measured and calculated 
temperature. The heating of transformer from cold start-up 
during 12000 s of operation at nominal load was measured at 
two locations; one is a specific point of transformer core 
(point P1) and a second one specific point of winding 
(point P2). Definition of the objective function q for DE 
originates from the difference between calculated and 
measured temperature. Temperature's disagreement can be 
evaluated by calculating the mean square difference in the 
given time interval [ ]1 2,t t t∈

( )2

1
P1 P1

2 1

1 t

t
q e d

t t
τ τ=

−   (3) 

where the difference between measured TP1m and model-
calculated temperature TP1 in point P1 is defined by 

( ) ( ) ( )P1 P1m P1 .e t T t T t= −  The objective function P2q is defined 

analogically to (3) and it measures the difference between 
measured and calculated temperature in point P2. Both 
objective functions are minimized during the optimization 
procedure and thermal parameters are identified by DE when 
the objective functions' values become minimal. In order to 
minimize both objective functions simultaneously, the unified 
objective function q is introduced by P1 P20.5 0.5 .q q q= +

IV. RESULTS 

Coupled electromagnetic-thermal field transient calculation 
results (obtained by using FEM model with indentified/optimal 
parameters) shows good agreement with measured values of 
temperature, especially in point P1 (Fig. 2). On the other hand, 
the model containing initial parameters showed obvious 
disagreement in both points. Such disagreements between 
measured and model-calculated values have been appearing in 
early iterations of DE, indicated as higher values of the 
objective function q as it can be seen in Fig. 3. 

Fig. 2.  Measured and model-calculated temperatures

The DE algorithm seeks for better solutions throughout the 
entire optimization by keeping the current best solution until it 
finds a better one. This can be seen from convergence course 

of the optimization process (Fig. 3). Finally, after 
approximately 80 iterations, DE has found an optimal solution 
(indentified/optimal thermal parameters) where the 
disagreement q between calculated and measured temperature 
has become minimal.  

Fig. 3.  Convergence course of differential evolution 

TABLE I 
OPTIMIZATION SET VALUES 

V. CONCLUSION 

The aim of this work was to identify thermal parameters of 
the transformer FEM model in order to be able to accurately 
describe the heating of the transformer and predict the 
temperature distribution. For this purpose, the optimization 
method based on DE was employed. The goal of the 
optimization was best possible agreement between measured 
and model-calculated temperature values. The results show 
that a very good agreement is achieved thus proving that the 
proposed DE-based technique can be used as a tool for thermal 
parameters identification. 
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OPTIMIZATION

Abstract — This paper presents the multi-objective 
optimization of an axial flux wind generator of 10kW using 
NdFeB permanent magnets. The four objectives considered in 
this work were weight, efficiency, active material cost and 
volume. The optimization problem was modeled considering 
seven continuous variables and three discrete ones. The 
optimization problem was solved using a multi-objective 
evolutionary algorithm with on-line and off-line populations, with 
elitism. In each generation, the non-dominated solutions are 
saved in the off-line population. This generator was designed to 
match with a three-blade horizontal axis wind turbine 
characteristics that was planned to operate in the complex 
terrain wind regime for the countryside of Brazilian land.  After 
founding the non-dominated solutions, the choice of the 
appropriated one by a decision maker can be made using a 
decision procedure. 

I. INTRODUCTION

The development of renewable energy resources has taken 
an accelerated pace with the ever increasing concerns on 
global warming and environmental protection.  In the last ten 
years, the wind power became a reality in terms of its 
commercial competitiveness, technological maturity and 
aggressive expanding in power installations all over the world. 
For wind power systems, the core element is the electrical 
generator and in this issue several developments has been 
completed.  As in a conventional electric machine design, the 
efficiency, the weight, the volume and the cost of the electric 
generator particularly for wind power generation are the major 
important design figures of merit. 

Some works deal with the complicated task of comparison 
among different topologies of permanent magnet machines, 
mainly for wind power application. In these studies, the 
double external rotor and central stator axial flux permanent 
magnet machines have been appeared as a competitive 
solution.  

The availability of modern high energy density magnet 
materials, such as sintered NdFeB, has made possible to 
design special topologies such as toothless stators with air gap 
windings. They aggregate several unique features such as high 
efficiency, high power and torque densities, low rotor losses 
and small magnetic thickness. 

The technology of small-sized wind power generators, 
mainly for isolated applications and grid connected rural 
systems, represents an adequate challenge, balancing a few 
number of commercial equipment in the Brazilian market for 
the expected large latent demand.  

Based on the conventional sizing equation and design 
procedures from former works [1]-[2], this paper presents the 
multi-objective optimization of a 10kW axial flux Torus 
generator using NdFeB permanent magnets, considering the 
variables and bounds shown in Table I. The variables used 
were the current density on the stator conductor (Ja), linear 
current density (Am), peak value of the magnetic flux density 
on the air gap (Bmg), peak value of the magnetic flux density 
on the stator core (Bcs), peak value of the magnetic flux 
density on the rotor core (Bcr), magnetic remanence of the 
permanent magnet (Br), inner and outer diameters ratio (Kd), 
the nominal stator voltage (V), poles number (P) and the 
number of parallel coils per phase (Ap). 

TABLE I  

BOUNDS OF THE OPTIMIZATION VARIABLES 
Variables Ja Am Bmg Bcs Bcr Br Kd V P Ap 

Units MA/m2 KA/m T Wb Wb Wb -- V -- -- 
Lower 3 42 0.3 1.7 1.4 1.1 0.4 100 14 1 
Upper 9 98 0.9 1.9 1.6 1.4 0.7 280 20 20 

First, different alternatives of generator design were 
analyzed, since its rotational speed and power accordance with 
the wind rotor that defines its gearless nature, up to the 
electrical compatibility with the power electronics converter 
that rectify its energy and supply the low short-circuit power 
rural electric power grid.  

The chosen design configuration for this axial flux PM 
generator was as follows:  

1) axial-gap type with two external rotors and an internal 
stator; 

2) NdFeB permanent magnets with maximum  thickness 
equal to 6mm; 

3) The outer diameter of the nacelle must not exceed 
10% of the diameter of the turbine; 

4) Maximum stator nominal voltage limited to 400V DC 
bus of the converter. 

Fig. 1 shows the design configuration used. 

Fig. 1 Double external rotor and central stator axial flux generator. 
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OPTIMIZATION

Considering four objective functions (weight, efficiency, 
active material cost and volume), this problem was optimized 
using a multi-objective evolutionary algorithm [3]. In this 
optimization, 1001 efficient solutions were generated. The 
Figs. 2 - 4 show the non-dominated solutions plotted in the 
objectives spaces. 

Fig. 2 Efficient solutions in the space of total weight x efficiency x active 
material cost (left) and total volume x efficiency x active material cost (right). 

Fig. 3 Efficient solutions in the space of total efficiency x total weight (left) 
and total weight x active material cost (right). 

Fig. 4 Efficient solutions in the space of efficiency x active material cost (left) 
and efficiency x total volume (right). 

TABLE II 

DECISION MAKING BASED ON EACH OBJECTIVE AS PRIORITY 

Weights 
Ja Am Bmg Bcs Bcr Br Kd V P Ap

MA/m2 KA/m T Wb Wb Wb -- V -- -- 
1,0,0,0 9,00 92.37 0.366 1.867 1.597 1.399 0.700 151 20 20 
0,1,0,0 3,00 48.66 0.863 1.700 1.454 1.249 0.679 272 20 20 
0,0,1,0 8.99 97.95 0.304 1.744 1.592 1.394 0.700 251 20 20 
0,0,0,1 8.97 73.41 0.347 1.854 1.598 1.330 0.548 272 20 20 

TABLE III 

OBJECTIVE VALUE FOR THE DECISION MAKING OF TABLE II 

Weights 
Total Weight Efficiency Cost Volume 

Kg % US$ dm3

1,0,0,0 72.51 77.48 775.87 26.90 
0,1,0,0 250.97 91.28 4000.09 89.70 
0,0,1,0 73.21 76.30 765.82 27.30 
0,0,0,1 89.51 79.18 973.02 25.00 

TABLE IV 

DECISION MAKING BASED ON COMBINATION OF OBJECTIVES  

Weights 
Ja Am Bmg Bcs Bcr Br Kd V P Ap

MA/m2 KA/m T Wb Wb Wb -- V -- -- 
0.25,0.25,0.25,0.25 8.81 54.87 0.6981.7061.5961.3990.699 272 20 20
0.33,0.34,0.33,0.00 8.81 54.87 0.6981.7061.5961.3990.699 272 20 20
0.00,0.33,0.34,0.33 6.79 50.88 0.5971.7031.5821.4000.674 154 20 20
0.00,0.50,0.50,0.00 6.01 51.56 0.5191.7031.5721.3780.697 110 20 20
0.50,0.50,0.00,0.00 8.89 5.703 0.8071.8671.5981.3940.700 274 20 20

TABLE  V 

OBJECTIVE VALUE FOR THE DECISION MAKING OF TABLE III 

Weights 
Total Weight Efficiency Cost Volume 

Kg  % US$ dm3

0.25,0.25,0.25,0.25 101.13 88.11 1270.09 32.00 
0.33,0.34,0.33,0.00 101.13 88.11 1270.09 32.00 
0.00,0.33,0.34,0.33 114.13 88.31 1354.30 35.20 
0.00,0.50,0.50,0.00 116.51 88.51 1318.60 38.20 
0.50,0.50,0.00,0.00 100.21 88.31 1466.70 32.30 

To choose the better solution according to the decision 
maker preferences, a fuzzy algorithm [4] was used. The 
objectives were weighted in different ways to permit a better 
comprehension of this problem. Tables II - V show these 
results. 

These results show that 20 poles, 272V, with 20 parallel 
ways per phase is an interesting solution that aggregated good 
efficiency, light weight, small volume and an acceptable price. 
This solution shows that the efficiency is about 88.11 %, the 
weight is only 101.13 Kg and the active material cost is 
US$1.270.09 and the volume is lower as 32 dm3. This solution 
seems to be a good solution if compared with the results 
published in the literature [5]. 
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As is shown clearly in Fig. 1, there are just two pairs of 
design parameters, say, (ZA, θA) and (ZB, θB). If we adjust the 
phase difference between the two paths, transmission zeros 
can be created which determine the band edges and steepness 
of the skirt. Here comes a set of formulae that describe the 
scattering parameters and admittance matrix elements.  

Abstract — A new transversal UWB bandpass filter with a 
reduced size is realized based upon the use of the Genetic 
Algorithm(GA) optimization. The proposed design is carried out 
to have the required performance(Insertion loss, return loss, flat 
group-delay) over the very wide frequency range. Also we can 
effectively reduce the entire structure by assigning diverse 
transmission line segments to each of the two transversal signal 
paths(increased degree of freedom in design). The design results 
will be presented theoretically and experimentally. 0 11 0 22 12 21
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I. INTRODUCTION

The UWB bandpass filters should have the low insertion 
and return loss over the ultra-wide band 3.1 GHz - 10.6 GHz 
and higher selectivity[1]. Particularly, the steep skirt around 
the band edges is needed, avoiding the increased size of the 
filter. For this, multi-mode coupling design is adopted in size-
constraints[2-5], but is followed by cumbersome extra tuning. 

 The transversal geometry is brought up to have sharper 
rejection(steeper skirts) with the size limit[6]. However, the 
previous works of this structure fail in suggesting the size-
reduction technique and forming the ultra-wide band. So we 
need the minimized structure of the transversal filter and 
enlarged bandwidth just right for the UWB applications.   

 We now assign diversified impedance steps in the 
transversal signal paths, which increases the design degree of 
freedom for a smaller but higher order filter. Many design 
unknowns are effectively found by the GA optimization work 
when the ranges of variables are reasonably given. The design 
is verified by the comparison with the trustworthy simulation 
and measurement on the fabricated filter. 

where the characteristic admittance of the port(reference) 
admittance Y Z0 01/= .

The design is to find (ZA, θA) for path A and (ZB, θB) for 
path B that make the outputs of the two shunt paths out of 
phase, namely, 180os’ phase difference at the frequency points 
as the transmission zeros. Due to the lower design degree of 
freedom(4 design parameters), the path B can’t be shorter than 
270o, when path A is as long as 90o. So, in order to reduce the 
size, what comes next is how we will have a sufficient number 
of the design parameters to improve the frequency response 
and miniaturization. 

II. STANDARD TRANSVERSAL FILTER 

The sketch of the basic transversal filter geometry is given 
in Fig. 1. Elaborating on the geometry of interest, it is 
composed of the transmission line paths connected in parallel. 
In [6], they assign only one type of transmission line to each 
of the two paths which has a very limited number of design 
variables such as one pair of the length and the characteristic 
impedance of a transmission line. 

III. PROPOSED  TRANSVERSAL FILTER AND DESIGN WITH GA.

 
 
 
 

Fig. 2. Basic unit of the proposed transversal Bandpass filter 

To get over the shortcomings of the standard transversal-
type filter, such as the resultant increment in the overall size to 
comply with the specifications with 4 design parameters and 
the narrow stopbands, we come up with the segmentation of 
each of the two paths and the diversification of the segments’ 
impedance and length. The steps between the neighboring 
segments result in the impedance differences and this, along 
with the different lengths of segments, will play the key role 
in reducing the size of the entire structure and enhance the 

 

Fig. 1. Basic configuration of the conventional transversal filter 
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problem(Path B of Fig. 2 is roughly 3 times less than that of 
Fig. 1). Now we can divide a horizontal part of the 
transmission line loop into 3 segments when a vertical part is 
assumed to have one segment. Then, the loop transmission 
line has 8 segments and a total of 16 design parameters as the 
unknowns. Though the symmetry between the input and 
output ports is assumed, we have 10 unknowns. Inevitably, the 
nonlinear equations should be solved numerically. This pushes 
us to think of the GA optimization to identify the desired 
values of the10 or more unknowns. Particularly in the GA 
optimization process, the number of generations is set as 200 
and there are 100 individuals that will be selected by regular 
GA procedure with crossover, mutation and elitism.     

(a) |S21| and |S11| with the trimming from the unknowns found by the GA 

(b) Measured |S21| and |S11| compared with the simulation  
(a) Convergence behavior of the unknowns 

Fig. 4. S-parameters of the measurement and those of the further tuning 
starting from the initials obtained by the GA approach 

IV. CONCLUSION

A novel transversal-type UWB bandpass filter has been 
designed on the basis of the Genetic Algorithm Optimization. 
Its frequency response meets the requirements on the UWB 
bandpass filtering and has the effect of size-reduction owing 
to the diversified impedance steps in the divided signal paths. 
Though the geometry is assumed symmetric with respect to 
the bi-section line in this paper, but it will be meaningful to 
deal with the asymmetry leading to the more unknowns in the 
next step. Detailed implementation procedures including 
fabrication and measured data will be presented in the final 
version of this paper, which prove the validity of the proposed 
design along with the more elaborated figures of the Genetic 
Algorithm 

(b) Convergence of Cost function(average: upper line , fittest : lower line) 
Fig 3. Convergence of the physical/electrical variables and the cost function 

For the sake convenience, the cost function is defined to 
have |S21| <-20dB at ≤ 3.1 GHz and ≥ 10.9 GHz, and |S11| <-
20dB over 3.2 GHz ~ 10.8 GHz. V. REFERENCES

Fig. 3 presents that the convergence behaviors of the 10 
unknowns and cost function. Both figures tell us that over 
generation number 20, the unknowns begin to approach the 
optimal design values for the UWB passband formation. Also, 
the average cost function is oscillatory, but smooth line is that 
of the fittest in Fig. 3(b). Each of the individuals and the cost 
functions are going convergent very fast, since the cost 
function is defined deterministically with the positions of the 
target transmission zeros and the levels of transmission and 
reflection coefficients. Fig. 4 shows the desirable way the 
unknowns in the design have been identified by the GA and 
they are converted and trimmed to the right physical 
dimensions. The results convince us of the validity of the 
design and proposed filter structure.
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Abstract—In a demand for continuously shortening engineer-
ing cycles and time-to-market windows, precise simulation and
problem optimization pose a necessity and a challenge at the same
time. Still, accurate problem formulation requires the skills of
professionals, for which simulation software serves as a tool in
their business, which ought to fit to numerous diverse tasks in a
versatile way.
This paper describes the methodology to create such a tool
that covers all parts of a multiphysical optimization problem
in electrical engineering and its adjoining disciplines as an
application of the finite element method.
Making use of modern software engineering principles and
well-grounded design, it provides model handling functionality
supporting all partitions of prevailing optimization processes.

Index Terms—Object Oriented Programming, Coupled Prob-
lems, Optimization.

I. INTRODUCTION

A typical optimization cycle making use of the finite ele-
ment method (FEM) [1] covers four domains: problem setup,
model creation and discretization, solving the equation system,
and interpretation of the results to feed the next iteration, if
necessary, as shown in Fig. 1.

Well-defined interfaces are mandatory for obtaining best
results within such a cycle. Internally, one physic model’s
calculation relies on the results obtained by another one
and vice versa, making accessible data structures mandatory.
Externally, interfaces with optimization toolboxes or equation
system solvers need to be found. These data structures form
the major part of the research reported in this paper.

The central objectives aimed for consist of:

• The facilitation of solving forward problems because of
direct - thus fast - data access

• Dynamically adjustable model discretizations in both
granularity and geometry

• Option of different models and discretizations for differ-
ent physics

• Encapsulation of solution data, enabling access control
for certain user groups.

As a matter of fact, existing software packages such as
EleFAnT [2] impose difficulties on targeting all these objec-
tives equally. In addition, the first and last objective raise a
manifest contradiction. To counteract this, methods of object
oriented programming (OOP) need to be employed.

II. OBJECT ORIENTED APPROACH

For validating the concept, MATLAB [3] was selected as
development environment, while the numerical solutions of
the implementation were successfully proven with EleFAnT.
The choice came down to MATLAB as it features a number
of practical analysis and debugging tools, and starting with
version 7.6, native object oriented programming patterns are
fully supported.

Compared to procedural programming, the advantage of
object orientation for solving FEM optimization problems is
obvious. Objects store their own status, so that data can be
retrieved any given time. This status can, for example, be
the electrical potential of a node object. There is no need to
reconstruct the potential from a whole solution matrix, the
node of interest is just called for its solution value.

Above that, objects can offer methods to compute some data
using sub-objects they instantiate. Thus, the solution value of
any given point within a finite element can be calculated using
the data provided by the element’s nodes.

This leads to consistently defined interfaces. The superclass
FiniteElement, for example, offers all functionality a
finite element has to consist of, regardless of its shape or
dimensionality.

Fig. 1. Optimization Cycle with Data Interfaces

Of course, object oriented programming approaches face
their downsides - compared to imperatively coded solutions -
when it comes to memory consumption or CPU time usage.
Nevertheless, the former fact can be seen to be of minor
concern in modern computing surroundings.

Given the respective infrastructure, even the increased CPU
usage can be overcome. When, for example, the calculation is
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transferred to a clustered computing machine, one can benefit
not only from facilitated parallelization of the independent
code portions represented by objects, but also from the ability
to control the program’s flow from independent, relatively
cheap machinery.

III. WEAKLY COUPLED OOP FEM EXAMPLE

Hardening of steel components is commonly done using the
method of annealing. This often requires controlled heating up
of the workpieces to exact temperatures in order to effectuate
the desirable material properties.

Therefore, the design of an appropriate heating device
would include the determination of the dimensions a heating
plate should have, given the fact that the device is supplied
with a fixed voltage. The two-dimensional cross-section model
of such an appliance is shown in Fig. 2 together with its feed
connections shown on either side of the heating plate.

Fig. 2. Current Flow Simulation of Hardening Device

As a result of the current flowing through the heating plate
(as depicted in Fig. 2), it will heat up and thus serve as a source
for the thermal model simulation. Within this model, the feed
connections can be neglected, but as, of course, the workpiece
to be hardened has to be taken into account, a problem space
discretization entirely different to the current flow model’s is
the result.

Now, taking advantage of the finite elements being realized
as software objects, the input values for source elements of
the thermal model can easily be determined for each finite
element’s integration points. As each FE object of the current
flow problem offers its own postprocessing functionality, exact
input values - the power dissipation in each integration point
as a result of the current density J - can be retrieved and fed
into the new thermal source elements.

Also, the temperature values in the test points required by
the optimization control tool are retrieved in the same manner
from the temperature model’s FE objects and are then returned
to the superordinate control structure for further interpretation.

IV. INTERFACES TO OPTIMIZATION CONTROL
STRUCTURES

For interfacing with optimization control structures, XML
was chosen as a means of data interchange [4]. XML can
easily be created and interpreted, and leaves space for custom
extensions. It is therefore widely used for exchanging data in
inhomogeneous computing environments.

Leaving further details to the full paper, it is worth being
noticed, that the input data specification allows for setting
up multiple problem spaces depending on each other to be
solved consequently, as shown in the example in III. Different
problem spaces can also interdepend on each other, which
could further expand the mentioned example by re-feeding
the calculated temperature values into the material properties
of the current flow problem. In case the change of these
properties to be adjusted reaches a percentage lower than a
given threshold or stopping condition, the calculation cycle
can be halted and the transient state of the whole problem
model can be considered stable. The data scheme used for
controlling this process is depicted in Fig. 3.

Fig. 3. XML Data Scheme for Controlling Multiple Simulation Models

The results of interest can be queried in a similar manner
as well. A part of the input XML string states the properties
to be retrieved, i.e. the temperature reached at certain points.
The values queried from the finite element objects are then
used for populating the appropriate XML entities and passing
it back to the control structure.

Also, the program control structure offers tools to users
with limited access to perform parameter studies with less
degrees of freedom on already created model setups, thus
making modelling efforts reusable by others not involved in
the optimization process itself but depending on its results.

V. CONCLUSION

It has been shown that object oriented patterns together
with careful interface design greatly ease the design process
involving optimization in electrical engineering, especially
when coupled problems are to be solved.
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Abstract: An adaptive sampling method is proposed for cre-
ating a forward database that can facilitate the inverse prob-
lem solution in NDT. The available sensitivity data are utilized
for obtaining an optimal sampling with respect to the piece-
wise linear interpolation applied for data retrieval. The re-
sulting database provides guaranteed quality of approxima-
tion using a relatively few number of samples. The efficiency
of the method is demonstrated through a test example.

I. INTRODUCTION

The industrial application of nondestructive testing
(NDT) requires sufficiently fast operation in addition to re-
liability. In a modern computer aided, model based defect
reconstruction method a discrete inverse problem has to be
solved, in which the most time is spent to the numerical
computation of the corresponding forward problem. This
is because the latter has to be carried out several times in
an optimization loop. In order to reduce the reconstruction
time, one should use a fast approximator of the forward
problem based on its pre-calculated samples.

In preceding papers the authors proposed the interpola-
tion in a so-called mesh database for that purpose [1]. In
this method a simplex mesh is spanned over the space of
defect model parameters, and the solutions of the forward
problem for selected defect prototypes are stored in its
nodes. The mesh is generated in an adaptive-incremental
manner, so that it results in guaranteed interpolation prop-
erties with the fewest possible nodes. In the current pa-
per in turn, it is shown how a much more efficient mesh
database can be built by utilizing the sensitivity informa-
tion on the forward problem. Notably, sensitivity data are
easy to get analytically in many electromagnetic problems,
this is the case in the problem we are considering now [2].

A. The studied example

Let us introduce the proposed approach through the solu-
tion of a simple defect reconstruction problem using eddy
current testing (ECT). A relatively large non-magnetic
conducting plate is supposed to contain a defect (Fig. 1).
The plate is tested with a pancake type coil driven by sinu-
soidal current. The excited eddy current field is perturbed
by the defect, thereby changing the impedance of the probe
coil. This impedance change is measured at several probe
positions above the plate (in this example they form a rect-
angular grid of N = 11 × 41 points), and called together
the impedance signal, Zi (i = 1 . . .N).

The defect is hypothesized as a single void crack open-
ing onto the backside surface of the plate (OD type), hav-
ing negligible thickness compared to its other dimensions,
and a rectangular shape. Assuming that its position and
orientation are known, this crack can be characterized by
two parameters, the length l and the depth d. The inverse
problem targets the estimation of these model parameters
by using the measured impedance signal.

B. The forward problem and the sensitivities

The forward problem aims at determining the measur-
able impedance change at the i-th probe position, Zi(l, d),
for the given crack parameters l and d. This problem can
be formulated as an integral equation derived from the so-
called thin crack model [3] and, for instance, can be solved
numerically using the method of moments [4].

Sensitivity expresses the variation of the ECT signal with
respect to the variation of the crack parameters. For the i-
th component of the measured data it can be interpreted as
a gradient in the parameter space,

∇Zi =

�
∂Zi

∂l

∂Zi

∂d

�
. (1)

The sensitivity values for given l and d can be calculated
analytically by solving the specified forward problem and
its adjoint problem. The numerical realization can be done
using the method described in [2].

II. UTILIZATION OF SENSITIVITY DATA

An approximator of the forward problem is said to be
of guaranteed quality if the error of approximation, h, is
below the prescribed limit, δ, for all conceivable parameter
combinations, l and d, that is

h(l, d) ≡
��Z(l, d) − Z̄(l, d)

��
2

< δ ∀l, d (2)

where Z(l, d) = [Zi(l, d)] is the impedance signal of the
crack, and Z̄(l, d) its approximate. In our method this latter
is a piecewise linear (PL) interpolant based on a simplex
mesh. The threshold δ is practically identified with the
resolution of the real measurement [1].

In order to meet the requirement (2) with our mesh
database, a kind of “distance mapping” is carried out in
the backround during database generation. Each edge of
the mesh is associated with a linear spring. The rest length
of such an edge-spring is a function of the impedance data
stored in the connected nodes. The whole mesh, as a spring
system, is relaxed in a hypothetical control space. The size
and shape of mesh elements in the control space at equi-
librium gives instructions on where the database should be
refined. For further details the reader is referred to [5].

crack

coilz

y

l

d

plate

Figure 1: The studied ECT configuration.
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Figure 3. Middle: database structure in the parameter space (d is given in percentage of plate thickness); Left: the structure as seen in the control space
(the springs serve for illustration); Right: distribution of the interpolation error h(l, d) over the parameter space (the prescribed limit was 0.08).

Originally, the rest length of spring segments were sim-
ply chosen equal to the data distance between the con-
nected nodes [5]. It was demonstrated that with this choice
a mesh database showing uniform element density in the
control space is optimal with respect to a nearest neighbor
(NN) type interpolation. It was also pointed out that this
principle can be extended to other interpolation methods,
if the rest length is set equal to the interpolation error mea-
sured along the given edge.

By using the available sensitivity data we can estimate
the average PL interpolation error made along an edge,
as illustrated in Fig. 2. First we compute the directional
derivatives ∂Zi

∂η using the gradient in (1), where η is the
length parameter along the edge. A higher order approxi-
mation, Ẑi(η), of Zi(η) can then be established by using
the data Zi(0), Zi(L), ∂

∂η Zi(0) and ∂
∂η Zi(L), respectively.

The average interpolation error for the i-th data component
along the k-th edge is defined as

hk
i =

�
1

Lk

� Lk

0

���Ẑk
i (η) − Z̄k

i (η)
���
2

dηk. (3)

Finally, the rest length of the k-th edge-spring is set equal
to the Euclidean norm of the vector hk = (hk

1 hk
2 . . . hk

N ).

III. TEST RESULTS

The forward database of the studied problem was gen-
erated and optimized for PL interpolation using adaptive
mesh generation techniques and spring analogy. The value
δ = 0.08 was prescribed as the upper bound of interpola-
tion error (its unit and other details are ignored here). The
procedure started with three randomly chosen points. The
final database contains 26 nodes. Their distribution in the
parameter space is plotted in Fig. 3 (middle).

Z̄k
i

Ẑk
i

ηk

0 Lk(the k-th edge)

Figure 2: Estimation of the interpolation error.

The picture of the mesh in the control space can be seen
in Fig. 3 (left). Some spring segments as well as a “yard-
stick” of length δ are drawn for illustration. Since the mesh
looks quite homogeneous, with its edges slightly shorter
than δ, we expect good interpolation characteristics from
the corresponding database.

In order to check this latter, the distribution of the error
of linear interpolation was computed at several points in
the parameter space and is plotted with grayscale shading
in Fig. 3 (right). The picture tells that the interpolation
error falls below the prescribed δ value everywhere in the
studied parameter domain.

IV. CONCLUSIONS

For comparison we generated a database that is optimal
with respect to NN interpolation (not shown here) accord-
ing to [5] using the same error bound δ. It contains 1463
nodes, which clearly shows the difference if favour of the
new method.

Certainly, one could use the available sensitivity data to
set up a higher order interpolation over simplices, which
would even result in higher accuracy. However, the ap-
proximation error was not controlled in that case, and in
turn this is the main point in the proposed approach.

The developed method requires that the forward prob-
lem behaves "smoothly". Even if this is the case, the mesh
resulting in the parameter space is not necessarily valid.
The convergence of the method for other types of prob-
lems, e.g. allowing more defect parameters, needs further
investigations.
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8. OPTIMIZATION

Abstract—In this paper, a multilevel optimization method is 
proposed for a motor drive system which includes a surface 
mounted permanent magnet synchronous machine (SPMSM), the 
converter/inverter, and the control schemes. Firstly, the 
multilevel optimization is described by using the problem matrix 
which may be used to allocate the design variables on different 
levels. The parameters in the problem matrix are deduced by 
using correlation analysis. Secondly, the architecture and 
implementation of Multilevel Genetic Algorithm (MLGA) are 
carried out. As one of the advantages of MLGA, the dynamic 
adjustment strategy of GA operators is utilized to improve 
optimal performance. The algorithm is applied to a three-level 
optimization problem in which the optimization of SPMSM 
design and the control parameters of drive are considered in 
different levels. Finally, some results and discussions about the 
application of the proposed algorithm are presented.  

I. INTRODUCTION

Multilevel optimization is an effective method to solve 
complex optimization problem and it has been reported. 
Bartheley [1] used problem matrix method to describe the 
relationship between the objective functions and variables. Q. 
S. Li, et al. [2] presented Multilevel Genetic Algorithm 
(MLGA) for the optimization of actively control building 
under earthquake excitations. Multilevel optimizations are 
difficult to solve due to the characteristics of nonlinearity, 
multi-modal functions and mixed discrete variables. 

Permanent magnetic synchronous machines (PMSMs) have 
been an attractive choice for many applications because of its 
high efficiency and power density. In this paper, MLGA is 
presented for design optimization of a motor drive system 
consisting of the drive circuit and an SPMSM controlled by 
using Field Oriented Control (FOC) to minimize the cost of 
copper and permanent magnets, and to maximize the 
efficiency of the motor and the drive system as well as the 
overshoot and ripples of output torque, speed and d-axis 
component of current. The finite element analysis (FEA) of 
the motor is used to calculate the no-load magnetic field, the 
back-electromagnetic force (back-EMF), the d- and q-axis 
components of the stator winding inductances.  

II. FORMULATION OF MULTILEVEL OPTIMIZATION PROBLEM

In multilevel optimization problems, the relationship 
between the design variables, constraints and objective 
functions can be described by a Problem Matrix, as shown in 

Fig.1. In Fig. 1, the symbols Pxx, i.e. P-values, are the 
coefficients, which indicate the relative importance between 
design variables and objective functions, as well as constraints 
in Correlation Analysis [3]. The larger the P-value is, the less 
relative importance of the design variable for the objective 
function is. In this paper, the samples of variables are 
determined by Design of Experiment (DOE) method. Some 
commercial statistic software packages, such as Minitab, can 
provide the module for the relative importance analysis. 

Fig. 1.  Problem matrix 

According to P-values in the Problem matrix, the design 
variables may be arranged on diverse levels. For one objective 
function, the variables possess similar P-values will be 
managed on the same level.  

III. MULTILEVEL GENETIC ALGORITHM 

The architecture of MLGA is shown in Fig. 2. In MLGA 
the design optimization variables are classified and allocated 
to different levels according to the relative importance among 
the variables and objective functions, constraints, as well as 
the practical engineering weight and optimization sequence.  
The variables on different levels are encoded independently. 
Each level may have multiple populations and each of them 
can adopt different dynamic genetic operators and parameters. 
Furthermore, the relationship between sub-problems in 
multilevel problems can be handled by MLGA. The details 
about Genetic Algorithm (GA) operators, implementation 
process of MLGA will be presented in the full paper.  

IV. APPLICATION OF MULTILEVEL OPTIMIZATION USING

MLGA

An SPMSM controlled by FOC, rated at 950W output 
power, 2000 r/min speed and 128V line-to-line voltage, is 
used to verify the MLGA for multilevel optimization. The 
multilevel structure of optimization is shown in Fig. 3. 

Dynamic Multilevel Optimization of Machine Design 
and Control Parameters for PMSM Drive System 

Based on Correlation Analysis 
Shuhong Wang, Xiangjun Meng, Jie Qiu 
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8. OPTIMIZATION

Fig. 2. Block diagram of MLGA 

Fig. 3. Three-level structure of optimization

    The design variables and objective functions defined on 
each level based on correlation analysis will be presented in 
the full paper. 

On each level, if the fitness maintains in a defined interval 
during several consecutive generations, the mutation operator 
Pmu is automatically adjusted according to (1) 

, 0

, 0

unchange

unchange

unchange

m

mu

P n

P n
n

maxgeneration
ω

=

=
>

⎧
⎪
⎨
⎪⎩

              (1) 

where Pmu is dynamic mutation value, Pm is initial mutation 
value, nunchange is the number of unchanged consecutive 
generations of population fitness, ω is the regulator and 
maxgeneration is the terminating iteration.

The design variables, optimal results and comparison of 
MLGA and traditional GA on Level 1 and 2 are listed in 
TABLE I.  

The proportional and integral gains calculated on the third 
level are listed in Table. 2. Fig. 4 illustrates the speed of 
SPMSM before and after PI controller parameters 
optimization. The transient d-axis component of current, 

torque and system efficiency will be analyzed and discussed in 
full paper.  

TABLE I 
OPTIMAL RESULTS FOR SPMSM IN LEVEL 1 AND 2 

Variables and performances Original 
design 

Multilevel 
GA 

Traditional 
GA 

Thickness of PM, hm / cm 0.18 0.23 0.21 
Width of PM, bm / cm 3.14 3.03 3.03 

Conductors per slot, Ns 72 67 66 
Diameter of conductor, WindD / mm 0.5 0.56 0.56 

Back-EMF, E0 / V 66.0 61.9 60.9 
q-axis component of current, Iq / A 4.78 5.27 5.37 
d-axis component of current, Id / A 1.60 0.05 0.15 

Efficiency, η (%) 83.7 86.4 86.1 
Cost of winding / RMB 72.6 84.7 83.5 

Cost of PM / RMB 41.3 50.9 45.5 
Output power , P2 / W 946 949.5 951 

Fill factor, sf (%) 67 77.7 76.5 

TABLE Ⅱ
OPTIMAL RESULTS FOR CONTROL IN LEVEL 3 

Variables and performances Initial values MLGA

Proportional gain in speed loop 1 18 

Integral gain in speed loop 1 0.2 

Proportional gain in Id loop 1 20 

Integral gain in Id loop 1 0.32 

Proportional gain in Iq loop 1 29 

Integral gain in Iq loop 1 2 
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(a) Before optimization                           (b) After optimization 
Fig. 4. Transient speed before and after optimization 

V. CONCLUSION 

According to the features and decision-making sequences, 
many real-world optimization problems in the engineering 
systems could be solved in multilevel procedures. This paper 
proposes an MLGA algorithm for SPMSM drive system to 
achieve complex multi-objective functions. The Correlation 
analysis is applied to construct the three-level structure and 
dynamic mutation operators on each level may dependently 
improve the convergence of the MLGA. It can be seen that the 
performances of both SPMSM and its controller can be 
optimized by using MLGA. 
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6. OPTIMIZATION

Abstract — The applications of the level set function for images 
segmentation of the teeth was presented in this paper. There was 
used the idea of the level set method and variational formulation 
for geometric active contours. This formulation of the level set 
method consists of an internal energy term that penalizes the 
deviation of the level set function and an external energy term 
that drives the motion of the zero level set toward the desired 
image features. The proposed algorithm has been applied to real 
pictures with promising results in the roentgen images 
segmentation. 

I. INTRODUCTION

This paper presents the applications of the level set 
function for images segmentation of the teeth. The level set 
idea, devised in Osher and Sethian [4], is known to be a 
powerful and versatile tool to model evolution of interfaces. 
Variational formulation for geometric active contours that 
forces the level set function to be close to a signed distance 
function [3]. This formulation of the level set method consists 
of an internal energy term that penalizes the deviation of the 
level set function and an external energy term that drives the 
motion of the zero level  set toward the desired image 
features.  

II. LEVEL SET METHOD

The level set idea, devised in Osher and Sethian [4], is 
known to be a powerful and versatile tool to model evolution 
of interfaces. The original idea behind the level set method 
was a simple one. Given an interface Γ in Rn of dimension one, 
bounding an open region Ω. It was analyzed and computed its 
subsequent motion under a velocity field ν . This velocity can 
depend on position, time, the geometry of the interface (e.g. its 
normal or its mean curvature) and the external physical 
conditions. The idea is merely to define a smooth function 

)t,x(φ , that represents the interface as the set where 

0)t,x( =φ . The motion is analyzed by the convection the ϕ
values (levels) with the velocity field. The Hamilton-Jacobi 
equation of the form [2], [5], [6], [7] 

0
t

=∇⋅+
∂
∂ φνφ 

  (1) 

When flat or steep regions complicate the determination of 
the contour, reinitialization is necessary. The reinitialization 
procedure is based by replacing by another function that has 

the same zero level set but behaves better. This is based on 
following partial differential equation:

  

0)1)((S
t

=−∇+
∂
∂ φφφ   (2) 

Figure 1 presents the images segmentation by using the 
level set method with reinitialization. 

  

   

Fig. 1. Image reconstruction – the level set method with reinitialization 

III. VARIATIONAL LEVEL SET METHOD 

This formulation of the variational level set method 
consists of an internal energy term that penalizes the deviation 
of the level set function and an external energy term that drives 
the motion of the zero level set toward the desired image 
features. Variational formulation for geometric active contours 
that forces the level set function to be close to a signed 
distance function, and therefore completely eliminates the need 
of the costly reinitialization procedure. The resulting evolution 
of the level set function is the gradient flow that minimizes the 
overall energy functional [3]: 

∫ −∇=
Ω

φφ dxdy)1(
2

1
)(P 2  (3) 

An external energy for a function ϕ(x, y) is defined as below: 

)()()( m φΕφΡµφΕ +=  (4) 

)(P φ    – internal energy,  

Variational Level Set Methods in the Roentgen 
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6. OPTIMIZATION

)(m φΕ  – external energy. 

The process for minimization of the functional E is the 
following:

)(g)g(div)()(div
t

φδω
φ
φφλδ

φ
φφ∆µφ +

∇
∇+













∇
∇−=

∂
∂

 (5) 

For more than two phases was introduced the multiple level 
sets idea by Vese and Chan [1]. The algorithm set formulation 
and algorithm for the general Mumford-Shah minimization 
problem  in image processing, to compute piecewise-smooth 
optimal approximations of a given image. The problem can be 
easily generalized to the case where the domain contains more 
than two materials.  
Then material c is representing following: 

))(H1(c )(Hcc 21 φφ −+=  (6) 

where H is the Heaviside function 

IV. IMAGE SEGMENTATION 

Figure 2 presents the roentgen images segmentation in the 
following iterative process. The algorithm of the image 
reconstruction consists variational level set method and the 
Mumford-Shah function. 

a) 

b) 

c) 

d)  

e) 

Fig. 2. Image reconstruction: a) the original image , b) the image 256 colors, , 
c) reconstruction after the 10 iterations, d) reconstruction after the 50 

iterations, e) reconstruction after the 500 iterations 

V. CONCLUSION 

The applications of the level set function for images 
segmentation in the stomatology was presented in this paper. 
The level set idea  is known to be a powerful and versatile tool 
to model evolution of interfaces. Variational formulation for 
geometric active contours that forces the level set function to 
be close to a signed distance function, and therefore 
completely eliminates the need of the costly reinitialization 
procedure. The proposed algorithm has been used to real 
pictures with promising results in the roentgen (teeth)  images 
segmentation.  
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Numerical tool for the design of magnetic 
sensors based on GMI effect 
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Abstract — In this paper, we present a numerical procedure 
for calculating the impedance of a three-layered sandwich, 
consisting of two metallic ferromagnetic layers separated by a 
non-magnetic conductive layer, serving to optimize the 
performances (impedance variation) of these three-layered giant 
magneto-impedance (GMI) sensors. It consists in the calculation 
of impedance using finite elements method (FEM). The effective 
permeability μeff

 
is obtained from experimental data of the 

resistive and inductive parts of the impedance. This numerical 
tool, compared to analytical approaches is more realistic and 
allows taking into account the leakage flux when the sensor is 
submitted to high fields. 

I. MOTIVATION 
Sandwiched GMI sensors are mainly formed of three 

insulated foils Fe75Si15BB6Cu1Nb3/Cu/ Fe75Si15B6B Cu1Nb3 [1] or 
CoFeSiB/Cu/CoFeSiB [2] (Fig.1). In this work, we develop an 
electromagnetic simulation tool to design sandwiched 
structures (see Fig.2) in order to optimize geometrical 
parameters such as width, length and thickness of each layer. 
Structures, analyzed with different dimensions, are tested to 
improve the response of the GMI sensor.  

 

 
Fig. 1 : Sandwiched structure with Finemet® and copper foils (thicknesses 

20µm) 
 

 
Fig. 2 : GMI 2D model, due to the symmetry of the sensor only half part is 

meshed 
 
The impedance for the GMI structures is calculated and 

analyzed as a function of the physical parameters of the device 
and frequency. This tool should reduce costs and 
manufacturing time for the micro-sensors fabrication using 
micro-technology facilities. 

From another side, ‘‘closed’’ structure with the magnetic 
film closing at the edges along the width, and an ‘‘open’’ 
structure without flux closures are simulated. The ‘‘closed’’ 
structure is more efficient magnetically and presents a highly 
inductive response to much higher frequencies than the 

‘‘open’’ structure. The results obtained are practically 
applicable to the design of GMI magnetic sensors. 
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Fig. 3: Flow chart of the design procedure 

II. MODEL IMPLEMENTATION 
 Fig. 3 presents the flow chart of the design procedure. The 
modeling of GMI sensors allows evaluating and improving of 
their performances without the need to multiply the realization 
of costly prototypes. A fine modeling of GMI sensors require 
the use of numerical modeling methods. Among them, the 
finite element method (FEM) is particularly adapted since it 
allows considering structures of arbitrary geometry and taking 
into account of anisotropic or nonlinear behavioral laws. The 
FEM is based on a weak variational formulation of the 
problem. The solution of this formulation is done on a 
discretized space obtained by meshing the study domain with 
elements. The fields to be calculated are obtained by a linear 
combination of simple functions (shape functions) deduced 
from the size and shape of the elements. These functions are 
generally defined at the nodes of the elements and are 
expressed as a linear combination of polynomial functions. 
The solving of the algebric system provides an approximate 
solution of the problem. For the modeling of the GMI sensor, 
a magneto-dynamic formulation was used taking into account 
the eddy currents and neglecting the displacement currents. It 
is based on the calculation of the magnetic vector potential 
and of the electric scalar potential at the nodes of the meshing 
with a current as source. Taking into account the high length 
of a GMI sensor compared to its depth and width, a 
bidimensional representation of it was adopted. A cross-
section of the sensor is then considered and meshed with 
surfacic elements (triangular in our case since it allows 
meshing arbitrary shaped areas). After solving of the system, 
the electric and magnetic fields are deduced from the 
potentials. These fields allow computing the power losses and 
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the magnetic energy which provides the sensor impedance real 
and imaginary parts, respectively. 

 

III. RESULTS 
The impedance values of the sandwiched structures with 

different geometrical dimensions are computed using the finite 
element method (FEM). The giant magneto-impedance (GMI) 
is calculated from the difference of the impedance values 
obtained with high and low permeability (at field saturation) 
of the magnetic material.  Fig. 5 : Calculated real (Re) and imaginary (Xe) parts of impedance Ze 

versus relative permeability of the magnetic foils at 150 kHz 
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×=⎟

⎠
⎞

⎜
⎝
⎛ Δ 100  

 

Fig.4 shows the experimental results of impedance versus 
field carried out at 150 kHz. In our samples, the inductive part 
of the impedance is much higher than the resistive one. The 
impedance per meter at zero-field is 9Ω/m. For an applicative 
point of view, we can remark that this sensor requires a bias 
field if we need to maximize sensitivity of the sensor to AC 
fields.  

 

Fig. 6 : Comparison between measurements and FEM simulations  on the 
frequency behavior of MI effect.  

 
Fig. 4 : Experimental curves Z(H) for an excitation current at 150 kHz 

 Fig. 7 : Impedance ratio versus magnetic/Cu width ratios. Ferromagnetic 
and Cu thicknesses are respectively 2µm and 4µm (1:2:1 configuration). Cu 

width is 100µm. Frequency of excitation current is 150 kHz.  
Fig.5 represents simulation (FEM) results by varying the 
permeability value of the magnetic foil. We observe that the 
variation of the impedance as function of the permeability fits 
the experimental curve at 9Ω/m for μeff=4000. This method 
only gives values of impedance at zero and saturation fields. 
In the full paper, we present an implementation of Landau-
Lifshitz-Gilbert equation (to estimate μeff) in the design 
procedure (Fig.3) in order to determine the MI ratio whatever 
the magnitude of the external magnetic field is.  

 
The results depend considerably on shape factors, 

demonstrating that edge effects are decisive for the GMI 
performance.  

IV. CONCLUSION 
 The conclusions of this study are of great importance for 
the successful design of miniaturized GMI devices. The 
consideration of the influence of the geometry on the GMI 
helps identify the discrepancies between theory and 
experiments. Besides we demonstrate that the geometry of the 
sample must be carefully chosen to improve device 
performances, especially the length of the sensor had to be 
taken into account by 3D FEM simulations, in progress.

We have optimized geometrical dimensions of a 
sandwiched GMI micro-sensor with the aim to obtain 
maximum effect at the smallest frequencies. As an example, in 
Fig.6, a 2D-FEM simulation highlights the frequency behavior 
of the magnetic/copper width ratio on the MI effect and Fig. 7 
presents impedance ratio versus magnetic/Cu width ratios, 
showing the material width have a determinant effect on the 
sensor performances at a certain level. 
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Abstract— The Jiles-Atherton (J-A) model is widely used to the 
modeling of the nonlinear characteristics of magnetic materials. It 
can include the effects of stress, temperature and external field 
frequency and is given in the form of a set of non-linear and first-
order ordinary differential equations. This paper presents a 
harmony search (HS) optimization method based on Cauchy 
distribution (CHS) to the parameter identification of the J-A 
model of hysteresis is proposed. The performance of the HS and 
the proposed CHS optimization approach are evaluated and 
compared with result of hysteresis modeling, which is included in 
the dynamic model of a single-phase transformer, of recent 
literature. 

Index Terms— magnetic hysteresis, modeling, Jiles-Atherton 
model, optimization, harmony search, transformer.  

I. INTRODUCTION

Hysteresis are encountered in a wide range of physical 
systems and devices, such as magnetic materials, piezoelectric 
and piezoceramic actuators, shape memory alloys, electronic 
relay circuits, among others. Hysteresis is a complex process. 
Only complicated models describe this phenomenon with 
satisfying accuracy. 

The description of magnetization processes in soft 
magnetic materials proposed by Jiles and Atherton [1] still 
remains one of the most widely used ones and has been the 
subject of considerable interest in the scientific community due 
to its physical backgrounds and the possibility to include the 
effects of stress, temperature and external field frequency. It is 
given in the form of a set of non-linear and first-order ordinary 
differential equations. Such model typically contains a set of 
parameters referred to herein as “model parameters” or 
“material parameters,” that need to be extracted from 
experimental data. 

The paper presents an attempt to estimate the parameters of 
Jiles and Atherton (J-A) model description of magnetization 
process using an improved harmony search (HS) optimization 
method using Cauchy operator (CHS). The proposed CHS 
method was validated into dynamical model of a single-phase 
transformer. In this context, the data of single-phase 
transformer used in validation was also employed in [2]. 

II. DYNAMIC MODEL OF A TRANSFORMER AND J-A
HYSTERESIS MODEL

By using simplifications presented in [2] and knowing 
transformer geometry, a single-phase transformer model 
obtains the following form 
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where u1, u2, and i1, i2 are the primary and secondary voltages 
and currents, respectively; R1 and R2 are the primary and 
secondary resistances,

1σL and 
2σL are the primary and 

secondary leakage inductances, N1 and N2 are the primary and 
secondary number of turns, A is the average area of the 
transformer iron core, l is the mean path length of the magnetic 
flux,  H is the magnetic field, and B is magnetic flux densities. 

In Eqs. (3) and (4), term dB/dH can now be determined 
using the J-A hysteresis model. The original J-A hysteresis 
model with magnetic field as an independent variable, 
delivered from [3], [4] is given by [2] 
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where Man and Mirr are the anhysteretic and irreversible 
magnetizations, respectively; 0 is the permeability of vacuum, 
and dHe is denoted as dHe = dH + αdM. The parameters of the 
original J-A hysteresis model that must be identified are: the 
anhysteretic behavior a, the main field parameter α, the 
saturation magnetization Ms, the parameter which is 
proportional to the hysteresis loop width and domain flexing 
constant c, and the pinning parameter k. 

III. FUNDAMENTALS OF HARMONY SEARCH 

The HS algorithm proposed by [5] is a metaheuristic
optimization algorithm based on the musical process of 
searching for a perfect state of harmony, such as jazz 
improvization. In this improvization process, members of the 
musical group try to find the best harmony as determined by an 
aesthetic standard, just as the optimization algorithm tries to 
find the global optimum as determined by the objective 
function. The notes and the pitches getting played by the 
individual instruments determine the aesthetic quality, just as 
the objective function value is determined by the values 
assigned to design variables. 

The optimization procedure of the HS algorithm consists of 
steps 1-5, as follows: 
1. Define the optimization problem and HS algorithm 
parameters.  
2. Initialize the harmony memory.  
3. Improvise a new harmony from the harmony memory.  
4. Update the harmony memory.  
5. Repeat Steps 3 and 4 until the termination criterion is 
satisfied.  

In the proposed CHS approach, an operator based on 
Cauchy distribution is introduced in step 3 of classical HS to 
escape from local optima.  

IV. OPTIMIZATION RESULTS

The objective function to be minimized using HS and CHS 
is given by  

( )
∑

−
=

=

N

i

eliimeas

N

BB
F

1

2
mod                         (9) 

where imeasB  is the measured magnetic flux density, eliB mod

is the calculated magnetic flux density from the model, and N
is the number of points of measured magnetic flux density. For 
the measurement purpose, the transformer was supplied with 
sinusoidal voltage whilst the primary voltage and current were 
being measured. The hysteresis loop with magnetization curve 
was then determined from known geometry of the iron core 
and measured data [2]. 

Parameters identified using HS and CHS for the J-A model 
are presented in Table I. In terms of mean and minimum F
values in 30 runs (adopted 60,000 evaluations of objective 
function in each run), results shown in Table I indicate that 
CHS can tackle the J-A modelling more efficiently than the 
classical HS. Fig. 1 presents a comparison of measured and 
calculated hysteresis loop using the best results obtained by 

CHS. Table II present the best results using CHS and the result 
using differential evolution (DE) given in [2]. Based on results 
of Table II, the DE and CHS presented similar performance in 
terms of F values. 

TABLE I  
BEST RESULTS OF F (30 RUNS) FOR THE J-A MODEL

Optimization Objective Function F in 30 Runs 

Techniques Maximum 
(Worst) 

Mean Minimum 
(Best) 

Std. Dev. 

HS 0.03894 0.03316 0.03155 0.00230 
CHS 0.03474 0.03257 0.03154 0.00104 
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Fig. 1. Comparison of measured and calculated B-H hysteresis loop. 

TABLE II  
PARAMETERS OBTAINED BY BEST RESULTS  

Parameter DE [2] CHS 
a (A/m) 226.25 223.27 

α 0.502⋅10-3 0.497⋅10-3

Ms (A/m) 1.335⋅106 1.331⋅106

c 0.724 0.721 
k (A/m) 300.05 295.49 

F 0.03154 0.03154 

V. CONCLUSION 

Hysteresis is a complex phenomenon, which is important 
both from theoretical and practical points of view. A relevant 
approach to describe hysteresis can be found in the J-A model. 
In this paper a novel approach to estimation of J-A model 
parameters has been presented. The proposed CHS approach 
was successful to estimate the J-A model parameters.  
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Abstract —Based on the finite element method, a new 
algorithm for evaluating the sensitivity of electric field intensity 
to geometric parameters is presented in this paper. By means of 
this algorithm, the sensitivity can be evaluated as like the nodal 
potential solution. Adopting Hermite polynomial instead of 
Taylor polynomial greatly decreased the order of the high-order 
cross sensitivity. Numerical results show that this algorithm is 
very effective and can be used in the automatic design of the 
insulation structure in power transformer. 

III. COMPUTATION OF SENSITIVITY

For electrostatic field problem, the finite element equation 
is:

                                    (2) 0=ϕK

ϕwhere  is nodal potential, K is stiffness matrix. If three-

node triangular element is used, K can be calculated by 

I. INTRODUCTION                    (3) dxdyNNK e
j

e
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e
ij e

∇⋅∫∫ ∇= Δε
In the automatic design of electromagnetic apparatus, the 

optimization technique based on the derivatives of objective 
function, i.e. sensitivity, is often selected as a numerical tool. 
It is key to evaluate the partial derivatives of objective 
function with respect to the geometric parameters in this 
technique. Dr. J. L. Coulomb proposed a Taylor polynomial 
approximation of objective function and an algorithm based 
on Jacob’s matrix [1]. In general Talor polynomial order is 
relatively high, and the stability of objective function is low. It 
takes up too much memory of computer and the allowable 
variation of the designed parameters is limited. 
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where  is the function in the e-th triangular element,where e
iN

iiie c,b,a,Δ  are functions depended on the nodal coordinates. 

A. One Parameter Problem

Let p be a geometric parameter, then pK e
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calculated as follows: 

∑∑∑

∑∑

===

==

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂

∂

∂

∂
+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

∂

∂
+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂

∂

∂

∂
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

∂

∂
+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
Δ∂

+
∂
∂

∂
Δ∂

Δ∂

∂
=

∂

∂

3

1

3

1

3

1

3

1

3

1

k

k

k

j

j

e
ij

k

k

k

i

i

e
ij

k

k

k

j

j

e
ij

k

k

k

i

i

e
ij

k

k

k

ek

k

e

e

e
ij

e
ij

p

x

x

c

c

K

p

x

x

c

c

K

p

y

y

b

b

K

p

y

y

b

b

K

p

y

yp

x

x

K

p

KIn this paper, the multi-dimensional Hermite polynomial 
and a new algorithm of computing the sensitivity which has 
nothing to do with Jacob’s matrix is presented. 
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II. HERMITE POLYNOMIAL

 is the electric field intensity in the e-th element eESupposeThe 2D Hermit polynomial fh(p,q) can be expressed as 
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B. Two Parameters Problem Fig. 1 is a simplified model in the lower part of the 
insulation structure of a 500kV power transformer. Let the 
maximum of the electric field intensity on the outer surface of 
the insulation layer of the electrostatic ring be the objective 
function f(x). Suppose that R

Now suppose that p and q are two geometric parameters. 
Then we can derive (7) respect to the parameter q, and find 
the new formula of the derivatives of eE :

1 and B be two geomrteic 
parameters. 
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3/500 kV is applied between the high-voltage winding and 
the low-voltage winding. Applying above procedure of 
automatic design based on the genetic algorithm to the design, 
through computation of 6 generations and 37 seconds cpu
time, we can obtain a desired design with E=5.60kV/mm in 
which B=83.0mm, R

   (12) 

1=10.7mm. In order to check verification 
of the design, we also use the finite element method to 
calculate the maximum of electric field intensity that is 
5.64kV/mm. The relative error is 0.71% between the electric 
field intensities calculated by the finite element method and by 
the sub-region Hermite polynomials. Therefore, above 
procedure of automatic design is very effective. 
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∂ ϕ2

The column matrix  in (12) and (13) may be solved from 

(10) as follows: 
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IV. NUMERICAL VERIFICATION

For showing the application of above algorithm, we 
analysis the field a coaxial cable with inner radius R1=1cm, 
outer radius R

Fig. 2.  Insulation structure of a 500kV transformer. 
2=5cm, applying 100V between conductors. The 

sensitivity of electric field intensity to R1 and R2 at five 
specified points is evaluated. Numerical results and analytic 
values are shown in Table I. These results show that the new 
algorithm in this paper is very effective. 

V. CONCLUSION

This optimization method has adopted Hermite 
polynomials in stead of Talor polynomial, which has greatly 
decreased the order of the high cross sensitivity. The 
computation of sensitivity discussed in this paper is based on 
the finite element method. Numerical results show that this 
algorithm is very effective.

TABLE I. COMPUTATIONAL RESULTS OF SENSITIVITIES

X=0.86 X=2.94 X=1.66 X=0.85
Specified points 

Y=4.56 Y=0.96 Y=1.69 Y=1.66

Values(V/cm) 48.09 32.22 19.77 13.00 
E

Error(%) -3.49 2.65 0.29 -1.12 

VI. REFERENCESValues(V/cm2) 30.53 19.88 12.20 8.03 

1R

E

∂
∂

Error(%) -1.39 1.94 -0.43 -1.82 [1] J.L.Coulomb, A methodology for the determination of global 
electromechanical quantities from a finite element analysis and its 
application to the evaluation of magnetic force, torque and stiffness, 
IEEE Trans. Magn, vol. 19, no. 6, pp.2514-2519, November 1983 

Values(V/cm2) -5.98 -4.01 -2.46 -1.59 

2R

E

∂
∂

Error(%) -3.47 2.67 0.34 -2.59 
[2] Yang Liu, Xiang Cui, Sensitivity analysis of electric field intensity to 

geometric parameters in shape optimization, Proceedings of the Fourth 
International Conference on Electromagnetic Field Problems and 
Applications, Tianjin, China, September 18-20, 2000, pp. 230-233. 

Values(V/cm3) -7.47 -4.97 -3.03 -1.98 

21

2

RR

E

∂∂
∂

Error(%) -2.87 2.55 -0.44 -2.72 
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Abstract — The effectiveness of a case-based reasoning system 
for the preliminary design of electromagnetic (EM) devices is 
heavily dependent on a highly competent case base to allow fast 
exploration of the design space and make high-quality decisions. 
However, sufficient good cases are difficult to obtain from 
industrial examples. In this paper, the construction of a 
competent case base for EM devices based on a refined combined 
competence model is described. This case base involves 
functional, geometrical and material information for EM devices.    

I. INTRODUCTION

    The optimization of an electromagnetic device or system, 
such as an electrical machine, needs a starting point in the 
design space for the search. There are two approaches to this 
task. The first is known as “sizing” and relies on simple (and 
often inaccurate) magnetic circuit models. The second is an 
approach used by experienced designers and is based on 
previous solutions. While the former approach has been used 
in computer based systems, the latter paradigm is somewhat 
more difficult to implement as it requires a significant amount 
of data mining and classification. The approach which 
embodies this is known as “Case-Based Reasoning” (CBR) 
[1]. The problem to be considered is that of a search space 
with a very large number of dimensions (design parameters) 
and performance requirements (which may be multi-
objective). This results in an extremely complex Response 
Surface which is difficult, if not impossible, to model. The 
approach proposed using CBR provides a methodology for 
exploring the design space based on previous design 
information, i.e. the performance results of tested designs. 
While, in the conventional industrial approach, these designs 
in the database would normally be those which have been built 
and tested, the existence of advanced analysis tools and a 
virtual laboratory provides an opportunity to generate a 
synthetic database which could include both “good” and “bad” 
designs and can complement those actually constructed. Two 
previous papers have described the construction of an 
effective case base library, its role in the design process and 
the theoretical fundamentals of competence for a case-
base[2],[3], and it is the intention of this paper to further 
explore an approach to classifying the cases in terms of their 
“competence”, or their usefulness in representing the design 
space, and thus to refine the original combined competence 
model given in [3]. To do this, it is necessary to develop a 
methodology for determining “competence”.   

II. A REFINED COMBINED COMPETENCE MODEL

    The refined combined competence model presented here is 
evolved from the previous work to include the calculation of 

the the coverage-range of low-quality as well as high-quality 
cases. The concept of how well a particular example can be 
generalized to represent the surrounding design space is 
embodied in a “combined competence” model which is 
formally described with the following concepts and formulae. 
First, this model adopts the definitions of coverage, 
reachability, and the four classes of cases in any case base as 
described in Smyth and McKenna’s competence model [4]; 
then it illustrates how to compute the case base competence in 
two situations. The first relates to a uniform distribution of 
cases; and the second to a nonuniform distribution. Finally, it 
calculates the cover-range of competent cases [4].     

Given a case-base C= {c1,…, cn}, for c C∈ , Adaptable (c, b) 
is an adaptation process which transforms a case retrieved (c) 
into a solution appropriate for the presented problem (b). 

The following definitions are then made: 
Coverage(c) = i i{c C : Adaptable(c,c )}∈

Reachable(c) = i i{c C : Adaptable(c ,c)}∈
Note that these are conditions which should hold for any 
optimization algorithm. 
 Then we can define the following:
• Pivotal Case: Reachable(c) {c}− =∅

• Auxiliary Case: ∈∃ ic Reachable (c) - {c}: 

     Coverage (c) ≠⊂ Coverage ( ic )

• Spanning Case: ¬Pivotal (c) ∧ Coverage (c)  
      'c Re achable(c) {c}

U Coverage(c)
∈ −

∩ ≠ ∅

•  Support case:
ic∃ ∈Reachable (c)-{c}: 

iCoverage(c ) Coverage(c)⊂

•  A competence of a group of cases (G): is defined as the     
group coverage of G in the following (were, SM (a, b) is a 
function used to calculate the similarity between two 
cases): 

i

i
c G {c}

SM(c,c )

Casedensity(c,G)
G 1

∈ −=
−

∑                                             (1) 

c G

Casedensity(c,G)
Groupdensity(G)

G
∈=
∑                                     (2) 

         Group cov erage(G) 1 G (1 Groupdensity(G))= + −                     (3)                   

•  Case Base Competence: is defined as follows: 

i

i
G G

Situation _1 GroupCoverage(G )
∈

= ∑                                       (4)        

* *
i

* *
i

c C

Overlapcoverage Coverage(c ) Coverage(CB C )
∈

= ∩ −∑                        (5) 

Situation _ 2 Situation _1 Overlap cov erage= −                       (6) 
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10. SOFTWARE METHODOLOGY

• Competence group cover-range (CGCR):  is defined as the 
maximum weighted distance between any pair of cases

p q(c ,c )  in a competence group. 

(w)
i p qCGCR(G ) max d (c ,c )=                                        (7)

       • Flag case cover-range  (FCCR): is defined as the 
minimum weighted distance between a pivotal case and a 
competence group. 

* (w ) *
p p qFCCR(c ) min d (c ,c )=                                       (8) 

Fig. 1.EM device cases in a multi-dimensional design space 

     * * *
1 nC {c ,..., c }= is the pivotal case collection of a case-base. 

Here the case-base is classified into two situations, in situation 
1, it consists of disjoint subsets: 1 n{G ,...., G } ; in situation 2, 

there exist pivotal cases (Fig. 1).    

III. THE USE OF COMPETENCE IN PRODUCING A DESIGN

PROTOTYPE

      Each of the competence groups found by the process 
developed above provides a search group for matching a set of 
design specifications. If the specifications exactly match those 
of the competence group then a prototype can be developed 
from the group with a high confidence level that it is a good 
starting point. However, as the search moves away from the 
group, the confidence in a prototype developed from the group 
reduces. At some point, a prototype might be developed by 
combining features from two different competence groups. 
For example, a stator from one group might be combined with 
a rotor from another. In addition, some examples in the 
database might indicate areas of the search space, for the given 
specifications, which will not produce satisfactory solutions. 
These are areas to be avoided and can have negative inputs to 
the construction of a prototype. 

IV. A COMPETENT CASE BASE FOR INDUCTION MOTORS

According the refined combined competence model above, 
a competent case base for induction motors is designed as a 
structured database with entities and relationships tying 
together building blocks to form designs. This case base 
presents rich information to describe an induction motor, such 
as the steady state equivalent circuit, geometry, material, coil 
windings and performance analysis  results, and it also 
includes the four classes of cases (pivotal, auxiliary, spanning 
and support). Simulation can be used to complement and 
extend the cases available from industrial designs with new 
examples within the design space. However, even then, the 
number of points in the design space that can be created is 

relatively small compared to the size of the space. In addition, 
since all the devices represent points in the design response 
surface, both good and bad examples (in terms of design 
requirements) may be included. Such a database has been 
constructed and consists of a set of induction motors with 
varying performance characteristics and a variety of physical 
structures. These devices form the data set for the competence 
algorithm. Fig. 2 shows a slice through the multi-dimensional 
design space for the full load power against the machine outer 
diameter and efficiency. As can be seen, these cases are 
clustered into groups which can be identified by the 
competence algorithm.  

Fig. 2.  An illustrating induction motor case base 

This case base has been built with the help of MotorSolve 
provided by Infolytica Corporation [5]. 

V. CONCLUSION

   A refined combined competence model has been 
developed and applied to a database of induction motor 
designs. Using the information generated, it is possible to 
generate a potential candidate for a prototype device which 
can be used as the starting point for an optimization process. 
In effect, the case-based system provides an efficient and fast 
method for exploring the potential design space allowing the 
optimizer to concentrate on the exploitation phase. The full 
paper will provide details of the case-base, the algorithms 
involved in competence determination and an example of their 
use. 
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Abstract— This paper presents the application of (1+4) and 
(1,4) evolution strategies to minimize the losses in a permanent 
magnet synchronous machine designed for operation in a 
flywheel energy storage system. The optimization strategies are 
used to adjust the stator slot shape to reduce the open circuit iron 
loss and magnet eddy-current loss calculated using time-stepped 
finite element analysis. At each generation of the optimization, 
the fitness of each candidate is evaluated in parallel. The 
performances of the (1+4) and (1,4) algorithm are compared, and 
an optimal slot shape design is presented.

I. INTRODUCTION

Permanent magnet synchronous machines (PMSM) is an 
attractive candidate for use with flywheel energy storage 
systems as they have high power density, high efficiency and 
are relatively simple to control. Even though PMSM are 
typically considered to be high efficiency machines, particular 
attention should be made to losses in a machines designed for 
use in with a flywheel. Total loss should be as low as possible, 
in order to maximize round-trip energy efficiency. High 
frequency eddy current losses in the magnets should be 
minimized, as the rotor of the system is typically evacuated, 
eliminating conductive and convective heat transfer from the 
rotor. 

Adjustment of the stator slot shape is an economical 
approach to contribute towards loss reduction after an initial 
design using low-loss materials has been carried out. In the 
process of design optimization, machine losses are evaluated 
for each design, and an optimization algorithm is required to 
seek the optimal design according to certain criteria. The slot 
shape design optimization for loss reduction has been 
investigated in a number of papers, e.g. [1], [2].  However, 
losses due to flux density space harmonics contribute 
significantly to both magnet and iron losses in a high speed 
machine. The time-stepped finite element analysis (FEA) may 
fully model the effect of rotor motion on the electromagnetic 
harmonics, therefore its use with an optimization algorithm is 
considered in this paper.

Regarding the optimization algorithm, there are a wide 
variety of options on deterministic or probabilistic search and 
optimization techniques. As a probabilistic technique based on 
adaption and evolution, evolution strategy (ES) has been
successfully applied to some attempts at machine design 
optimization [3], [4], [5]. In this paper, within each ES 
iteration, time-stepped FEA is implemented in parallel to 
evaluate the machine losses of each candidate.

The flywheel application in flywheel system places a 
number of requirements on the PMSM design and drive 
system. As the flywheel may be frequently accelerated or
decelerated, the PMSM is required to be operated at a wide 
range of high speeds, and the field weakening control is 
required at these high speeds. Initial design of the PMSM is 
carried out using an analytical lumped-parameter prediction, 
then verified by magnetostatic FEA. Once these parameters 
are determined, operation under load is simulated using time-
stepped FEA to obtain full evaluations of iron loss, magnet 
eddy-current loss, efficiency, power factor, etc. The initial 
design uses a rotor with surface mounted magnets (SPM) and 
two-layer fractional-slot short-pitched distributed windings. 
Details about the initial design & operational requirements can 
be found in [6].

II. SLOT SHAPE VARIABLES AND COST FUNCTION

The stator slot shape is described using 6 objective variables 
shown in Fig.1. The adjustment of these variables is
constrained to ensure that total slot area (A) is above a 
minimum value determined by the slot current density. 
Additional constraints include d- and q- axis inductances (Ld, 
Lq) and permanent magnet flux linkage (λm). The optimal slot 
shape should maintain the design values of inductance and
flux linkage to ensure that field weakening control may be 
applied efficiently. As this PMSM adopts a SPM design with 
the equal Ld and Lq, their constraints are similar. The 
constraints on Ld, Lq and λm are determined with quantitative 
analysis based on the d-q axis equations and the field
weakening conditions. The constraints on the objective 
variables and other relevant parameters are shown in Table II.

Fig. 1. Slot shape variables 

The cost function to be minimized is constructed by 
superimposing the penalty functions on the total machine loss:

1 2 3( ) ( ) ( )d mC W P A P L P l= + + +  (1)
W is the total machine Watts loss. The penalty functions P1, P2
and P3 may add positive numbers to the cost function when 
the constrained parameters violate the constraints. To 
determine the penalty factors in the penalty functions for Ld
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11. ELECTRIC MACHINES AND DRIVES

and λm, one needs to evaluate the effect of Ld and λm variations 
on the machine performances using the d-q axis equations.

TABLE I
VARIABLE AND PARAMETER CONSTRAINTS

δ
(mm)

d1

(mm)
d2

(mm)
w1

(mm)
w2

(mm)
b

(mm)
A

(mm2)
Ld, Lq

(mH)
λm

(Wb)
Lower 1.90 0.30 1.00 2.00 4.00 70.00 206.4 0.275 0.085
Upper 4.00 3.00 5.00 8.00 20.00 105.00 -- 0.418 0.108

As the flywheel PMSM would rarely operate at steady 
speeds, it is impractical to minimize the machine losses under 
a range of varying load conditions. The variation of machine 
loss brought by the slot shape adjustment can be evaluated 
with the simulations on the open circuit operations. The 
PMSM losses at open circuit comprise the iron loss and the 
magnet eddy-current loss. The latter can be calculated by 
time-stepped eddy-current FEA, while the former can be 
evaluated by substituting the flux densities obtained by time-
stepped FEA into the classical equations [7].

III. OPTIMIZATION BY EVOLUTION STRATEGY

ES seeks the optimum by simulating the biological 
evolution. There are two categories of ES algorithm: (μ, λ)-ES 
and (μ+λ)-ES. (μ+λ)-ES differs from (μ, λ)-ES in the stage of 
selection. (μ+λ)-ES selects the best μ as the parents for the 
next generation from the combination of μ parents and λ
children. The (1+1)-ES [3], [5] and the (1,5)-ES [4] algorithms
have been applied to PMSM and induction motor design.

In this paper both the (1+4)-ES and the (1,4)-ES are 
applied to the slot shape design optimization for minimization 
of the open circuit losses at the speed of 28,000 rpm. 
Parallelized (1+4)-ES and (1,4)-ES algorithms are efficiently 
carried out on a quad-core computer. Both strategies start from 
the same initial slot design, with the progress of the cost 
function plotted in Fig. 2. It is clear that the (1,4)-ES 
converges to a smaller cost function value than the (1+4)-ES, 
which is trapped into a local minimum. This phenomenon can 
be explained by comparing the manner of selection of the two 
algorithms. In the (1+4)-ES any child inferior to its parent will 
not survive for the next generation, therefore this algorithm 
may escape from a local optimum only if it reproduces by 
chance a mutant which is out of the close neighborhood of the 
local optimum and superior to its parent. With the (1,4)-ES a 
child inferior to its parent still has the opportunity to survive 
for more than one generation, and may eventually help the 
algorithm converge to the global optimum.

Tables II and III summarize the initial slot design and the 
optimal results obtained by the (1,4)-ES. The optimal design 
reduces the total machine loss by 12.7%. Fig. 3 shows the loss 
density distribution of the initial and optimal designs. The 
optimization gives a shorter and narrower slot shape design 
with a smooth tip-tooth transition. This optimal design reduces 
the fluctuation of air gap flux density and brings a notable 
improvement that the magnet eddy-current loss is reduced by 
57.6%. This may greatly reduce the risk of overheating and 
demagnetizing the permanent magnet.

TABLE II INITIAL AND OPTIMAL DIMENSIONS
δ

(mm)
d1

(mm)
d2

(mm)
w1

(mm)
w2

(mm)
b

(mm)
A

(mm2)
Ld, Lq

(mH)
λm

(Wb)
Initial 2.44 2.00 2.49 6.20 12.00 90.58 248.05 0.310 0.102

Optimal 1.94 0.90 3.97 4.88 11.93 87.89 206.40 0.319 0.103
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Fig. 2. Cost function values of parents

 (a) Initial design                             (b) Optimal design
Fig. 3. Loss density distribution

TABLE III INITIAL AND PREDICTED LOSSES
Total (W) Iron(W) Magnet (W)

Initial 756.86 707.49 49.37
Optimal 660.55 639.64 20.91

IV. CONCLUSIONS

Parallelized (1+4)-ES and (1,4)-ES are utilized with Time 
stepped FEA to improve the stator slot design of a flywheel 
PMSM to minimize open circuit losses. The parallel approach
significantly reduces the time required to evaluate the fitness 
of the children, and is practical to implement on a quad-core 
computer. The (1,4)-ES result is superior to the (1+4)-ES and
significantly reduces the total machine loss and the magnet 
eddy-current loss.
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Abstract—The following digest gives a short overview about
the analytical modeling of a electrical linear generator in combi-
nation with numerical optimization and modeling methods. The
final paper will be more detailed and contains results. The digest
gives an overview about the general project steps. The complete
mechatronic system is described by basic differential equations.
Those are combined with analytical terms which describe the
linear machine. Several complexity levels are shown and will be
compared with the results of an FE model in the final paper.

I. INTRODUCTION

Engineers developing electrical machines at university nor-
mally optimize of such machines for special purposes. There-
fore only single aspects like efficiency or room of the machine
shall be optimal. The system in which the machine is mounted,
is usually neglected in those projects.

In this case however a specific combined heat and power
system (see fig. 1) shall be optimized. It exists of a pneumatic
pressure excited alternating piston that is stiff coupled to
a linear permanent magnetic excited synchronous machine
(LPMSM). The complete system should produce about 3-6kW
electric power.

Our task is the design of the linear machine under specific
limitations like maximum speed, acceleration, minimal weight
and low complexity. Other work deals with the design and
modeling of linear induction machines[4]. Especially for space
use or elevator systems one can find well designed machines
[2]. But to achieve high power density a tubular LPMSM
shall be applied within the system. The best configuration is
a tubular plysolenoid type (e.g.[1]).

In our project we use a new ”multidisciplinary” approach
to optimize the machine. The system is reduce to it’s basic

pin
Uind

pout

Fig. 1. Principal view of the system

parameters like pressure, dimensions, weight or forces. Then
a numerical simulation with differential equations and opti-
mization algorithms is used to find best parameter sets. The
feedback of the linear machine is refined more and more with
each phase of the project. The design and optimization pro-
cess combines analytic methods, finite element methods and
numerical optimization what is a new approach in developing
electrical machines.

II. OPTIMIZATION AND DESIGN PROCESS

Fig. 2 gives a general overview about the complete process
we are using to design a machine which fits the system-
requirements. As we know the topology we start directly on the
system level. To do a quick an accurate system optimization
those parameters have to be detected against which the system
behaves sensitive. For those different known optimization
methods like genetic algorithms and particle swarm algorithms
are used to find the best parameter configuration of the
complete system which fits the requirements best in terms
of the criteria. Those are minimal weight, small room, best
dynamics and best efficiency. The first iterations use simple
analytical methods to get feedback of the linear machine.
The feedback has been detected to be mainly the movers
mass, the linear force and the maximum speed of the system.
The methods are refined with each step. After we have a
good quality profile we start with a further level within wich
we design the principal dimensions of the machine and use
analytical methods again for the feedback. On the last level

Fig. 2. Optimization and design process.
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an exact analytical model is implemented and FE methods are
added. On this level we do several iterations to find a complete
machine design which interacts with the complete mechatronic
system in such a way, that the configuration is optimal to fit
the requirements.

III. ANALYTICAL SIMULATION MODEL

The coupled analytical simulation and optimization of the
mechatronic system is done with Simulink. For this purpose
we describe the whole system with differential equations based
on equilibrium of forces (see eq. (1)).

Fpiston − Fr − Fel −m · s̈ = 0 (1)

To find out sensitivities of the system a continuous analytical
description would be necessary. But the electromagnetic force
of the generator and the pneumatic force of the piston are
both nonlinear, not discrete and depend on different variables
(see fig. 3). Especially the speed, which is a result of the
system simulation, provides problems. Therefore the system
is analyzed in discrete intervals, where such variables don’t
have a knick or a saltus. For particular sensitive parameters
like those which influence the force of the piston and those
which influence the force of the generator the optimization
is done several times while the feedback of the generator is
considerer. This feedback is a big challenge of this work. As
it is not reasonable to do a complete design process of the
machine each step we have to use approximations based on the
desired force-speed characteristics. Therefore the mass of the
generator is calculated based on the load factor, a maximum
air gap flux density and a maximum current distribution. The
speed, acceleration and the maximum pressure of the system
are used as boundaries.

Pel → Cload → B̂delta ≈ 0, 8 T, â ≈ 230
kA

m
(2)

τ = B̂delta · â→ AGen,surf → mGen(lax, rtube) (3)

After completing this phase a profile of the system is available
which contains the optimal parameters and main dimensions
to fit the requirements.

IV. EXACT ANALYTICAL MACHINE MODEL

In the next step the analytical model of the generator is
refined and a detailed design process is set up. We run through
this phase several times and add features to the analytics each
time. The aim is to find out, which level of detail has to be
modeled to achieve high quality results for the system profile.
For the machine a classical approach is chosen. The force-
generating terms are described by a fourier transformation

Fig. 3. Pneumatic force on piston depending on the axial position and force
of linear machine depending on the speed.

of the exciting stator currents and a replacement flux of the
permanent magnets. Then the force is calculated and the
inductances of the machine. The complete design process is
aided by a Matlab script what helps to find valid configurations
of the geometry and the windings fast.

The results of this phase are more detailed information of
the coupling between generator and system. This information
is gained by an overlayed optimization process which tries to
find best configurations. In the final paper there will be room
for more detailed information about limitations and reductions
which have to be made to make the optimization converge
within reasonable time.

V. FE FEEDBACK

The last step is an overlay with Finite Elements. This is
more or less a verification of the results from above. With the
parameters we get from the FE we want to do further work
to refine the analytical modeling and gain best quality results
within shortest time. It exists an easy 2D model which directly
gets it’s information from the optimizer and is used to verify
the dynamic behavior. A second 3D model is only used to
detect losses. Especially losses within the machine are a big
challenge and will be added in later work to the analytics.

VI. CONCLUSION

Within this short digest, we are not able to show results.
This digest gives an overview over the complete project and
it’s several steps which have to be done. All in all we can say,
that with modern optimization algorithms it is possible to gain
fast and reliable parameters profiles of complete mechatronic
systems. The best best way is to be reduce systems to minimal
models first and add complexity in several steps. Then in early
states now configurations can be checked under consideration
of main design rules. When the system is fixed, the design
process it self for the single components can start. The time-
costly FE process is placed at the end as verification. This is
a now approach for time effective development of electrical
drives.
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Abstract — The optimization method using the ON/OFF 
sensitivity analysis has an advantage that an epoch-making 
construction of magnetic circuit may be obtained. Therefore, it is 
attractive for designers of magnetic devices. We have already 
developed the ON/OFF method for the optimization of a static 
magnetic field problem, and the effectiveness is verified by 
applying it to the optimization of magnetic recording heads. In 
this paper, the ON/OFF sensitivity method is extended to the 
optimization of the eddy current problem using the adjoint 
variable. The newly developed ON/OFF method is applied to the 
determination of the optimal topology of the yoke of the billet 
heater for rolling wire rod. As a result, the optimal shape of yoke, 
which we could not imagine beforehand can be obtained. It is 
shown that the local heating of the yoke was reduced without 
decreasing the heating efficiency. 

I. INTRODUCTION

 If a topology optimization method which can determine 
the optimal topology by distributing materials in a design 
domain is used, there is a possibility that a new magnetic 
circuit can be discovered, because it is not necessary to set 
design variables in advance[1-4]. The application of the 
ON/OFF method to the 3-D static magnetic field problem, 
such as magnetic recording head[1] has already been reported. 
The topology optimization of a simple linear eddy current 
problem is reported[1,2]. But, the topology optimization 
method which is applicable to the 3-D eddy current problem 
of actual magnetic device is not yet developed. Although a 
technique for calculating the design sensitivity by representing 
it by a finite difference equation is proposed[8], a long CPU 
time is necessary because an adjoint variable method[2] was 
not utilized. 
 In this paper, the ON/OFF method is extended to the 
optimization of the 3-D eddy current problem by combining 
the ON/OFF method with the step-by-step method and the 
adjoint variable method. The ON/OFF method is applied to 
the optimization of the laminated yoke of a billet heater for 
rolling wire rod. The laminated yoke is installed in the outside 
of the coil as the return path of flux which flows in the billet. 
There is a problem that the heating efficiency of the billet 
decreases by the eddy current loss generated in the laminated 
yoke. Then, a 3-D optimal topology of the laminated yoke of 
the model of an actual billet heater which avoids this problem 
is obtained using the newly developed ON/OFF optimization 

method. 

II. ON/OFF METHOD FOR EDDY CURRENT PROBLEM USING 

ADJOINT VARIABLE

 The region (design domain) of which the shape (topology) 
is determined is subdivided into many design cells (finite 
elements). The material distribution is updated so that the 
desired result can be obtained, which allows each design cell 
to have only one state, that of a void (this state is called as 
“OFF”) or a solid (“ON”). We call this algorithm as an 
“ON/OFF method”.  To determine the material distribution by 
judging ON or OFF, the sensitivity dW/dp (p: design variable 
(conductivity or reluctivity), W: objective function) of each 
cell is evaluated. 
 The adjoint variable method[2] is applied for calculating the  
sensitivity analysis method. If the objective function W is the 
function of A’ (time differential of vector potential ∂A/∂t) and 
design variable p, the derivative of W with respect to p is 
given as: 

p

W

p

W

p

W

constpconst
∂
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+
∂
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==′
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A
A

d
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        (1) 

III. OPTIMIZATION OF LAMINATED YOKE OF BILLET HEATER

 Fig. 1 shows the analyzed model of the billet heater. This is 
a 1/8 model. Although the original billet heater has four yokes 
around the coil, it is assumed that there are only two yokes in 
order to reduce the number of elements. Material constants are 
shown in Table I. Since the yoke is laminated, the 
conductivity in the x direction of the yoke is set to zero. The 
relative magnetic permeability was set as 1000, and the linear 
analysis is carried out. The current of the coil is set as 
50000AT (700Hz). The conductivity of the billet at 1200 ˚C is 
used. The copper shield was installed on both sides of yoke in 
order to reduce the perpendicular flux which invades into a 
side surface of the yoke. 
 The objective function is defined as follows in order to 
maximize the eddy current loss in the billet (this is equal to 
minimize W1), and minimize the eddy current loss W2 in the 
laminated yoke: 
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where, ie is the element number in the target region. The 
target region is the billet in the case of W1, and is the yoke in 

the case of W2. Jex, Jey and Jez are the x-, y- and z-components 
of the eddy current vector, σx, σy and σz are the conductivities, 
V is the volume of the element. k1 and k2 are the weighting 
factors. They were calculated using the previous values of W1

and W2 in order to arrange the amplitudes of first and second 
terms of Eq. (5) as nearly the same values. In the optimal 
design, the conductivity σis chosen as the design variable p.

The optimized shape using the ON/OFF method is shown in 
Fig. 2. The yoke became thin toward the center. The flux 
flows into the wide entrance of yoke. Fig.  shows the eddy 
current loss distribution in the yoke. The concentration of the 
eddy current loss in the yoke edge is reduced by optimizing 
the yoke.  Since the volume of a yoke is decreased compared 
with the initial shape, the eddy current loss in the yoke is also 
decreased. Table I shows the eddy current losses at each part. 
Weyoke, Weshield and Webillet are the eddy current loss in the yoke, 
shield and billet in the 1/8 region. Weyoke and Weshield are 
reduced (-52% and -15%) by the optimization, but Webillet is 
almost the same (-2.5%).  

TABLE I 
 EDDY CURRENT LOSSES (1/8 REGION) 

IV. CONCLUSION 

 The ON/OFF method for topology optimization is extended 
to the linear eddy current problem by combining the ON/OFF 
method with the step-by-step method. The newly developed 
ON/OFF method is applied to the optimization of the model of 
actual billet heater. As a result of optimization of the 
laminated yoke of billet heater, the local overheating of the 
yoke was decreased without reducing the heating efficiency. 
The speed up of calculation, the nonlinear analysis etc. are the 
future subjects. 
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Fig. 1.  Model. of billet heater. 
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Abstract—Recently, there are several attempts to extend the 
Differential Evolution (DE) to solve multiobjective problems. In 
this paper, an enhanced multiobjective version with external 
archive to store nondominated solutions of the DE method 
(EMODE) is proposed. The validity of the given algorithm is 
tested to solve the TEAM workshop benchmark problem 25. 
Optimization results on TEAM problem 25 indicate that 
EMODE outperforms the classical multiobjective differential 
evolution algorithm in the global search ability. 

Index Terms—multiobjective optimization, differential 
evolution, electromagnetic optimization.  

I. INTRODUCTION

Many electromagnetic devices optimization problems can 
be treated as optimizations with multiple objectives and 
sometimes more than one decision-maker is involved in 
selecting an appropriate solution.  

Among various evolutionary algorithms, such as 
evolutionary programming, evolution strategy, and genetic 
algorithms, differential evolution (DE), which characterized 
by the different mutation operator and competition strategy 
from the other classical evolutionary algorithms, has shown 
great promise in many numerical benchmark problems [1]-[2]. 

To improve the global optimization property of DE, a novel 
enhanced multiobjective DE (EMODE) algorithm, which uses 
an updating strategy, is proposed in this paper. In this work, 
EMODE was evaluated for the TEAM workshop benchmark 
problem 25. The proposed EMODE is compared to the 
classical MODE proposed in [2] and outperform it, thus 
demonstrating its potential. 

II. MULTIOBJECTIVE DIFFERENTIAL EVOLUTION

DE is a stochastic population-based optimization approach 
[1-2] for global optimization over continuous search spaces. It 
initializes the population randomly by uniform distribution
over search space and maintains a population with NP 
individuals in each generation. A new vector is generated, by 
adding a weighted difference between two random vectors, to 
a third vector. This operation is called mutation. The mutated 
vector is then mixed with the components of another 
predetermined vector and this operation is called crossover. If 
the generated vector by crossover (the offspring) has a lower 
objective function value than the predetermined vector, than it 
replaces the vector, and this operation is called selection. The 
above evolution process is repeated until some termination 
conditions are met. 

Recent studies have shown that in general, the most 
effective DE strategies are DE/rand/1/bin and DE/best/2/bin.
The variant implemented in this paper was the DE/rand/1/bin.
The following is the outline of the MODE inspired in the 
algorithm proposed on [1]. 
i) Initialize a population of individuals (solution vectors) x(t),
i=1,…,n, with random values generated according to a 
uniform probability distribution in the n dimensional problem 
space. Set the generation counter, t = 0; 
ii) Evaluate the population of individuals (potential solutions 
of optimization problem) using an objective function, F.
iii) Generate a new population using mutation operation where 
each new vector (child) is created, according to 

)]()([)()1( 321 txtxftxtz i,ri,rmi,ri −⋅+=+ (1)

iv) Following the mutation operation, crossover is applied in 
the population. For each mutant vector, zi(t+1), an index 
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To decide whether or not the vector ui(t + 1) should be a 
member of the population comprising the next generation, it is 
compared to the corresponding vector  xi( t ). In this context, if 
F is the objective function under minimization, then 
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v) Select a new parent solution between parent and child 
vectors based on nondominated solution criterion. More 
details are presented in [1]; 
vi) Update the external archive. If the archive size As exceeds 
the maximum size, it selected the less crowded solutions based 
on crowding distance to keep the archive size at Nmax.
vii) Increment the generation count,  t = t + 1; 
viii) Loop to step (iii) until a stopping criterion is met, usually 
a maximum number of iterations (generations), tmax.

In the above equations, i=1,2,...,NP is the individual’s 
index of population; j=1,2,...,n is the parameter index; t is the 

time (generation); [ ]T)t(x...,),t(x),t(x)t(x
n21 iiii =  stands for 

the position of the i-th individual of population of NP real-
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valued n-dimensional vectors; [ ]T)t(z.,),t(z),t(z)t(z
n21 iiii =

stands for the i-th individual of a mutant vector; r1, r2 and r3

are mutually different integers and also different from the 
running index, i, randomly selected with uniform distribution 
from the set  { }NPii ,,1,1,,2,1 LL +− ; fm > 0 is a real 

parameter, called mutation factor, which controls the 
amplification of the difference between two individuals and it 
is usually taken from the range [0.1, 1]; randb(j) is the j-th
evaluation of a uniform random number generation with [0, 
1]; and CR is a crossover rate in the range [0, 1]. Usually, the 
performance of a DE algorithm depends on three variables: 
the population size NP, the mutation factor fm, and the 
crossover rate CR.
A. EMODE approach 

In EMODE approach, the parameter fm of (1) is modified 
by (4) through the following equation based on a sinusoidal 
function given by: 

( )[ ][ ])()(sin)()1( 321 txtxAtxtz i,ri,ri,ri −++=+ ωβα   (4) 

where ( )[ ]ωβα Asin+  represents fm; α is a DC component of 

signal, A is the amplitude of signal, ω is the angular frequency 
of signal, β is a gain. The choice of values was α =0.4, A=0.2,
ω=0.2tmax and β varies from an initial value (–180º) to a final 
value of 180º with increments based on tmax.

III. OPTIMIZATION RESULTS

The goal of TEAM workshop problem 25 is to optimize 
the shape of a die mold (see Fig.1). The die mold problem is 
described well described on [3], so here we omitted the 
details. A multiobjective approach was proposed on [4]: to 
obtain a magnetic induction radial distribution on a specified 
line e-f, see Fig.1b, three objectives will be analyzed: the 
magnetic induction distribution must be as homogeneous as 
possible (f1); the local deviation (f2) on the magnetic induction 
amplitude must be minimized; the local deviation (f3) on the 
magnetic induction vector angle must be minimized. See 
details on the definition of {f1, f2, f3}are found on [4] 

Fig. 1. Model of die press. (a) The whole view; (b) enlarged view.

We adopted the following control parameters for MODE 
and EMODE: population size NP = 30, CR = 0.8, As = 200, 
tmax=6,000 and evaluations of objective function. In MODE, 
the mutation factor is given by a constant value, fm = 0.5. 

The experiments were conducted for 30 independent runs 
to evaluate the performance of MODE and EMODE on the 
TEAM workshop problem 25. Simulation results were 
presented in Figs. 2 and showed that the non-dominated 
solutions (30 runs) obtained by EMODE dominated the 
solutions obtained by MODE. The modified EMODE 

obtained a better distribution that the MODE of non-
dominated solutions in Pareto front. 
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Fig. 2. Pareto set points using MODE (left) and EMODE (right)   
TABLE I SPACING AND EUCLIDIAN DISTANCES INDICES

(MEAN VALUES IN 30 RUNS) FOR MODE AND EMODE APPROACHES.
Indices MODE EMODE 

Spacing (f1, f2)
Spacing (f1, f3)
Spacing (f2, f3)

0.01025 
0.01008 
0.00096 

0.01021 
0.01003 
0.00065 

Euclidian Distance (f1, f2)
Euclidian Distance (f1, f3)
Euclidian Distance (f2, f3)

0.09129 
0.09427 
0.023494 

0.08311 
0.08595 
0.02192 

Mean of Pareto solutions 1591 1816 

IV. CONCLUSIONS

Table I reveals that EMODE provides better solutions for 
the TEAM 25, particularly in terms of mean values (30 runs) 
of spacing and normalized Euclidian distance until the origin 
of axis (f1, f2), (f1, f3), and (f2, f3) indices when solving the 
TEAM workshop problem 25. 
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Abstract— Recently, a new class of stochastic optimization 
algorithms called Particle Collision Algorithm (PCA) has been  
proposed. PCA is loosely inspired by the physics of particle 
interactions in a nuclear reactor, particularly scattering and 
absorption. This paper introduces the basics of PCA, proposes a 
modified version of the PCA approach and tests its efficiency on 
Loney’s solenoid benchmark problem. 

Index Terms— Loney’s solenoid design, electromagnetic 
optimization, particle collision algorithm.  

I. INTRODUCTION

Electromagnetic optimization problems often exhibit
multiple optima in the feasible domain and therefore stochastic 
optimization methods are commonly used, mainly due to their 
ability to avoid being trapped in local optima of the objective 
function. A typical example of the rough objective function 
surface typical of many electromagnetic problems is shown by 
Loney’s solenoid problem problem [1]-[6].  

This paper proposes a modified version of a recently 
proposed stochastic optimization algorithm called Particle 
Collision Algorithm (PCA) [7]-[11] to solve Loney’s solenoid 
problem.  

PCA is loosely inspired by the physics of the interaction of 
nuclear particles inside nuclear reactors, mainly scattering, in 
which an incident particle is scattered by a target nucleus, and 
absorption, in which the incident particle absorbed by the 
target nucleus. 

II. FUNDAMENTALS OF PCA 

PCA is a Metropolis-based algorithm that was introduced 
as an alternative to the classical Simulated Annealing (SA) 
algorithm. In PCA a “particle”  that reaches a promising area 
of the search space is “absorbed”, while one that hits a low-
fitness region is “scattered”. Like SA, also PCA is a 
Metropolis algorithm, i.e. a solution worse than the current 
best one may be accepted with a certain probability
(Metropolis criterion) which decreases during iteration. 

The starting point of the algorithm to be presented in this 
paper is called populational PCA or PPCA [10]-[11],  and its 
pseudo code is shown in Figure 1. In contrast with the basic 
PCA in which only one solution evolves in time, in PPCA a 
population of candidate solutions evolve in parallel. 

For i = 1 to Pop_Size 
   - Generate an initial solution Old_Config[i] 

For n = 0 to Niter

    For i = 1 to Pop_Size 
        - Call the Perturbation function 
        - If F(New_Config[i]) < F(Old_Config[i]) 
             Old_Config[i]:= New_Config[i] 
             Call  the Exploration function 
          Else 
              Call the Scattering function 
     End For 
     - Call New_Pop function 
End For 

Perturbation function 
- For i = 0 to (Dimension-1) 
       Upper := Superior Limit [i] 
        Lower := Inferior Limit [i] 
        Rnd = Random(0,1) 
        New_Conf[i] := Old_Conf[i] + ((Upper -    (1) 
          Old_Conf[i])*Rnd) -((Old_Conf[i] - Lower)*(1-Rnd)) 
         If (New_Config[i] > Upper or New_Config[i] < Lower) 
           New_Config[i] := Upper or Lower 

Exploration function 
    For n = 0 to # of iterations 
      - Generate a small stochastic perturbation of the solution 
      - If F(New_Config[i]) < F(Old_Config[i]) 
        Old_Config := New_Config 
       

Scattering function 
     - pscattering = F(New_Config[i]) / best F
     - If pscattering < random (0, 1) 
         Old_Config[i] := random solution 
       Else 
         Call Exploration function 

New_Pop function 
     - Cross two random individuals from population
     - Rank parents and siblings in descending fitness order 
     - Pick the first Pop_Size ranked  individuals  

Figure 1. Pseudo-code of the classical populational PCA algorithm. 
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A. Modified populational PCA (MPPCA ) approach 

In PPCA the mechanism through which new population 
members are generated is embodied in the Perturbation 
function. Here we propose a Modified PPCA (MPPCA) in 
which the uniform distribution in range [0,1] is substituted by a 
truncated Cauchy distribution. Furthermore, the Perturbation 
function is modified by substituting Eq. 1 of Fig. 1 by: 

     New_Config[i] := Old_Config[i] + ((Upper -    
                Old_Config[i])*Rand*U) - 
               ((Old_Config[i] - Lower)*(1-Rand)*P),            (2) 

where U and P are variables with value 0 or 1 with 50% of 
probability for each. 

III. LONEY’S SOLENOID DESIGN

Appropriately stated, Loney’s solenoid design problem 
consists in determining the position and size of two correcting 
coils in order to generate a uniform magnetic flux density B
within a given interval on the axis of a main solenoid.  

The upper half plane of the axial cross-section of the 
system is presented in Figure 1. The interval of the axis, where 
the magnetic flux density B0 must be as uniform as possible is 
(-zo, zo). The current density J0 in the coils is assumed to be 
constant [6]. The separation s and the length l of the correcting 
coils are to be determined while all other dimensions are 
given. Both s and l are bounded in [0,0.2] according to the 
problem definition and optimized by MPPCA. 

  

Figure 1. Axial cross-section of Loney’s solenoid 
(upper half-plane). 

In particular, three different basins of attraction of local 
minima can be recognized in the domain of F with values of F
> 4·10-8 (high level region), 3·10-8 < F < 4·10-8 (low level 
region), and F < 3·10-8 (very low level region - global 
minimum region) [4].  

In this work, the parameters of  PPCA and MPPCA are set 
as follows: the population size is 30 and the stopping criterion 
was 200 iterations, in other words, both PCA approaches 
performed 6,000 objective function evaluations in each run.  

In order to eliminate stochastic discrepancy, in each case 
study 30 independent runs were made for each of the 
optimization methods.  

The classical PPCA found the best design with s=13.5994 
cm and l=4.0420 cm with F(s,l)=2.4338·10-8, and the proposed 
MPPCA obtained the best design in 30 runs with s=10.7332 

cm and l=1.0871 cm with F(s,l)=2.03920·10-8. 

TABLE I 
SIMULATION RESULTS OF F IN 30 RUNS

Optimization 
Method 

F(s, l)·10-8

 Maximum 
(Worst) 

Mean Minimum 
(Best) 

Std. Dev. 

Populational PCA 21.5249 8.1522 3.4251 5.1175 
MPPCA 13.4685 5.8887 2.3920 2.5359 

IV. CONCLUSIONS  

The effectiveness of MCCPA with respect to PCA has been 
shown on Loney’s solenoid design problem. In the extended 
paper the algorithm will be commented in greater depth, futher 
modifications to it will be analyzed and the algorithm with be 
compared with other stochastic optimization methods. 
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3.WAVE PROPAGATION 

Abstract — The propagation characteristics of the 
fundamental mode of annular ring microstrip antennas 
(ARMSA) on double-layered ferrite substrates are discussed. A 
full-wave analysis is formulated based on the spectral domain 
technique in conjunction with Galerkin approach. It takes into 
account the effects of the applied dc magnetic bias field in the 
behavior of these structures. Numerical results of resonant 
frequencies and radiation patterns are found as functions of 
some geometrical and ferrite parameters.  

I. INTRODUCTION 
The ever increasing demand on wireless communication 

systems requires the development of lightweight, low-
profile, low-cost and flush-mounted antennas. Microstrip 
patch antennas offer these useful features and are ideally 
suited for applications requiring compactness and integration 
with monolithic microwave integrated circuits (MMICs) [1]-
[4].  

One of the advantages of using ARMSA is that it offers 
smaller size and larger bandwidth when compared to other 
conventional microstrip antennas, for a given frequency. The 
small size is an important requirement for portable 
communication equipment, such as global positioning 
satellite (GPS) receivers and several mobile communication 
applications. If a magnetized ferrite is used as a substrate 
instead of an isotropic dielectric, an additional degree of 
freedom to the design of the antenna is provided due to the 
permeability characteristic of the ferrite. Also, the high 
permittivity of the ferrimagnetic material leads to a reduction 
in the antenna dimensions allowing miniaturization.  

In most cases, the analysis of the ARMSA on ferrite has 
been performed using approximate methods [1]. However, 
accurate results can be obtained adopting a full-wave 
approach in conjunction with the method of moments [4].  

This paper presents an analysis of ARMSA printed on a 
double-layered substrate that is constituted by an isotropic 
and a ferrite layers. Suspended antennas and antennas on a 
single isotropic layer can be analyzed as particular cases. The 
analysis uses the full-wave formulation by means of the 
Hertz vector potentials method in the Hankel transform 
domain. The dyadic Green function and Galerkin’s method 
are used to determine the resonant frequencies and radiation 
patterns. 

II. THEORY 
A cross section view of the ARMSA is shown in Fig. 1. 
Region 3 has thickness d3 and is filled up with a dielectric, 
whose permittivity is ε3. The ferrite layer (region 2) has 
thickness d2, scalar permittivity ε2, and tensor permeabilityµt . 
For a ferrite magnetized in the z direction, µt  is given by [2]: 
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where the components µ and k are dependent on the 
operating frequency ω, the saturation magnetization of the 
ferrite 4πMs, and the applied dc magnetic-field H0. The 
region 1 has permittivity ε0 and permeability µ0 denoting the 
free-space. 

 
Fig. 1. Annular ring microstrip patch antenna on ferrite substrate. 

 
The electric and magnetic Hertz potential vectors, ( eπ

r
) 

and ( hπ
r

), respectively, are defined along the z-direction, 
according to the orientation of the applied magnetic bias 
field, and can be written in terms of cylindrical functions [3]. 

In the spectral domain, the electric and magnetic fields 
are expressed in terms of the φρ ΕΕΕ j±=± , as follows: 
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Similarly, for the magnetic field, we can write that: 
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On the conducting patch plane, z = d23 (Fig. 1), by
imposing the boundary conditions, the transformed electric 
field components are written as functions of the transformed 
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3.WAVE PROPAGATION 

current density components allowing the determination of the 
impedance matrix, in the Hankel domain, as follows [3]-[4]: 
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Parseval's theorem and Galerkin's method are used to 
obtain the determinantal equation that enables the numerical 
calculation of the resonant frequencies. 

III. RESULTS AND DISCUSSIONS 

 Numerical results are presented for the ARMSA depicted   
in Fig. 1. The ring patch has inner radius r1 and outer radius 
r2. The dc magnetic bias field H0 is applied along z direction. 
 The curves obtained for ARMSA printed on a double-
layered substrate are shown in Fig. 2 and Fig. 3. It is 
observed in Fig. 2 that the resonant frequency increases with 
the dielectric thickness (d3). The influence of the magnetic-
bias field H0 is also verified. Radiation pattern for Eθ field is 
shown in Fig. 3. The patch is supported by a double layered 
substrate. The dc magnetic bias field is H0 = 1500 Oe. The 
isotropic layer has permittivity εr3 = 2.32. It is considered 
three different values for d3 thickness. It is observed that the 
directivity increases with the isotropic layer thickness.  

Fig. 4 depicts the influence of the air gap thickness on the 
resonant frequency of ARMSA, against H0. The air gap is 
varied from 0.7 mm to 2 mm. It is found that the resonant 
frequency of the suspended ARMSA can be tuned by 
adjusting the air gap width. Observe also the effect of a 
varying dc bias field on the resonant frequency and a 
magnetic tuning possibility.  

 
Fig. 2. Resonant frequency as a function of the dielectric thickness.  

Fig. 3. Radiation pattern (Eθ) as a function of three different values of the 
dielectric (εr3 = 2.32) thickness: - - - d3 = 0. 20 mm, _ _ d3 = 0.45 mm,         

and    ___ d3 = 3 mm. Ferrite substrate: H0 = 1500 Oe. 

 
Fig. 4. Resonant frequency as a function of the air gap thickness.  

 
Fig. 5 shows the behavior of the resonant frequency as a 

function of the ratio r2/r1 (r1 = 0.35 cm), for different values 
of H0. Note that the resonant frequency of the antenna shifts 
to a higher frequency and the results approach those for the 
isotropic case as the dc magnetic field strength increases. For 
a particular value of H0, the resonant frequency increases 
when the annular ring dimensions are decreased. 

 
Fig. 5. Resonant frequency as a function of the ratio r2/r1. 

IV. CONCLUSION 

This paper has described an analysis of the behavior of the 
ARMSA supported by ferrite material. Ferrite-resonator 
antennas exhibit greater agility in controlling their radiation 
characteristics by the application of a dc magnetic bias field.  
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3. WAVE PROPAGATION 

Abstract — The CFL conditions for finite integration methods 
using parallelogram and parallelepiped elements are derived. 
Piecewise uniform elements allow time-step that is √3 times as 
large as that for linearly interpolated elements.  

I. INTRODUCTION 
  Finite integration (FI) methods [1]-[4] enable the use of 

nonorthogonal grids in electromagnetic-wave analysis.   
Several methods to construct permittivity and reluctivity 
matrices have been proposed [3]-[5] because they greatly 
affect the efficiency and accuracy of FI methods. The 
efficiency depends on the computational cost of permittivity 
matrix inversion and on the Courant-Friedrichs-Lewy (CFL) 
condition, which gives the maximum time-step for stable 
computation. Previous works have derived the CFL conditions 
for nonorthogonal grids [6]-[9]. However, the CFL criterions 
are not explicitly deduced from the permittivity and reluctivity 
matrices. This article derives CFL conditions for FI methods 
using parallelogram and parallelepiped grids.  

II. CFL CONDITION 
The time-stepping of the FI method is written as 

ek+1 = ek + Δtε−1CTνbk+1/2 ,  bk+3/2 = bk+1/2 − ΔtCek+1  (1) 
where e denotes the vector of line integrals of the electric field 
along the edges of primal grid, b is the vector of magnetic 
fluxes across the faces of primal grid, C is the curl matrix for 
primal grid, ε is the (global) permittivity matrix, and ν is the 
(global) reluctivity matrix.  

The CFL condition is given as [8] 
Δt ≤ 2 / γmax

1/2                 (2) 
where γmax is the maximum eigenvalue of Γ given by  

Γ = Cε−1CTν .                (3) 

III. CFL CONDITIONS FOR PARALLELOGRAM ELEMENTS 

Fig. 1(a) shows a parallelogram element used for FI 
analysis of TE wave, where l1 and l2 are two edges of primal 
grid. (Whitney-like) Linearly interpolated basis functions for 
parallelogram edge element are given as  

w1(r) = (1−t)f1/S ,  w2(r) = (1−s)f2/S , 
w3(r) = tf1/S ,  w4(r) = sf2/S            (4) 

where r = sl1+tl2, f1 = l2×ez, f2 = ez×l1, S = |l1×l2|, and ez is the 
unit vector along the z-direction. Piecewise uniform basis 
functions [4] are given as  

w1(r) = U(1/2−t)f1/S , w2(r) = U(1/2−s)f2/S , 
w3(r) = U(t−1/2)f1/S , w4(r) = U(s−1/2)f2/S     (5) 
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Fig. 1. Parallelogram element 
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Fig. 2. Eigenmodes corresponding to ε: (a) e1, and (b) e2 

 
where U(x) = 0 (x<0), 1/2 (x=0), and 1 (x>0).  

Local permittivity matrix εL = {εLij}, εLij = ε∫wi⋅wjdS for the 
linearly interpolated basis functions is written as 
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ε Sε .   (6) 

It has eigenvalues λ1= εSw1⋅w1/6 = εl2
2/6S and λ2= εSw2⋅w2/6 = 

εl1
2/6S for eigenvectors eL1 = (1, 0, −1, 0) and eL2 = (0, 1, 0, 

−1), respectively.  The piecewise uniform basis functions give 
εL eigenvalues 3λ1 and 3λ2 for eigenvectors eL1 and eL2.   

The global permittivity matrix ε is constructed by 
assembling εL. For simplicity, a regular parallelogram grid as 
depicted in Fig. 1(b) is used with periodic boundary 
conditions for eigenvalue analysis. The permittivity ε and 
permeability μ are assumed to be uniform. The linearly 
interpolated basis functions give ε eigenvalues 2λ1 and 2λ2 for 
eigenvectors e1 = (1, 0, −1, 0, ...)T and e2 = (0, 1, 0, −1, ...)T, 
respectively (see Fig. 2) whereas the piecewise uniform basis 
functions give ε eigenvalues 6λ1 and 6λ2 .  

On the other hand, the reluctivity matrix ν is given as 
ν = 1/μS 1                   (7) 

where 1 is the unit matrix.  
According to the eigenvalues and eigenvectors above, 

matrix Γ has the maximum eigenvalue γmax = 12c2 ( 1/l1
2 + 

1/l2
2 ) or 4c2 ( 1/l1

2 + 1/l2
2 ) for the linearly interpolated basis 

functions or the piecewise uniform basis functions, 
respectively, which has an eigenvector (1, −1, ...)T. 
Consequently the CFL conditions is written as 

Δt ≤ α / c(1/l1
2+1/l2

2)1/2             (8) 
where α is 1/√3 for the linearly interpolated functions and is 1 
for the piecewise uniform functions.  
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3. WAVE PROPAGATION 

IV. CFL CONDITIONS FOR PARALLELPIPED ELEMENTS 

Fig. 3(a) shows a parallelepiped element used for FI 
analysis, where l1, l2, and l3 are three edges of primal grid. 
Linearly interpolated basis functions for parallelepiped edge 
element are given at position r = sl1+tl2+ul3 as  
w1 = (1−t)(1−u)f1/V, w2 = (1−u)(1−s)f2/V, w3 = (1−s)(1−t)f3/V,  
w4 = t(1−u)f1/V,        w5 = u(1−s)f2/V,        w6 = s(1−t)f3/V,  
w7 = (1−t)uf1/V,        w8 = (1−u)sf2/V,        w9 = (1−s)tf3/V,  
w10 = tuf1/V,             w11 = usf2/V,              w12 = stf3/V  (9) 

where f1 = l2×l3, f2 = l3×l1, f3 = l1×l2, and V = (l1×l2)⋅l3. 
Piecewise uniform basis functions [4] are similarly defined.  

The local permittivity matrix εL is given by εLij = ε∫wi⋅wjdV. 
It has eigenvalues λ1 = εS23

2/36V, λ2 = εS31
2/36V, and λ3 = 

εS12
2/36V corresponding to eigenvectors (1, 0, 0, −1, 0, 0, −1, 

0, 0, 1, 0, 0)T, (0, 1, 0, 0, −1, 0, 0, −1, 0, 0, 1, 0)T, and (0, 0, 1, 
0, 0, −1, 0, 0, −1, 0, 0, 1)T, respectively, for the linearly 
interpolated basis functions, where Sij = |li×lj|. The piecewise 
uniform basis functions give εL eigenvalues 9λ1, 9λ2, and 9λ3.  

The global permittivity matrix ε is constructed on regular 
parallelepiped grid with periodic boundary conditions as in 
Fig. 3(b). Corresponding to εL, the matrix ε has eigenvalues 
4λ1, 4λ2, and 4λ3 with eigenvectors (1, 0, 0, −1, 0, 0, ...)T, (0, 1, 
0, 0, −1, 0, ...)T, and (0, 0, 1, 0, 0, −1, ...)T, respectively, for the 
linearly interpolated basis functions. The piecewise uniform 
basis functions give ε eigenvalues, 36λ1, 36λ2, and 36λ3.  

Linearly interpolated basis functions for parallelepiped 
face element are given as  

wf
1 = (1−s)g1/V2 ,  wf

2 = (1−t)g2/V2 ,  wf
3 = (1−u)g3/V2 ,  

wf
4 = sg1/V2 ,        wf

5 = tg2/V2 ,         wf
6 = ug3/V2   (10) 

where g1 = f2×f3, g2 = f3×f1, g3 = f1×f2. The corresponding 
local reluctivity matrix νL is given by νLij = 1/μ ∫wf

i⋅wf
jdV as 
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                       (11) 
It has eigenvalues κ1 = l1

2/6μV, κ2 = l2
2/6μV, and κ3 = l3

2/6μV 
with eigenvectors (1, 0, 0, −1, 0, 0)T, (0, 1, 0, 0, −1, 0)T, and 
(0, 0, 1, 0, 0, −1)T, respectively, for the linearly interpolated 
basis functions (see Fig. 4). The piecewise uniform basis 
functions give νL eigenvalues 3κ1, 3κ2, and 3κ3.  

Corresponding to νL, the global permittivity matrix ν has 
eigenvalues 2κ1, 2κ2, and 2κ3 with eigenvectors ef

1 = (1, 0, 0, 
−1, 0, 0, ...)T, ef

2 = (0, 1, 0, 0, −1, 0, ...)T, and ef
3 = (0, 0, 1, 0, 0, 

−1, ...)T, respectively, for the linearly interpolated basis 
functions. The piecewise uniform basis functions give ν 
eigenvalues 6κ1, 6κ2, and 6κ3.  

According to the eigenvalues and eigenvectors above, the 
maximum eigenvalue γmax of Γ is given by.  

γmax =  p1 + ( p1
2 − 4p0 )1/2           (12) 

p1 = { (κ2+κ3)/λ1 + (κ3+κ1)/λ2 + (κ1+κ2)/λ3 } / 3α2 ,  
p0 = (1/λ1λ2+1/λ2λ3+1/λ3λ1)(κ2κ3+κ3κ1+κ1κ2) / 9α4   (13) 

The coefficient α is 1/√3 for the linearly interpolated basis 
functions and is 1 for the piecewise uniform basis functions.  
The corresponding eigenvector is a linear combination of ef

1, 
ef

2, and ef
3. 

When S23 = l2l3 and S31 = l3l1, the CFL condition becomes  
Δt ≤ α / c{(1/l1

2+1/l2
2)/sin2θ12+1/l3

2}1/2       (14) 
where θ12 is the angle between l1 and l2. Eq. (14) for the 
piecewise uniform functions (α=1) agrees with the CFL 
condition for the conventional FDTD method (sinθ12 = 1).  
 

(a)

l2

e7

e2
e4

l1

l3

e1

e3

e6

e5

sl1+tl2+ul3
e8

e12

e10

e9
e11

x

z
y

 (b) 1

3
2

4

56

7

3

9

2

8

1 13

6

3

8

2

13

14
3

1916

21

186

12 11
16

197

24
4

2
11

12

13
95

22

8

10

15

17
18

20

23

820

14
1

1

13

6

 
Fig. 3. Parallelepiped element 
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Fig. 4.  Eigenmodes corresponding to ν: (a) ef

1, (b) ef
2, and (c) ef

3   
 

V. CONCLUDING REMARKS 

A piecewise uniform parallelogram or parallelepiped 
element allows a time-step that is √3 times as large as that for 
a linearly interpolated element. Detailed discussions and 
numerical verification will be presented in the extended paper.  
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3. WAVE PROPAGATION 

Abstract — In this paper a genetic algorithm is used to obtain 

an equation for path loss in an urban environment. The model 

was developed from measurements at 947 MHz, in Munich, 

Germany, and validated with data from measurements in Ottawa, 

Canada, at 910 MHz. 

I. INTRODUCTION 

The calculation of the transmitted power attenuation as it 

propagates through space (path loss) is a fundamental 

component in the design of wireless communication systems. 

The electromagnetic wave between the transmitter and receiver 

propagates through different paths, from direct line of sight 

(LOS) to a situation where the environment is obstructed by 

buildings, trees etc [1]. 

Several propagation models are available to calculate the 

fluctuations in the signal intensity in urban environment. Due 

to the nonlinear and complex characteristics of propagation in 

these environments, some researchers suggest the use of 

artificial intelligence techniques to predict the path loss [2]-

[3]. In this work, a new hybrid model is presented, which 

combines measures with genetic algorithm to obtain a equation 

that considers various characteristics of the propagation 

environment.  

II. THE PROPOSED MODEL 

The log-distance path loss model, used for the mean path 

loss is given by the equation: 

 

( ) 
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100BB log10)(dB
d

d
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               .    
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where n is the path loss exponent which indicates the rate at 

which the path loss increases with the distance d; and d0 is the 

reference distance, normally 1 km when large coverage 

cellular systems are used or 1 m to 100 m in microcellular 

systems. In (1), LB(d0) is the mean path loss at reference 

distance d0, calculated using some model or through field 

measurements [1]. In this model, n is defined in a subjective 

manner, being dependent on the propagation environment. For 

example, n = 2 for free space; 2.7 ≤ n ≤ 3.5 for urban area 

cellular radio; and 4 ≤ n ≤ 6 when the path is obstructed by 

buildings. Even for a particular kind of environment, there is a 

range of values to be chosen. In order to quantify the different 

characteristics of the propagation environment, the following 

equation is proposed to calculate the mean path loss, which has 

the advantage of quantifying the environment, removing the 

subjective nature in the choice of n in (1): 
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where hT and hR are the height of transmitter and receiver 

antennas, respectively; ma and bn varies with the receiver 

position and the propagation environment between the 

transmitter and receiver. 

The parameter ma is defined in the [0, 1] interval and 

quantifies the building occupation in an area within a sector of 

30º from the transmitter towards the receiver. Its value is 

obtained by simple average of the percentage of area covered 

by buildings for distances equal to d/3, 2d/3 and d. Thus, a 

higher correlation between ma and the path loss is obtained. 

The value of bn is the number of buildings that block the direct 

line of sight between transmitter and receiver. 

The constants A, B, C, D, ..., N and the functions f(), g(), 

h() and i() were determined by a genetic algorithm, a tool that 

provides a simple way to test various functions and constants 

without using brute force technique. For the genetic algorithm 

input, measurements provided by Mannesmann Mobilfunk 

covering an area of 2.4 km × 3.4 km in Munich, Germany were 

used [4]. The database contains building data in vector format, 

the height of each building, and measures of path loss to 

around 2300 points on 3 different routes. The measurements 

were performed at 947 MHz and the heights of transmitting 

and receiving antennas were 13 m and 1.5 m respectively. 

Measured values are available for distance between 

approximately 100 m and 2 km. This database was separated 

into two sets of measures: one for training and another for 

testing. The set used for training was formed from 44 

measurements selected to represent different values for the 

triple (ma, bn, d). 

In this genetic algorithm, each chromosome represents the 

constants A to N and the functions f(), g(), h() and i() shown in 

(2). Each constant was coded with a 15-bit binary string: 1 bit 

for the signal, 7 for the fractional part, and 7 for the integer 

part. The functions were coded in a 3-bit binary string. 

For each of the 44 samples of the test database, the path 

loss is determined using (2) and the constants and functions 

given by the chromosome decoding. The mean square error 

between the measurements and the predicted path loss 
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3. WAVE PROPAGATION 

determines the chromosome fitness. The higher the error, the 

lower the fitness and vice versa. 

Using this methodology, the following equation was 

obtained for the path loss: 
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III. RESULTS AND CONCLUSION 

Figure 1 shows the comparison between measured path 

loss and the predicted one by the proposed model and the 

COST 231-Walfish-Ikegame (COST-WI [5]) through the three 

routes considered. The first order statistics for this cases is 

presented in Table I. Figure 2 shows the path loss measured, 

predicted using the proposed model and the COST-WI to data 

available in [6]. Table II summarizes the first order statistics 

for this case. As can be seen, the proposed model describes 

with good accuracy the measured path loss. 

The proposed model was developed and tested near 900 

MHz for distances between 100 m and 2 km. The results show 

that the method has remained consistent when the propagation 

environment is changed. Equivalent models can be built for 

different frequencies bands, from measurements and (2). 

The great advantage of the proposed model is the 

possibility of obtaining the parameters directly related to the 

propagation environment using the genetic algorithm. To do 

this, it is necessary to have measurements in some part of the 

area of interest. This allows the model to become flexible and 

easily adaptable to the region of under analysis. 

TABLE I 

FIRST ORDER STATISTIC FOR MUNICH DATABASE 

Model  Route 0 Route 1 Route 2 

COST-WI Mean error (dB) 

Standard deviation (dB) 

10.9 

7.6 

14.5 

6.9 

15.5 

8.7 

Proposed Mean error (dB) 

Standard deviation (dB) 
−1.7 

5.5 

−2.6 

4.6 

0.4 

6.2 

TABLE II  

FIRST ORDER STATISTIC FOR OTTAWA DATABASE 

Model   

COST-WI Mean error (dB) 

Standard deviation (dB) 

5.7 

6.2 

Proposed Mean error (dB) 

Standard deviation (dB) 
−1.8 

4.2 

 

 

Fig. 1. Comparison between measured and predicted path loss in Munich 

 

 

Fig. 2. Comparison between measured and predicted path loss in Ottawa 
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   Abstract ⎯ It is well known that refractive indexes of 
materials used for fabricating optical fibers are affected by 
variations of temperature. In this way, it can be expected a 
dependence on the temperature for several parameters related 
with optical fibers and devices based on them. The 
understanding of this dependence can lead to the design of 
temperature sensors or athermal devices through the 
maximization or the compensation of these effects, respectively. 
In this work we proposed and analyzed the coupling 
characteristics for a directional coupler based on two ultralow 
dispersion fibers separated by an small distance for power 
monitoring purposes. An efficient vectorial finite element 
method has been used for this purpose.  

  Keywords ⎯ Numerical Techniques, Directional Coupler, 
Temperature. 

I. INTRODUCTION

    Optical fibers have several characteristics which permit 
their use as an excellent transmission medium for short and 
large distances. The chromatic dispersion is one of the most 
important parameters and should be carefully analyzed during 
their design. There are several profiles, including some based 
on photonic crystals with very low chromatic dispersion for 
several wavelengths [1-3]. On the other hand, they are also 
used to design devices to split the power in two or more ports 
by using directional couplers. In this work, a novel optical 
fiber [1], See Fig. 1a, where an air hole has been introduced 
at the core center, has been used to design a directional 
coupler and their coupling characteristics as well as its 
temperature dependence has been analyzed by using the 
beam propagation method based on the frequency domain 
finite element [4]. The directional coupler is composed by 
two of these fibers disposed in parallel, See Fig. 1b. 

  The Sellmeier equation used for the refractive index of 
fused silica (SiO2), including the temperature, is:   

( ) ( )2 2 2/ 1 / / 1 /n A B C D Eλ λ= + − + − (1) 

where A, B, C and D are the first order temperature Sellmeier 
coefficients and E is a constant, the values used were taken 
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Fig. 1.  (a) Refractive index profile of the step index holey fiber and (b) 
proposed directional coupler.

from [5]: A = 1,31552 + 6,90754 x 10-6 T; B = 78,8404 + 
2,35835 x 10-5 T; C = 110,199 + 5,84758 x 10-7 T; D = 
0,91316 + 5,48368 x 10-7 T and E = 100. Here, T represents 
the temperature in oC and λ is the wavelength. These 
coefficients can be used for 26 oC < T < oC  and λ > 1.1 μm. 

The refractive index of an optical fiber n(r,λ) can be 
written as n(r,λ) = η(r) ns(λ), where ns(λ) is the refractive 
index of fused silica and η(r) is the normalized refractive 
index which only depends on the radial coordinate [3].  

II. FINITE ELEMENT FORMULATION

The FEM is widely used for the analysis of photonic 
devices [1-4], [6-7]. Their accuracy for wave propagation is 
shown in [4] and [7].  

The chromatic dispersion (CD) is a key parameter related 
to the widening of optical pulses and signal degradation with 
the propagated distance. In this way, the directional coupler 
used here was implemented by placing two ultralow 
dispersion fibers in parallel. The main application of this 
directional coupler is the power monitoring by tapping a 
fraction of the transmitted power. 

 To analyze the coupling characteristics, we start from the 
vectorial Helmholtz equations in 2D, with perfectly matched 
layers (PMLs) to avid reflections from the computational 
domain,  

02
0 =−⎟

⎠
⎞

⎜
⎝
⎛ ×∇×∇
=

HkHk
rr (2) 

where ε1=k  and ε  represent the relative permittivity 

tensor, respectively. Considering a dielectric material with 
transversal anisotropy and defining 

xû ,
yû  e 

zû associated 

with the directions x, y e z respectively, ε  can be written as 
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. After some 

manipulating algebra and considering an slow variation for 
the fields and the medium in the propagation direction, z, [4], 
equation (2) can be rewritten as: 
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where ak , bk  and ck  represent transversal tensors given in 
[4]. Applying the finite element method for the transversal 
direction, we obtain, 
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where {
Th
r

} represents a vector with the unknown fields  hxj

and hyj, {0} is a null vector and [M] e [K] are the global 
matrices defined in [4]. Using the Padé approximation (1,1) 
[4], in (3), results in:   
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where, [ ] [ ] [ ] [ ])(
4

1~ 2
2

MKMM γ
γ

+−= . Finally the finite difference 

method is applied in the propagation direction, obtaining a 
matrix equation, 
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where Δz is the step size along z and θ (0≤θ ≤1) is used to 
control the stability ( 0.5 ≤ θ ≤ 1 ). For θ = 0.5 we obtain the 
Crank Nicholson scheme.  

The effective index is updated during each propagation 
step to maintain the accuracy according to [4], 
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where † represents the transpose conjugated complex. 

III. NUMERICAL RESULTS

We considered two identical optical fibers with 
parameters: η1 = 1.05214, η2 = 1.0, r1 = 0.2 μm and r2 =1.8 
μm and separated by a distance d = 0,5 μm. See Fig. 1b. The 
coupling characteristics at several operating wavelengths and 
temperatures were thoroughly analyzed. The ratio of 
transferred power can be controlled by changing the core 
separation and the length of the coupler.  

The computational domain was 9 μm (x direction) and 9 
μm (y direction) discretized by 12,000 quadratic elements 
with a propagation step size Δz = 0.1 μm.  The left fiber was 

excited with the xE11  mode, which (neff) is obtained from the 

relation 0/ Kβ , through the modal analysis [6]. The Fraction 

of power as a function of the distance is shown in Fig. 2, for 
λ = 1.53 μm. The coupling length obtained by the Vectorial 
Beam Propagation Method (VBPM) is in good agreement 
whit the one obtained by the modal analysis by using the 
beating length definition [7]. The maximum transfer of 
energy for T = 280C happens at z = 444.5 μm, and for T = 
3000C it happens at z = 446 μm. We have then a small 
variation of 1.5 μm for the coupling length at the above 
mentioned temperatures. The explanation for small coupling 
length variations can be explained by the fact that the 
coupling length of this directional coupler is very short. 
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Fig. 2.  Fraction of normalized power as a function of the distance in (a) 
core 2 of Fig 1b (maximum) and (b) core 1 of Fig 1b (minimum). 

IV. CONCLUSIONS

In this work, the vectorial frequency domain finite element 
method has been used to analyze efficiently the temperature 
dependence of the coupling length of directional couplers. 
We can observe a small dependence of the coupling length on 
the temperature. Several other geometries are under analysis 
and will be presented at the time of the conference.  
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Abstract - The two-dimensional parabolic equation is 
extensively used to make predictions for the radio wave 
propagation in the troposphere. However, the effects associated 
with the lateral variations of a realistic ground are completely 
ignored by two-dimensional models. In this paper, these effects 
are considered, extending the two-dimensional parabolic 
equation for three dimensions. The vector fields are 
represented in terms of two Hertz potentials. So, depolarization 
of the fields is automatically included in the formulation. The 
impedance boundary condition of the ground is applied after a 
transformation of variables. The problem solution through the 
finite difference method leads to a sparse system of linear 
equations more general, which will be solved by an interactive 
method. 

I. INTRODUCTION 
Radio signals propagating in the VHF and UHF bands 

can be strongly attenuated by the effects of irregular terrain. 
Attenuation in excess to that due to free space is normally 
estimated using one of many classical (Bullington, Epstein-
Peterson and Deygout) or ITU-R models (Recommendations 
ITU-R P.526 and ITU-R P.1812) [1]. These models are 
semi-empirical extensions of the basic theoretical model of 
diffraction by a knife-edge obstacle and have been 
continually improved by work performed over decades. 
Computationally-intensive models based on parabolic 
differential equations, integral equations or ray tracing have 
also been developed with prediction purposes [1]. In the 
process, attempts have been made to approximate available 
experimental data as closely as possible. Although the 
agreement between predictions and measurements are 
steadily improving, errors are still high. 

All the above are two-dimensional models that assume 
lateral uniformity of the terrain. This approximation neglects 
energy propagating outside the vertical plane containing the 
transmitting and receiving antennas, which may be a 
reasonable assumption for some environments. However, in 
the presence of steep terrain, lateral diffraction and 
scattering may have a significant impact on propagation.  

To include the effects of the lateral terrain variations and 
to investigate the possibility of obtaining better agreement 
between predictions and measurements, a three-dimensional 
formulation of the parabolic approximation to the Helmholtz 
equation will be presented. There are relatively few similar 
formulations available in the literature [2]-[5], which will 

not be discussed here. However, it should be mentioned that 
they incorporate one or more features which may limit their 
usefulness for the present application. 

The present formulation assumes a two-dimensional 
irregular terrain on top of the spherical Earth. It is developed 
with basis on spherical coordinates, which easily 
accommodates the spreading of the transmitting antenna 
beam with azimuth. Atmospheric effects are represented by 
a height-dependent index of refraction. The vector 
electromagnetic field is expressed in terms of the vertically-
oriented electric and magnetic Hertz potentials, each 
satisfying the scalar Helmholtz equation. This representation 
automatically guarantees divergent-free electric and 
magnetic fields at all points of space. The two Hertz 
potentials, and consequently also the electromagnetic field 
components, are coupled by the surface of the irregular 
terrain through the vector impedance boundary condition. 
So, depolarization is included in the present formulation. 

A simple mapping is applied to the region of interest to 
transform the irregular terrain into a spherical surface. As a 
consequence of this mapping, the resulting Helmholtz 
equation and its parabolic approximation include additional 
variable coefficients, and the components of transformed 
impedance boundary condition assume more complex 
forms. On the other hand, the components of the new 
boundary condition are enforced on a simple spherical 
surface. The computational domain is truncated by forcing 
absorbing conditions at the upper and the two lateral 
boundaries of the region of interest. The absorbing boundary 
conditions are designed to smoothly weaken the field 
outside the propagation domain and to avoid spurious 
reflections originating from the artificial limits imposed to 
the computational domain. 

The parabolic equation and the appropriate boundary 
conditions define an initial value problem that can be solved 
using a numerical scheme that progresses along the axial 
direction. That is, the known field values on a surface 
transverse to the axial direction are used to determine those 
on a surface one step further away from the source. For the 
initial condition, an aperture source distribution is specified 
to create a Gaussian beam in the far field region. 

Model predictions are compared with height-function 
measurements of field strength performed using an OFCOM 
(Swiss Federal Office of Communications) vehicle, 
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equipped with a height-adjustable telescopic mast (up to 11 
m in height) that support a Yagi antenna, being able to 
automatically measure the field strength versus height or 
azimuth. The measurement data were processed and the 
final results were calculated, plotted and made available for 
further studies such as the present one. 

II. FORMULATION 
Assuming the harmonic dependence with time e-iωt, 

source-free media, and assuming that the index of refraction 
of the atmosphere varies only in the radial direction, the 
Maxwell equations are manipulated to express the vector 
electric and magnetic fields in terms of scalar vertically-
oriented electric and magnetic Hertz potentials 

��� � �
�� � � � � �Π��̂� � �

�� iωµ�� � �Π��̂�        (1) 
 

���� � ��

��µ�
� � �Π��̂� � � � � �

�� � � �Π��̂��          (2) 

In the above equations, k is wave number, μο is the 
permeability of vacuum, n is index of refraction, �̂ is the 
radial unit vector, and the Hertz potentials Πe,m satisfy the 
scalar Helmholtz equation 

��Π�,� � ����Π�,� � �                       (3) 

Next, the complex amplitude u(r,θ, ϕ) is defined in spherical 
coordinates by 

Π�,���, �, �� � �����

�√����
��,���, �, ��              (4) 

where a is Earth’s radius, and the terrain height function 
h(θ, ϕ) is taken into account through the mapping  

Θ � �                                      (5a) 

Φ � �                                     (5b) 

� � � � � � ���, ��  �  � � � � � � ��Θ, Φ�     (5c) 

��,���, �, �� � ��,���, Θ, Φ�                  (5d) 

Substituting equations (4) and (5) into equation (3) and 
introducing the parabolic approximation 

�����,�

��� � � 2�� ����,�

��
�                               (6) 

the modified Helmholtz equation is reduced to 
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Coupling between the complex amplitude functions ve 
and vm is introduced by the impedance boundary condition 
[6] 

��� � ��� � ����� � ���� � �����                       (8) 

In equation (8), ��� is the unit vector normal to the irregular 
terrain. Substituting expressions (1), (2), and (3) to (5) into 
equation (8), each of the three components of the 
transformed impedance boundary condition is expressed in 
the general form 
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The coefficients ���
�,� are specific for each component and 

depend on partial derivatives of the terrain function 
h(θ, ϕ). It is usual to approximate the derivatives with 
respect to Θ by the expression resulting from the parabolic 
equation (7). The above three components of the impedance 
boundary condition are linearly dependent and only two of 
them are applied at the smoothed boundary z = 0 resulting 
from transformation (5). 

The finite difference version of the above equations 
resulting from the Crank-Nicolson scheme is arranged in the 
form of a diagonal system of equations. The equations 
corresponding to points entirely located in the atmosphere 
display nine coefficients symmetrically arranged around the 
main diagonal. On the other hand, equations corresponding 
to points located on the ground display fourteen coefficients 
asymmetrically arranged around the main diagonal. In each 
step of the progress along the axial direction defined by the 
transmitter and receiver, the coefficients are recalculated and 
the sparse system of linear equations is solved with the help 
of the PARDISO parallel direct sparse solver, available 
through the Intel Math Kernel Library. This easy-to-use 
software solves large sparse symmetric and asymmetric 
linear systems of equations on shared memory 
multiprocessors, supporting a wide range of sparse matrix 
types. 
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  Abstract — A new, fast and effective method for the 
determination of locations and current intensities of 
electromagnetic sources located in an infinite medium is 
presented. The method is based on the analytical continuation of 
the total electric field vector measured on a line of finite length. 
The problem is then reduced to the solution of a non-linear 
equation which is solved iteratively through linearization in the 
Newton sense. Numerical evaluations show that the method yields 
quite accurate results for both the source locations and 
intensities.  

I. INTRODUCTION 
Inverse source problems whose aim is to determine the 

locations and current intensities of electromagnetic sources are 
of interest due to their potential applications in the areas of 
non-destructive testing, mobile communications, security, 
fault diagnosis of electrical machines etc. During the last 
decade several research activities have been carried out in this 
direction. Most of methods are developed for sources located 
inside a spherical domain and spherical harmonic expansions 
are widely used in the solution process [1-3]. On the other 
hand, in the real applications such as mobile communications, 
it is very difficult to perform the measurements on a spherical 
surface. Instead planar or linear measurement configurations 
would be preferable. For that reason, methods based on such 
measurements possibilities should be developed. 

 
The aim of this paper is to give a new, fast and effective 

algorithm for the determination of both locations and current 
intensities of current filaments from the electric field vector 
values obtained through the measurements which are 
performed on a certain line segment. The method is based on 
the analytical continuation of the measured total field to the 
region where the sources are located. The analytical 
continuation is achieved in terms of the plane wave spectral 
representation of the total electric field vector. The problem is 
then reduced to the solution of an operator equation which is 
linear with respect to intensities and non-linear with respect to 
locations. The operator equation is solved iteratively via 
linearization in the Newton sense [4]. The initial estimates for 
the locations are obtained by plotting the reconstructed total 
field in the whole space. The method is tested by considering 
some illustrative examples and it has been shown that it yields 
quite accurate reconstructions for both intensities and 
locations. 

 

II. GENERAL FORMULATION OF THE INVERSE SOURCE 
PROBLEM 

      We consider the configuration in Fig.1 where n 
filamentary sources with current intensities (I1, I2…..In ) and 
locations  (r1, r2….. rn )  are located in a non-magnetic medium 
of infinite extend having wavenumber k. The inverse source 
problem considered here is to reconstruct the current 
intensities  (I1, I2…..In) and source points (r1, r2….. rn ) from 
the measurement of the total electric field vector on the line 
x2=γ, say Γ.  Note that the measurements can be performed by 
a receiving antenna Rx moving on the line Γ (See Fig. 1).    
 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1.  n filamentary line sources located in a non-magnetic lossless  

 medium and the measurement configuration  
 
In the following, for the sake of simplicity, the analysis will be 
given by considering 2D case where the problem can be 
formulated as a scalar one in terms of total electric field 
function u(x). Here x=(x1,x2) denotes the position vector in R2

.  
Through the measured total field, say um(x), the total field in 
the region above the measurement line can be expressed as a 
combination of plane waves in the spectral domain, namely; 
 
  ����  � �

�� � ����������������� ������  ���������
��      (1) 
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where  denotes the Fourier transform of the measured 
total field with respect to  .  Note that the plane wave 
spectral representation in (1) contains only the propagating 
modes. Equation (1) is nothing but the analytical continuation 
of the measured data to the region  where the sources 
are located.   is a regular function of  except the source 
points (r1, r2….. rn  ). Thus, basically, one can get the source 
locations by simply plotting the field  and observing the 
points where the field is discontinuous. Such an approach 
gives an approximate source locations which can be used an 
initial estimate for the iterative procedure described below.  
 
    By considering the explicit expressions of the fields created 
by individual sources, the problem is then reduced to solution 
of a functional equation of the form 
 

.        (2) 
 
F is a known operator which is linear with respect to 
intensities (I1, I2…..In ) and non-linear with respect to source 
locations (r1, r2….. rn ).  Equation (2) is solved iteratively by 
linearizing simultaneously with respect to the intensities and 
the locations. More precisely, given (c1, c2….. cn ) for the 
intensities and (s1, s2….. sn  ) for the locations, we determine 
the updates  (c1 + µ1 , c2 + µ2 ,… cn + µn  ) and   (s1 + σ1 , s2 + σ2 
,… sn + σn  ) from the linearized equation  
 
    
 
     
 
                                          = .                     (3) 
   
Here  denotes the gradient of F with respect to source 
locations,  j is the iteration number while ). 
The equation (3) needs to be solved in a least square sense 
after collocating it at a sufficient number of collocation points 

 For stability, a penalty term on the 
unknown locations and intensities has to be added, that is, 
Tikhonov regularization has to be employed to the solution of 
(3).  
  

III. NUMERICAL RESULTS 

The method described above is tested by considering some 
illustrative examples. Here we present the results of one of 
them. Three line sources with current intensities I1=1, I2=3, 
I3=7 and source locations r1 =(0,-1.5),  r2 =(-1,0) and               
r3 =(0.5,1.5), respectively, are considered. The operating 
frequency of the sources are 3GHz. The measurements are 

performed on the line at 40 points. 
Note that all the distances are given in meters. 

 

 
Fig. 1. Two dimensional plot of the reconstructed total field  

 
 

Fig 2. shows the two dimensional variation of the 
reconstructed total in the domain . 
Obviously, the total field has discontinuities at the source 
locations. By choosing the points where the field has 
maximum values as the initial estimate for the source locations 
and solving the equation (3) iteratively, we get the values of 
the intensities and source location as given in Table 1. The 
results are obtained for 11 iterations. The reconstructed 
intensities and the locations are quite accurate.  
 

TABLE I 
Reconstructed current intensities and source locations  

 Source Number  Intensity 
(Ampere) 

Location 
(Meters) 

  I  0.99978 (0.00021, -1.49993) 
 II 3.01003 (-1.00171, 0.00211) 
 III 6.92560 (0.49997, 1.50139) 
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Abstract—Several possibilities to truncate the domain
of an unbounded electromagnetic wave problem exist. The
ambition of this contribution lies in the improvement of
the conditions to be specified along the truncation bound-
aries in case no scatterer being present. Thereby, the more
common case of the outgoing wave to propagate no longer
perpendicular to the truncation boundary will be treated.
Tracking this idea, an additional surface operator to the
widely used surface impedance boundary condition (SIBC)
will be built into a finite element formulation. Speed up
benefit and accuracy will be evaluated on an asymmetric
RFID tag antenna.

I. Introduction

The variant kinds of mesh truncation when using finite
elements always represent a compromise between sufficient
accuracy and smallest possible computation effort. The
use of absorbing boundaries (ABC) has been improved se-
riously by some iterative procedures, as reported eg. in [1]
and [2]. Multiple calculations of the same problem boost
the effort and extend the computation time. The appli-
cation of perfectly matched layers (PMLs), as suggested
eg. in [3], suffers from a condition number degraded set
of equations system to be solved. Hence the convergence
while applying a solving procedure becomes worse.

The design of antenna geometries belongs to a type of
electromagnetic wave problems where scatterer have not
to be considered (Fig. 1). Along the truncation bound-

hm Fig. 1. Basic arrangement, antenna in point of origin, domain
truncated by boundary Γtr.

aries (Γtr) the propagation direction then is determined
by the location of radiating antenna and the truncation
surface, only. The knowledge of the incident angle of the
outgoing wave all-over Γtr enables the design of more pre-

cise conditions between the tangential field vectors Et and
Ht on it.

II. Boundary conditions for the mesh truncation

In finding improved boundary conditions for the trun-
cation surface Γtr we beginn with the Maxwell equations

∇× E = −jωµ H, ∇× H = jω E. (1)

Therein, the field vectors E and H as well as the ∇ op-
erator can be split into a normal and two orthogonal tan-
gential components. The normal component will be sub-
scribed by n and the tangential vector by t. It follows:

E = Et + nEn, H = Ht + nHn, ∇ = ∇t +
∂

∂n
n. (2)

With this relations the normal components of the fields,
En and Hn can be eliminated in (1) to attain

∂(n× Et)
∂n

= −jωµ Ht −
1
jω

∇t × (∇t × Ht) (3)

∂(n× Ht)
∂n

= jω Et +
1

jωµ
∇t × (∇t × Et). (4)

These equations are commonly valid, consequently on the
truncation surface, too. On Γtr we have the situation as

Fig. 2. Incident wave a point on Γtr.

shown in Fig. 2. The incident wave is represented by the
wave vector k, which has been decomposed by the normal
vector β and the tangential vector kt. It follows:

k = kt + β, β = ±

k2 − k2

t , k = ω
√
µ. (5)
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To get rid of the derivatives ∂
∂ n in (3) and (4), the in-

tegration along z for the negative z-half space must be
performed. To do so, we can evaluate the field decay in
negative z-direction, perpendicular to Γtr easily by

0

−∞

Ht0e
jβ zdz =

1
jβ

Ht0 ,

0

−∞

Et0e
jβ zdz =

1
jβ

Et0 . (6)

Ht0 and Et0 represent the field vectors at z = 0. Together
with (5) the relations (3) and (4) change to

n× Et0 =
−ωµ Ht0
k2 − k2t

+
∇t × (∇t × Ht0)

ω

k2 − k2t

(7)

n× Ht0 =
ω Et0
k2 − k2t

− ∇t × (∇t × Et0)

ωµ

k2 − k2t

. (8)

These relations between the tangential components of Et0

and Ht0 now can be used to model the higher order bound-
ary conditions on Γtr.

Transverse components of the outgoing wave may be
transformed into the Fourier domain (e−jkt·r -terms), only
to see, that its tangential derivation can be expressed as
∇t = −j kt.

An increased incident angle results always in a larger
wave vector kt and obviously the curl curl-terms in (7) and
(8) become more and more relevance to achieve accurate
boundary conditions. If the wave propagates perpendic-
ularly to Γtr, kt vanishes and the curl curl-terms become
zero. The first order SIBCs remain, only.

When applying the Galerkin method to the well known
A, v or T ,Φ-formulations [4], the n× Ht or the n× Et terms
occur, hence (7) or (8) directly can be implemented.

In order to show the performance, we implemented (8)
into the A, v-formulation. For the weak form of the vec-
torial equation follows

−


Ω

∇× Ni ·
1
µ
∇× AdΩ+



ΓH

Ni · (n× (
1
µ
∇× A))

  
n× H

dΓ

+


Ω

Ni · (σ + jω)jω( A+∇v)dΩ = 0. (9)

In (9) the underbraced term directly may be substituted
by (8) and the field Et has to be expressed by the poten-
tials to Et = −jω( At +∇tv).

III. Numerical Investigation

A symmetric T-folded RFID tag antenna has been
evaluated. Its geometry has been chosen from [5] and is
shown in Fig. 3. Therein L1, L2 and L3 indicate the de-
sign parameters, either to match the antenna impedance
with the transponder chip or to tune the resonant fre-
quency. Consecutively the computational effort for the

Fig. 3. Symmetric T-folded dipole antenna.

use of standard PMLs and for the proposed boundary
conditions has been compared. For our first computations
the costs are summarized in Table I. When applying the

Table I. Computational effort

method DOF iterations time [s]
PMLs 64120 10340 1275

proposed BCs 38377 2170 432

proposed boundary conditions no PML-region has to be
modeled, so that the DOF changes. Hence the compari-
son of the values given above limps a bit. Nevertheless,
the time score points to get the results faster. No inves-
tigations in the influence of the subdivision along Γtr to
the accuracy of the solutions obtained have been done up
to now. They are matter of the running activities.

IV. Conclusion

For the type of wave propagation problems without
containing scattering objects improved mesh truncation
conditions have been proposed. Advantage has been taken
from the fact, that along the truncation boundaries the
incident angle of the outgoing wave is known. Thus im-
proved absorbing conditions containing surface operators
can be implemented in an integral term over the trunca-
tion boundary. Compared to the PML mesh truncation
a smaller domain has to be computed and a well better
conditioned equations system must be solved.
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Abstract — This paper presents a near field analysis by method 
of moments for optical scattering by metal nanoparticles with 
compex shape illuminated by a plane wave. For testing the 
developed algorithm, we compare our numerical calculations with 
the exact Mie scattering theory. The Lorentz-Drude model with 
one interband term is used to describe complex permittivity of the 
gold sphere in optical frequencies. The obtained numerical results 
are the spectral response, resonances, and the regions where the 
near field is enhanced.  

I. INTRODUCTION

The electromagnetic scattering of the metals in optical 
frequencies possess special characteristics. In these 
frequencies, there are electron oscillations on the metal, called 
plasmons with distinct resonant frequencies, which produce 
strongly enhanced near fields at the surface’s metal. The 
analysis of this effect can be realized with the Lorentz-Drude 
model of the complex dielectric constant. This study of the 
electromagnetic optical response of metals nanostructures is 
known as plasmonics or nanoplasmonics [1]-[2]. 

An application of the plasmonics is the design of 
nanoantennas [3]-[11], which are metal nanostructures used to 
confine and enhance optical electromagnetic fields. An optical 
monopole antenna is presented in [4]. In [5]-[7], Bowtie 
optical antennas are analyzed. Dipoles nanoantennas are 
presented in [8]-[9], and sphere nanoantennas are discussed in 
[10]-[11]. Examples of applications of these antennas are 
ultra-high-density data storage, super-resolution microscopy, 
integrated nano-optical devices and surface-enhanced Raman 
scattering [2]-[3]. 

In this paper, we apply the method of moments (MoM) to 
the problem of the electromagnetic scattering from complex 
shape nanoparticles in optical frequencies. To test our 
algoritm, we compare our numerical results with the exact Mie 
theory for a gold metal sphere. The Lorentz-Drude theory with 
one interband term is used to model the complex permittivity 
of the gold sphere. We present the spectral response, 
resonances and the localizations with the maximum of the near 
field. 

II. DESCRIPTION OF THE PROBLEM

Fig. 1 shows the geometry of the problem, where a gold 
sphere of radius a is centered in the origin of the coordinate 
system. The surrounded medium is the free space. This sphere 
is illuminated by an Ex-polarized, z-directed plane wave: 

Fig. 1. Incident EM plane wave on a gold sphere 
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where Ei0 is the amplitude of the incident electric field, ω the 
angular frequency, k=ω(µ0ε0)

1/2=2πc/λ the wave number, λ is 
the wavelength of operation, c is speed of the light, µ0 the free 
space permeability, ε0 the free space permittivity, η=120π the 
impedance of the free space. The complex permittivity of the 
gold sphere is ε2= ε0εr, where [2] 
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being the parameters of this equation: ωp=13.8×1015s−1, 
Γ=1.075×1014s−1, ω0=2πc/λ0, λ0=450nm, 

pω~ =45×1014s−1, and 

γ=9×1014s−1. 

III. THEORETICAL ANALYSIS

The numerical analysis of this scattering problem was done 
with the exact Mie model [12], and the MoM proposed in [13], 
which takes account the tensor integral equation of the electric 
field. In the present analysis, the relative permittivity used for 
the gold sphere is give by (3). 

With these mathematical models, it is possible to calculate 
the total electric field in all space of the problem (i.e. inside 
and outside the sphere).  
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IV. NUMERICAL RESULTS

Two computational programs were developed to analyze 
the scattering problem. Figs. 2-4 show the calculated electric 
field along the coordinate axes near the sphere. The radius of 
the sphere and the wavelength used in the simulations are 
a=25nm and λ=700nm. 

Fig. 2. Normalized Ex field along the x-axis 

Fig. 3. Normalized Ex field along the y-axis 

Fig. 4. Normalized Ex field along the z-axis 

From the above Figures, we can observe that the electric 
field is more enhanced near the sphere (Fig. 2), where the field 
is normal to the sphere. The field is approximately 3.4 times 
more then the incident electric field. This result was obtained 
for λ=700nm, but in other wavelengths this enhancement is 
different. In the full paper version, the complete analysis in the 
region 500nm<λ<1200nm will be presented, with the 
resonance frequencies of this sphere and the correspondent 
enhancement of the near fields. We shall present also some 
results for nanoparticles of some others geometries. 

V. CONCLUSIONS

In this paper, we presented an algorithm based on the 
method of moments for the near field analysis for nanopaticles 
of complex shapes. As an example, we calculated the scattered 
fields from a gold sphere and compared them with those 
obtained by Mie’s theory. The numerical results achieved by 
the MoM code are in good agreement with the exact solution. 
In the full paper variant, we shall give some results for the 
particles with more complex geometry. 
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Abstract—Using a hybrid finite element method, a full wave
description for lossy dielectric waveguides is presented. H(curl)-
elements span the transversal field components, whereas a scalar
potential is described by nodal elements. Second order elements
are used on a rectangular mesh. The losses are taken into account
by rewriting Maxwell’s equations with a complex permettivity
term. Using an A − V -formulation the resulting generalized
eigenvalue problem has been solved for fully complex eigenvalues.

Index Terms—Lossy waveguides, eigenvalue problems,
H(curl)-elements

I. INTRODUCTION

Various numerical methods and different formulations have
been presented in the past for solving dielectric waveguide
problems. Typicals methods are the method of moments [1],
spectral-domain methods [2], finite difference methods [3], and
finite element methods [4]. Among them, the latter has proved
to be a very general and efficient tool. A serious problem for
the description of electromagnetic field quantities involving
finite elements is the occurence of spurious modes. In order to
overcome these difficulties mainly two approaches have been
taken. One is to impose the divergence-free condition, mostly
in the case of nodal finite elements approaches. The other is to
use H(curl)-tangential elements that are capable of correctly
representing the properties of the curl-curl operator [5].

In [6] a waveguiding structure, showing lossy material
properties, is considered using triangular hybrid elements. A
study covering the anisotropic case is presented in [7]. The
work [8] suggests a method to overcome unreliabilities for low
frequencies by presenting an algorithm for employing a tree-
cotree splitting in order to accomplish an inexact Helmholtz
decomposition. There, hierarchical elements are presented.

In this paper we are following the approach of [8] using an
A− V -formulation with hybrid finite elements approximating
potential functions. In contrast to [6], rectangular elements of
second order are used. Imposing an axial gauge, i.e. setting
the z-component of the vector potential to zero, the fully com-
plex propagation constant is determined for given operating
frequencies by solving a generalized eigenvalue problem.

II. FORMULATION

We consider an A−V -formulation for a source free region
and isotropic, lossy material properites. Using c as a complex

quantity describing both permitivity () and conductivity (σ),

c = − j
σ

ω
, (1)

and sinusoidal time dependencies the Maxwell equations in
the frequency domain can be written as

∇×E = −jωµH ∇×H = jωcE

∇ ·D = 0 ∇ ·B = 0 (2)

The material properties for a waveguiding structure being
uniform in the z-direction, the fields can be described as

E(r, t) = E(x, y)e−γzejωt

H(r, t) = H(x, y)e−γzejωt (3)

with r being a point vector in the waveguide with a cross-
section lying in the x, y-plane. γ is the propagation constant
built up by the attenuation constant α and the phase constant
β:

γ = α + jβ. (4)

The electromagnetic fields can be rewritten in terms of a
vector potential A and a scalar potential φ

B = ∇×A
E = −jωA− c∇φ (5)

where c is the velocity of light.
In order to arrive at a linear eigenvalue problem, an axial

gauge is imposed by choosing Az = 0. With the splitting of
the nabla operator to ∇ → ∇τ−γêz , Maxwell’ s equations (2)
can be rewritten as

0 = ∇τ ×
1
µr
∇τ ×Aτ − γ2

1
µr
Aτ − k20rAτ + jk0r∇τφ

0 = −γ∇τ ·
1
µr
Aτ − jk0γrφ

0 = −jk0∇τ · rAτ −∇τ · r∇τφ− γ2rφ (6)

In order to ensure a unique solution, the boundary condi-
tions Aτ × n = 0 and φ = 0 are imposed for the simplest
case of a perfect electric conductor (PEC).
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III. FINITE ELEMENT REPRESENTATION

We represent Aτ by H(curl) basis functions (Ni) and φ
by H1 basis functions (Ni). The trial functions aτ and az can
be expressed as

aτ =
nτ
i=0

cτiNi az =
nz
i=0

cziNi (7)

Applying Galerkin’s method to (6) and considering the
boundary conditions, the following generalized eigenvalue
equation is obtained:


[A] [B]
[B]T [C]


− γ2


[D] 0
0 [E]


cτ

cz


= 0, (8)

where cτ and cz are the coefficient vector for the edge and
nodal basis functions. The matrices are given by

[A] =


Ω


1
µr
(∇×Ni) · (∇×Nj)− k20rNi ·Nj


dΩ

[B] = jk0



Ω

{rNi · ∇N} dΩ

[C] =


Ω

{∇Ni · ∇Nj} dΩ

[D] =


Ω


1
µr
Ni ·Nj


dΩ

[E] =


Ω

{rNi ·Nj} dΩ (9)

IV. BASIS FUNCTIONS

The H1-nodal basis functions are built from a linear combi-
nation of quadratic polynomials in the x-and y-directions. The
H(curl)-edge basis functions can be expressed as a linear
combination of the nodal basis functions (fi(ξ, η)) times the
gradient of the respective local coordinate. For the reference
element they are obtained through

Ni(ξ, η) = fi(ξ, η) · ∇ξ for i = 1, 5
Ni(ξ, η) = fi(ξ, η) · ∇η for i = 6, 10 (10)

where ξ and η are the coordinates of the reference cell ranging
from −1 to 1.

V. NUMERICAL APPLICATION

As numerical example we consider the case of a microstrip
in a dielectric medium. The geometry and the material prop-
erties of the substrate are chosen as described in [6]. We are
interested in the determination of the dominant propagation
mode and therefore are only considering one half of the
geometry due to symmetry, as done in [6] too. The variation
of the phase and attenuation constant with the frequency is
depicted in Fig. 1 and 2.
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crosses represent our numerical solution compared to the results of [6].
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Abstract — Finite Difference Time Domain Methods are 
important for the design of microwave devices. The ordinary Yee 
scheme commonly used is extended to describe interface 
conditions between different media adequately in general, when 
isotropic media are investigated. 

I. INTRODUCTION

Finite Difference Time Domain (FDTD) Methods have 
been extensively used in microwave techniques and have been 
proposed first by Yee [1]. FDTD methods offer several 
advantages in contrast to traditional frequency domain 
approaches. The electromagnetic field is calculated fully 
vectorial in the time domain while reflection and fringing 
effects are selfconsistently included. The method exhibits 
second-order accuracy and does not yield unphysical solutions 
(spurious modes). A single simulation run allows the 
extraction of scattering characteristics within a large 
frequency range. FDTD is easily applicable to a wide range of 
different structures. Furthermore, the approach allows both 
exact modelling of field discontinuities at material boundaries 
and the inclusion of nonlinear effects. Furthermore different 
material models, i. e. gyromagnetic media, can be included.  

In the following we show, that the ordinary discretization 
scheme does not allow an independent inclusion of interface 
conditions at interfaces between different media with different 
permittivities. Therefore, modification are necessary, which 
will be introduced. The modifications are simple, but to my 
knowledge have not been proven and published before. 

Yee proposed a discretization scheme according to  Fig. 1. 
The algorithm described is formulated by discretization of 
Maxwell’s curl equations over a finite volume approximating 
the derivatives with centered difference approximations. Due 
to the natural choice of the grids and the allocation of the 

unknown components in space, 0D∇ =  and 0B∇ =  hold. 

Field vectors are determined at different time steps.  

Fig. 1. Yee cell indicating the electric field E, the magnetic field H, the 
electric flux density D and the magnetic flux density B  

II. INCLUSION OF INTERFACE CONDITIONS 

All steps of the standard algorithm will be investigated. 
According to Yee a homogenous medium will be assumed in 
each discretization cell. Consequently the magnetic field and 
the electric flux are not absolutely defined at the interfaces. As 
the electric flux density D is a tangential field component and 
the magnetic field H is a normal component at the interface, 
they have to be handled as they are discontinuous [Fig. 2]. 
The arising difficulties will be discussed. For this purpose all 
steps needed for the simulation are described. 

Fig. 2. Field components at an interface  

Maxwell’s curl equations in integral form have to be 
applied  

D
H ds dA

t

∂
=

∂∫ ∫∫ ,                  (1a) 

  -
B

E ds dA
t

∂
=

∂∫ ∫∫ ,                  (1b) 

as well as arbitrary material equations  

{ }EE f D= ,                  (1c) 

{ }HH f B= .                  (1d) 

In the following the equations are evaluated in the x-z-
plane to simplify the investigation without restriction to the 
general case. 

A. 1st step 

According to Yee’s scheme the discretization of (1b) leads 

Efficient Interface Conditions for Finite 
Difference Time Domain Methods  

Dirk Schulz 
High Frequency Institute  

Friedrich Wöhler Weg 4, 44227 Dortmund, Germany 
schulz@hft.e-technik.uni-dortmund.de 
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to the relation  

1 2 3 4
new oldB B

E x E z E x E x x z
t

−
Δ − Δ − Δ + Δ = − Δ Δ

Δ
           (2a) 

1 3 2 4
new old

E E E E
B B t

z x

⎛ ⎞− −
⇔ = −Δ −⎜ ⎟Δ Δ⎝ ⎠

.          (2b) 

Bnew and Bold describe the magnetic flux density at time 
steps (n+1/2) tΔ and (n-1/2) tΔ . xΔ , yΔ  and zΔ  are the 

discretization widths in space. The electric field components E 
represent the values at time n tΔ . All field components are 

well defined, so (2b) can be applied at interfaces and included 
in the algorithm. 

Fig. 3. Numerical evaluation of (1b)  

B. 2nd step 

The corresponding magnetic material equation (1d) is not 
uniquely applicable, because the magnetic field components 
Ha and Hb result from the magnetic flux density B [Fig. 3]. 
Indeed the values Ha and Hb are of no relevance for the 
discretization of (1a). According to Fig. 4 the evaluation leads 
to the following result:  

1 2 3 4H ds H x H z H x H z→ Δ − Δ − Δ + Δ∫                (3a) 

, ,

2
n a n b

n

H H
with H

+
= .                  (3b) 

Of course the magnetic material equation has to be solved 
separately and the calculation of the mean value has to be 
carried out then increasing the calculation time. 

Fig. 4. Numerical evaluation of (1a)  

C. 3rd step 

Furthermore the discretization of (1b) leads to  

, , ,  ,  

2 2 2 2
a new a old b new b oldD D D Dx z x z

H ds
t t

− −Δ Δ Δ Δ
→ ⋅ ⋅ + ⋅ ⋅

Δ Δ∫

,  ,  ,  ,  

2 2 2 2
c new c old d new d oldD D D Dx z x z

t t

− −Δ Δ Δ Δ
⋅ ⋅ + ⋅ ⋅

Δ Δ
.          (4) 

Dnew and Dold describe the magnetic flux density at time 
steps (n+1/2) tΔ  and (n-1/2) tΔ . Because of the discontinuous 

electric flux density D (4) includes four separate discretization 
values for Da and Db. According to the chosen discretization 
for the magnetic field H, the discretized values cannot be 
calculated separately. This is the mentioned restriction. 

D. 4th step 

Applying (1c) the electric field components Ea and Eb can 
be calculated using Da and Db. The tangential electric field 
component must be continuously. Therefore, all discretized 
electric field values are equivalent. 

III. EFFECTIVE PERMITTIVITIES 

For isotropic media we can rewrite (3b)  

*

1

2 2
a b

a b

H H B B B
H

μ μ μ
⎛ ⎞+

= = + =⎜ ⎟
⎝ ⎠

.                  (5) 

The magnetic field component H can be directly evaluated 
from the magnetic flux by using the effective permittivity  

1

* 21 1 1

2
a b

a b a b

μ μ
μ

μ μ μ μ

−
⎡ ⎤⎛ ⎞

= + =⎢ ⎥⎜ ⎟ +⎢ ⎥⎝ ⎠⎣ ⎦
,                  (6) 

so the separate calculation of Ha and Hb is no longer 
needed. With (6) both steps A and B are carried out 
simultaneously, leading to  

1 3 2 4
*new old

E E E Et
H H

z xμ
⎛ ⎞− −Δ

= − −⎜ ⎟Δ Δ⎝ ⎠
.               (7) 

Furthermore the electrical flux density can be calculated 
according to  

( )* *1

4 a b c dD Eε ε ε ε ε= + + + = ⋅            (8b) 

introducing an effective permittivity *ε . Analogously we 

will arrive at   

1 3 2 4
*new old

H H H Ht
E E

z xε
⎛ ⎞− −Δ

= − −⎜ ⎟Δ Δ⎝ ⎠
.           (10) 

By introducing effective permittivities the indicated 
difficulty is resolved by rearranging (7) and (10). 
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Abstract — This paper presents an FDTD analysis of 
communication properties of UHF-band RFID system where IC 
tags are placed near metallic objects. When the distance between 
the tag antenna and a metallic plate is increased from zero, the 
tag antenna impedance also increases; its magnitude is first 
smaller than those in free space, then the former becomes greater 
than the latter when the distance is longer than a threshold. 
Moreover, it is found that the power feeding into the IC chip 
becomes the maximum at an optimum distance. 

analytic 
region

I. INTRODUCTION 
Radio Frequency Identification (RFID) has widely been 

used for various industrial and social applications. In 
particular, RFID based on magnetic induction has been 
applied to various areas such as rechargeable contactless smart 
card system, security cards system and retail item management 
[1]. However, since the magnetic fields reduce in proportion 
to 1/r2 in the quasi-static case, the communication range 
cannot be longer than several cms. For this reason, the UHF-
band RFID using the electromagnetic waves that reduce in 
proportion to 1/r has been studied in order to increase 
communication range [2]-[4]. The passive UHF-band RFID, 
where electromagnetic energy is transmitted from the RFID 
reader to an IC tag, has advantages in its maintenance over 
active RFID that requires batteries. One of the potential 
applications of the passive UHF-band RFID is remote sensing 
of physical and chemical data such as temperature, humidity 
and material concentration. The remote sensing based on the 
RFID can be used in, e.g., non-destructive testing, automatic 
control and environmental monitoring. In these applications, 
IC tags must often be mounted on metallic surfaces. Hence, 
the radiation from such metallic surfaces must be carefully 
considered in the design of the RFID systems. For this reason, 
special designs of IC tag considering radiation from metallic 
plates have been studied [5], [6]. 

This paper presents an FDTD analysis of communication 
properties of the passive UHF-band RFID system where IC 
tags are placed near metallic objects. In the followings, the 
FDTD analysis of tag antenna impedance with near metallic 
objects will be presented. Then, dependence of the input 
power of the IC tag on the distance between the tag and 
metallic plate will be discussed. 

II. ANTENNA IMPEDANCE WITH METALLIC OBJECTS 
Since impedance matching between the IC tag antenna and 

the tag chip influences communication range, a proper 

 
(a). Schematic view                         (b). IC tag and metallic plate 
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Fig. 1. Numerical Model 
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Fig.2. Antenna Impedance versus distance d 

 
impedance matching between them is very important. For this 
reason, the impedance of the tag antenna set near the metallic 
objects is analyzed using FDTD method. 

The analysis model is shown in Fig.1. The tag antenna is 
the half-wave dipole antenna that operates at 1 [GHz], thus the 
dipole length is set to 150 [mm]. The square metal plane of 
180x180 [mm2] is set behind the RFID tag at distance d. The 
tag antenna and metal plane are divided into 51 and 61 FDTD 
cells, respectively. The boundary condition for free space 
environment is the perfect matched layer. The tag antenna 
impedance Za=Ra+Xa is computed from 

 
)(
)(

ω
ω

I
VZa = , (1) 

where V(ω) and I(ω) are the feeding voltage and current which 
is determined from closed path integral with Ampere’s law. 
The dependence of tag impedance on the distance d is shown 
Fig. 2. The dipole antenna impedance in free space obtained 
by FDTD is Za

f=94.29 + j64.9. When the distance between the 
tag antenna and the metal plane is very short, the magnitude of 

d

IC tag

IC tag 
588m

588m

metal 588m
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3. WAVE PROPAGATION 

tag antenna impedance is smaller than Za
f. On the other hand, 

the distance becomes longer, the impedance increases and 
both real and imaginary part become greater than those of Za

f. 

This would come from that fact that the tag antenna receives 
the backscatter wave from the metal plane in addition to the 
input wave. Moreover, there is the optimal distance at which P 
becomes the maximum that is about three times greater than Pf. 
These facts suggest that the IC tag for metallic objects could 
be designed by placing an adequate gap between the IC tag 
and the metallic surface. 

III. RECEIVED POWER NEAR METALLIC OBJECTS 

The input power received by the tag antenna depends on the 
antenna gain, the antenna impedance as well as the matching 
condition between the antenna and IC chip. For this reason, 
when the IC tag is placed near the metallic objects, the input 
power changes depending on the distance from the metal.  

The numerical model to analyze the influence on the input 
power from metal objects is shown in Fig.3. The setting and 
computational conditions are the same as those of the prior 
analysis. The RFID reader is assumed to be sufficiently away 
from the IC tag so that the plane wave is illuminated to the IC 
tag. The power P feeding to the IC chip is computed from 

The feeding power P under the matched condition is larger 
that that under unmatched condition, as expected. It can be 
found from a further analysis that differences in the real parts 
of the impedance give little changes in P whereas the 
differences in imaginary part lead to significant changes. For 
example, when the relative differences in the imaginary parts 
are increased from 20% to 70%, the maximum power becomes 
87.9 to 51.2 % of the matched case.  

 , (2) cRIP 2|)(| ω=
IV. CONCLUSION 

This paper has presented FDTD analysis of IC-tag antenna 
impedance and received power when the IC tag is placed in 
the vicinity of metallic objects. It has been shown that when 
the distance between the tag antenna and metallic plate is 
increased from zero, the tag antenna impedance almost 
monotonously increases and its magnitude becomes greater 
than that in free space. Moreover, the power feeding to the IC 
chip placed near a metallic plate can be greater than that in 
free space. There is an optimal distance between them at 
which the power becomes the maximum. 

The power feeding to the IC chip could be improved by 
inserting dielectric medium between the IC tag and the 
metallic plate. This model will be discussed in the long 
version. Moreover, different antennas such as meander line 
antenna and loop antenna will be considered to test if the 
conclusions obtained here is general. 

where I(ω) is the current induced by the input wave and Rc is 
the IC chip resistance. The power P normalized by Pf which 
denotes the received power in free space is plotted against the 
distance d for two different conditions in Fig.3; in the first 
condition the chip impedance Zc is matched to Za, that is, Zc = 
Za*, and in the second they are not matched where Zc=Ra-
j1.5Xa. It can be seen in Fig.3 that when the tag antenna is 
sufficiently close to the metal plane, the feeding power P is 
smaller than Pf. On the other hand, when the distance between 
the tag antenna and the metal plane increases, P becomes 
greater than Pf.  
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The Auxiliary Problem  For Transient Lossy  
Transmission Lines With Non-Matched Loads 
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Sisli-Ayazaga Campus, 34396 Istanbul, Turkey 
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Abstract —Solving transmission line problem when both 
transient and lossy states exist is not an easy task.  One way of 
reducing the complexity of the problem is to introduce an 
auxiliary problem which has previously been applied to the 
problems of gas dynamics. This approach replaces the actual 
problem of telegrapher’s equations with the equations of 
auxiliary problem such that non-oscillatory classical  finite 
difference model can be built.   

I. INTRODUCTION

A typical lossy transmission line requires all four  
parameters R, G, L and C to be considered in the model for  
finding voltage and current distribution along the line. The 
following equations (1) and (2) named as the telegrapher’s 
equations are in fact the governing equations, or called as the 
main equations, of the transmission line problem.    
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These parameters are all taken in per unit length 
convention as the distance between source and load may be 
quite large.  This further implies that the wave property also 
exists in the problem as a time delay from source to load can 
not be ignored. The wave characteristics of the problem can 
be also noticed from the equation which is obtained by 
eliminating either voltage or current from the governing 
equations. The problem will be complete if the boundary 
conditions of the line are set. These conditions are specified as 
the input voltage and current profiles applied at the beginning 
of the line  and the Ohm’s law at the load end.  

Usual way of  solving these equations is the direct 
approximation of the main problem in the time domain [1]. 
However there is a high possibility that the solution can cause 
oscillations  due to strong dependence of the equations upon 
the line parameters. Therefore some  care should be taken 
while choosing and applying the numerical method.  Here the 
auxiliary problem is formed  and used for the solution.   

II. AUXILIARY PROBLEM

The auxiliary problem approach detailed in reference [2] 
has been   applied to some engineering problems such as 
hydrodynamics and gas dynamics. The simplest case of lossy 
transmission line problem which is the matched line at the 
load end is also tested [3].  The method simply replaces the 

line functions i(x,t) and v(x,t) with the I(x,t) and V(x,t) 
auxiliary functions which aim to avoid the space derivatives in 
the main equations.  The following integral equations provide 
the basis for the main-to-auxiliary problem conversion. 
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The auxiliary and main current and voltage functions are 
related as  below. 
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The equations (3-6) will lead to the final form of the 
auxiliary problem equations which are solved first. 
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III. DISCRETIZATION OF AUXILIARY METHOD AND RESULTS

The conventional finite difference method is applied to  
the auxiliary problem to obtain the solution. The line is 
divided into a grid with time and space steps specified 
beforehand. The integrals are calculated by using  common 
quadrature formula. Then at a grid  point,  the finite difference 
equation for the auxiliary voltage  is obtained as 
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The current formula can also be obtained in the same way. 

In the initial  test, the line is assumed to be linear, 
homogeneous and matched. The line parameter values are 
given as  R=7.5 Ohm/m,  L=10 mh/m, C=0.4 F/m and 
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G=0.003 S/m.  The length is 1 m and input pulse is 2 Volt 
with 0.004 ms width.  As seen from figure 1 that the output 
voltage obtained from the method is close enough with the 
analytical result. The more detailed problem specifications and 
results  can be found in reference [3].   In this paper,  the work 
will be extended to more complex lines with different type of 
inputs and loads. 

[2] M.A  Rasulov, T. Karaguler and B. Sinsoysal, “A Finite Difference 
Scheme for solving System Equations of Gas Dynamic in a Class of 
Discontinuous Functions, '', Applied Mathematics and Computations, V. 
143: 145-164, 2004. 

[3] T. Karaguler, “A New Method for Solving Transient Lossy 
Transmission Line Problem,”Lecture Notes in Computer Science, 
Numeric Analysis and Its Application” Springer, February 2009 pp.338-
344
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Fig 1. Comparison of load voltages from Auxiliary Problem 
and Analytical Solution
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A low cost parallel and distributed architecture for
full micromagnetic numerical codes
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Abstract—A full micromagnetic code has been implemented on
a low cost and low latency parallel and distributed architecture
based on OpenMP and MPI over Infiniband. Extensive profiling
of the original sequential micromagnetic code has been done in
order to obtain better parallelization results. Since the most time
consuming part of the code resulted in the magnetostatic field
calculation algorithm, OpenMP and MPI directives allowed a
significant improvement of the performance.

I. PROBLEM FORMULATION

Magnetization dynamics in a nanomagnet is described by
the following Landau-Lifshitz-Gilbert (LLG) equation:

∂m
∂t
= −m×


heff[m]− α

∂m
∂t


, (1)

where m =m(r, t) is the magnetization vector field normal-
ized to the saturation magnetization Ms, time is measured in
unit of (γMs)−1 (γ is the absolute value of the gyromagnetic
ratio), α is the dimensionless damping parameter, heff[m(r, t)]
is the effective field operator which can be obtained by the
variational derivative of the free energy functional [1]:

heff[m] = −
δg

L
[m]
δm

, (2)

where

g
L [m] =

1
VΩ



Ω


l2ex

2
|∇m|2 − 1

2
hm ·m+ ϕ(m)− ha ·m


dV ,

(3)
ϕ(m) is the anisotropy energy density and lex =
(2A)/µ0M2

s is the exchange length (A is the exchange
constant and µ0 the vacuum permeability), hm and ha are
the demagnetizing and applied fields, respectively, and VΩ is
the body volume. In addition, the homogeneous Neumann
boundary condition ∂m/∂n = 0 is imposed at the body
surface. In order to obtain a spatially discretized version of
eq. (1) we consider a partition of the region Ω in N cells Ωk,
with volume Vk and assume that the cells are small enough that
the vector fields m(r, t) and heff[m(r, t)] can be considered
spatially uniform within each cell. We denote with mk(t)
and heffk the vectors associated with the generic k-th cell.
Beside the cell vectors, we will consider also the mesh vectors
m = (m1, . . . ,mN )T ∈ R3N containing the whole collection
of cell vectors.

If the cells are small enough that m(r, t) is spatially uniform
in each cell, we can reasonably assume that the magnetization

amplitude is
|mk| = 1 . (4)

Now we can write down the discretized LLG equation in the
following form that consist of a system of ordinary differential
equations:

dmk

dt
= −mk × heffk[m] + αmk ×

dmk

dt
, (5)

where mk is the average magnetization of the k-th cell. It is
worth noting that the effective field in the k-th cell depends
on the magnetization of the whole cell collection due to the
magnetostatic interaction, namely heffk = heffk[m].

For the numerical solution of eq. (5), we use the implicit
mid-point rule scheme [2]. The midpoint discretized version
of eq. (5) is

mn+1
k −mn

k =

= −mn+ 1
2

k × (cαheff
n+ 1

2
k +αmn+ 1

2
k × heff

n+ 1
2

k )∆t ,(6)

where the index n refers to time instants, and the following
midpoint formulas have been used:

mn+ 1
2

k =
mn
k +m

n+1
k

2
, (7)

heff
n+ 1

2
k = heffk


mn +mn+1

2


. (8)

The solution of the time-stepping equation (6) requires solving
a system of 3N nonlinear algebraic equations and provides, at
each time step, the 3N unknowns mn+1

k at each mesh element
Ωk. To solve this nonlinear system we use a quasi-Newton
technique similar to one described in ref. [2].

The discretized effective field in Eq. (5) is the gradient of
a discretized free energy g

L
(m) = g

L
(m1, . . . ,mN ) which

approximates the free energy functional gL[m]:

heffk = −
∂

∂mk
g
L
(m1, . . . ,mN ). (9)

The effective field heffk can be represented as

heffk = hexk + hank + hmk + hak (10)

where hexk is the exchange field, hank is the anisotropy field,
hmk is the magnetostatic field, and hak is the applied field. In
our formulation we subdivide the magnetized domain Ω into
N tetrahedral elements. The magnetostatic field contribution
to the effective field is computed by means of an hybrid
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procedure: inside the region Ω occupied by the magnetic
body, the magnetostatic problem is formulated by using the
Finite Formulation scheme [3] where the magnetic vector
potential is assumed as unknown. Conversely, in the exterior
region extending to infinity, the magnetic scalar potential at
the boundary of the magnetized domain Ω is analytically
computed through an integral formulation [4]. Using this
method, the resulting stiffness matrix is sparse and all coupling
terms between the two formulations are on the right-end-side
(RHS) [5]. Starting from a known magnetization distribution,
the RHS is computed by a matrix-vector product and the
resulting linear system is solved by using a direct method in
which the stiffness matrix is LU factorized once and for all
at the beginning of the procedure. The computational cost of
the LU factorization of the stiffness matrix is O(N3) and the
cost of each subsequent magnetostatic computation is O(N2).
Regarding the calculation of exchange field, as vector m is
approximated by a piecewise constant vector field (at each
element Ωk), there is not a direct way of evaluating the
term |∇m| in eq. (3). The exchange field is then computed
following a procedure similar to that described by Fredkin in
[6].

II. IMPLEMENTATION

A. Hardware and software architecture

Since the most time consuming part of the code is the mag-
netostatic field algorithm, many existing parallel implementa-
tions, such as [7], use Ethernet-based clusters. In our approach
we will use a low latency Infiniband network coupled with
a low cost multi processor, multi core cluster.The hardware
architecture includes a low cost 16 cores cluster composed by
two double processor computers each based on the Intel Server
Board S5000PSLSATAR motherboard, two quad-core Intel
Xeon E5420 2.5GHz, and 32GB RAM. The two computers are
connected by means of an Infiniband network [8], composed
by two Mellanox ConnectX IB MHGH28-XTC DDR HCA
PCI-e 2.0 x8 Memory Free. The Infiniband cards are directly
connected together, without using a switch and are put on
one PCI Express slot x16 version 1.1. The Operating system
is Gentoo Linux. The programming language is FORTRAN.
Several tests have been done comparing Intel ifort and gcc
compilers. We have chosen gcc for the greater possibilities of
the open source approach. With optimal choice of compiler
optimization switches, the two Fortran compilers appear very
similar from the performance point of view, at least with our
code. On each machine, OpenMP [9] has been used for parallel
computations, in particular the version included in gcc. The
Infiniband link is a network channel selected for the MPI
communication system [10]. The OpenMPI implementation
has been chosen after extensive tests and comparisons with
MVAPICH2. Infiniband latency has been experimentally ver-
ified as compatible with the Mellanox board specifications.

B. Profiling

Profiling by means of gprof [11] has been extensively used
in order to better understand the internal structure of the
micromagnetic code. Analyzing the profiling results, the most

time consuming part of the code resulted in the magnetostatic
field calculation algorithm. It is important to note that, even
if Amdahl’s law significantly reduces the maximum improve-
ment of performance, in particular in distributed computers, it
appears very interesting, given profiling results, the possibility
to speedup the micromagnetic code, in particular given the
high complexity of some simulation scenarios.

C. Parallelization

At first any standard sequential loop is parallelized to fully
exploit all the eight cores each single machine can offer;
this has required setting up proper shared/private variables
lists. Afterwards, the loop is split in two (n in the general
case) data sets, before executing OpenMP. Eventually data is
exchanged by means of MPI and merged back. This work has
been done repeatedly, until the most computational-expensive
functions have been correctly parallelized, always verifying
results through the profiler and taking in consideration the
optimization flags inserted.

III. RESULTS

A dynamic micromagnetic test case was developed in order
to test different implementations of the code. In Table I
is reported timing information given OpenMP and/or MPI
insertion. Moreover, it is possible to see simulation times
for the magnetostatic related functions before parallelization
and with OpenMP and/or MPI. The overall speedup for the
considered section is consistent with the initial statement.
Results show that the optimized part of the micromagnetic
code scales accordingly to the number of processors.

TABLE I
SIMULATION RESULTS

Magnetostatic code [s] Overall simulation [s]
Normal 71.2 249
MPI 42.1 174
OpenMP 14.1 129
OpenMP+MPI 7.9 59
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Abstract — Conventional MRAM and STT MRAM have same 
the critical problem that decreases an injection current for high 
Gb/Chip. In this paper, we present the various MRAM design for 
solving the problem. As a solution, we proposed new MRAM 
design that has two additional high permeable poles. Proposed 
new MRAM design has a strong switching field owing to two 
poles added on both sides of the free layer, just like 
perpendicular magnetic recording heads. This structure is 
usefully more conventional MRAM for simple design and 
decreasing injection current. We show results that are variation 
of a switching field owing to two poles added on both sides of the 
free layer by thickness of the free layer and cell square size, 
injected current density with injected current density of 

~A/105 26 cm× 28 A/106 cm× . 

I. INTRODUCTION 
By portable computers and communication products, the 

nonvolatile memory is demanded with unlimited read/write 
endurance. Flash technology is expected by the value and 
memory capacity but has limited ( 65 10~10 ) write cycles and 
low write speed. Conventional MRAM has unlimited 
read/write endurance but has a low capacity than flash 
technology. Partly because conventional MRAM has a faulty 
structure using a simple write current injection system. For 
downsize scalability, the major problem that is the mere write 
current is required at the smaller bit size should be solved with 
a new design [1]-[2]. 

STT MRAM technology has advantages conventional 
(toggle) MRAM on injected current and cell size. STT writing 
technology, by directly passing a current through MTJ, 
overcomes these hurdles with much lower switching current, 
simpler cell architecture which results in a cell that can be as 
small as 6F2 (for single-bit cells) and reduced manufacturing 
cost, and more importantly, excellent scalability to future 
technology nodes [3]. 

We present a various MRAM design that has advantages 
conventional MRAM on injected current and cell size in this 
paper. This system is using the added high permeable pole. By 
the added pole, conventional MRAM or STT MRAM can 
have a more than simple design, increasing strong switching 
field and decreasing injection current. 

II. DESIGN AND DRIVE OF VARIOUS MRAM 
Fig. 1 shows a schematic drawing of the various MRAM 

elements. Fig. 1 (a) is conventional MRAM. For downsize 
scalability, the major problem that is the mere write current is 
required at the smaller bit size should be solved with a new 
design. We proposed a new design MRAM for a this critical 

problem. The system is PTP MRAM and shows Fig. 1 (b). 
PTP MRAM element has two poles added on both sides of the 
free layer. The material of these poles has high permeability 
and then this system is able to have enhanced switching field. 
We call bit pole for the one on top of the free layer and word 
pole for the other beneath the free layer. Both poles have a 
single current line at the side. PTP MRAM has pMTJ on the 
bottom of the word pole. Fig. 2 (a) ~ (c) describes the write 
process of PTP MRAM. Memory status is “0” in fig. 2 (a) 
because having same direction of magnetization in the free 
layer and the fixed layer. When bit current and word current 
are injected. Magnetization of the free layer is changed rapidly 
by the switching field assisted by the bit pole and word pole as 
fig. 2 (b). Finally the state of the free layer is changed like fig. 
2 (c) and then the cell has the status “1”. Usually the name of 
pMTJ stands for a set of free layer, fixed layer and junction 
but in this paper pMTJ shows only junction part like fig. 2 (d). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A Research of Various MRAM Design for High 
Gb/Chip on Perpendicular Pole System 

Hyuk Won, Gwan Soo Park, Kang Seo, and Il Hwan Park 
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(a)                                                    (b) 

                                (c)                                                     (d) 

 
                                 (e) 
Fig. 1. Schematic drawing of the various MRAM elements. (a) conventional 
MRAM (b) PTP MRAM has a two high permeability poles added on both 
sides of free layer, named bit pole on top of free layer and word pole beneath 
the free layer. (c) SJP MRAM has a two high permeability poles as like PTP 
MRAM but this system uses a common MTJ. (d) STT MRAM. (e) PTSTT 
MRAM has a two high permeability poles as like PTP MRAM but this 
system have a additional current word line. 
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The PTP MRAM has superior magnetic field efficiency 

than conventional MRAM because this novel system has 
additional high permeability poles, which are expected to 
generate stronger switching field than conventional MRAM 
system. So this system has downsize scalability and high 
coercivity magnet can be used in the free layer.  Figure 3 
shows magnetic field intensity on the center of the free layer 
in PTP MRAM and conventional MRAM with  direct current 
densities I = ~A/105 26 cm×  28 A/106 cm× . Clearly the stronger 
switching field is generated in PTP MRAM than in 
conventional MRAM at the same direct current. 

Fig. 4 shows write process of the side junction 
perpendicular MRAM (SJP MRAM). This system uses a 
common MTJ and added two poles. SJP MRAM system has 
same results on the switching field but for different MTJ 
solution, SJP MRAM has a complex structure than PTP 
MRAM and SJP MRAM have a troublesome problem on the 
fabrication for perpendicular fabricated MTJ  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

STT MRAM technology has advantages conventional 
(toggle) MRAM on injected current and cell size. Fig. 1 (d) 
shows STT MRAM element. STT writing technology, by 
directly passing a current through MTJ, overcomes these 
hurdles with much lower switching current, simpler cell 
architecture which results in a cell that can be as small as 6F2 
(for single-bit cells) and reduced manufacturing cost, and 
more importantly, excellent scalability to future technology 
nodes. 

For decreasing the current density, we added pole system 
on the STT MRAM. It is Pole Type STT MRAM (PTSTT 
MRAM). Fig. 1 (e) shows a schematic drawing of the PTSTT 
MRAM element. PTSTT MRAM has a added strong 
switching field for spin torque reversal as like fig. 5 then this 
system can decreases current density. 

III. CONCLUSION 

This paper presents various the MRAM design for 
breakthrough the critical problem. Next time we will 
optimizing system for high Gb/Chip. 
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Fig. 2. . Write process of the PTP MRAM and structure of the pMTJ. (a) 
shows “0” status. When direct current is injected in bit and word line, status 
of free layer is changed like (b). Finally status of the free layer is stabilized to 
be ‘1” status as (c). (d) shows the structure of the pMTJ. 

 
Fig. 3. Comparison of magnetic field intensity on the center of the free layer 
of PTP MRAM and conventional MRAM with a direct current densities 
factor I = 2827 A/106~A/108 cmcm ×× . Clearly the graph shows PTP MRAM has a 
stronger field than conventional MRAM on the same current density injected.

(a)                                                         (b) 
 
Fig. 4. . Write process of the SJP MRAM (a) shows “0” status. When direct 
current is injected in bit and word line, status of free layer is changed like (b). 
Finally status of the free layer is stabilized to be ‘1 

(a)                                                         (b) 
Fig. 5. . Write process of the PTSTT MRAM (a) shows “0” status. When 
direct current is injected in bit and word line, status of free layer is changed 
like (b). Finally status of the free layer is stabilized to be ‘1 
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15. PHOTONICS AND OPTOELECTRONICS 

Abstract — The use of surface-plasmons-polaritons (SPPs) is 

one of the promising ways to develop optical components below 

the diffraction limit. It was recently demonstrated that gallium 

nitride (GaN) can play an important role in the improvement of 

subwavelength optical media, in particular, to serve as a material 

for plasmon waveguides. We report here a theoretical 

investigation concerning manipulation of SPPs in a waveguide 

made of cylindrical nanorods with silver core and GaN cladding. 

A hexagonal lattice of these rods forms a 2D waveguiding 

structure. An algorithm based on FDTD method was developed to 

calculate distribution of optical power of the light beam 

propagating in the waveguide. Attenuation of the optical signal is 

also calculated and compared to the results obtained for the 

analogous device without GaN cladding. Our results show that 

Ag/GaN waveguiding structure can have lower attenuation. 

I. INTRODUCTION 

Surface plasmons-polaritons (SPPs) are electromagnetic 

waves that propagate along a metal-dielectric interface by a 

resonant interaction between photons and free electrons at the 

conductor surface [1]. In information technology, SPPs are a 

suitable choice to implement photonic circuits with 

subwavelength dimensions. In other words, it can concentrate 

and guide optical signals through structures much smaller than 

the wavelength of light, yielding mechanisms for manipulation 

of photons at nanoscale with unprecedented transmission, 

processing and storage capacities. In the last five years, it was 

a high increase in researches in the field of nanoplasmonics.  

The main challenge for construction of nanoplasmonic 

devices is to provide reduction of the large losses encountered 

by SPP waves along the direction of propagation. Such losses 

are due to scattering and absorption of SSPs by the involved 

materials. In order to overcome this problem, different types of 

conductor-dielectric configurations were already proposed. For 

instance, thin metal stripes and metallic trenches were 

considered in [2] and [3], respectively. A photonic crystal 

composed by silver nanorods is proposed in [4] where SPP 

propagation over a micrometric length was obtained. 

This presentation reports the theoretical investigation of a 

waveguide composed by nanorods arranged in a hexagonal 

lattice. Using a developed algorithm based on FDTD (Finite 

Difference Time Domain) method for dispersive media [5], we 

show that light propagation is due to coupling between SPPs at 

the boundary between metallic core and dielectric cladding of 

the rods. The core is formed by silver and the cladding 

corresponds to a thin layer of gallium nitride (GaN). As it was 

experimentally demonstrated in [6], 2D periodic arrays of this 

semiconductor can reduce optical losses in subwavelength 

regime when compared with bulk-GaN applications. 

The aim of our work is to employ combination of GaN and 

silver in the design of the periodic plasmon waveguide in order 

to achieve lower losses in comparison with the analogous 

device made only by silver rods.   

 

II. SPP PROPAGATION THROUGH HEXAGONAL LATTICE 

WAVEGUIDE MADE OF AG/GAN NANORODS  

The structure under investigation is made of silver 

nanorods with diameter of 80 nm, each one surrounded by a 

thin layer of GaN such that the obtained cilynder has a radius 

of 50 nm. The rods are periodically organized in hexagonal 

unitary cells with lattice constant a=200 nm. The geometry of 

this structure is depicted in Fig. 1.  

 

 
 
Fig. 1. Geometry of the plasmon waveguide based on nanorods arranged in a 

hexagonal lattice. Each rod is composed by a silver core and a thin GaN 

cladding. 

 

The refractive index of GaN is assumed 2.5 and the 

dielectric function of silver is described by the Drude 

dispersive model (1).  

 

( )[ ] 1)( 2 −Γ−−∞= iP ωωωεωε . (1) 

 

The constants that appear in (1) were experimentally 

determined [7] and they are listed in table I.  
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15. PHOTONICS AND OPTOELECTRONICS 

TABLE I 

 CONSTANT VALUES OF DRUDE MODEL 

Constants of Drude model Values  

∞ε  3.70 

P 13673 THz 

 27.35 THz 

 

The simulations were carried out employing our numerical 

algorithm based on FDTD method for dispersive media [5]. 

The peculiarity of this approach is the presence of the 

polarization current density PJ  (2) in the update equation for 

electric field E  by virtue of dependence on frequency of the 

dielectric constant.  
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where 0ε  is permittivity of vacuum, t is the time increment 

and n is the time step. 

To perform numerical calculation we used a Gaussian 

beam as source with waist of 200 nm. The boundaries of the 

computational domain where modelled by PML (Perfectly 

Matched Layer) technique [5].  The light incident into the 

waveguide is a TE (Ez, Hx, Hy) polarized wave. Intensity 

distribution in a single Ag/GaN nanorod and in the plasmon 

waveguide for a Gaussian beam at wavelength of 600 nm is 

depicted in Fig. 2(a,b).  

The mechanism of optical power flow along the waveguide 

is coupling between surface plasmons excited from one set of 

Ag/GaN nanorods to the subsequent one.    

 

 
                       (a)                   (b) 

Fig 2: Optical intensity distribution in the waveguide based on Ag/GaN 

nanorods in hexagonal lattice. A Gaussian beam at wavelength of 600 nm is 

used as source. (a) Intensity distribution in a single nanorod. (b) Intensity 

distribution along the waveguide. 

 

The attenuation of light in the waveguide is showed in   

Fig. 3. Comparison to the attenuation related to simple silver 

nanorods in hexagonal lattice is also presented. For both cases, 

the guided wave has lower attenuation for wavelengths longer 

than 550 nm. Notice that application of GaN layer around the 

metallic rods leads to a reduction of losses for wavelengths 

lower than 600 nm and greater than 700 nm. A possible 

explanation for such decrease is the strongher confinement and 

coupling of SPPs waves provided by the periodic array of GaN 

claddings. 

 
 

Fig. 3: Attenuation in the periodic plasmon waveguide calculated for incident 

Gaussian beam at wavelengths in the range 450-800 nm. 

 

Our numerical analysis shows that the used thickness of the 

GaN cladding can be regarded as the optimum value. Lower 

thicknesses only slightly decrease the attenuation peak 

approximately by 1%, having no appreciable impact for other 

wavelengths in the range. On the other hand, a greater value of 

thickness cladding diminishes the coupling of SPPs between 

adjacent rows of nanorods and this leads to increasing of 

attenuation factor.  

III. CONCLUSION 

A theoretical investigation of a plasmon periodic 

waveguide composed by nanorods with silver core and GaN 

cladding in hexagonal lattice is presented in this work. The 

numerical simulations show that light can be guided through 

such structure by coupling of SPPs excited at the Ag/GaN 

boundaries. A comparison with the analogous waveguide made 

only by silver rods shows that, for the spectrum under analysis, 

there are wavelength ranges where light undergoes lower 

attenuation if GaN is used as cladding material. Thus, our 

results show that such metal-dielectric composition can 

potentially be useful for projects including optical waveguides 

and other photonic components in subwavelength regime. 
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6. OPTIMIZATION 

Abstract — This paper presents a model applied to find the best 

antenna base station (BS) positioning of indoor wireless systems. 

The model uses a mono-objective Particle Swarm Optimization 

(PSO) code, associated to a 2D ray-tracing (RT) algorithm. The 

PSO optimizes the antenna location by maximizing fitness. For a 

given BS location, the fitness is obtained by calling a RT 

algorithm that returns the lower electric field value in the regions 

of interest. The proposed model was applied in a practical indoor 

environment. The use of PSO it this application was compared 

with a validated Genetic Algorithm (GA) applied in the same 

problem. From several simulations, we observed that PSO 

presented more satisfactory results than GA for this 

electromagnetic problem. 

I. INTRODUCTION 

Nowadays, wireless communications systems are present in 

several applications. The diffusion of these this kind of 

systems (e. g, IEEE 802.11 standards), caused by the 

technological progress and the decreasing prices of wireless 

devices, suggests a more accurate design of these systems in 

order to have the same quality of wired communication 

networks, but maintaining the wireless network advantages. 

One of the requirements to achieve this quality is through 

appropriate positioning of the base station (BS). The ideal BS 

location is that providing good communication between the BS 

and all users of the cell. Almost all quality parameters of a 

wireless system are related to the signal level provided by the 

BS to the network users. Nevertheless, the excessive power 

from BS can cause interference in near cells sharing the same 

frequencies, which requires appropriate design. 

This paper considers the problem of maintaining, as best as 

possible, good signal level for all users in the cell covered by 

BS. The way used to apply this idea was done by maximizing 

the lower electric field in the regions of interest.  

Thus, this paper proposes a new model that uses a 

optimization code based on the concept of a Particle Swarm 

Optimization (PSO) algorithm associated with a 2D Ray-

Tracing (RT) method for determining the electric fields in all 

interest regions of the cell by using Geometric Optics (GO) 

and Uniform Theory of Diffraction (UTD). 

In order to validate the proposed model and evaluate the 

PSO in this type of application, we analyzed a practical indoor 

scenario where the optimal BS antenna position must to be 

found for providing proper signal to all network users. We 

simulated both the present PSO/RT model and the model 

proposed in [1], which uses Genetic Algorithm (GA) 

associated to a RT code. As will be shown, the proposed 

model gives better results for the analyzed example. 

II. PROPOSED MODEL 

Although the techniques used to develop the model 

proposed here are well known, the association of these 

techniques for antenna positioning problems in indoor 

scenarios is an original work. 

The Particle Swarm Optimization (PSO) is a population-

based stochastic technique developed by Kennedy and 

Eberhart [2]. As PSO is effective for electromagnetic 

optimization problems, it was chosen to be used in the model 

proposed in the present paper. 

The PSO is based on social behavior taken from nature 

observation, but excluding eventual cognitive factors. Similar 

to GA, the PSO initiates with a population (composed of many 

particles) of random solutions [3]. To each potential particle 

(xid) is assigned a randomized velocity (vid). After the first 

evaluation of the fitness associated to each particle, it keeps 

track of the coordinates (pid) in the problem space associated 

with the best solution (pbest) [3]. The overall best value 

(gbest) and its location (pgd) are also stored during the 

procedure. 

With a simple procedure, these stored data are iteratively 

updated using random parameters and fixed constants (w, c1 , 

c2), changing the particles velocities in order to intelligently 

explore the search area at each iteration. 

)()()()( 21 idgdidididid xprandcxprandcvwv −∗⋅∗+−∗⋅∗+∗=

  

(1) 

ididid vxx +=

                               

(2) 

The PSO used in the present model adopts the acceleration 

constants (c1 and c2) both equal to 2.0 [3] and a zero inertia 

weight (w = 0). 

In the application example consider here, corresponding to 

the BS antenna positioning, it is necessary to evaluate the 

fields in the regions of interest, where users can be connected 

to the wireless network. Here, the fitness for each BS position 

corresponds to the lower value of electric field in these 

regions. The reason behind this choice is that, if the lower field 

is maximized in the regions of interest, all the users will 

receive a good signal level. This fitness evaluation is done 

using a code based on Ray Tracing (RT) technique. RT is an 

asymptotic method widely used in the prediction of high 

frequencies coverage problems, with good results. The RT 

code used in the proposed model is based on image theory (IT) 

and includes an accurate approach to take into account the 

shift of the rays transmitted through obstacles [1]. 

The formulation used in the RT code (based on IT) 

considers the more relevant paths that leave the BS antenna 

and reach the reception points. The IT permits field 
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6. OPTIMIZATION 

computation only in the regions of interest. After path 

definition, the sum of all fields is done. Fields corresponding 

to each path are computed using a GO/UTD formulation. 

The proposed model is intended to be used for indoor 

environments, where the main mechanisms involved are 

reflection and transmission through the obstacles. Hence, we 

neglect the effects of edge diffractions for this application, 

which allows a significant computation time reduction, given 

that the code is called many times for the optimization 

program.  

Thus, as said, for a given reception point, the total electric 

field is given by the sum of the fields due to all considered 

paths, where the field due to each path is given by: 
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where As is the spreading factor, s is the total distance (in the 

air) of the path from a reference point to the receiver;  is the 

distance between the transmitter and the reference point; E0 is 

the electric field calculated at this reference point considering 

a free space propagation in the far-field region;  is the phase 

constant; i is the reflection coefficient due to i-th reflection 

and Tk is the transmission coefficient due to k-th transmission 

of the ray (taking into account the propagation through lossy 

obstacles [1]). 

III  RESULTS 

The proposed model was applied in a practical scenario, 

located at GRUCAD / UFSC laboratory, aiming to optimize 

the access point (i.e., BS) location of the 2.4 GHz WLAN 

(Wireless Local Area Network – IEEE 802.11g) used in this 

indoor environment. 

The reception points do not correspond to the whole 

scenario, but only in certain regions of interest. The obstacles 

considered in the environment are the walls, doors and 

windows, with different types of lossy materials. 

To validate the proposed PSO/RT model, the same 

problem was also simulated with the GA/RT model presented 

in [1]. In both cases, we used more restrict interest regions 

compared with [1], in order to decrease the simulation time 

and permit a more adequate number of iterations/generations. 

As said, the PSO/RT parameters were c1 = c2 = 2 and w = 0. 

For the GA/RT case, the crossover probability was 0.95 and 

the mutation probability was set to 0.05. 

In order to compare the models, we used the same number 

of individuals (equal to 20) and the same number of 

iterations/generations (equal to 70) for each algorithm. Thus, 

the whole optimization process requires 1400 RT runs for both 

models. For the analyzed problem, the large majority of the 

computation time is spent in computing the field values by the 

RT tool. Thus, an equal number of RT runs indicates 

approximately the same computation time for both algorithms. 

Fig. 1 shows the fitness of the best individual (gbest, for 

PSO) as a function of the number of RT runs. The curves have 

been obtained by averaging the results of six simulations 

carried out with different initial populations (randomly chosen) 

for each model. 

From the curves, we observed that the PSO/RT converged 

faster than the AG/PSO model. 

 
Fig. 1. Comparison between PSO and GA simulations. 

Fig. 2 presents the electric field mapping in the 

environment with the access point antenna placed at the 

optimal location corresponding to Fig. 1, namely, 

X = [6.2311 ; 6.4517] (m). The computation for each 

simulation is about 3h 30min using a 1.6 GHz Intel Dual-Core 

processor, with a 1 GB RAM memory and an 80 GB HD. 

 
Fig. 2. Field mapping corresponding to the optimal antenna location. 

IV  CONCLUSION 

The PSO/RT presented in this paper was shown to be 

effective in indoor wireless design applications. The 

comparison with the GA/RT model in the same problem 

shown that the PSO/RT presented better results in terms of 

convergence, which allows obtaining a reduction in the 

computation time for a given stop criterion. 

The extended version of the paper gives more details on 

the model formulations. Also, we present the results for 

another application example and a discussion concerning the 

convergence criterion to be used. 
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3. WAVE PROPAGATION

Abstract — In this paper a ray tracing procedure for the 
prediction of indoor EM fields based on a new accurate formula 
for the transmission path is presented. The novel formula is 
derived by using the Snell law and analytically relates the 
incidence angle and the transmission angle to the wall thickness; 
this new expression leads to very accurate results in the 
predictions.  

I. INTRODUCTION

The increasing number of wireless communications 
systems, including WLAN and micro-cell networks, requires a 
more detailed planning in order to assure adequate covering 
within the interesting region keeping field levels within the 
bounds allowed by regulations. The prediction of the EM field 
strength in indoor environments is generally obtained by using 
a ray optical method (ray tracing) able to take into account the 
presence of multipaths, reflections, and diffractions[1]. The 
ray tracing technique is based on optical geometry (GO) and 
on its generalization, the geometric theory of diffraction 
(GTD). The main assumption of GTD is that all the obstacles 
must have a size larger than the signal wavelength. In Ray 
Tracing propagation models for indoor and outdoor 
environments the EM field computing is carried out through 
separate evaluations of all the field components, due for 
example to reflection, refraction, diffraction and scattering 
coming out from the interaction with various obstacles. The 
field strength is computed by a coherent sum of all those field 
components [1]. A complicate field distribution arise because 
of these interactions, so an high accuracy in the evaluation of 
each single component is required. Two different approaches 
can be pursued for the determination of propagation loss: the 
Shooting and Bouncing Rays (SBR) or brute force ray tracing 
and the Image Theory (IT). The former launches from 
transmitter a set of rays equally angularly spaced and it 
computes the field at receiving points by adding all the 
contributions due to rays arrived or passing in proximity of 
them. The latter uses image sources in order to compute 
relevant paths and leads to more accurate results and to a 
reduction of the computational cost [2]. The main 
inconvenient of this approach is the need of a more accurate 
computation of the geometrical characteristic of the various 
paths, above all regarding the angle of incidence for the 
transmitted components [3-4]. 

In this paper a new approach is presented for the evaluation 
of the transmitted component of the field by using an 
innovative formula for the accurate computation of the 

transmission path in order to enhance electromagnetic field 
prediction precision in indoor environments. The new 
deterministic expression uses an iterative procedure to 
compute the transmission path contribution leading to 
extremely accurate value of the incident angle after a few 
iterations. An example of application to a simple indoor 
environment is also presented in order to show the accuracy of 
the approach. 

II. RAY TRACING TECHNIQUE AND NEW EXPRESSION FOR THE 

TRANSMISSION PATH COMPUTATION

The construction of EM field strength maps by means of the 
ray-tracing algorithm consists of two main phases: in the first 
the visibility between elements of the environment is 
represented by a visibility tree; in the second phase all the 
propagation multipaths between a transmitter T and a receiver 
R (measurement point) are determined and the contributions 
of these multipaths to the total field strength are computed. 
The multipaths and the propagation environment is modelled 
by means of a set of objects Ok, belonging to the various 
obstacles, which act as virtual sources with respect to the 
various phenomena of diffraction, scattering and reflection. 
They contribute to the total field by adding a specific 
component computed according to appropriate formulas. In 
order to reduce the time needed for the construction of all the 
possible paths between T and R (considering also that usually 
we have to deal with many measurement points), we use “the 
visibility tree”, which contains a propagation path in each 
branch. In this way the complete search of all the admissible 
paths can be easily obtained by visiting the visibility tree. The 
number of levels of the visibility tree corresponds to the 
maximum number of interactions between the objects 
considered in the ray optical propagation model. At the first 
level there is only the root represented by the transmitting 
source T. The branches originated from this root T constitute 
the second level, to which all the objects Ok directly visible 
from T belong. In this second level each object Ok represents 
the root for the successive level of the tree constituted by all 
the objects Oj directly visible from Ok. In this way in the 
branches of each level it is possible to find all the objects 
directly visible from the objects belonging to the preceding 
level, and the connections are in such a way to specify all the 
admissible paths from T to each object. The construction of 
the tree can be made recursively and the only condition to 
check in the extraction of the admissible paths from the 
visibility tree is that each Ok be present only once for each 
propagation path. The determination of direct visibility is 
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3. WAVE PROPAGATION

performed by using simple geometrical concepts such as 
intersection of a line with a face and a plane, which represent 
obstacles. Even in this case a pre-processing of the 
environment, excluding some obstacles according to their 
position, allows a reduction of the computational effort. For 
the computation of the various field contribution 
(reflected/transmitted/diffracted/scattered from obstacles, etc) 
apposite expression are used, considering the characteristic 
parameters of the material constituting each obstacle [1]. The 
EM field strength is obtained by coherently adding all the 
field components as follows:  
Etot =Elos+∑Er+∑Et+∑Ed+∑Es

where Elos indicates the direct line of sight componets and 
Er, Et, Ed and Es indicate the reflected, transmitted diffracted 
and scattered components. 

When considering a transmission path the accuracy of the 
ray-tracing field computation is strictly dependent on the 
evaluation of the transmission coefficient T. For this reason a 
new closed form expression for obtaining T has been derived 
based on a geometrical analytical approach, relating the 
incidence angle and the transmission angle to the wall 
thickness. The expression is based on relative positions of the 
source, the wall and the receiver. Starting from geometrical 
considerations it is possible to obtain:  
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Fig. 1 – Schematization of the transmission path computation 

Then, by using the Snell Law, for the relation between the 
angles, it is possible to obtain the following expression: 
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where n1 and  n2 are the refractive indexes of the regions; l1, l2

and d are, respectively, the distance between the source and 
the wall, the thickness of wall and the distance between the 
wall and the receiver.
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By using this new expression very accurate results have been 
obtained in the predictions. More details including comparison 
with other approach will be given in the full paper. 

III. EXAMPLE OF APPLICACTION

The following numerical experiment regards the application of 
the prediction procedure to the determination of intensity of a 
known EM sources in a real indoor environment (Fig. 2). 

Fig. 2 – indoor environment used for numerical experiment and color map of 
field strength  

The region contains obstacles having different dimensions and 
different electrical features. The source (whose position is 
shown in the same figure) produces a complicate field 
distribution because of reflection, refraction, diffraction and 
scattering due to the interaction with obstacles. In the colour 
map shown in Fig.2 the distribution of the transmission field 
component intensity is reported.  
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Abstract — This kind of interference may be caused by 
couplings between the terminals and the circuit lines. This work 
allows to study the effect of the metal post in the middle, and the 
radiated energy and the coupling between post. Through the 
WCIP (wave concept interactive procedure), which uses concepts 
of incident waves, can be estimated the effect of the fields of posts 
in metal laminate as the radiation and coupling between the post.  

I. INTRODUCTION

Once the circuit conception companies dominate a 
relatively established technology competence, nowadays the 
researches attention has focused on the demand for more 
integration and reduction size of these devices. This 
integration can be done with the use of the multilayer laminate 
(and bridges accesses), increasing the packing densities of 
device or also with the introduction of antennas in chip [1]-
[3]. The need for a large flow of data has grown the clock 
frequency resulting in the increase devices electrical length. 
Therefore, it inevitable increases the parasitic electromagnetic 
(EM) coupling between the elements. 

In the multilayer configuration the interconnection 
between layers are made using via of access. In some cases 
these structures can be characterized as cylindrical metal post.
This via high frequency current generates an electric field 
distribution in the region around it. This field can cause 
coupling in others via and/or printed circuit nearby. 

Can be used the post also isolating a region of 
electromagnetic interference [4]. This can be used to isolate 
devices who generate or cannot get much electromagnetic 
interference. 

The representation of electromagnetic fields by waves is 
used since many years [5]. The WCIP (wave concept 
interactive procedure) method is based on full wave transverse 
formulation. The incident wave concept the multiple reflection 
on the region. The incident wave and scattered wave in the 
spatial domain and in the spectral domain. 

This work studied the effects of via. Will be observed the 
electric field generated by a source near and one way to 
minimize this effect. 

II. WAVE CONCEPT INTERACTIVE PROCEDURE

The formulation of the iterative method has been described 
in [6-8]. This method allows representing the electromagnetic 
(electric and magnetic field) as a function of incident waves 
(a) and reflected (b), the waves are defined from a surface, see 
Fig.1. 

Fig.1. Emitted and reflected waves on surface. 
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With Z0 is the wave impedance, E and H, the electric and 
magnetic fields tangential to the surface and n the vector 
normal to the surface. 

Two operators are successively applied to these waves. 
The scattering operator Ŝ  [6], which takes into account the 
boundary conditions in the spatial domain (Et1 = Et2) and J1 + 
J2 = 0 on the dielectric, Et1=Et2 = 0 on the metal. This means 
when metal S = - 1 and dielectric on S = 1.

The reflection operator Γ̂ , which takes into account the 
environment's reaction in the spectral domain, is defined as: 
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Where Ŷ is the admittance the region, and using de 
induction law of Faraday and the auxiliary potential, can be 
find de relation of E and J.
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Replace (3) in (2), and rewriting the reflection operator 

( )00
2

0
2

002
1ˆ

ωµjYk
ωµjYΓ
++∇

+−= (4) 

Study of the Parasitic Effect Caused by Vias in 
High-Frequency Circuit 

A. G. D’Assunção Jr1, G. Fontgalland2, and H. Baudrand3

1,2UFCG/DEE-LEMA, Campina Grande-PB, 58109-970, Brazil 
3INPT-ENSEEIHT, 31071, Toulouse, France,  

1adaildojr@ee.ufcg.edu.br, 2fontgalland@dee.ufcg.edu.br, 3baudranh@n7.fr 

490

PB7.1



Can approximated the second term of (5) by Hankel 
function second kind and zero order.  

( ) ''21ˆ 2

'

2
0

2
0 rdrrkHjkΓ

r
⋅−+−= ∫ (5) 

k0 is the wave number in the free space. 

III. SIMULATION

Simulations were made for situations with an operating 
frequency of 10GHz. Initially is not considered the height of 
the post, is only the distance d. Considers the post is the 
cylindrical shape of radius equal to 0.5 mm. Now is 
considered the case of 1D, but the formulation of the study 3D 
case was in progress. 

The simulations initially are compared when there is only 
one post in the free-space and three post, with the central is 
the source and observing the coupling between the central and 
the two sides.  

Fig.2. Distribution of post in space 

Fig.3. Compared electrical field one post and three post in the free-space. 

Fig.4. Compared electrical field three post and five post in the free-space. 

In Fig.3, is seen the field generated by a source close. Can 
be seen the effect of coupling between the post. The electric 
field at the surface of the side post generates a current density, 
and causing interference.  

In Fig.4, note the reduction in the electric field in the 
lateral post. With the introduction of two new posts may be to 
reduce interference between the side posts. 

With the introduction of side post can notes that there is a 
decrease in electric field in the region. Notes that the region is 
the side posts is a reduction of the intensity of field. This 
effect allows use these post to cause an effect of shielding the 
region. 

IV. CONCLUSION 

The use of vias can cause effects of electromagnetic 
interference in integrated circuit, when using high frequency, 
as shown in Fig.3 and Fig.4. But the vias or metal post can 
also be used to reduce the effect of electromagnetic 
interference in integrated circuits, as can be observed in the 
simulations. The WCIP method, which uses the concept of 
incident wave, can characterize the metal post in the central 
region of the laminate. And thus determining values of 
distances between post but, also the introduction of post to 
minimize the effect of electromagnetic interference. 
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 4. ELECTROMAGNETIC COMPATIBILITY 

Abstract — The Partial Element Equivalent Circuit method 

(PEEC) is well suited to extract the conducted electromagnetic 

disturbances parameters from wiring systems. It provides an 

efficient tool for the EMC study relevant to automotive cables. 

However the complete EMC analysis of embedded systems 

requires also reliable models for the radiated emissions especially 

at high frequencies. In this paper a new approach based on the 

PEEC method and involving  3D field calculation is developed to 

evaluate emissions from radiating cables.  

I. INTRODUCTION 

In automotive industry the functional safety of electronic 

systems is a crucial challenge. Actually, the integrated circuits 

(ICs) and transistors used to construct these electronic systems 

become more vulnerable to interferences and damages from 

Electromagnetic (EM) disturbances. The main reasons are : the 

feature size decrease, the operational speed increase, and the 

operating voltages fall. Such developments make electronic 

equipments more easily corrupted by a given electromagnetic 

disturbance which can be induced inside the car due to the fact 

that power systems and control systems stand together in the 

same closed environment. In fact, the majority of these 

disturbances are propagated between sub-systems through 

cables in a conducted and/or radiation form, resulting in 

inaccuracy, malfunction, or failure of these systems. For these 

reasons, adequate EMC studies are necessary and the 

prediction of EM behavior is of vital importance to ensure 

reliable and EM compatible systems. 

Therefore, several numerical methods of electromagnetic 

modeling are available and can be used for electromagnetic 

analysis. Among these methods, the Partial Element 

Equivalent Circuit method (PEEC) [1][2] is particularly well 

suited. In comparison to Finite Element Method or Finite 

Difference Method, PEEC only needs the discretization of 

conducting regions or dielectric materials avoiding the mesh of 

surrounding air environment. Usually the PEEC approach is an 

efficient way to deal with circuit simulation of distributed 

structures. In [3] a 3D model based on the PEEC method was 

proposed in order to take into account the size of automotive 

wiring systems. It includes resistive, inductive and capacitive 

effects. Such 3D approach was shown to accurately predict the 

conducted disturbances by cables above large ground planes. 

In automotive applications electronic systems are used with 

increasingly higher frequencies and the radiation of cables 

cannot be neglected.  

In this paper a new approach is developed to evaluate the 

radiated fields with the PEEC method. The originality of this 

work is considering both radiated and conducted disturbances 

in the framework of a PEEC method for large size structures. 

In a first step the current carried by the conductors are 

determined from the circuit model deduced with the 3D PEEC 

method. Then in a second step the field radiated by the wiring 

systems is evaluated using an analytical calculation deduced 

from the distribution of currents. The advantage of this 

approach is a lower processing time for the same desired 

accuracy as a full wave numerical method. 

II. 3D RADIATED FIELD 

The PEEC method is based on three main steps. In a first 

stage, the structure is discretized into a series of cells. An 

equivalent circuit is deduced in a second step. The third step is 

to implement this equivalent circuit in a SPICE simulator [4] : 

the output data are the current and voltage values in each point 

of the structure. The analytic calculation of the magnetic near-

field is based on the equation (1) which uses the previously 

determined current: 


−

=

V'

jkR

dv'
R

e
J




A γγ



4
        (1) 

where zyx ,,=γ and k  is the wave number, γJ


is the current 

density crossing the volume V', r


 and 'r


defines respectively 

a point M from where the vector potential has to be determined 

and a point P in the volume (Fig. 1.).   

  The distance R between P and M is given by:   

( ) ( )222 z'zy'yx')(x'rrR −+−+−=−=


 

 
Fig. 1. Cell crossed by 
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 4. ELECTROMAGNETIC COMPATIBILITY 

The vector potential can be calculated analytically if   

each cell is considered as an equivalent 1D dipole [5][6]. But 

this approach is not realistic because only one dimension of 

the cell is taken into account: it may lead to inaccurate results 

near to the conductor. In order to improve the computation, an 

analytical method extended to 3-D is proposed in the next 

section to calculate the magnetic near field. Once the magnetic 

vector potential is computed, the magnetic field can be 

deduced from the equation (2):  

A


H


×∇=
1

        (2) 

III. 3D-CALCULATION OF THE MAGNETIC FIELD WITH   A 

MACLAURIN SERIES 

In the proposed approach, the three dimensions of the cells 

are considered. To insure a high accuracy, no approximation is 

performed on the current cross section: a 3D series MacLaurin 

method is used. It is assumed that the dimensions of the 

discretization cells are very small compared to the wavelength. 

Therefore, a multivariable function f  can be written in a form 

of a MacLaurin series expansion: 
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where the origin corresponds to the center of the cell. 

In the work the expansion is limited to the third order. From 

the 3D integration of this function an analytic expression of the 

vector potential can be deduced and then the magnetic near 

field in the whole area can be determined. The technique has 

been first validated in different canonical configurations. In the 

next section a realistic test case is considered. 

IV. APPLICATION TO THE RADIATION OF A CABLE: 

SIMULATION AND MEASUREMENT  

The method is tested in the case of a conducting cable (Fig 

2.) made up by a wire located 5mm above a ground plane. 

Such configuration was chosen in order to illustrate the ability 

of the approach to handle large size systems. The length of the 

wire is 2 m. It is connected to a 50Ω resistance at an extremity 

of the ground plane.  

 

Fig. 2. Description of the studied system 

A Vector Network Analyzer (VNA) is used to measure the 

S11 parameter of the system from which the input impedance 

is deduced. The comparison of the simulated and measured 

input impedance is shown on fig. 3. The magnitude and 

position of the resonance peaks are wel recovered. 

 

Fig. 3. Measurement and simulation of input impedance 

A source current excitation is prescribed at the other 

extremity. The frequency is 30 MHz. The magnetic field 

cartography determined by the PEEC method combined with 

the analytic calculation is compared to measurement results 

(Fig. 4.a and Fig. 4.b). The values are located on a plane at 

2cm above the ground plane. The measurements are obtained 

with a near-field test bench [7]. A good agreement is shown 

between the two plots. In the conference different 

configurations will be analyzed and the influence of the 

frequency will be studied. 

a)                                             b)                                      

 
Fig. 4. Magnetic field radiation at 2cm above the ground plane at 30MHz:  

 a) Simulation  b) Measurement 
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4. ELECTROMAGNETIC  COMPATIBILITY 

Abstract — This paper presents the behavior of a grounding 
mesh in presence of a high-frequency overvoltage transient 
caused by switch closing in electrical substation. The simulation 
of the mesh is based on Transmission Line Method (TLM). The 
output of the simulation is the sum of induced and conducted 
currents caused by such high-frequency overvoltage input in 
some spot of the mesh. The conductors of the mesh are modeled 
by thin wires developed by Naylor and Christopoulos. This way, 
the simulation runs much faster than those with short-circuit 
nodes. Details on the soil properties such as resistivity and 
dielectric constant are provided.  

I. INTRODUCTION 
Electronic devices are widely used in power substations 

for measurement and control of electrical quantities. It is 
known that, frequently, these devices are seriously damaged 
by high frequency outbreaks provoked by operational 
maneuvers and atmospheric discharges [1], [2]. Therefore, it 
becomes necessary to implement a simulation method to 
predict the distribution of electric and magnetic fields through 
a mesh and develop methods to avoid the problems that such 
outbreaks might cause to the equipments. 

Transmission line modeling (TLM) has been applied as a 
method for the solution of electromagnetic field, diffusion and 
network problems [3]. Due to the fact that TLM is a time-
domain simulation method, it is possible to verify transient 
effects in a wide range of frequencies. In that manner, the 
TLM will be used as the simulation method. Formerly, the 
conductive nodes in TLM were represented by a node called 
short-circuit node, which represents the property of the 
tangential electrical field at the conductor surface. Because of 
the small radius of most conductors in grounding systems, 
such node becomes very time-consuming when large volumes 
are required to be simulated. To overcome this problem, 
Naylor and Christopoulos proposed a large node that 
represents a small radius conductor in one direction [4]. This 
way, larger volumes can be simulated with less time 
requirements. Previous simulations performed by the authors 
have shown that the use of the node proposed by Naylor and 
Christopoulos requires only 5% of the time for the short-
circuit node simulation. Moreover, the memory requirements 
are far lower because of the reduction on the number of nodes. 

The authors propose the use of TLM to the simulation of 
grounding meshes to optimize system protection. A small 
grounding system is presented in order to show that the 
effectiveness of the simulation can be extended to big systems 
such as electrical substations. 

The reduction of the simulation time makes possible 
testing several configurations in order to determine which one 
is the most efficient with respect to voltages and currents 

distributions throughout the grounding mesh. And so, the 
damages to the electronic devices tend to be reduced. 

II. TRANSIENT EXCITATION OF THE MESH  
The waveform used as input of the simulation is a real 

transient overvoltage caused by a switch closing in a 500 kV 
substation in Itaparica, Northeast Brazil. The measurements 
were performed using the methodology used in [5]. The 
measured transient in that occasion is shown in Fig. 1. 

Fig. 1. Measured overvoltage transient in Itaparica electrical substation. 
 
The waveform in Fig. 1 was acquired at the grounding 

connection of the switch. In other words, that voltage 
waveform is the one injected in the grounding mesh of the 
substation during the transient event. 

Still in Fig. 1, one sees that peak of more than 1.5 kV is 
achieved (more than 2.5 kV peak-to-peak). Performing the 
Fourier Transform in that waveform, frequency components in 
the order of hundreds of kHz may have considerable levels. 
Analysis of the frequency components of the measured 
transient voltages injected in the mesh will be presented. 

III. SIMULATION SETUP 

The simulated mesh is shown in Fig. 2. The conductors´ 
radii are set to 1 cm; the TLM discretization is ∆l = 0.1 m, and 
so, the relationship r << ∆l holds [4]. The total dimensions of 
the simulated volume are 2 x 4.5 x 3 m. 

Simulation of a Real Overvoltage Transient in a 
TLM-Modeled Grounding Mesh 
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Capacitive nodes were inserted in order to model the soil 
properties such as variation of dielectric constant and losses 
[6]. The conductive nodes were modeled based on an 
admittance model developed by [3], as follows: 
 

 
 rl

Y r
cm /54.0ln60 


 , (1) 

 
where Ycm is referred to as common-line admittance, ∆l is the 
length discretization of the TLM model, r is the conductor 
wire diameter and εr is the dielectric constant of the medium 
where the conductor is inserted in. Because the lack of 
symmetry of the thin wire model node, 3 matrixes were 
implemented in the simulation routines, one for each of the 
coordinate axis. 
 

 
Fig. 2.  Simulated grounding system. 

 
The model of the soil regards one layer, whose dielectric 

constant and resistivity are εr = 3 and 450 Ω·m, respectively. 
The dielectric constant value was obtained according to the 
technique outlined in [7]. On the other hand, the resistivity 
value was measured according to the Wenner method [8]. 

Absorbing boundary conditions were imposed to the 
simulated volume so that no reflections are observed at the 
boundaries of the model. 

IV. RESULTS AND DISCUSSIONS 

The behavior of the propagating fields, currents and 
voltages in this mesh indicates whether the grounding system 
has to be optimized or not. Fig. 3 shows the current in the 
middle vertical conductor as a result of the incident voltage 
from Fig. 1. As well as the current, the results can be easily 
extended to the voltage along the conductors to verify whether 
electronics devices can be connected to each other (data cables 
connections, for instance) if they are submitted to different 
ground potentials during a transient event. 
 

 
Fig. 3.  Simulated current through the middle vertical conductor. 

 
Currently, voltage simulations are being carried out as well 

as a real grounding mesh prototype is being constructed. 
Measurements will be performed in the prototype mesh in 
order to validate the simulated results. Results concerning the 
distribution of transient voltages in the mesh will be presented. 

V. CONCLUSIONS 

Effects of a transient in a small grounding system are 
simulated. Because of the time-saving benefit of thin wire 
models in TLM, these simulations can be extended to bigger 
grounding systems such as in electrical substations. The 
simulation outputs might be current, voltages and 
electromagnetic fields in one or several spots in the mesh. 
Thus, grounding systems can be optimized to mitigate high 
frequency transient effects in electrical substations. 
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Abstract — The conservativeness of the homogeneous flat
phantom filled with head tissue equivalent liquid for the Specific 
Absorption Rate (SAR) conformity assessment of body-worn
wireless communication devices is investigated. Numerical
simulations are performed using three flat phantom models – 
homogeneous, two-layer and three layer structures– and a 
previously validated commercially available mobile phone model. 
The SAR is calculated for several distances of the mobile phone
with respect to the three phantoms at 900 MHz and 1725 MHz.
Results show that the homogeneous phantom is not conservative 
for some distances at 1725 MHz.

I. INTRODUCTION

The SAR (Specific Absorption Rate) conformity
assessment of wireless communication devices operated in
close proximity to the ear is currently based on standardized
measurement procedures such as IEEE1528 [1] and
IEC62209-1 [2]. The SAR measurements are performed using
the SAM (Specific Anthropomorphic Mannequin) head-
phantom filled with an appropriate tissue equivalent liquid for
several intended use positions of the handset. The morphology
of the SAM phantom is chosen to be representative of the
adult population. The conservativeness of the dielectric
properties of the tissue equivalent liquid with respect to the
inhomogeneous head counterpart was previously
demonstrated [3].

Following the advent of hands-free kits, the intended use 
position of mobile phones shifted from the ear position to 
other parts of the body. For example, mobile phones can be
worn at the belt or placed in the shirt’s or trouser’s pocket. An 
appropriate phantom and corresponding tissue equivalent
liquid have therefore to be defined for such novel use
positions. Current standardization bodies recommend a flat
phantom for measuring the SAR of body-worn wireless
communication devices [4]. For practical reasons, it is
desirable to use the same tissue equivalent liquid as the one 
employed for the head SAR conformity assessment. However 
the characteristics of the biological tissues present in the head 
are different from those found in other parts of the human
body.

A few studies have investigated the conservativeness of 
the homogeneous flat phantom for the body-worn SAR
assessment. For example, numerical simulations based on the
FDTD (Finite Difference Time Domain) method were
performed using a dipole antenna placed at a number of 
distances from a homogeneous flat phantom and several multi-
layered planar phantoms which were derived from the visible
human model [5]. The application of a correction factor –
dependent upon the frequency, the considered multi-layered

structure and the distance of the dipole with respect to the
phantoms – appeared necessary in order to preserve the
conservativeness of the homogeneous flat phantom.

Herein a commercially available dual-band –
900 MHz / 1800 MHz – mobile phone representative of an 
actual wireless communication device is considered for a 
similar analysis. The numerical model of the mobile phone
consisting of the different components – PIFA (Planar
Inverted-F Antenna), PCB (Printed Circuit Board), display,
battery, etc.– was previously validated using experimental
data [6]. Two multi-layered structures are selected for this
study: (a) a two-layer structure consisting of skin and fat
tissues representing the abdomen and (b) a three-layer
structure consisting of skin, fat and muscle tissues
representing the thorax. The calculations are performed for 
several distances of the mobile phone with respect to the
homogeneous phantom and the two multi-layered structures.
The relative distance of the antenna and the phantom is
expected to influence the return loss and consequently the
SAR value. Therefore the mobile phone is considered with
either the front side or the back side positioned against the
phantoms. The impact of the antenna mismatch on the SAR
values can thus be examined.

II. NUMERICAL MODELING

Electromagnetic solvers based on time domain methods
such as FDTD are nowadays commonly adopted for SAR
calculations. Herein a commercial package of the 
Transmission Line Matrix (TLM) method is chosen [7]. Fig. 1 
shows the main components present in the commercial mobile
phone used for the study. These components are embedded in
a dielectric support (not shown). The dielectric casing of the
mobile phone (also not shown) is drawn to have planar faces.
The exact dielectric properties of some components are 
unknown: approximate values are therefore used. The PCB is
modeled as a thin conducting plate i.e. the dielectric substrate
and electronic circuits are not considered. All numerical
simulations are performed at the two resonance frequencies of 
the mobile phone: 900 MHz and 1725 MHz.

Fig. 2 shows the three flat phantoms considered for the
numerical simulations: (a) homogeneous, (b) two-layer
structure and (c) three-layer structure. The thickness of the 
different layers for the two-layer and three-layer models is
provided in Table I. The dielectric properties and mass
densities of the tissues are provided in Table II. The
homogeneous phantom has the same overall dimensions as the
other two phantoms. The dielectric properties and mass
density are those of the tissue equivalent liquid recommended
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by the standards for the head SAR assessment at a given 
frequency.

Fig. 1. Numerical model of the PIFA-based commercial mobile phone (the
dielectric support and casing are not shown).

Fig. 2. Flat phantoms considered in this study: (left) homogenous, (middle)
two-layer structure (abdomen), and (right) three-layer structure (thorax).

TABLE I 
THICKNESS OF THE BIOLOGICAL TISSUES 

Tissue
Tissue thickness for the 
two-layer model [ mm ]

Tissue thickness for  the 
three- layer model [ mm ] 

Skin 2 2
Fat 98 12
Muscle NA 86

TABLE II 
PROPERTIES OF THE BIOLOGICAL TISSUES 

Parameters at given frequency Skin Fat Muscle
Relative permittivity 41.41 5.46 55.03
Conductivity [ S/m ] 0.87 0.05 0.94900 MHz
Mass density [ kg / m3 ] 1010 920 1040
Relative permittivity 39.00 5.36 53.65
Conductivity [ S/m ] 1.27 0.08 1.451725 MHz
Mass density [ kg / m3 ] 1010 920 1040

III. RESULTS

Fig. 3 and 4 show the results obtained at 900 MHz and
1725 MHz, respectively, for the configuration of the front side
of the mobile phone facing the phantoms. At 900 MHz, the
homogeneous phantom provides conservative SAR values for 
all the considered distances. At 1725 MHz, the three-layer
model provides higher SAR value than the homogeneous
model for distances greater than 10 mm. The same
phenomenon is observed for the configuration of the back side
of the mobile phone facing the phantoms. At 1725 MHz, a 
correction factor is therefore needed in order to obtain
conservative SAR values when using the homogeneous
phantom.

Fig. 3. SAR calculated for several distances of the mobile phone with respect
to the phantoms at 900 MHz.

Fig. 4. SAR calculated for several distances of the mobile phone with respect
to the phantoms at 1725 MHz.
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Abstract — This paper presents a theoretical evaluation of 
the phase-shifting excitation and load effects in a 
Transmission Line Excitation Chamber. It is suggested as an 
alternative for immunity tests because of the restrictions 
related to canonical chambers. Here, two methods are used 
to calculate the E-field: a semi-analytic approach and a 
numerical one. The semi-analytic method is based on the 
well-known modal expansion while a commercial software is 
used for numerical simulations. The results regarding the 
field profile and the related statistical indexes of merit are 
presented and used to evaluate the chamber performance. 

I. INTRODUCTION

Canonical chambers - that is Reverberation Chambers 
(RC) and TEM Chambers - are generally used for 
electromagnetic immunity testing despite their particular 
operational restrictions. RCs using mechanical paddles or 
frequency stirring provide a statistical E-field uniformity 
in all the directions inside the work volume [1]-[2]. 
Nevertheless, the frequency operation of RCs is inversely 
proportional to the chamber dimensions and it is a 
constraint for low frequencies tests. The International 
standards recommend the RC configuration for immunity 
tests over 80 MHz frequencies [2]. TEM Chambers 
present for low frequencies a deterministic E-field uniform 
over a work area parallel to the septum, but not in all 
directions in the chamber volume [3]. Recently, a concept 
called Transmission Line Excitation Chamber (TLEC) has 
been proposed, based on a phase-shifting excitation of 
several transmission lines (TL). For a sake of illustration, 
a configuration constituted of three-conductor phase-
shifting excitation has been investigated in [4]. 

In this work, we present semi-analytical and numerical 
approaches for evaluating the performance of a TLEC. 
Basically, a chamber excited by several TL presents 
several TEM modes inside the closed metallic cavity. The 
resulting standing waves depend on the position of the TL 
as well as the phase-shifting excitation and the loading. 
Those parameters are important in the search for a suitable 
chamber working volume; they can be modified 
electronically, resulting in a random standing wave 
profile. Based on this, a set of parameters combination can 
be chosen to improve and satisfy the pre-defined 
uniformity criteria within a wide frequency range, even at 
frequencies lower than 80 MHz. 

II. SEMI-ANALYTIC AND NUMERICAL APPROACHES 

A. Analytic expression of a single TL 

Considering the TL geometry given by Fig.1, the E-field 
of a TEM mode inside the chamber can be evaluated by 
the following analytical expressions: 
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where η0 is the vacuum wave impedance and Jm the 
harmonic coefficients related to the current density on the 
central conductor. Assuming the conductor as an infinitely 
thin wire along z axis, one finds: 
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The dependence with z direction is decoupled and equal to 
e-jk0z, when an incident wave is considered.
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B. Phase Shifting and Load Effects Modeling 

Several TL can be treated by superposition. When the 
TLs are ended with the same load, the E-field can be 
written using the separation of variables in the transverse 
plane and in the longitudinal direction. The phase shifting 
between the TLs has then an effect on the repartition of 
the fields in the transverse plane: 

( ) ( ) ij

i

TEMiTOT ey,xEy,xE ϕ∑= (5)

where Ei TEM  is the E-field due to the ith TL and ϕi

represents the applied excitation phase.  
The load introduces a reflection coefficient Γ that 

affects the longitudinal repartition of the field: 

( ) ( ) ( )zjkzjk
TOTTOT

00 eey,xEz,y,xE +− +×= Γ (6)

If we consider when |Γ | = 1, a stationary wave is 
expected but the maximum of E-field can be moved 
changing the phase of Γ. Thus, it is possible to 
homogenize the field in z direction even if the TL is 
unmatched. 

C. Numerical Approach 

Numerical evaluation was performed using FIT [5]. The 
loads are imposed by boundary conditions while the 
phase-shifting excitation is implemented by a post-
processing approach. 

D.  Indexes of Merit calculation 

Standard deviation for the distribution of E-field in the 
chamber can be calculated from the definitions in [1] [4] 
and [6]. Due to the phase and load shifting, the E-field 
considered at any point of the chamber is the average 
field.

III. APPLICATION AND RESULTS

A TLEC with dimensions of 0.6m×0.6m×1.2m has
been considered. The semi-analytical approach has been 
applied in the transverse plane {x, y} since the variation of 
E-field in z direction can be canceled using a suitable 
load-shifting. The area under evaluation is a rectangular 
0.3m×0.3m centered at the middle of the chamber. The 
study concerns the influence of the phase-shifting when 
several TL are considered. Results are reported in Table I. 
It appears that the number of TL is important: the standard 
deviation decreases of 3 dB when 4 TL are introduced 
instead of 2 TL. Moreover, the phase-shifting improves of 
0.5 dB the performance. A TEM stripline like the one used 
in TEM Chambers has also been simulated and the E-field 
uniformity is presented. 

TABLE I 
STANDARD DEVIATIONS FOR SEMI-ANALYTICAL APPROACH

Chamber Configuration Standard Deviation (dB) 
Number of 

TL
Phase-shifting ˆ xσ ˆ yσ ,ˆ x yσ

1  ------- 5.7 6.0 5.9 
2  No 6.5 3.3 5.3 
2  Yes 6.4 2.0 5.0 
4  No 3.2 3.2 3.3 
4 Yes, random 2.8 2.6 2.8 

TEM
Chamber 

------- 5.1 3.1 4.6 

3D simulations using commercial software have also 
been carried out. The interest is that this approach is more 
realistic since it takes into account the connection of the 
TLs outside the chamber, which introduces a 
discontinuity. Table II presents the statistical E-field 
indexes calculated when the TLs are terminated by a 
50 Ω load. The volume is defined with the same cross 
section as previously, and a 0.6m length in the z direction. 
The influence of the phase-shifting on E-Field profile is 
also given at Fig. 2 in a 2 TL configuration. 

TABLE II 
STANDARD DEVIATIONS FOR NUMERICAL APPROACH (LOAD 50Ω)

Configuration Standard Deviation (dB) 
Number of 

TL
Phase-shifting ˆ xσ ˆ yσ ,ˆ x yσ

1  ----- 7.7 6.6 7.3 
2  No 9.0 4.4 6.4 
2  Yes, random 7.0 5.1 6.2 
4  No 7.1 7.1 7.1 
4  Yes,  random 5.0 6.3 5.6 

The effect of the load is presented in Fig. 3: the maximum 
of E-field moves between a –j500Ω and j500 Ω load. 
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Fig. 2 (a) Position of two TL in the chamber (b) E-field distribution in
the horizontal plane at the middle of the chamber (load 50 Ω). 

(a) (b) 
Fig. 3 E-field distribution with different loads (a) –j500Ω (b) j500 Ω.
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3D Near-field Reconstruction from PCBs by 
Equivalent Sources Using Legendre Functions 

Abstract — In this paper a 3D Near field characterization 
method is presented for the EMC analysis of power printed 
circuit boards. From a measured magnetic field cartography an 
equivalent set of magnetic dipoles is deduced solving an inverse 
problem. The use of Legendre functions in the field expressions 
allows to address the general case where the distance between the 
cartography and the circuit is small. This model is devoted to 
DC-DC complex real case. In this version some theoretical 
aspects and results on a simple case are presented.   

I. INTRODUCTION

Switched mode power supplies (SMPS) are widely used, 
they provide good power-volume and power- weight ratios. 
However, they are source of electromagnetic pollution 
generated by switching mechanisms. In presence of such 
phenomena malfunction risk is not negligible and sometimes 
important, depending on the surrounding structures. To avoid 
such consequences, manufacturers have to make sure their 
products are electromagnetically compatible. To obtain such a 
guarantee it becomes necessary to know with a good accuracy 
the electromagnetic behavior of the switching devices. 
Near field characterization recently became an efficient way 
for the analysis of radiated emissions from electronic circuits 
and components [1]. The cartography of the radiated fields 
gives meaningful insights of the electromagnetic disturbances 
and adequate models can be directly build from the 
cartography. In [2] the radius of a circular loop equivalent to 
the switching cell is deduced from the maximum of the 
magnetic field. In [3] an array of equivalent dipoles lying on 
the printed circuit board and having predifined position is 
determined by a  root mean square procedure. The model 
presented in [4] addresses a more general case where the 
position and orientation of equivalent dipoles are unknown : 
these dipoles are determined from the near field cartography 
by solving an inverse problem using genetic algorithms. 
Interesting results have been obtained for a simple case. 
However, the mathematical approximations used in this model 
assume that the radius of each magnetic dipole is very small 
compared to distance between each elementary part of the 
dipole and the observation point. These approximations allow 
an easy way to express the model and a reduced computing 
time. Nevertheless the solution quality tightly depends on the 
complexity of the studied case and realistic configurations of 

power circuits including several radiation sources are difficult 
to be analyzed. 

 In this paper a new model without approximations is 
presented. In this approach the 3D dipoles are generated from 
the measured values of the magnetic field whatever the 
distance between the measured cartography and the circuit. 
The expressions of the radiatied field use the Legendre 
functions which govern the general case relevant to the 
magnetic dipoles. Preliminary results are presented on a 
simple case. More complex configurations will be presented in 
the conference.

II. CHARACTERIZATION METHOD

The characterization method is an inverse-problem based 
resolution. It aims at finding a set of elemental electric and 
magnetic dipoles which radiate the same near-field values as 
the original device by minimizing the following function: 

mod

→→→

−=⎟
⎠
⎞

⎜
⎝
⎛ HHXJ mes (1) 

Where 
→

X is the vector of the dipoles parameters.   

Fig. 1. Magnetic field radiated by a magnetic dipole 

The magnetic field in the observation point P is the sum of the 
contribution of each elementary length along the magnetic 
dipole (Fig. 1). The magnetic field, radiated by a magnetic 
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dipole using the Legendre functions (L1, L2), expression for 
one observation point is: 

Fig. 3. Measured magnetic field 

                              (2) cylHBH
→→
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Where is the magnetic field in the cylindrical local 

coordinates (o’, x’, y’, z’) has the following expression [5]: 
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Fig. 4. Caluculated magnetic field 

B is the coordinates transformation matrix from the 
cylindrical local coordinates to the global Cartesian 
coordinates (o, x, y, z). For one magnetic dipole, the 

parameters vector  has dimension (1,6). 

For N magnetic dipoles the vector 

( aIyxX d ,,,,, 00θφ=
→

In the conference the efficiency of the new model will be 
illustrated by studying a complex DC-DC case (figure. 5) and 
will be also compared with the results obtained using the 
former model.  

)
→

X dimension is (1,6*N). 
The fitness function in (1) becomes highly non linear with a 
lot of local minima. To optimize this function a genetic 
algorithm is used. In the conference more details will be given 
about the theoretical aspects of the inverse problem and the 
improvement provided by this model when compared to [4].  
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III. RESULTS

In this part results obtained using the proposed approach 
for a simple DC-DC converter, are presented. 

Fig. 5.Forward schema 
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Abstract —This paper reports a study-case concerning the 
assessment of shielding effectiveness within a typical operating 
room in order to evaluate and manage electromagnetic 
compatibility in health care facilities. Measurement techniques 
and numerical simulation (using TLM Method) are employed to 
identify and evaluate critical sources and frequencies, providing 
a reliable appraisal of the electromagnetic environment. 

I. INTRODUCTION 
Nowadays, it is possible to observe that Health Care 

Facilities (HCF) have been endeavoring to incorporate the use 
of new technologies to provide a number of different medical 
solutions and improve the quality of clinical procedures. This 
situation increases the challenge to promote the 
electromagnetic compatibility (EMC) in clinical environments 
in order to grant the proper performance of a growing number 
of equipment operating simultaneously within the same area. 

The electromagnetic profile presented in a clinical 
environment is characterized by a set of complex conditions, 
which comprises several different sources, wide frequency 
range, and substantial amplitude variation. This situation 
complicates the establishment of an associated 
electromagnetic interference (EMI) potential for 
electromedical equipment (EME). Hence, it is well known that 
the awareness of electromagnetic behavior shown by these 
environments can represent an important tool in order to 
promote EMC management and avoid the appearance of 
undesirable phenomena such as EMI [1-2]. As a result of this 
assessment, a better understanding about the real situation 
concerning the electromagnetic environment in HCF can be 
achieved, allowing clinical engineers to define better 
directives to implement a management program which is 
adequate to the real need of these hospitals. 

During the current research, a number of hospitals have 
been evaluated by measurement techniques in order to identify 
important electromagnetic features (critical sources and 
frequencies) presented in these environments. Some of them 
were already evaluated by computational means according to 
specific issues concerning wave propagation, as previously 
published in [1]. In this paper we deal with another study-case 
whose main characteristic is related to high electric field 
levels due to the influence of external sources, such as TV and 
FM radio broadcasting. In this scenario, clinical engineering 
staff was designing an RF shielding with the use of 
appropriated metallic layers in order to coat operating room 
(OR) walls. Although this approach seems to be a good 
preliminary option to solve the problem at hand, a detailed 
evaluation concerning other EMC aspects is needed. So, this 

is the main topic of this paper, whose main purpose is to 
evaluate other important issues regarding EMC management, 
and to assess the effectiveness of a wall shielding 
implementation within operating room areas. 

II. METHODOLOGY 
In order to accomplish the desired results, the methodology 

used in this research was developed in two main steps, 
combining measurement techniques and numerical simulation. 
The idea of the first step is to perform a number of in situ 
electric field measurements within the clinical environment 
under test. The main energy sources and critical frequencies 
are then identified with spectral analysis (from 30 MHz to 3 
GHz) and classified according to EMI risk stated by IEC 
60601-1-2 (EMC collateral standard for EME). During the 
second step, a numerical model is developed using the 
Transmission Line Modeling (TLM) method. Preliminary 
measurement results are used as inputs for the numerical 
simulation and the electric field distribution is estimated to 
evaluate the influence of significant sources of energy, such as 
electrosurgical unit (ESU), TV and FM radio broadcasting. 

A. TLM Method 

The TLM is a differential numerical technique which has 
been successfully applied to modeling electromagnetic fields 
for decades [3]. It was developed to take advantage of the 
analogy between representative equations of transmission-
lines and electromagnetic fields. The scattering process is 
based on light propagation principle stated by Huygens. In this 
method, the propagation medium is modeled by a network of 
interconnected transmission-lines (TLM mesh), and material 
properties are represented by the equivalent lumped circuit 
components [3]. Figure 1 shows a single network circuit unit 
named shunt node. 

 
Fig. 1. TLM-2D Shunt Node. 

 
The analogy between Kirchhoff laws for shunt node circuit 

and wave Maxwell’s equations in time domain can define the 
relation between voltage/current and electrical/magnetic field: 
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Likewise, it is also possible to establish the relations 
between TLM cells and medium parameters: 
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III. THE ENVIRONMENT UNDER TEST 
In this analysis the environment under test is a typical OR 

of approximately 25 m2. The disposal of EME and objects 
within the room follows clinical staff directives to configure a 
usual setup for the HCF standard procedure (fig. 2). 

 
Fig. 2. Typical Environment Under Test. 

 
Concerning computational prediction, the environment 

under test was modeled by a 600x700 TLM nodes. Each node 
has an area of 1 cm2, and it is characterized by the medium 
electric parameters: concrete (εr = 5.0, σ = 0.0133 S/m); wood 
(εr = 4.0, σ = 0 S/m); equipment (εr = 1.0, σ = 103 S/m); metal 
(εr = 1.0, σ = 3e7 S/m); plastic (εr = 4.0, σ = 1.0 S/m); foam 
(εr = 1.3, σ = 0 S/m); air (εr = 1.0, σ = 0 S/m); human body (εr 
and σ values depends on the frequency). All mesh borders are 
modeled as open boundaries, simulated by a TLM “matched” 
(absorbing) boundary condition, as described in [3]. 

IV. PRELIMINARY RESULTS 

A. Field Measurements 

Figure 3 shows the result of electric field strength 
measurement. It illustrates two different spectrum situations, 
both in operation case (with EME turned on) and in rest case 
(with EME turned off). 

 
Fig. 3. Electric Field Strengths Measurements (30 MHz to 3 GHz) 

 
Most important sources observed within the room were TV 

and radio broadcasting. However, ESU electromagnetic 
content can not be ignored since it was the main responsible 
for the spectrum rises when EME were turned on. Due to the 
limited space, in this digest the simulation will be focused 
only at the 204 MHz contributions of the main sources. 

B. Field Prediction 

Figure 4 shows the electric fields distribution for individual
sources oscillating at 204 MHz. Figure 4a is related to an 

g wave-front reaching the OR external 
w
incident TV broadcastin

all. Figure 4b shows ESU contribution when it is operating 
in close proximity to the B3 point. 

 
Fig. 4. Field Distribution at 204 MHz: a) TV broadcasting; b) ESU. 

 
On a second simulation scenario, metal conductor layers 

were OR
wall h 
sc

included, modeling the designed shielding to the 
s. Figure 5 compares fiel stribution profiles for bot

 
d di

enarios: original OR (fig. 5a) and OR with RF shielding 
(fig. 5b), when both sources from fig. 4 are operating 
simultaneously.  

 
Fig. 5. Field distribution for: a) original OR; b) OR with RF shielding. 

 
It is possible to observe that shielding effectiveness 
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of this problem, allowing more discussion about the subject. 
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and kriging methods for electromagnetic compatibility management in 
health care facilities,” 6): 1478-1481, 2008. 

[2] Schäfer, T. M.; Kayser, T.; Knorzer, S.; Wiesbeck, W.; “Wave 

 
York, IEE Press and Oxford University Press, pp. 69-105, 1995. 

cerning EMC aspects is not only related to the capability 
solating undesired signals i vidually, but also evaluatndi

e system as a whole. As can be seen on fig. 5, the use of OR 
wall complete shielding may not be the best alternative, since 
it confines significant signal sources inside the room raising 
the average environmental energy level. Although it is an 
efficient solution to avoid the analyzed external signals (TV 
and FM broadcasting), it can lead to a worse EMC condition. 

V. FINAL CONSIDERATIONS 
In the full paper, a better detailing is given to the treatment

mportant sources and frequencies s
aluated by numerical means providing a thorough analysis 

of EMI situations. Finally, an optimization process will be 
employed in order to verify different shielding configurations 
and evaluate its efficiency regarding EMC management. 
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4. ELECTROMAGNETIC COMPATIBILITY 

Abstract — A CPU with a heat sink (e.g. Intel Pentium 4 and 
Intel Pentium dual core) is one of the challenging problems for 
IEEE EMC.  A Very Large Scale Integrated (VLSI) device was 
modelled using the Finite Element Method (FEM) frequency 
domain as this provides a 3D full wave solution. The 
electromagnetic (EM) radiation emitted from these high power 
microelectronic circuits connected to a heat sink was found to 
have resonant frequencies around 2.4 GHz and 5 GHz with a 
reflection coefficient less than 19 dBi and 8 dBi. Those resonant 
frequencies are very close to the operating frequency of both 
IEEE and Bluetooth wireless communication systems. This paper 
proposes a new benchmark model based on a dual core CPU.  

I. INTRODUCTION 
Modern silicon wafer fabrication facilities easily produce 

component densities that exceed 1 million transistors per die. 
The power generated from processor currents can exceed 
100W with increasing high clock speeds. This combination of 
switching frequency and power level, in conjunction with the 
layout of the common mode current paths through the heat 
sinks, results in a significant level of radiated Electromagnetic 
Interference (EMI). As a result, circuit designers require an 
understanding of the radiated emissions from the CPU and its 
heat sinks. Designers also need to find ways to reduce these 
emissions. Components such as the Intel Pentium 4, Intel 
Pentium dual core CPU, and AMD Athlon dual core CPU 
require separate cooling procedures provided by a fan built 
into their heat sink or by a fan or cooling device located 
adjacent to the processor. Since these high-power and high-
speed processors are common in recent designs, special 
techniques are required for EMI suppression and heat removal 
at the component level. In addition, 3D EM full wave based 
numerical analysis tools are required to model the radiated 
emissions. This paper focuses mainly on RF radiated emission 
problems that consider the EMC source modelling for the 
CPU and heat sink as a RF radiator [1]. 

II. EMC SOURCE MODELLING AND MODEL ATTRIBUTES 

A. CPU Source Model Consideration  
EMC/EMI models are commonly represented as three 

distinct parts: the source of RF energy, the geometry of the 
model components, and the remaining problem space [2]. To 
model the CPU with a heat sink structure, it is useful to further 
divide the structure into three regions; the ground plane, 
source region and heat sink. A realistic representation of a 
VLSI circuit must consider the electromagnetic source 
characteristics and an actual physical representation such as a 

conducting patch [3]. Although real heat sinks have fins to 
increase the thermal convection loss, Brench [4] found that the 
heat sink could be modelled as a solid block. Das and Roy [5] 
modelled the source as a monopole that passes through the 
circuit. This EMC source model was used to address the 
previous problem confronting the IEEE EMC (486 CPU). The 
Intel P4 and Intel dual core CPU with a heat sink have 
completely different structural configurations, therefore a new 
EMC source model is required for modelling and simulation. 

B. Intel P4 CPU Heat Sink and Source Model  
The Intel P4 processor with the 478-Pin has different 

packaging and a different structural configuration (see Figure 
1a). In the Intel P4 configuration, a heat spreader is located on 
top of the VLSI. This heat spreader is electrically isolated 
from the VLSI packaging. A new EMC source model consists 
of a multi layered structure forming a microstrip patch antenna 
structure, which is resonant at frequencies of around 2.4 GHz 
and 5 GHz respectively. This is shown in Figure 1(b). Several 
clock frequencies in the band from 1.40 GHz through 2GHz 
are considered for demonstration purposes, where A1 is 
2.378mm, A2 is 1.080mm,  L is 2.030mm, L1 is 88.9mm, W1 
is 38.1mm, W2 is 31.75mm and W3 is 35mm.  

 

    
 
(a) Intel P4 CPU and packaging  (b) EMC source model with a heat sink 

Figure 1. Intel P4 CPU heat sink configuration and simulation model. 

C. Intel Dual Core CPU Heat Sink Model 
A transverse cross-section of the Intel dual die processor 

with a heat sink is illustrated in Figure 2. The package is a 
Flip-Chip Land Grid Array (FC-LGA6) and the die is located 
upon the substrate with the help of die attach material. The 
sealing is also the integrated heat spreader (IHS) covering the 
dies in order to protect them. Adhered by the thermal interface 
material (TIM), the heat sink is in full contact with the top of 
IHS. Like the Intel P4 CPU model, this dual core CPU model 
can be simplified to a dual feed microstrip patch antenna 
structure. The location of feed points is a critical factor that 
affects the accuracy and validation of the simulation results. 
Based on the heat distribution on an existing Intel dual die 
CPU [7], the hottest point is predicted to be the area of highest 
current distribution where the electromagnetic interference 
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4. ELECTROMAGNETIC COMPATIBILITY 

generated is very significant. Thus the feed points of the 
equivalent patch were allocated to these regions for the EMC 
source model assuming a 50 ohm source. Note that the highest 
current density for a driven patch antenna is immediately 
adjacent to these probe feeds. The size of the equivalent patch 
antenna model is simply the resonant size at 2.45 GHZ and the 
second frequency at 5 GHz. 

 

  
 

(a) Intel Dual Die packaging   (b) EMC source model with a heat sink 
Figure 2. Intel dual core CPU heat sink configuration and EMC source model. 

III. FULL WAVE SOLUTION 

A. Frequency Domain Modelling in EMC/EMI 
The most accurate modelling of EMC requires a 3D full-

wave solution in which Maxwell’s equations are solved. With 
numerous fast numerical algorithms now available, the FEM 
in the frequency domain is relatively efficient. The technique 
finds approximate solutions of partial differential equations 
and integral equations. The frequency domain vector wave 
equation for the E field is:  

JEEE ωεωωσ
µ

je −=++×∇×∇ 21                   (1) 

where ω is angular frequency, J is the source current, σe is the 
effective conductivity, and µ and ε are the permeability and 
permittivity of the problem space respectively. 

B. Full Wave Solutions for CPU Heat Sink Models 
The computation model for the Intel P4 and Intel dual core 

CPU heat sink fits within the source models developed in this 
work. These are shown in Figures 1 and 2, where the 
absorbing boundary condition, PML, is used to surround the 
computation model to obtain accurate results. The excitation is 
a vertical probe extending from the ground plane to the base 
of the conducting patch. 

 

 
 
Figure 3.  S11 impedance matching for the Intel P4 CPU heat sink model. 

 
 
Figure 4. S11 impedance matching for the Intel dual core CPU heat sink, where 
 line indicates the excitation at port 1, and … line indicates the excitation at 
port 2. The mark position is indicated by m1, m2, m3 and m4. 

 
This is electromagnetically coupled to the heat sink through 

the substrate. Figures 3 and 4 show the scattering parameter 
S11 (with a 50 ohm source) across the frequency band. Both 
models have two resonant frequencies. The S11 results indicate 
that there is maximum radiation from the structure at these 
two frequencies. The CPU heat sinks cause significant 
radiated emissions at these frequencies, assuming it is possible 
that currents in the VLSI circuit have Fourier components at 
these frequencies. 

IV. CONCLUSION 

This paper presents a FEM based computation technique 
for radiated emissions from CPU heat sink models. The CPU 
heat sink model is significantly different to the conventional 
CPU heat sink model of IEEE EMC challenge problems. The 
Intel P4 and Intel dual core CPU heat sink models with 
insulated configurations were found to radiate at 2.4 GHz and 
5 GHz respectively. These two frequencies lie very close to 
the wireless communication range in computing systems. The 
source model selection is critical for the CPU heat sink model 
as it affects the resonant frequencies associated with the CPU 
clock speed, the CPU core and heat sink structures. The far 
field radiation patterns from those CPU heat sink models and 
validation of the CPU dual core benchmark model will be 
discussed in the full paper.  
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4. Electromagnetic Compatibility.  

Abstract — This paper presents a multi-objective 
optimization approach based on numerical, statistical and 
fitness evaluation concerning the conductor positions in a 
Transmission Line Excitation Chamber (TLEC). The field 
profile and the related indexes of merit, like the statistical ones, 
regarding the  working volumes are used to evaluate the 
chamber configuration performance. The compromise between 
working volume and E-field standard deviation are show 
through the Pareto’s Front. 

I. INTRODUCTION

In previous works the Transmission Line Excitation 
Chamber (TLEC) performance evaluations have been 
carried out using different approaches. These were presented 
in[1] and [2] in which FIT and TLM, and also an 
optimization tool were used to evaluate the field uniformity 
within the working volume on a predefined TLEC 
configuration. The TLEC configuration here presented is 
based on three-conductor phase-shifting excitation 
configuration and proposed as an alternative when low 
frequencies are taken into consideration[3]. Fig.1 shows a 
sketch of a three-wire reverberation chamber configuration. 
Thus, the optimization problem aims to maximize the 
working volume and the E-field, which is restricted to 
uniformity constraints. 

In this work, the main focus is to find the better 
transmission lines configurations, i.e., wire positions, which 
present the best TLEC performance related to the 
aforementioned indexes. A good TLEC performance is 
associated to a high working volume and E-fields average 
values. To obtain the wire configuration and the 
corresponding TLEC performance, a numerical approach 
has been implemented by applying multi-objective 
optimization. Deterministic and statistical approaches are 
applied in the analysis. 

Fig. 1. Sketch of the three-wire reverberation chamber configuration

II. OPTIMIZATION PROCEDURE

A working volume is assumed to be a region inside the 
reverberation chamber (Fig. 1) were the homogeneity of the 
electric field attains a prescribed level. EMC tests could be 
performed only with this minimum homogeneity level, and 
the mean value within the working volume should be as high 
as possible considering low input power. 

In this work, the main interest is to understand how the 
reverberation chamber works when associated to a set of 
transmission lines positions and its related working volumes. 
It should be mentioned that when the working volume 
increases the mean electric field decreases. This means that a 
multi-objective optimization algorithm should be employed 
(two or more antagonistic goals).  

Here, the optimization problem has twelve optimization 
variables: three pairs coordinates (TL positions), two 
equatorial radii, polar radius and three parameters associated 
to the ellipsoid translation (shift) from the chamber's centre 
(these six last variables define the working volume). In this 
set, inside some working volume the electric field is high, 
whereas the volume is low.  

There are other working volumes, which belong to this 
set, but have low electric field and high volume. Inside the 
working volumes the field homogeneity is constrained by 
pre-defined values. When the chamber characterization is 
performed, the engineer could make a choice to obtain the 
most suitable set of TL to design the TLEC.  

In order to solve it, the optimization problem is assumed 
as an unconstrained optimization problem, where inequality 
constraint was treated as a penalty function.  

A. Modeling the chamber 

The mean E-field ( xE ), the Standard Deviation (σx) and 

Standard Deviation in dB ( ˆ xσ ) are calculated by (1), (2) 

and (3) 

1
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4. Electromagnetic Compatibility.  

Similar equations could be obtained to the y-axis, z-axis 
and to the combined E-field [1], [2] and it is assumed a 
value equal to 4 dB as the standard deviation for defining the 
working volume at frequencies lower than 80 MHz. 

B. The Optimization Problem 

The conductor position problem could be written as an 
optimization problem as follows: 





zyxE ,,Max 

Volume WorkingMax

S. t: Max ( ) dB4zyxzyx ≤,,ˆ,ˆ,ˆ,ˆ σσσσ

(4) 

In order to bounder the optimization parameters, Fig 2  
illustrates and shows a cross-section of the chamber to be 
analyzed. First of all, it is assumed that each wire is parallel 
to one of the three axis of the chamber as Fig 1 shows. So, 
each wire could only be placed in the grey region, because it 
could not be close to the wall, due to the standards. On the 
other hand, if we put it on the center of the chamber (the 
forbidden area) the associated working volume will be small. 
Thus the TLs can only be moved inside a space “close” to 
the walls in order to avoid solutions that are impossible for 
practical utilization. 

Forbidden
Area

Wire

Fig.2 Chamber Cross Section: the position wire 

Multi-objective optimization (4) seeks to optimize the 
components of a vector-valued cost function. Unlike single 
objective optimization, the solution to this problem is not a 
single point, but a family of efficient points called Pareto- 
front. Each point on this surface is optimal in the sense that 
no improvement can be achieved in a cost vector component 
that does not lead to degradation in at least one of the 
remaining components. Each element in the efficient set 
constitutes a non-dominated (non-inferior or non-superior) 
solution to the multi-objective problem. With this set of 
solutions it is possible to understand the dependence 
between each objective.  

The Pareto-set of this multi-objective problem was 
obtained by using the Multi-objective Genetic Algorithm 
(MGA)[4]. The MGA is derived from the Genetic 
Algorithm, which is a stochastic procedure based on the 
concepts of natural selection in genetics. 

C. Coupling the Field Computation Software and the 
Optimization Environment 

The adopted procedure has six fundamental steps: 
i) Random positions for TL are generated, as well the 

working volumes and ellipsoid radius; 

ii) TL positions are charged to the field computation 
software, that uses FIT [5]; 

iii) The field computation inside the reverberation chamber 
is performed with FIT  [5]; 

iv) The values of the E-field are exported considering a 
regular grid;

v) The working volume is calculated. For the determination 
of a particular working volume, Eq. (1) should be solved, 
and  

vi) The indexes of merit are applied to decide which one are 
the better TL configurations. 

The third and fourth steps are computed by applying the 
FIT [5] At the end of step iv a file is exported to our 
optimization environment.  

The EMC standards adopt a parallelepiped as a working 
volume[7]. In this work we have adopted another solid to 
characterize the volume: an ellipsoid[2]. 

III. RESULTS

Fig. 2 shows some results which allow us to know the 
compromise among the searched objectives (max E-field and 
max working volume), the constraints and the conductor 
positions. 

Fig. 2. Compromise between working volume and E-field. 

  By inspection of Fig. 2 the maximal working volume, 
taking into account a defined E-field level, can be chosen. 
For instance, it yields approximately 15e10-3m3 for an E-
field level of 15V/m  considering the total chamber volume 
equal to 0,432 m3. 
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Abstract — In this paper the numerical prediction of the 
magnetic shielding of a coated aperture in a perfectly conductive 
planar shield is investigated. The single layer or multilayer thin 
film resistive coating is characterized and homogenized by using 
the transmission line approach. The electromagnetic analysis is 
performed by the finite element method (FEM). The results 
obtained in some test configurations are validated by other 
numerical and analytical methods. 

I. INTRODUCTION 
Evaluation of the shielding effectiveness (SE) is an 

important topic in electromagnetic compatibility (EMC) 
studies and is regulated by several standards (MIL-Std 285, 
IEEE 299, ASTM D4935,…). The experimental layout for the 
magnetic shielding measurement consists essentially in 
locating two oriented loop antennas in two positions: ahead 
and behind the shield under test. One loop (i.e., transmitting 
antenna) is used to generate the incident magnetic field Hi, 
while the other loop (i.e., receiving antenna) is used to 
measure the transmitted magnetic field Ht through the shield. 

The parameter used to quantify the shielding performances 
is the magnetic shielding effectiveness SEH defined as the 
ratio, in decibel, between the incident field, Hi, and the 
transmitted one, Ht, in a fixed point behind the shield: SEH = 
20log10(|Hi| / |Ht|). It should be noted that the incident field Hi 
is the field at the considered point in absence of the shield. 
The different standards require that the antennas must be 
oriented in two positions:  coplanar  and  parallel  
arrangements,  as shown  in Fig. 1. 

The SEH of apertures has been studied by many authors 
using analytical, experimental and numerical techniques [1]-
[6]. The new interest for this topic is in the extensive 
installation of new transparent coating materials to cover 
windows and apertures, mainly for thermal reasons, of 
apparatus and transportation systems (trains, cars, aircraft,..). 
These coatings are generally composed by several layers of 
conductive thin films of silver, indium tin oxide (ITO),..., 
combining characteristics of electrical conductivity and optical 
transparency. These thin films have shielding properties 
against incident magnetic fields that have to be analyzed. 

In this study we consider a coated aperture in a plane 
conductive sheet or on the wall of an enclosure that is so large 
that the reflections from the other walls are insignificant 
compared to the fields that penetrate the aperture [5]. The 
magnetic shielding analysis is performed by a numerical 
method that is validated by comparison with other techniques 
based on approximate analytical and circuital methods [1], [6]. 

shield 

aperture  
 

Hi 
Ht 

D D 

d 

 
(a) 

 

shield 

aperture  
 

Hi Ht D D 

d 

 
(b) 

Fig. 1. Arrangements of coplanar (a) and parallel (b) loops. 

II. CHARACTERIZATION OF THIN FILM COATING 

Assuming the field propagating as a plane wave inside a 
thin shield as shown in Fig. 2, the electric and magnetic field 
components tangential the two faces (Γ0, Γd) of a solid planar 
shield of thickness d are coupled by the lossy transmission 
line equations [4]-[6]: 
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where Eτ0,  Eτd, Hτ0, Hτd are the field tangential components, 
and the shield chain matrix [Φ] is given by 
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being ηs the intrinsic impedance, γs the propagation constant 
of the solid shield with characteristics  ε s, µ s, σs. 

For very small values of d in conductive layer, (2) can be 
approximated by: 
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(3) 

 

For a configuration of a n-layer shield, the total chain 
matrix [Φ] can be obtained by: 

 

[ ] [ ][ ][ ] [ ] ...    321 nΦΦΦΦ=Φ  (4) 

 

where [Φi] is the chain matrix of the ith layer whose 
expression is given in (2) and is valid also for dielectric layers. 
The chain matrix [Φ] can be used to model any multilayer 
shield in frequency domain. 
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Fig. 2. Planar shield (a) and the equivalent two-port network (b). 

III. FEM MODELING OF THIN FILM COATING 
Simulation of conductive thin layers embedded in a FEM 

domain can lead to an excessive number of degrees of 
freedom (DoF) since the thickness of the thin film coating is 
very small, about tens of nanometers, and requires a lot of 
finite elements to discretize adequately the region under 
examination. To overcome this problem, a reduction of the 
DoF is necessary. We propose two different methods. 

The first approach is based on the Impedance Network 
Boundary Conditions (INBCs) [3]-[4]. The basic idea of the 
INBC method is to eliminate from the computational domain 
the conductive shield by introducing new boundaries where 
the electric and magnetic tangential fields are coupled by the 
chain matrix [Φ] (or by equivalent admittance matrix [Y] or 
impedance matrices [Z]) in order to model the penetration of 
the electric and magnetic fields inside the thin conductive 
wall. By considering conductive thin film, the transmitted 
fields must be constrained imposing on the boundary Γd :  

 

0ττ = EE d  (5a) 
 

 00 dEHH sd σ−= τττ . (5b) 

 

The second approach consists in synthesising a new shield 
whose chain matrix [Φ] is identical to that of the thin film 
shield, but with a much larger thickness. For simply resistive 
shields of very small thickness, the chain matrix is practically 
frequency constant, and therefore it can be simply modelled 
by a resistive layer of equivalent conductivity σe and thickness 
de obtained by σe de = σs d when assuming de >> d and de << 
δ, being δ  the penetration depth.   

IV. APPLICATIONS 
The magnetic shielding performances of two different 

coatings applied to a circular aperture of 0.1 m radius have 
been analysed for both the parallel and coplanar loop 
configurations. Fig. 3(a) shows the calculated SEH by the two 
proposed FEM methods for the coplanar loop configuration 
assuming D = 0.4 m. The aperture is loaded by a single layer 
silver coating with d = 18 nm and a multilayer sandwich 
coating (3 Ag layers separated by 2 dielectric layers) assuming 
d = 18 nm for each layer of Ag or dielectric, respectively. The 
FEM results can be compared with those obtained by 
approximate analytical [1], and circuit [6] techniques shown in 
Fig. 3(b), highlighting good accuracy. Finally, the calculated 
SEH for the parallel loop configuration is also reported in Fig. 
4.  
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Fig. 3. SEH for a circular aperture of 0.1 m radius and coplanar loop 
configuration. (a) FEM calculations. (b) Analytical and circuit methods. 
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Fig. 4. SEH for a circular aperture of 0.1 m radius and parallel loop 

configuration. 
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Abstract — In this paper a numerical FEM analysis for the 
evaluation of the EM field exposure due to welding equipments 
has been proposed. The human body model has been 
reconstructed by means of a segmentation procedure using CT 
data. A comparison among models with different complexity in 
terms of organs and tissues has been proposed and discussed. 

I. INTRODUCTION

European community has recently issued a directive about the 
risks deriving by the exposure to electromagnetic fields and 
has suggested that in working environments the employer must 
verify the electromagnetic field levels to assure the safety of 
employees.  
In order to protect people from electromagnetic emissions 
ICNIRP (International Committee Non Ionizing Radiation 
Protection) [1] has suggested some limits in order to avoid 
acute effects which are an established consequence of the field 
exposure. For low frequency exposure between the most 
important magnetic field sources, welding equipments generate 
high intensity fields because of the high intensity of the 
welding current.  
Actually for welding equipment few practical directives have 
been issued. Moreover the measurement of the “action values” 
in the surroundings of welding machine are very difficult to 
perform and analyze because of the very short pulsed currents. 
In this work some investigations about the use of numerical 
techniques and a modeling of the human body for the
estimation of the magnetic field exposure have been presented.  
For welding equipments the analyzed quantities for the 
evaluation of the field exposure are the magnetic flux density 
and the induced current density because the frequency of the 
current source is under 100 kHz [1]. A three dimensional 
human model has been tested for the evaluation of worker 
exposure to the magnetic field produced by an arc welding 
equipment.  

II. COMPUTATION MODELS

The human model has been built from real CT data. Each slice 
of the CT has been segmented using Amira software (Mercury) 
in order to generate a 3D mesh. The meshed volumes have 
been imported in a Finite Element software, and inserted in a 
volume which represents a simplified human body.  
The magnetic flux density and the induced current density 
have been computed solving the electromagnetic (EM) 
problem in quasi-static condition [3] [4]. 
The simulated domain (Fig. 1) includes a conductive region 
(C) and two vacuum regions (V and R) one of them 
containining the magnetic field source (R). In the C region 

the induced current density is computed and the EM problem 
has been solved using a time-harmonic A,V formulation: 

VAjE  ∇−−= ω                                   (1)  

where E  is the phasor of the electric field, A  the phasor of 

vector potential, V  the phasor of the scalar electric potentials 
and ω  the angular frequency. From (1) the induced current 

density can be derived.  
Fig. 1. human body model 

The source of the magnetic field is a wire supplied by an 
electrical current. The evaluation of the magnetic field in the 
vacuum volume R, the one that contains the source, is solved 

in the phasor of the reduced scalar potential, REDφ : 

REDjHH φ ∇−=                                 (2) 

where jH  is the term due to the current source computed by 

means of Biot-Savart formula. Between C and R a region 
V has been interposed. In this region the EM problem is 

solved in terms of the only phasor A . This part of the domain 
has been modeled to surround the conductive region where the 

EM problem is solved in terms of A  and V  potentials in 
order to properly describe interface condition between 
conducting and not-conducting regions. At the boundary 
between V and R proper interface conditions have been 
posed. In V region the Helmholtz equation has been solved: 

ωµσjkAkA ==+∇ 222 ,0                (3) 

where µ  and σ  are respectively the magnetic permeability 
and the conductivity of the medium and the Lorentz gauge has 
been imposed. At the boundary of the simulation domain, INF, 
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infinite boundary conditions have been posed in order to let 
the magnetic field vanishing at infinite distance. 

A. Data models 

The simplified model considers a restricted set of organs in the 
abdomen and thorax regions listed in Table I, while the 
complete model contains also the head tissues, muscle and a 
more extensive set of thorax and abdomen organs. In addition, 
an homogeneous model describe the human body with constant 
resistivity value has been considered. 
The human body tissues are described with the value of their 
resistivity, ρ , derived by the Gabriel model [5]. The values at 
200 Hz frequency are presented in Table I. The magnetic field 
source is a cable with a current amplitude of 53.7 Arms.  

TABLE I 
TISSUES ELECTRICAL CHARACTERISTICS TISSUES ELECTRICAL

tissue � [�m] tissue � [�m] tissue � [�m] 
Midollus 35.4 Spleen 10.1 Body M1 5 
Kidney 9.3 Stomach 1.9 Body M2 5 
Liver 25.6 Colon 5.3 Body M3 46.9 

Pancreas 1.9 Intestine 1.9 Body M4 46.9 

B.  Evaluation rules 

In order to limit induced current density in human body 
tissues, ICNIRP guidelines provide basic restrictions that have 
been extrapolated from direct effects on human body. The 
induced current density is related to the electro-stimulation of 
nerves and muscles. From basic restrictions reference values 
have been derived by means of suitable models, in order to 
provide quantities easily measurable using simple 
instrumentation (e.g. magnetic flux density). Biological effects 
depends by the magnetic field frequency [1]. Consequently, 
the reference limits have been expressed as a function of the 
field frequency. In the present case the limit for the magnetic 
flux density is 125 �T and for induced current density is 10 
mA/m2. 

III. RESULTS

Four different human models have been developed using the 
set up shown in Fig. 1. The current density in organs evaluated 
in the homogeneous model (M1) has been compared with the 
ones computed with more detailed models where the resistivity 
of tissues has been set with reference to the values of Table I. 
Models M2 and M3 contain only organs in abdomen without 
considering muscle tissue. In model M1 the resistivity of the 
volume around organs has been set to the weight average value 
of all tissues (5 �m, as recommended by standards for 
numerical homogeneous models [6]) whereas the one in model 
M3 has been set to the fat resistivity (46.9 �m). The model M4

contains also thorax and head organs and muscle regions. In 
this case the volume around organs has been described with 
the fat resistivity.  
Some results are shown in Table II. In this table the maximum 
values of the induced currents and magnetic flux density have 
been reported in each organ for the four models. The last row 
of Table II reports the induced current density evaluated in a 
homogeneous cylinder. Comparing M1 and M2 results it should 
be pointed out that organs that have a resistivity higher than 
the average value have a lower induced current density than 

the one computed in the homogeneous case (M1). The regions 
with a lower resistivity have higher induced currents. It should 
be underlined that the resistivity of the tissue that surrounds 
the organs affects the value of the computed induced current 
density. Sometimes, the induced current density considering 
the correct tissue resistivity is higher than the one computed 
with an homogeneous model. Models M3 and M4 have been 
built taking into account small differences in organ dimensions 
and their relative positions in the phantom to verify the 
reliability of the results.  

TABLE II 

In the present case ICNIRP limits are satisfied both for 
magnetic flux density and induced current values. 
Nevertheless, it can be pointed out that the ratio RL between 
the evaluated quantity and the induced current limit is roughly 
ten times lower than the correspondent ratio computed for 
magnetic flux density.  

IV. CONCLUSION 

Numerical models of human body have been investigated for 
the evaluation of the exposure to low frequency magnetic field 
in order to compute quantities comparable with basic 
restrictions. Finally, homogeneous cylindrical models can be 
useful applied for a preliminary evaluation of the exposure. 
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INDUCED CURRENT DENSITY IN HUMAN BODY TISSUE AND 
CORRESPONDING MAGNETIC FLUX DENSITY

tissue B  [uT]  M1[mA/m2

] 
M2[mA/m2

]  
M3[mA/m2

]  
M4[mA/m2

] 
 RL J RL J RL J RL J RL

body 50 0.4 1.88 0.19 1.9 0.19 0.55 0.06 0.67 0.07

colon 44 0.4 0.95 0.10 0.91 0.09 0.76 0.08 1.23 0.12

liver 39 0.3 0.73 0.07 0.19 0.02 0.44 0.04 0.32 0.03

intestin 45 0.4 0.8 0.08 1.87 0.19 2.25 0.23 3.00 0.30

pancre 37 0.3 0.36 0.04 0.92 0.09 0.80 0.08 0.84 0.08

kidney 35 0.3 0.58 0.06 0.35 0.03 0.23 0.02 0.22 0.02

stomac 42 0.3 0.71 0.07 1.46 0.15 1.30 0.13 1.44 0.14

Spleen 42 0.3 0.75 0.08 0.4 0.04 0.31 0.03 0.33 0.03

midolla 29 0.2 0.43 0.04 0.09 0.01 0.08 0.01 0.09 0.01

Cylind. 67 0.5 1.06 0.11       
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Abstract — New sensors of magnetic induction in near field, 
dedicated to studies of electromagnetic compatibility, are 
proposed according to the principle of the Standard CISPR16-1 
coils. The new coil shape allows the sensors to be sensitive to only 
some specific components of the multipolar expansion, which is 
similar to a spatial filtering. Our proposition follows previous 
works. By means of rotations of the spherical harmonics 
functions, our aim is to simplify the geometry of the sensor coils 
introduced before. After a description of the tools required, the 
design method is described. Comparative robustness studies end 
the article. 

I. INTRODUCTION

For electromagnetic compatibility studies, a compact 
model of the stray magnetic field generated by power 
electronic systems enables to reduce the design cost. To 
determine this model, our works focus on experimental 
approach. In this case, the use of large loop antenna offers 
advantages, especially by reducing the effect positioning 
inaccuracies. For instance, to identify the first order of a 
multipolar expansion (dipole) [1], Standard CISPR 16-1 [2], 
proposes to use three orthogonal loops (Fig. 1, on the right 
hand side). This standard applies for the medium frequency 
range: 9 kHz to 30 MHz. 

The problem is that no source is composed of pure dipoles. 
Therefore, even the standard method can lead to errors. In 
previous works, we have proposed to take into account higher 
order terms in the expansion leading to a new and original 
coils sensors design and improving the accuracy [3]. Here, we 
introduce a simplification of the sensor design. The principle 
of this design and some improvements are reminded and a 
comparative robustness studies are proposed. 

Fig. 1. On the left hand side, the whole system of loop antennas (‘A10’, ‘A20’ 
and ‘Standard’). On the right hand side, the loop-antenna system from 

Standard CISPR 16-1 consisting of three orthogonal loop-antennas 

II. MULTIPOLAR EXPANSION 

For near field studies and the standard frequency range, the 
quasi-static approximation is suitable. Outside a sphere 
including all radiation sources, the magnetic field can be fully 
described by its magnetic scalar potential ψ solution of the 
Laplace equation. For each frequency and in a given spherical 
coordinate system, the unique multipolar expansion solution is: 
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+
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+=ΨΨ−∇=
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nm
nr
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where Ynm is real harmonic spherical function of order n
and degree m, (r, θ, ϕ) are the spherical coordinates whose 
origin is the centre of expansion and Anm the unknown 
coefficients. This development is hierarchical: for elements of 
order n the field decreases as 1/rn+2. A decomposition limited 
to the order 2 gives a precision considered as sufficient beyond 
the distance of measurement. There are 8 coefficients to 
measure (3 for order 1, 5 for order 2). 

III. SENSOR DESIGN

The measurement principle is similar to a spatial filtering: 
according to the coil shape, each sensor is just sensitive to its 
specific component of the multipolar expansion. Thanks to a 
rigorous approach, we proposed a system of coils, allowing the 
identification of the two first orders (n = 1 and 2) and not 
sensitive to the two followings (3 and 4). It leads to the 
realisation of 8 flux coils sensors topology located on a 
measurement sphere (radius rmes). The method is detailed in 
[3]. The 8 sensors are presented on Fig. 2. These first shapes 
are linked to spherical coordinates: outlines within θ or ϕ
constant. But this solution is too complex in order to make a 
practical realisation.  

Fig. 2. 8 coils sensors for the identification of 1 and 2 orders. The flux is 
counted as positive for the red coils and negative for the blue ones 
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A. Rotation properties of Ynm

We want to simplify this solution in order to build a 
practical sensor. The basis idea comes from properties of 
spherical harmonic functions. Indeed, thanks to rotations, it is 
possible to produce all components of the same n order with 
only one. Examples are given on Fig. 3. The first order 
rotation dependency is evident. This is more complex for the 
second order case. The idea is that it is possible to generalise 
this property to design sensors. Thus, to reach the 
simplification, we must to start from simpler sensor coils. The 
A10 and A20 loop antennas are just constituted of coplanar coils 
(black frame on Fig. 2). 

Fig. 3. By n order, same shape. 

B. Sensor design 

The full set and method are presented on Fig. 4. For the 
first order, the A10 loop antenna direction is just lined with 
targeted component. The second order case needs A20 sensor 
rotations and composition of the measured fluxes. We 
demonstrate that the totality of filtering capability is conserved 
with this new solution. Thus, 2 only different and simple 
shapes allow identifying the 8 first components of the 
multipolar expansion. 

The complete validation is reached thanks to numerical (by 
Finite Elements Method) and experimental experiences. Our 
prototype is presented on Fig 1, on the left hand side. It 
concerns just the identification of A10 and A20 components. To 
these 4 coils, a loop-antenna (rmes= 0.225 m) located on the 
middle plan is added to demonstrate the robustness of our new 
approach. It corresponds to the initial z-dipole sensor proposed 
in [2]. 

Fig. 4. Sensor set and the design process 

C. Comparative robustness 

Several cases have been studied. First, numerical 
experiences enable to demonstrate the efficiency of our 
solution toward punctual measurements. This integral pros-
processing method is more accurate. Furthermore, complete 
measurement process is faster than 3D mapping solutions with 
one punctual sensor. 

Secondly, we check the robustness of the sensor in 
comparison with the solution proposed by the standard. This is 
achieved thanks to the shifting of the source loop versus the 
center of sensors itself. Only the dipole identification is 
concerned in this experiment. The measurement results on Fig. 
5 show that an error on the dipole determination occurs. In our 
sensor cases, despite the source shifting, identification error 
keeps stationary and reasonable (less than 2% of error). With 
Standard sensor, the error raises to 11%. A decentered dipole 
implies a more complex field (i.e. higher orders in the 
decomposition). The error is mainly attributed to the 
contribution of order 3 multipolar induction term in Standard 
sensor. In contrary, our sensors are designed to filter this third 
order term. 

Fig. 5. Comparison between Standard and our sensor identifications: relative 
error compared to the actual and theoretical z-dipole with different gaps 

IV. CONCLUSION

We have shown that it is possible to improve the dipole 
components measurement of the Standard device. It is also 
possible to create simple systems of coils which measure di-
and quadri-polar components by filtering exactly both high 
orders. 

Furthermore, our identification method is validated by 
experimental and numerical results. Comparative robustness 
studies show the interest of using dedicated multipolar 
component sensors, which are more robust than punctual 
measurement solution. So, in future work, we can focus on the 
realization of the full coils system including rotation.  
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4. ELECTROMAGNETIC COMPATIBILITY

Abstract —SAR validation measurements are already an 
industry standard, necessary to enable the distribution of 
commercial mobile phones. Here it is discussed the full wave 
simulation of a SAR measurement system, used to certify mobile 
phones in the international market. The electric field measured in 
a phantom by a mechanical system is modeled and compared 
with simulations, so that a validation is achieved and further 
sensitivity analyses can be carried out.  

I. INTRODUCTION

The present study covers the simulations of an experiment 
related to SAR (Spatial-Average Specific Absorption Rate) 
measurement.  In order to get a better understanding of the 
dynamics of SAR measurements, a thorough analysis of the 
different parameters and their impact on the final results is 
carried out. As an example of the importance of this kind of 
analysis, it should be mention the fact that the liquid which 
emulates the brain tissue is subjected to variation in its 
electrical characteristics, due to temperature changes, and the 
estimation of how it will influence the measured electric field 
can assume a helpful role during the measurement process. 

II. MODELED EXPERIMENT 

The modeled experiment is depicted in Fig.1. The 
measurement setup is completely described in [1]. A plastic 
phantom is partially filled with a liquid, whose electrical 
characteristics (real and imaginary permittivity) emulate the 
human brain tissue. An electric field probe is moved by a 
robotic system inside the liquid, so that the electronic readout 
system gives the electric field in its 3 components. This field 
is generated by a resonant dipole located below the phantom. 

Fig. 1. Picture of the measurement system. The electric field is measured 
along these 13 different lines, 10mm from the bottom. 

The liquid and the dipole have their electromagnetic 
characteristics determined by [1]: namely, the liquid 
permittivity ε (real and imaginary), and the dipole length that 
are set for each frequency. Typical frequencies can be as low 
as 300MHz up to 3GHz. Here, we focus in the mobile phone 
service frequency, 900MHz. For this frequency, Table I lists 
the most important parameters for this specific measurement 
setup. 

TABLE I 
MAIN PARAMETERS FOR THE 900MHz EXPERIMENT SETUP 

Parameter Value Meaning 
εr 41.5 Real part of the liquid permittivity 
σ 0.98S/m Liquid Loss (conductivity) 
h 15mm Liquid height in the container 

d 1mm 
Distance center dipole to the bottom of the 
container 

L 14.9mm Dipole length 

The container is made of plastic 0.5mm thick (εr=3.7; 
σ=0.0051S/m), and it is an ellipsoid with axes 220mm and 
300mm. Its height is 19.5mm, partially filled with liquid as 
Fig.1 suggests. The actual antenna is fed by a complex balloon 
system, which is a proprietary design. It was simulated only 
the dipole, fed by a balanced port. The electronic system 
assures that the input power at the antenna terminal is 16dBm 
(approximately 40mW), so all the computed field results are 
scaled to this power. 

III. MEASURED RESULTS 

The robotic probe sampled the electric field along the 13 
lines, as Fig. 1 shows. The measurement plane is placed 10mm 
far away from the bottom of the phantom. Therefore the probe 
is immersed in the liquid. 

IV. RESULTS 

The simulation was carried out using the Finite Integration 
Technique (FIT) [2], [3]. The model was built inside the 
software interface, completely parameterized, so that scenarios 
for other frequencies can be easily changed, without necessity 
of starting from the scratch. The FIT method admits solutions 
both at frequency and time domains. Since we are dealing with 
a SAR environment (although, at this moment, we are not 
working directly with SAR values, but electric fields), the 
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4. ELECTROMAGNETIC COMPATIBILITY

transient (time domain) solver was used. It applies a pulse in 
the time domain to the structure, and the Maxwell equations 
are solved in a leap-frog scheme. The results are then 
displayed in both time and frequency domain, i.e., S-
parameters, fields at different frequencies, signals in time 
domain, etc. Here we are interested in the electric field 
sampled along the lines displayed in Fig.1. 

The results are depicted in Fig.2 and Fig.3, for two 
different sampled lines. 

Fig. 2 Measured and simulated electric field for a line placed in the middle of 
the container (shown in dark color in the picture at the bottom). 

Fig. 3 Measured and simulated electric field for a line placed in the extreme of 
the container (shown in dark color in the picture at the bottom).

Fig. 4 Computed Electric field for the line displayed in fig.4 bottom, for 
different relative permitivities.

The discrepancy between the measurement and computed 
results can be ascribed to the influence of the balloon and 
other circuitry in the antenna current. The simulated dipole is 
fed by a perfectly balanced source, so eventual differences in 
the mechanical system will generate another current pattern in 
the dipole, therefore generating a different shape in the electric 
field.  The sensitivity of the electric field to accidental 
variations (with factors like temperature, aging, bacteria, etc) 
in the liquid characteristics is also analyzed. The result for a 
variation of ±1 in the relative permittivity εr is displayed in 
Fig.4. From the results presented in Fig.5, it was possible to 
see that the electric field, in absolute value, is not very 
sensible to the relative permittivity. Further studies will 
determine how much this variation can happen with the liquid. 

V. CONCLUSION

A numerical evaluation of a real SAR measurement system 
is presented. The computed numerical results proved to 
provide a helpful and fast insight into the pre-studies regarding 
the SAR measurements and the role of the electrical 
parameters in this process. 
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Abstract — This paper presents an accurate mathematical 
model for high frequency transient analysis in grounding systems 
based on electromagnetic field theory in frequency domain and 
Method of Moments. The only input data of resultant 
computational tool is grounding dimensions, soil electromagnetic 
properties and excitation. Results in both time and frequency 
domain are provided. 

I. INTRODUCTION

Grounding systems are an important element for lightning 
protection and electromagnetic compatibility (EMC) related 
problems. Their basic function is to disperse the lightning 
current to earth without causing any potential differences or 
induced voltages that might endanger people or damage 
equipments. Grounding behavior at low frequencies is well 
understood using simplified analysis based on static 
approximation [1]. However, when energized by lightning 
currents, they present a very particular behavior and their 
analysis cannot be carried out with traditional methodologies 
employed in low frequency occurrences [1]. 

The transient analysis of grounding electrodes is usually 
developed based on three main different approaches [1]: i) 
electromagnetic field theory, ii) transmission line theory and 
iii) circuit theory.  The first one is considered as the most 
accurate since it is based on least neglects in comparison to the 
methods based on transmission line and circuit theory [1]. Also 
the methodologies may be differentiated by the domain where 
the transient is solved: i) time domain or ii) frequency domain. 

In this work a methodology based on the electromagnetic 
field theory is applied to investigate the impulsive behavior of 
grounding. The transient problem is solved in frequency 
domain taking the great advantage of robustness and easiness 
to computed electromagnetic fields in this domain. A 
computational tool is developed and few results of its 
application in response evaluation of a long horizontal ground 
electrode to an impulsive current is included. 

II. ELECTROMAGNETIC GROUNDING MODEL

The proposed grounding model is based on the Hybrid 
Electromagnetic Model (HEM), with some suitable 
modifications [2]. Simulations are performed in frequency 
domain and the time domain response is obtained by 
application of an inverse Fourier transform.  

The grounding system is represented by a set of cylindrical 
electrodes. Each electrode is source of a transversal current IT

and longitudinal current IL, as illustrated in Fig. 1(a) [3]. The 
current IT generates a divergent electric field at a generic point. 
Considering each pair of electrodes, this current promotes 

capacitive and conductive couplings (self and mutual ones). 
The current IL generates a nonconservative electric field and 
magnetic field at a generic point. Considering each pair of 
electrodes, this current promotes inductive and resistive 
couplings (self and mutual ones). The electromagnetic 
coupling between the electrodes can be computed by 
electromagnetic fields integration along each one (see Fig. 
1(b)), and leads to the following equations [3]: 

( )
i j

ij Tj
j i L L

1
V I

4 L L

r

j i

e
dl dl

j r

γ

π σ ωε

−

=
+ ∫ ∫ .                  (1) 

i j

ij Lj

L L

V I
4

r

j i

e
j dl dl

r

γµω
π

−

∆ = − ⋅∫ ∫
 

.                  (2) 

where Vij refers to average potential of electrode i due to the 
transversal current dispersed by electrode j; Vij is the voltage 
drop along electrode i due the longitudinal current flowing 
along electrode j; σ, ε and  are, respectively, the medium 
electric conductivity, electric permittivity and magnetic 
permeability; γ is the propagation constant and ω is the angular 
frequency.  

(a)             (b) 
Fig. 1. (a) Current sources in each electrode and (b) Electrodes 

interaction 

The problem formulation and its final solution are obtained 
by the application of Moments Method (MoM) [4]. The 
electrode is divided into N elements. The value of N is 
determined in a way that the thin-wire approximation is valid 
for the longitudinal current along the element [3], [4]. Also, 
the length of each one is sufficiently small, so that longitudinal 
and transversal currents may be considered constant in each 
element. Naturally each current can change from an element to 
other. Based on these assumptions, the piecewise-constant 
current approximation is used [3]. From the above 
considerations and by applying (1) and (2) to the N elements, 
two systems of linear equations can be obtained [3]: V=ZTIT

and ∆V=ZLIL. The terms of V and IT corresponds, respectively, 
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to the average potential and transversal current in each element 
and the terms of ZT corresponds to the transversal impedance 
between the elements i and j [3]. The terms of V and IL

corresponds, respectively, to the voltage drop and longitudinal 
current in each element and the terms of ZL corresponds to the 
longitudinal impedance between the elements i and j [3]. In ZT

and ZL computation, the influence of air-soil interface is taken 
into account approximately by the modified image theory and 
the reciprocity theorem is valid, what permits a substantially 
reduction of computational time [3]. The two systems of linear 
equations relations may be reduced to a unique system by 
means of two fundamental considerations [2], [3]: i) the 
average potential in each element is equal to the arithmetic 
media of nodal potentials and the voltage drop in each element 
is equal to the difference of nodal potentials; ii) the 
Kirchhoff’s current law is explicitly enforced on all element’s 
junction points. Considering these two assumptions, an only 
system of linear equations of kind Ax=b is composed and its 
solution leads to final results. 

III. RESULTS

In this section is simulated a 60-m long horizontal 
electrode with 1-cm radius imbedded in earth with 1.000-Ωm 
resistivity and relative permittivity of 15. The electrode 
excitation is made by the injection of two different double 
exponential current waves: i) a fast one of 1 kA and 1.2/50-s 
and ii) a slow one of 1 kA and 12/50-s. 

Fig. 2 illustrates the magnitude of the harmonic grounding 
impedance Z(ω), independent of excitation, along typical 
spectrum of a lightning discharge. As can be observed, at low-
frequency range the harmonic impedance is frequency 
independent and corresponds to the low-frequency resistance 
concept R. As frequency increases, the impedance value 
diverges from the resistance value and, after about 100 kHz, it 
exhibits inductive behavior and its value becomes larger than 
R. In the analyzed case, the electrode does not present 
significant capacitive behavior, mainly due to its large length. 

Fig. 3(a) illustrates the response of the horizontal electrode 
to the slow wave: v(t), which is the transient voltage at 
injection point and z(t), which is the transient impedance, ratio 
between v(t) and i(t). The slow wave does not have high 
frequency components of sufficient intensity to excite the 
inductive behavior of Z(ω). The response is essentially 
determined by the frequency independent parcel of Z(ω). As a 
result, v(t) is not significantly modified in comparison to 
current waveform i(t) and their peaks occurs at the same time. 
The transient impedance z(t) has high values in the first 
instants of transient, but quickly reduces to lower values and 
tends, around 8-s, to the low frequency resistance value 
(R=32.75-Ω). Fig. 3(b) illustrates the response of the same 
electrode to the fast wave. The fast wave has sufficient high 
frequency content to excite the inductive parcel of Z(ω) and, as 
can be observed, v(t) is advanced in time in relation to i(t). 
This inductive behavior causes larger value of transient 
voltage peak. The transient impedance z(t) presents similar 
behavior of the previous case and tends, around 2.5-s, to the 
resistance value. The results illustrate the significant influence 
of wave front time in grounding impulsive behavior.
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Fig. 3. Electrode response to (a) slow wave and (b) fast wave 
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4. ELECTROMAGNETIC COMPATIBILITY 

Abstract — In this paper, an approach is proposed to analyze 
the current distribution and the electromagnetic field of a 
building struck by lightning. This approach is based on the 
moment method and can consider the metallic grids under the 
ground and on the ground all together. Both the potential 
differences among the grounding parts and the electromagnetic 
interactions among the grids are taken into account. 

I. INTRODUCTION 
When lightning strikes building, high current will flow 

through the metallic grid and will dissipate into the soil from 
the grounding system. This accident will generate strong 
transient electromagnetic fields, which may affect the safety 
of the electrical and electronic units contained inside the 
building. Thus, the computation of the current distribution and 
of the electromagnetic fields is an interesting and important 
engineering problem [1-4]. 

To calculate the current distribution, the soil conductivity 
is usually considered to be infinite, which means that the 
grounding system can be neglected [1-4]. In fact, because the 
soil conductivity is finite, potential differences always exist 
among the grounding points. When lightning occurs, the 
inductance along the grounding electrode will also take effect 
and the ground potential will be distributed more unevenly. 
Then, the current distribution and the electromagnetic fields 
may be different from those with infinite soil conductivity. In 
this paper, an approach considering soil conductivity effect is 
proposed to analyze the current distribution and the 
electromagnetic field of a building struck by lightning. 
Moment method (MoM) is used to consider the metallic grids 
under the ground and on the ground all together. 

II. NUMERICAL APPROACH 
To calculate the electromagnetic field around the building 

struck by lightning, current distribution on the structure 
should be obtained first. MoM is used to calculate the current 
distribution and the multi-line structures should be divided 
into short segments [5]. Because the size of the building is 
much less than the wavelength associated with the maximum 
significant frequency of the lightning current waveform, near 
field theory can ensure a satisfactory numerical accuracy. By 
introducing the concept of complex resistivity, which is the 
combination of both the permittivity and the resistivity, all 
segments under the ground and on the ground can be taken 
into account. Then, the concept of leakage currents can be 
introduced. Meanwhile, some assumptions are used which are 
also shown in Fig. 1. 

 
Fig. 1. Current distribution on the segments. 

 
1) The longitudinal current in the same segment is constant 

and is centralized on the axis. 
2) The leakage currents are distributed evenly around the 

nodes (the points of intersections between the segments), 
i.e. each current is leaked evenly from all the half 
segments connected to corresponding node. 

3) Each segment can be considered as a filament. 
On the surface of each segment, the boundary condition 

must be satisfied:  
0=+ si EE                                       (1) 

where Ei is the longitudinal component of the external electric 
field caused by other segments , Es is the longitudinal 
component of the internal electric field. For all segments, by 
integrating (1) along the longitudinal direction between their 
two ends, following equation will be obtained [6]: 

0=++ lnlj ZIAVMIω ,                       (2) 
where M is a matrix of the inductances between segments, Vn 
is a column vector of the potentials at the nodes, Il is a column 
vector of the longitudinal currents in the segments, Z is a 
diagonal matrix of the segments’ internal self-resistances [7], 
A is a matrix reflecting the connection relationship between 
segments and nodes. If node j is connected to the end point of 
segment i, Aij is 1, if node j is connected to the start point of 
segment i, A ij is -1, or else Aij is zero. The entry Mij in M can 
be obtained by [6] 

∫ ∫=
i jl l ijij dldl

r
M 1

4π
μ ,                            (3) 

where li and lj are the paths of segment i and segment j, and r 
is the distance between the source point and the field point. If 
i is equal to j, li is at the axis and lj is at the surface of segment 
i. Vn in (2) can be obtained by 

en RIV = ,                                  (4) 
where Ie is a column vector of leakage currents around nodes 
as shown in Fig. 1, and R is a matrix of mutual resistances 
between nodes and leakage currents. From Fig. 1, it should be 
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noted that the leakage current around a node is distributed 
evenly from all the half segments connected to the node.  

According to the longitudinal current and leakage current 
distribution in Fig. 1, Il and Ie have following relationship: 

lTe IAI = .                                    (5) 
where AT is the transpose of A. By substituting (5) into (4) and 
then into (2), a group of equations is obtained as 

0=++ llTlj ZIIARAMIω .                        (6) 

If segment k has an injected current s
kI , the corresponding 

equation can be substituted by s
k

l
k II = . The suspended 

segment can be considered as a segment having an injected 
current with 0 A. Thus, a group of equations with longitudinal 
currents as unknown variables is obtained from which the 
longitudinal currents can be solved.  

Because the near field is like a quasistatic field, all the 
parameters are calculated in quasistatic field. The transient 
electromagnetic fields around the multi-line structures by 
near-field lightning strokes can be analyzed with the help of 
fast Fourier transform. 

III. COMPLEX RESISTIVITY 

In order to take account of the metallic grids under the 
ground and on the ground all together, concept of complex 
resistivity is used to calculate R in (4), which is the 
combination of both the permittivity and the resistivity of the 
medium: 

ωερ
ρρ
j+

=
1

' .                                (7) 

where ρ and ε are the resistivity and the permittivity of the 
medium. Both the air and the soil have their own complex 
resistivity. Based on the near field theory, by using the image 
theory, the effect of both the permittivity and resistivity of the 
medium can be counted for in the Green’s function to 
calculate R in (4) and to calculate the electric field.   

IV. VALIDATION AND APPLICATION 

We have test the approach in this paper with published 
results of a simulated lightning current (1/40 μs, 20 kA) fed 
into the upper corner of a Faraday’s cage shown in Fig. 2 [2].   
The cage is constituted by aluminum barrels having 5×30 mm 
cross section and has a regular 8×8×8 m mesh. The lightning 
current has a vertical channel length of 400 m. In Fig. 3 and 4 
the attenuation along the line CD produced by the cage is 
shown, where the ratios between the EM field produced by the 
lightning with or without the presence of the cage are reported. 
In the case of the lightning without the cage, the lightning 
channel has been prosecuted until the ground. The variables 
used in the figures are η = Emax with the cage / Emax without 
the cage and ζ = Bmax with the cage / Bmax without the cage. In 
paper [2], the soil is considered as perfect conductor. In this 
paper both the results with perfect soil and those with 1 m 
depth grounding system in 100 Ωm soil are presented.  

 
Fig. 2. Calculated model. 
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Fig. 3. Profiles of the electric field attenuation along the line CD. 
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Fig. 4. Profiles of the magnetic field attenuation along the line CD. 

 
It can be seen that when the soil is considered as perfect 

conductor, the results in this paper are in agreement with those 
in [2]. For the electric field, its attenuation along the line CD 
almost does not vary with the resistivity of soil. However, for 
the magnetic field, its attenuation near D varies greatly with 
the resistivity of soil. This may be because the current likes 
flowing to far place through conductor when the resistivity of 
soil is great. More details will be presented in the formal paper. 
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Abstract — The conservativeness of the SAM (Specific
Anthropomorphic Mannequin) for the SAR (Specific Absorption
Rate) evaluation in the child’s head is investigated. The child’s
head model is derived from the visible human head model using a
morphing technique. Numerical simulations are performed with
the SAM phantom and the child head model for the four
intended use positions using three excitations – dipole antenna,
monopole antenna and PIFA (Planar Inverted-F Antenna)-based
mobile phone – at three frequencies corresponding to the
currently used mobile communications systems. Overall the SAR
calculations show that the SAM phantom is conservative.

I. INTRODUCTION

The ever increasing use of mobile phones by the general
public – from adults in the very beginning to children
nowadays – has constantly raised questions about the level of 
electromagnetic exposure and the possible adverse health
effects for the user. The basic restriction level was set by
ICNIRP (International Commission on Non-Ionizing
Radiation Protection) to a maximum 10 g averaged Specific
Absorption Rate (SAR) value of 2 W/kg for the head exposure
[1]. The SAR compliance test is a pre-requisite prior to the
commercialization of a mobile phone. Currently the SAR
conformity assessment of mobile phones can only be
performed by measurements. The detailed procedures to
assess the SAR compliance of mobile phones are provided by
international standards such as IEEE1528 [2] and IEC62209-1
[3]. A standard head phantom – the Specific Anthropomorphic
Mannequin (SAM) – filled with an appropriate tissue
equivalent liquid is recommended for the measurements of the
mobile phone according to four basic intended use positions:
left cheek, right cheek, left tilt and right tilt. The morphology
of the SAM phantom is chosen to be representative of the
adult head. Numerical simulations confirm that the values
recommended for the dielectric properties of the tissue
equivalent liquid are conservative [4].

Since mobile phones are being increasingly adopted by
children, the question has been raised about the
electromagnetic power absorption in the child’s head. It is 
recognized that the morphology of a child’s head is different
from an adult’s head, especially at the early stages of growth.
Little data is available on the dielectric properties of biological
tissues of children. Furthermore, numerical models of
children’s heads are scarce. A simple size reduction of an
adult’s head model does not provide a good morphological
shape of the child’s head. A better approach is to perform a 
morphological transformation of the adult’s head: each part of 
the head is reconstructed with its specific growth rate and the

different parts are recombined with appropriate transition
areas to avoid discontinuities [5].

The conservativeness of the SAM phantom with regard to
the morphological aspect of the child’s head is herein
investigated. The morphing technique is applied to derive the
child head model from the commonly used visible human
head model. Three different excitation sources – dipole,
monopole and PIFA (Planar Inverted-F Antenna)-based
mobile phone – are considered for the SAR calculations using
this child head model and the SAM phantom.

II. NUMERICAL MODELING

Figure 1 shows the two head models used for the study: (a)
the SAM phantom and (b) the child head model derived from
the visible human head model. A commercial package of the 
Finite Integration Technique (FIT) is chosen for the numerical
simulations. Because of its relatively small size, the full child 
head model must be considered for the calculations. However 
the numerical simulations are optimized by considering only
the half-head SAM phantom since it can be shown that the
other half can be safely neglected.

Fig. 1. (left) SAM phantom and (right) child head model (not to scale).

Figure 2 shows the three different sources considered for
the SAR calculations: (a) half-wavelength dipole antenna, (b)
quarter-wavelength monopole antenna mounted over a 
metallic box, and (c) PIFA-based mobile phone. All numerical
simulations are performed for the three commonly used
mobile communications systems: GSM (Global System for
Mobile communication) at 900 MHz, DCS (Digital
Communication System) at 1750 MHz and UMTS (Universal
Mobile Telecommunication System) at 1950 MHz. The 
dielectric properties of the tissue equivalent liquids employed
for the numerical simulations are provided in Table I for the
three frequencies.
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Fig. 2. Excitations used for the numerical simulations: (left) half-wavelength
dipole antenna, (middle) quarter-wavelength monopole antenna mounted over

a metallic box and (right) PIFA-based mobile phone. 
Fig. 4. Normalized SAR values calculated using the quarter-wavelength

monopole antenna over the metallic box. 

TABLE I 
DIELECTRIC PROPERTIES OF THE TISSUE EQUIVALENT LIQUID

Frequency [ MHz ] Relative permittivity Conductivity [ S/m ] 
900 (GSM) 41.5 0.97
1750 (DCS) 40.0 1.40
1950 (UMTS) 40.0 1.40

III. RESULTS

Figures 3, 4 and 5 show the maximum 10 g averaged SAR
results obtained for the different configurations using the
dipole antenna, the monopole antenna mounted over the
metallic box and the PIFA-based mobile phone, respectively. 
All SAR values are normalized with respect to the highest
value obtained among the different configurations.
Furthermore, for each configuration, the SAR value is 
normalized with respect to the accepted power i.e. the antenna 
mismatch is not taken into account. The highest SAR values
are observed with the SAM phantom and the GSM system i.e.
at 900 MHz. The PIFA-based mobile phone provides the
highest SAR values for the cheek position. For a given
antenna configuration, the SAR calculated with the child head
model is at least two times lower than the maximum SAR 
value obtained with the SAM phantom. Overall the SAM
phantom is found to be conservative.

Fig. 5. Normalized SAR values calculated using the PIFA-based mobile
phone.
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Abstract  In this paper, we present numerical method for 

determining the penetration of electromagnetic fields through a 
small aperture on enclosure having inside it a conducting 
component. To solve the problem of coupling between the 
radiated electromagnetic field and the metallic enclosure we 
developed a variational formulation in the interior region and 
an integral formulation in the exterior region by using the 
equivalent electric on exterior surface of the enclosure. Using a 
coupling between two methods: finite elements-boundary 
integral, we compute the electromagnetic field inside the 
enclosure and in particular on conducting wire. The numerical 
result obtained with this method show the influence of 
characteristic parameter (σ,,) and the thickness of enclosure 
on penetration of electromagnetic field inside the enclosure.   
 

I.  INTRODUCTION 
 

Nowadays, more and more of electronics is embarked 
on board any type of terrestrial or air vehicles with 
electronic components functioning at frequencies 
increasingly higher. The multiplication of the possible 
sources of electromagnetic aggression and their increasing 
power thus generate new types of dysfunction of the 
electrical appliance and problems of incompatibility inter-
equipment, which can go until their destruction. 
Electromagnetic compatibility, according to its 
"fundamental principles" is thus analyzed in terms of 
emission (not to disturb the environment) and of immunity 
(not to be disturbed).The two aspects occur at the same time 
in conduction and in radiation. Consequently, in the scenario 
of a problem of EMC, one will find three actors: a source of 
disturbance, a connection, and a victim of the disturbances 
thus coupled. 

II. PHYSICAL MODEL  
 

In our study we are interested in the radiated 
electromagnetic field. On figure 1 we present a 
configuration of a problem models related to the EMC.  
 
 
 
 
 
 
 

 
 
 

Fig.1.Physical model 
 
 

 
The metal enclosure with a small rectangular opening lit 

by an electromagnetic radiation of a source located in the 
exterior region. The source is considered harmonic in time. 

 
This problem was the subject of certain work by using 

various numerical models [1][2][3]. In our study we apply, 
on the one hand, the finite element method inside and on 
enclosure and, on the other hand, we express the external 
field by an integral representation. This one is function of 
the equivalent electrical currents K carried by external 
surface of the enclosure. These surface current represent the 
jump of the tangential component of the magnetic 
field:   KHn    
 

The physical system is defined by the following equations:
                        
- In the enclosure without the conducting wire: 

                 0)(0  eCurlhwi                 (1) 

                0)(0  hCurlewi                  (2) 
- In conducting wire: 

                  0)(  eCurlhcwi                  (3) 
           0)()(  hCurleic            (4)  

- In the exterior region without source:  
                  0)(0  eCurlhwi                (5) 

                 0)(0  hCurlewi                 (6) 
And we take in all system:             

                  0hdiv ; 0ediv                  (7) 
 

III. FORMULATION 
 

The wave equation in terms of the electric field can be 
obtained:                                                

0)(1
 EiiE 

      (8) 

    Multiplying us the equation (8) by a function test E’: 

)9(0')(
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Where   is the surface enclosing the domain, n is the unit 
outward normal to. We can write the wire term in the 
variational formulation as: 
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                     nHnEn  )(                         (11) 
Where S is the Surface enclosing the wire, and  is the 
surface impedance of the wire. 
 

IV.  NUMERICAL RESULTS  
 

A.  Representation a grid mesh 
 

 
 
 
 
 
 
 
 

Fig.2. Tetrahedral grid of the enclosure    
 
 
 
 
 
 
 
 

It is supposed that the ray of the wire is very small 
compared with the dimensions of enclosure and we can take 
it as one or two stop attached, as a sequence of mesh edges. 
In HF domain, the equation (10) becomes: 

 




w

lkji
w

Wire ldEE
Zt
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  ;  




 22
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a
jZ w                                  

Where (a) is the wire radius, Z is the wire impedance per 
unit length in (  /m ) 
 

B. Representation of the Magnetic field H 
 
 

Fig.3. Magnetic field H,  f = 1 MHz 
 

C. Representation of the Electrical field H 
 

 
 
 
 
 
 
 
 
 
 
 

Fig.4. Electric field E,  f = 1 MHz 
 
 
 

D. Representation of the iso-value of the 
electromagnetic field according to plan (YOZ) 
X=−0.3 

                   
 
 
 
 
 
 
 
 
 

Fig.5. f =50 MHz, DD=0.7, RHO=1.6672∙10-8,   Js = 100, R=0.2 
 
 
 
 
 
 
 
 
 
 

Fig.6 f=1 GHz, DD=0.7, RHO=1.6672∙10-8 ,Js = 100, R=0.2 
 

V. CONCLUSION 

In this article we have some numerical results to evaluate 
the penetration of the electromagnetic field in a metal 
enclosure. We considered a radiant electromagnetic source 
in front of an aperture of the enclosure at a limited distance 
d. We realize a coupling between the boundary integral 
method outside and the finite element method inside the 
enclosure to solve our problem. The numerical results show 
the contribution of each parameter of the problem in the 
evaluation of the electromagnetic energy penetrated in the 
enclosure. On the one hand, according to the 
electromagnetic parameters: electric conductivity and 
permittivity () and magnetic permeability () of the 
enclosure; in addition, according to the density of the 
current source, the geometrical position and the frequency of 
the radiant source, the numerical results show the variation 
in the values and the form of electromagnetic energy in each 
point inside the enclosure while varying each time only one 
parameter. Considering the number of parameters we cannot 
expose all the results in this paper. 

 
VI. REFERENCES 

 
[1] W.P.Carpes, L. Pichon, Razek “Analysis of the Coupling 
of an Incident Wave with a Wire inside a Cavity using an 
FEM in Frequency and Times Domains” IEEE Transaction 
on Electromagnetic Compatibility.Vol 44, No3 August 2002. 
 

[2] F.Paladian, P.Bonnet, M.Klingler “A frequency-domain 
prediction model using measured scattering parameters of 
electrically short lines to determine the per unit length 
parameters matrices of multiconductor transmission lines” 
14th International Zurich Symposium & Technical 
Exhibition on Electromagnetic Compatibility, Zürich 
(Suisse), February 2001, Actes du Colloque, pp.293-298.  
 

[3] M. Djennah, F. D. Rioux, B. Bandelier  “Computation of 
electric charges and eddy currents with an e formulation”  J. 
IEEE Transaction Magnetic 1997,Vol 32, pp1322-25 
 

-0.50 -0.40 -0.30 -0.20 -0.10 0.00 0.10 0.20 0.30 0.40 0.50
-0.50

-0.40

-0.30

-0.20

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

-0.35
-0.30
-0.25
-0.20
-0.15
-0.10
-0.05
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

Number of internal nodes                     489 
Number of frontier nodes                      302 
Number of internal edges                    3190 
Number  of  frontier edges                    900 
Number of faces                                    600 
Number  of tetrahedral                        3000     

-0.50 -0.40 -0.30 -0.20 -0.10 0.00 0.10 0.20 0.30 0.40 0.50
-0.50

-0.40

-0.30

-0.20

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

-800.00

-700.00

-600.00

-500.00

-400.00

-300.00

-200.00

-100.00

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

525

 



4. ELECTROMAGNETIC COMPATIBILITY

Abstract — In order to predicate the EMI of the ignition 
system, the accurate model of the spark plug is needed. This 
paper extracts the parasitic parameter of the spark plug using 
FEM approach and analyzes the discharge characteristics and 
mechanism of the spark plug. Then the dynamic circuit model of 
the spark plug in the ignition system is established. This model is 
verified by measurement and simulation results.  

I. INTRODUCTION

The spark plug discharge is the main source of EMI in the 
ignition system of an automobile. For the EMI prediction of 
the ignition system, the accurate spark plug model is needed.

This article analyzes the internal discharge channel and the 
discharge characteristics of the spark plug at first, and then 
establishes the dynamic circuit model of the spark plug which 
includes the static parasitic capacitance and the non-linear 
resistance. The simulation and measurement results illustrate 
the dynamic circuit model is correct. 

II. THE PARAMETER EXTRACTION OF THE SPARK PLUG IN THE 

DYNMAIC CIRCUIT MODEL 

Supposed the frequency of the EMI is lower than 300MHz, 
the electric field of the spark plug can be regarded as 
electrostatic field and internal discharge channel can be 
equaled to the circuit model shown in Fig. 1.  

Resistance

Shell Center electrode behind  
resistance

Center electrode before 
resistance

Insulator

i

i rR

2
r

q

C
C +

2
r

p

C
C + )( trg

qC
rC pC

Fig.  1. The discharge channel and dynamic circuit model of the spark plug 
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0=ϕ
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1Γ 3Γ 4ΓΩ

Γ

Fig.  2. Solution region of the spark plug 

The parasitic capacitance can be extracted using FEM 
analysis[1]. Fig. 2 is the solution region of the spark plug. 

The spark plug internal electrostatic field satisfies the 
Laplace equation: 
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zyx ),,(),,(),,( ϕϕϕ          (1)  

To calculate the capacitance matrix, one can solve the 
problem with a Dirichlet boundary as follows: 

⎪⎩

⎪
⎨
⎧

=

=

ΓΓΓ

Γ

0

1

432

1

、、|

|

ϕ

ϕ
                                   (2) 

0
0
=Γ|ϕ                                               (3)

In the solution region, there are different mediums. So the 
medium interface condition is written as: 
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∂

=
∂
∂ ϕε
ϕ

ε 0
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                                   (4) 

The different medium interface condition (4) is satisfied 
automatically when functional obtains the minimal value. 
Therefore the variational problem equaled to (1) is as follows: 
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Based on the principle of the finite element method, the 
integrated matrix can be written as: 

[ ][ ] 0=ϕk                                        (6) 

Where: [K] represents contributions from all tetrahedral 
elements. 

Solving (2), (3) and (6), we can obtain the potential 
function ),,( zyxϕ . The electric field can be written as: 

),,(),,E( zyxzyx ϕ−∇=                 (7) 

The electric charge of the conductor is computed from (7): 

ii dzyxQ
i

Γ),,E(∫Γ= ε                       (8) 

Therefore the mutual capacitance is written as: 
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+− jmjj
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ij
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ϕϕϕϕϕϕ ,),,,( LL

 ( ji ≠ )   (9) 

Using the physical structure data of the spark plug, the 
finite element model can be established. From computation, 
the parasitic capacitance can be obtained which written as 
follows: Cq=5.3986pF, Cr=5.8701pF, Cp=4.9849pF. 
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4. ELECTROMAGNETIC COMPATIBILITY

III. THE AIR-GAP RESISTANCE MODEL OF THE SPARK PLUG IN 

THE DYNAMIC CIRCUIT MODEL 

The spark plug experiences the off stage, the discharge 
stage and the self-excited discharge stage when it works. The 
air-gap resistance presents the non-linear nature. The 
dynamic circuit model of the spark plug in the ignition 
system is shown in Fig. 3[2].

)( ti1 1R 2R )( ti2 )( tiR )( tig

)( tic )( ti3

)( tu2
)( tug)( tu1sU

1C 1L
2L

M

)( trg

rR

22
r

q

C
CC +=

23
r

p

C
CC +=

Fig.  3. The dynamic circuit model of the spark plug in the ignition system 

A. The air-gap resistance model of the spark plug at the 
discharge stage 

When primary circuit separates instantaneous, the current 
in primary coil i1(t) reduces to zero rapidly. The capacitance 
C3 is charged rapidly by the induced electromotive force u2(t). 
When it increases to the breakdown voltage of the spark plug, 
the corona can be established between the two electrodes and 
the ionization starts. The spark plug discharges.  

For i1(t)=0 and di1(t)/dt≠ 0, we can obtain the secondary 
circuit equations as follows: 
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The spark plug resistor can be computed as：
50

22

1

2
.

)()(
−

⎭
⎬
⎫

⎩
⎨
⎧ ⎟

⎠
⎞⎜

⎝
⎛= ∫

t

t ggg dttipltr α                     (11) 

Combined (10) and (11), the simplified equations are 
written as: 
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Where: Vbr is the breakdown voltage of the spark plug. 

B. The air-gap resistance model of the spark plug at the 
self-excited discharge stage 

The plasma presents as soon as the spark plug discharges. 
The spark plug enters to the self-excited discharge stage. The 
voltage of the spark plug maintains at a constant value[3]. In 
this stage the secondary circuit equations can be written as: 
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When the plasma fades away, the spark plug returns to the 
off stage. 

IV. RESULTS

The dynamic circuit model of the spark plug in the ignition 
system is established in the circuit simulation software. The 
voltage of the spark plug is measured at the A point in Fig. 3 
mentioned above. The measurement and simulation results 
are shown in Fig. 4. The results match well and illustrate that 
the dynamic circuit model can reflect the discharge 
characteristics of the spark plug accurately. 

Fig.  4. Measurement and simulation results of the voltage of the spark plug 

V. CONCLUSION

In this paper, the dynamic circuit model of the spark plug 
is established. According to the geometric structure of the 
spark plug, the parasitic capacitance of the spark plug is 
extracted by FEM approach. Analyzing the different stages of 
the spark plug discharge process and mechanism, the non-
linear resistance circuit model of the spark plug air-gap is 
founded. Simulation and measurement results show the 
model of the spark plug is correct. The model proposed in 
this paper can be used for EMI predication in the ignition 
system. 
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4. ELECTROMAGNETIC COMPATIBILITY 

Abstract — As China's economy continued to grow, the 
electromagnetic influence on oil/gas pipeline near alternating 
current transmission line becomes increasingly prominent. Based 
on the transmission line model of pipeline-earth circuit, the 
analytic expressions of induced voltage generated by the 
normally operating ac transmission line are obtained for 
different terminal loads of the underground pipeline in this paper. 
The conception of critical length is put forward when the pipeline 
is terminated by the matched loads at both ends. The two-layer 
soil model is used for the simulation and the quasi-Monte Carlo 
integration method is applied to the computation of the Pollaczek 
integrals in the expressions of the self ground return impedance 
of the underground pipeline and mutual impedance between the 
overhead transmission line and underground pipeline. 

I. INTRODUCTION 
As China's economy continued to grow, the power 

transmission lines and oil/gas pipelines are in the construction 
of rapid development for more and more energy demand. 
Ultra High Voltage (UHV) and West-East gas projects are the 
national key projects in recent years. Because of the similarity 
of transmission path selectivity of the power industry and 
oil/gas industry, the situation of parallelism, oblique approach 
and crossing between the transmission lines and pipelines has 
frequently happened. Therefore, the electromagnetic influence 
on oil/gas pipelines near alternating current (ac) transmission 
lines becomes increasingly prominent. 

The pipelines are subject to interference arising from three 
parts, i.e. capacitive, resistive and inductive coupling. 
Capacitive coupling only affects the aboveground pipeline 
since it has both a capacitance to the transmission line and to 
earth. And the pipeline buried below ground is shielded by the 
ground and cannot be affected by capacitive coupling. 
Resistive coupling between the transmission line and pipeline 
is only relevant during the grounding fault and lightning strike 
when significant level of current flows into the earth.  And 
this will result in the potential rise of the tower base and of the 
neighboring soil with regard to the remote earth. In this 
situation, the inductive coupling will also take place and put 
the pipeline at severe risk. Inductive coupling is caused by the 
time-varying magnetic field produced by the transmission line 
currents. The induced voltage at the pipeline ends will vary as 
a function of length of parallelism, soil resistivity, distance 
between the pipeline and transmission line, and so on. Aerial 
and underground pipelines are both affected by inductive 
coupling. When the transmission line is running in a normal 
condition, the electromagnetic fields dependent on the three 

overhead line phases generally balance each other and 
significantly reduce the net field seen by the pipeline. 
However, the induced voltage on underground pipeline 
parallel to normally operating overhead transmission line is 
very important for being concerned with personal safety, ac 
corrosion of pipeline and normally operating of pipeline 
cathodic protection system. 

Some research has been carried out and the limits of 
electromagnetic influence are released in [1]-[4]. These 
studies mainly focus on the inductive and resistive coupling 
modeling during the ground fault, switching and lightning 
surge in power system. The earth is assumed to be semi-
infinite and homogeneous in all of these literatures.  

In this paper, based on the transmission line model of 
pipeline-earth circuit, the analytic expressions of induced 
voltage generated by the normally operating ac transmission 
line are obtained for different terminal loads of the 
underground pipeline. The conception of critical length is put 
forward when the pipeline is terminated by the matched loads 
at both ends. The two-layer soil model [5] is used for the 
simulation and the quasi-Monte Carlo integration method is 
applied to the computation of the Pollaczek integral [6].  

II. TRANSMISSION LINE MODEL OF PIPELINE-EARTH CIRCUIT 
Considering the location at infinity below the earth as the 

zero-voltage reference point, the equivalent circuit of the 
pipeline-earth circuit is shown in Fig.1. The telegrapher’s 
equations are given in frequency domain 

( ) ( ) ( ) 0dV x ZI x E x
dx

+ − =                (1) 

( ) ( ) 0dI x YV x
dx

+ =                      (2) 

where V(x) and I(x) are respectively the voltage and current 
along the pipeline; Z and Y are respectively the per-unit-length 
(PUL) series impedance and shunt admittance; E(x) is the 
induced electromotive force (EMF) on the PUL pipeline 
produced by the transmission line. Assuming E(x) along the 
pipeline to be a constant E, the general solutions to (1) and (2) 
are as follows 

xx BeAexV γγ −+=)(                     (3)        
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ExI γγ −−−=             (4) 
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4. ELECTROMAGNETIC COMPATIBILITY 

ZY jγ γ θ α β= = ∠ = +              (5) 

c
ZZ
Y

=                              (6) 

where Zc, γ, α and β are the characteristic impedance, 
propagation constant, attenuation constant and phase constant 
of the pipeline-earth transmission line model, respectively. 
The undetermined constants A and B in (3) and (4) depend on 
the terminal constraints 

1(0) (0)V Z I= −                                                  (7) 

2( ) ( )V L Z I L=                                                   (8) 
Substituting (7) and (8) into (3) and (4) gives 
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where Z1 and Z2 are the terminal loads of the pipeline 
illustrated in Fig.1; ρ1 and ρ2 are respectively the reflection 
coefficients at the beginning and end of the pipeline. Typical 
values of Z1 and Z2 are listed in Table I and corresponding 
voltage and current solutions to (3) and (4) can be achieved by 
the above formulas.  
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Fig. 1. Equivalent circuit of the pipeline-earth circuit 

When the pipeline extends for a few kilometres beyond 
the parallel routing without earthing, the corresponding 
reflection coefficients ρ1 and ρ2 are zero. The investigation 
shows that the maximum coating stress voltage appears at the 
ends of the parallel routing and can be evaluated by 

2
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1 2

(1 )
2 ( )

LE e YV
Y Y

γ

γ

−−
=

+
                                 (13) 

where Vmax is the maximum coating stress voltage, which 
equals to the difference between the metal pipeline potential 
and coating potential with regard to the remote earth. Y1 is the 
PUL shunt admittance including two parts, the leakage 
conductance and capacitive reactance of the coating. Y2 is the 
PUL ground return admittance.

It can be proved that Vmax in (13) firstly increases, then 
slightly decreases, finally tends to some constant with the 
increase of parallelism length of the pipeline. In other words, 
Vmax in (13) can achieve some maximum Vm when the 
parallelism length of the pipeline equals to some critical 
length Lm. Lm and Vm can be solved by the following equations 
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TABLE I 
TYPICAL VALUES OF Z1 AND Z2 

Item Z1 Z2 ρ1 ρ2 
1 Zc Zc 0 0 
2 Zc ∞ 0 1 
3 0 Zc -1 0 
4 ∞ ∞ 1 1 
5 0 0 -1 -1 
6 0 ∞ -1 1 

III. COMPUTATION OF POLLACZEK INTEGRAL 
Apparently, it is necessary to determine the self ground 

return impedance of the underground pipeline and mutual 
impedance between the overhead transmission line and 
underground pipeline in order to evaluate Vmax in (13). The 
two-layer soil model is used for the simulation and the quasi-
Monte Carlo integration method is applied to the computation 
of the Pollaczek integral in this section. 

IV. VALIDATION AND APPLICATION 
In this section, the proposed method is validated and 

applied to the evaluation of power frequency induced voltage 
on the West-East gas pipeline in parallel with 1000kV 
UHVAC transmission line. 
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12. DEVICE AND APPLICATIONS 

Abstract —In this paper we present a stochastic 3D Langevin-
Lorentz-Poisson (LLP) coupled model in order to investigate the 
ion transport across ionic channels situated on the cell membrane 
in the presence of external ELF magnetic fields. An iterative 
scheme is adopted, which alternates the solution of a Poisson 
problem with the time domain integration of a modified kind of 
Langevin-Lorentz equations. A Fokker-Planck analysis of the 
latter equations is performed to compute the statistical 
parameters of ion motion. An example of application to the 
analysis of a Ca++ membrane ionic channel is also given. 

I. INTRODUCTION 

In the last years the study of Extremely Low Frequency 
(ELF) magnetic fields effects on living cells has been a 
growing interest. Since the activation of signaling among cells 
depends on ion concentrations, the most plausible mechanism 
by which ELF magnetic fields are thought to interact with a 
biological system is an alteration of the signal transduction 
within the biological system, involving the gating of ionic 
channels and changes of intracellular ionic concentrations, 
affecting various critical cellular functions (differentiation, 
apoptosis, etc) [1][2]. 

In this paper we present a stochastic 3D Langevin-Lorentz-
Poisson (LLP) coupled model in order to investigate the ion 
transport across ionic channels situated on the cell membrane 
in the presence of external ELF magnetic fields. In particular a 
correction function, which takes into account in a probabilistic 
way the effect of external ELF magnetic fields, has been used 
in the model following an analogous approach adopted for 
modeling the gating of voltage-dependent channels. The 
numerical solution of the coupled problem is performed by 
integrating the dynamical equations of ions subject to 
electromagnetic forces inside the ionic channels, assuming a 
stationary flux of ions. In this case we make use of an iterative 
scheme, which alternates the solution of a Poisson problem 
with the time domain integration of Langevin-Lorentz 
equations which govern the ion motion. A Fokker-Planck 
analysis of the latter equation is performed to compute the 
statistical parameters of ion motion. The solution of the 
coupled problem is achieved by exploiting an appropriate 
stationary representation of the 3D ion spatial distribution. The 
developed model also uses a stochastic mechanism of ion 
injection in membrane channels (describing the fluctuation in 
time of the total number of particles inside the simulation 
region), allowing us to carry out more realistic simulations. In 
order to remarkably reduce the simulation time needed for 
launching several simulations and managing a huge quantity 
of data, we used a distributed computing based approach in a 

grid infrastructure, in the framework of the PI2S2 project [3]. 

II.  THE STOCHASTICAL  LPP MODEL OF ION MOTION 

The behaviour of ions inside cellular membrane ionic 
channels is governed by a system of coupled equations 
consisting of a Langevin-Lorentz equation for the motion of 
ions and a Poisson problem for the electrical scalar potential  

Ω =Ω+∇

+×++−=

0)(

)()(

2 dPfq

tqh
dt
d

m TT

ϕ

NBvEvv
      (1) 

where m is the generic ion mass, v is its velocity, h is a viscous 
friction coefficient, modeling the ion interactions with water 
molecules, q is the ion charge, ET and BT (if any) are the total 
electric and magnetic field respectively, N(t) is a force taking 
into account the thermal noise; in the Poisson equation (1)  
indicates the domain of analysis for the ionic channel and f(P) 
is the space charge distribution function. The total electric 
field ET consists of two terms: the first is due to the scalar 
potential -∇, the second, EESO, takes into account exogenous 
electric forces, if any, influencing the ion in the cell 
environment and summarizing the contributions of the 
environment to the total electric field. The numerical solution 
of this coupled electromechanical problem is iteratively 
carried out by using a self-consistent scheme, which at each 
step alternates the solution of a Poisson problem with the 
time-domain integration of the Langevin equation. In 
particular for each time step the solution of a Poisson problem 
is calculated by using a point to point method, that is the 
electric field is computed by adding the contributions due to 
each ion, assuming a stationary ion flow.  
The ion displacements are computed by adding to the 
deterministic ion displacement component obtained by a time-
integration of the Langevin-Lorentz equation in the absence of 
thermal noise; a stochastic component computed by a Fokker-
Planck analysis of the dynamical equation. Assuming that the 
typical transit time of an ion is of the order of 1 ns, the 
simulation time interval was chosen greater than this typical 
transit time. In order to make the analysis compatible with the 
hypothesized stationary conditions the integration time step 
was chosen of the order of 1 fs.  
This model in this form is not suitable to describe the ELF 
magnetic field effects for two main reasons: first the 
simulation time should be about 0.1 s and consequently about 
1E+14 steps should be executed (this is beyond currently 
available computing resources);  secondly the model is not 
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12. DEVICE AND APPLICATIONS 

able to take into account the influence of ELF magnetic fields 
on ionic channel gating. Thus in order to overcome these 
problems a modified version of the model has been set up, 
including explicitly ELF magnetic fields effects on channel 
gating. For this purpose we changed the first equation of (1) 
with the following equation, taking into account experimental 
results, which indicate that in the presence of external ELF 
magnetic fields, for some frequency and intensity windows, 
the flux of ions in ionic channel increases:  

))(()( TqBZth
dt
d

m ENvv ++−=  

where Z(B) is an expression giving the probability of opening 
/closing of a single membrane channel as a function of the 
external ELF magnetic field intensity. This expression is 
analogous to that describing the probability of opening/closing 
of the channel as a function of the transmembrane applied 
voltage 

1
0 )})(exp(1{)( −∆−−+= BBBBZ  

tBB ωsinmax=
 

Where B, B0 are parameters derived from experimental 
measurements [4]. In our simulations we use Bmax = 0.1 T 
and  = 250 rad/s. According to this new approach the gating 
is ruled by the ELF sinusoidal magnetic field. In this way we 
translate the external ELF magnetic fields effect on the 
amount of channels which open at the same time. 

III. ANALYSIS OF A CA++ CHANNEL 

The analysis of a typical ionic flow across a Ca++ channel is 
performed hereafter in order to show the application of the 
proposed model to a realistic case. For the description of the 
Ca++ channel, we assume a commonly used schematization, in 
which only the channel region is considered; it consists of a 
cylinder, with a height of 10 Å and a radius of 5 Å and the 
cylinder axis coincident with the z axis. A schematic 
representation of the Ca++ channel is shown in figure 1. The 
aim is to investigate the influence of an external ELF magnetic 
field on the relation between applied membrane voltage and 
the number of the ion escapes from the Ca++ channel, for an 
assigned value of the viscous coefficient  = h/m. 
Under these assumptions, thanks to the GRID infrastructure, 
several hundreds of runs with the original and the modified 
models have been performed in a very short time. In figure 1 
the number of the Ca++ ions crossing the channel versus the 
transmembrane voltage coming out from the original model 
are shown, for a value of the viscous coefficient equal to 
2E+12; for this configuration it is worth noticing, the quasi-
linear increase of the average number of ions crossing the 
channel as the membrane voltage increases. This result is in 
good agreement with results coming from other models and 
with experimental data [5], for analogous configurations. In 
fig. 2 the number of the Ca++ ions crossing the channel versus 
the transmembrane voltage coming out from modified model 
are shown. It is worth noticing that the differences between the 
two models are negligible, and apparently the introduction of 
probability function Z(B) does not seem to affect the motion 

of ions across membrane channels. But if we repeat the same 
simulation by using a longer simulation time (10 or 100 times) 
an interesting result is obtained: in the longer time analysis 
case the modified model gives as result a current crossing the 
channel of 10% higher than original model. This is clearly due 
to the influence of the external magnetic field on gating as 
expected. Further details about results will be given in the full 
version of the paper. 
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Fig. 1 - Number of ions exiting the channel versus transmembrane voltage 
(=2E+12) by using original model. 

0 10 20 30 40 50 60 70 80 90 100
-20

0

20

40

60

80

100

120

140

160

voltage (mV)

N
um

be
r 

of
 c

ro
ss

in
g 

io
ns

Average value
Minimun value
Maximum value

 
Fig. 2 - Number of ions exiting the channel versus transmembrane voltage 
(=2E+12) by using  new model. 
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Abstract—This paper proposes a novel ellipsoid method for
the optimisation of sub-differentiable electromagnetic constrained
problems. Unlike the classical method, which can apply only
one cut per iteration, this novel algorithm can employ multiple
cuts simultaneously. This improves the convergence rate while
preserving all the method original theoretical guarantees. The
design of a modelled reflector antenna is presented and it asserts
the efficiency of the introduced technique.

Index Terms—Optimisation, sub-differentiability, ellipsoid
method, reflector antenna.

I. INTRODUCTION

Optimising electromagnetic devices is known as a hard task,
since it relies on the evaluation of numerical methods, which
implies a huge computational effort. Additionally to improving
accuracy and decreasing computational burden of numerical
methods, it is also important to develop the optimisation
procedures themselves.

Nowadays there are several classes of optimisation al-
gorithms, each of them having their own advantages and
disadvantages. Stochastic methods, such as genetic algorithm
(GA), immune system (IS) and particle swarm optimisation
(PSO), are very popular, as they require little knowledge
about the function properties [1], [2]. They are very suitable
in situations where continuity and differentiability cannot be
assured. Furthermore, they can also be applied to generate an
initial design point to deterministic methods. However, they
are known to be slow, since they require a considerable amount
of function evaluations [3].

Deterministic methods, usually divided into search direction
and cutting-plane methods, typpically require some kind of
function differentiability. Search direction methods typically
requires function differentiability, but can make an efficient
local search, even in very sensitive problems, as does an
extended gradient method when optimising antennas [3],
[4]. When sub-differentiability is considered, cutting-plane
methods are more suitable than deterministic methods. The
ellipsoid algorithm [5] is one of the most popular cutting-plane
methods. It can handle constraints directly, without any kind of
transformation into unconstrained problems by penalty func-
tions or barrier functions. Deterministic techniques can also
be coupled with stochastic methods in a hybrid configuration
[6], [7]. Therefore, improving these techniques are useful in
many aspects.

Notwithstanding its robustness, the ellipsoid method lacks
good performance in practice, specially as dimension in-

creases. To overcome this drawback, this work proposes to
apply multiple cuts, instead of the single cut considered in the
classical method, inside an inner loop. In the classical method,
only one sub-gradient is considered per iteration. There are
also closed-form solutions when two cuts (one-sided, parallel
and wedge-shaped cuts) are considered, see [8] and references
therein.

In the new multiple cuts ellipsoid method (MCEM), several
cuts defined in the current evaluation point can be considered
at once (e.g. when there are more than one active/violated
constraint), as well as cuts memorised from previous iterations.
The MCEM relies in a threorically correct deep cut, instead
of heuristic deep cuts [9].

The MCEM will be briefly described and then applied to
design a reflector antenna for satellite communication. This
problem has 38 control variables and was formulated consid-
ering 13 constraints. Hence, the results must test the claim
that using multiple cuts improves the convergence rate, and
decreases the computational effort entailed by the optimisation
process of electromagnetic devices.

II. MULTIPLE CUTS ELLIPSOID METHOD

Consider the single objective optimisation problem

min f(x)

s.t. gj(x) ≤ 0, j = 1, ..., ng
(1)

where f(x) and gj(x) are real valued quasi-convex continuous
sub-differentiable functions and x ∈ R

n is the vector of
parameters. The set of ni violated constraints is defined as
I = {j : gj(x) > 0}. Given an ellipsoid Ek = {x ∈
R
n : (x − xk)TQk(x − xk) < 1} and an open half space

Hk(xk, dk) = {x ∈ R
n : dTk x < d

T
k xk} the Shor’s algorithm

makes Ek+1 ⊇ Ek ∩ Hk. His main achievement was to find a
closed-form solution such that Ek+1 has minimal content. The
direction dk is −∇f(xk) if xk is feasible, or −∇gj(xk), for
some j ∈ I, otherwise. For quasi-convex functions, an optimal
solution x∗ ∈ Ek implies x∗ ∈ Ek+1.

Shor’s algorithm only uses of one of the violated constraints.
If more than one constraint are violated, it is better to calculate
the intersection between the ellipsoid Ek and the cone Ck =
∩jH

−

k (xk,∇gj(xk)), ∀j ∈ I, composed by the intersection of
cutting halfspaces, instead of a single halfspace.

The existence of a closed-form solution for the minimal
content ellipsoid containing Ek ∩ Ck is unlikely. This paper
proposes solving Ek+1 ⊇ Ek ∩ Ck iteratively. Let Ek0 = Ek,
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Ek(i+1) ⊇ Eki ∩ Hi for i = 0, · · · ,m− 1, and Ek+1 = Ekm.
The MCEM relies on the cut depth

αki =
(xk0 − xki)

T
di�

d
T
i Q

−1
ki di

, (2)

where xki is the centre of Eki, di = −∇gj for some j ∈ I. The
convergence rate of the classical method improves by using (2)
iteratively until αki becomes enough close to −1/n for any
j ∈ I.

III. THE REFLECTOR ANTENNA PROBLEM

The proposed algorithm was applied in a satellite broadcast
communication problem, which is described by Lisboa et al.
[4]. In this problem, a reflector antenna in geosynchronous
orbit must illuminate a target - the Brazilian territory for
instance - on the earth surface. The optimisation problem is to
maximise the average gain at ns sample points P, constrained
to lower bounds of gain at certain sample points S ⊆ P. Hence,
there is one constraint for each sample point in S. The sample
points P are spread out all over the target. Specifying the
minimum of 35dB in 13 points on the southeast region, the
most populated in the country, the problem can be written as

min
x

f(x) = −
1

ns

ns�

i=1

G(x, pi), pi ∈ P

s.t. gj(x) = 35 −G(x, pj) ≤ 0, pj ∈ S, j = 1, ..., 13

(3)

In the original formulation these constraints were not con-
sidered [4]. The calculation of the gain at each sample point
uses numerical techniques that are computationally expensive.
The reflector surface was parameterised with 38 control vari-
ables. Therefore, it is a complex black box problem.

IV. RESULTS

The initial configuration x0 was a reference classical
paraboloid reflector. The respective radiation pattern is shown
in Fig. 1 together with the optimal solution achieved after
19, 500 function evaluations using the MCEM.
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Fig. 1. Initial (left) and optimal (right) radiation pattern.

The convergence of the MCEM is contrasted with Shor’s
classical algorithm in Fig. 2. The convergence of the MCEM
was faster and smoother. The MCEM converged to 30.97dB
while the classical method converged to 30.69dB. The classical

method found 62% of infeasible points during the conver-
gence, while the MCEM found 46%, as it discards infeasible
points more efficiently by using more than one constraint at
each iteration.
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Fig. 2. Convergence curves of the MCEM and Shor’s classical algorithm.

V. CONCLUSION

This paper has introduced a novel ellipsoid optimisation
method that considers simultaneous multiple cuts. Its formu-
lation takes advantage of the constraint structure to shrink the
ellipsoid and, hence, to increase the convergence rate. The
results of the application of MCEM to a optimisation problem
with 38 variables support this claim. The proposed technique
is a robust tool with a simple formulation to handle constraints.
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6. OPTIMIZATION (E) 

Abstract — This paper presents an effective methodology for 
robust optimization of electromagnetic devices. To achieve the 
goal, the method improves the robustness of the objective function 
by minimizing the second-order sensitivity information, called a 
gradient index and defined by a function of gradients of 
performance functions with respect to uncertain variables. The 
constraint feasibility is also enhanced by adding a gradient index 
corresponding to the constraint value. The validity of the 
proposed method is tested with the TEAM Workshop Problem 22.  

I. INTRODUCTION 
Due to a growing demand for high-performance and high-

reliability electromagnetic devices or equipment, attention has 
recently been focused on the robust optimization of products 
with the aim of minimizing the variation of the performance as 
a result of uncontrollable factors such as manufacturing errors, 
operating conditions, material properties, etc. Until now, most 
of the attempts which have been made used the Taguchi‟s 
robust design concept or Monte Carlo simulation based on the 
assumption that design parameters are random variables with a 
probability distribution [1]. However, implementation 
difficulties usually arise because it is not easy to acquire 
probability data of uncertain variables and also information 
about which parameter is dominant may not be available. 

To overcome the aforementioned drawbacks, this paper 
proposes an effective methodology utilizing the second-order 
sensitivity information, defined as a „gradient index‟ (GI), for 
the robust optimization of electromagnetic systems [2]. The 
basic concept of the method is to obtain robustness of the 
objective function by minimizing a GI value calculated from 
the gradients of performance functions with respect to 
uncertain variables. Simultaneously, the constraint feasibility is 
also considered by adding a term determined with a constraint 
value and a gradient index corresponding to the constraint. 
Consequently, the method needs neither statistical information 
on design variations nor calculation of the performance 
reliability while it is searching for a robust optimal solution.  

II. ROBUST OPTIMAL DESIGN USING A GRADIENT INDEX 
The TEAM benchmark problem 22 is concerned with the 

design optimization of a superconducting magnetic energy 
storage system (SMES) as depicted in Fig. 1. In order to 
simplify the design problem, a constraint of the current quench 
condition on the superconductivity magnet is not considered 
here. A typical optimization problem for minimizing an 
objective function subject to a set of constraints is expressed as  

 
Fig. 1. Configuration of the SMES device with 8 design variables  
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where x is a design variable vector, Bstray,i the stray field values 
calculated at the ith design iteration, E the stored magnetic 
energy and Eo the energy target value of 180 MJ. The values 
xL and xU denote the lower an upper bounds of the design 
variables, respectively. 

To complement the above expressions, the proposed robust 
optimization for improving the robustness of the objective and 
the constraint functions is formulated as follows: 
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where GIf  is a gradient function of the objective function with 
respect to the uncertain variables ui and M denotes the target 
value of the objective function. In order to enhance the 
robustness of the constraint feasibility, the term j(gj) in (2) is 
added to each constraint 
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6. OPTIMIZATION (E) 

where GIgj  is a gradient function of the jth constraint function 
with respect to the uncertain variables. If the constraint is 
numerically critical (CTgjCTMIN) or violated (gj >CTMIN), 
a term proportional to GIgj  multiplied by a proper constant  is 
added according to the value of the robustness of the constraint 
feasibility.  

III. NUMERICAL IMPLEMENTATION  

The proposed method has been implemented by combining 
the commercial finite element code MagNet [3] with a DOT 
optimizer [4] as shown in Fig. 2, where a modified feasible 
direction algorithm with the second-order sensitivity 
information by finite differencing is used. To obtain the GI 
values, the first-order sensitivity values are computed by the 
continuum design sensitivity analysis (CDSA). 

 
Fig. 2. Flow chart of the proposed robust optimization method 

IV. RESULTS 

The optimization problem for minimizing the stray fields 
of the SMES device of Fig. 1 is solved using two methods. 
The first is a deterministic method based on CDSA that does 
not take into account the effects of uncertain parameters; the 
second approach is the proposed robust optimization method. 
In this paper, all of the 8 design variables used in the 
deterministic method are selected to be the uncertain variables 
for the purpose of comparison between the two methods.  

Starting with an initial design, the deterministic and the 
robust optima are presented in Table I. The stored energy 
values obtained from the two methods almost reach the target 
value of 180 MJ, but the robust optimum produces a better 
mean value of the stray fields than the deterministic algorithm. 
It is inferred that the deterministic optimal solution is trapped 
in one of the local minima near the constraint boundaries, 
while a better optimal solution is found by the robust 
optimization as the feasibility robustness of the constraints is 
improved. In Figs 3 and 4, the variations of the sensitivity 
values and the stray fields are compared between the 
deterministic and the robust optima, respectively. 

TABLE I 
DESIGN VARIABLES AND PERFORMANCE INDICATORS  

AT THE DETERMINISTIC AND ROBUST OPTIMA 

Design 
variables Unit Lower 

bound 
Initial 
values 

CDSA 
optimum 

Robust 
optimum 

Upper 
bound 

R1 mm 1000 2000 2108 1977 4000 
D1 mm 100 500 412 404 800 
H1 mm 200 1500 1504 1507 3600 
R2 mm 1800 2500 2462 2348 5000 
D2 mm 100 400 294 233 800 
H2 mm 200 2000 1756 1871 3600 
J1 A/mm2 10 17 16.39 16.30 30 
J2 A/mm2 10 17 14.49 16.19 30 

Bstray,mean T  23,055 153 34  
Energy MJ  521 183 181  
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Fig. 3. Comparison of sensitivity values of uncertain variables  
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Fig. 4. Comparison of stray field variations when the current density changes  

V. CONCLUSION 

A robust optimization approach adopting the concept of a 
gradient index has been introduced in this paper. The results 
reveal that the proposed method offers high performance as 
well as robustness of the objective and the constraint functions. 
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Abstract—Multi-objective optimizations by means of 3D finite 
element models result in very high computation burden. To have 
an affordable computation cost, the output space-mapping 
technique is applied with a new method where the scalar 
correction of the model outputs is replaced by a set of corrective 
functions. This method is used for the bi-objective optimization of 
a transformer and allows finding the complete Pareto optimal set 
in less than two days on a laptop. 
 

Index Terms—Space-mapping, Multi-objective optimization, 
3D finite element model, Transformer. 

I. INTRODUCTION 
HE OPTIMAL design of electromagnetic devices is a 
complex and complicated task. A way to formulate the 

problem is to find the trade-off between conflicting goals. 
Solving this problem requires building the Pareto optimal set 
with accuracy. With two objectives, the Pareto optimal set can 
be easily drawn and helps the designer to find a good solution. 
Many methods are able to find the solutions of  a bi-objective 
optimization: scalar methods such as the well-known weighted 
sum (WS), ε-constraint methods, etc. [1]; and stochastic 
methods such as non-dominated sorting genetic algorithm II 
(NSGA II), niched Pareto genetic algorithm (NPGA), etc. [2]. 
Unfortunately, those methods require a very high number of 
model evaluations. This is not compatible with the use of a 3D 
FE magneto-thermal model that requires 2 hours [3].  

The purpose of space-mapping (SM) [4]-[7] is to align a 
coarse model and a fine model to reduce the computation time. 
In electromagnetic, the fine model is a 2D or 3D FEM and the 
coarse model is often a lumped mass or analytical model. The 
Manifold-Mapping [6] and Output Space-Mapping (OSM) [7] 
techniques are the most recent and effective methods. 
Unfortunately, no SM algorithm has been developed or 
adapted to multi-objective optimization problem. The aim of 
this paper is to adapt the OSM to bi-objective optimization 
problems. 

First, the bi-objective optimization of a safety transformer [3] 
is presented and the designer’s dilemma is raised. Section III 
proposes a new method to solve this problem that is applied in 
section IV to the bi-objective optimization of the safety 
transformer. Finally, some concluding remarks are given. 

II.  OPTIMIZATION PROBLEM 
The safety isolating transformer is a one-phase step-down 

transformer. It uses grain-oriented E-I laminations. The 
primary and secondary windings are both wound around the 

frame surrounding the central core. 
The bi-objective optimization problem of a safety isolating 

transformer contains 7 design variables. There are three 
parameters a, b, c for the shape of the lamination, one for the 
frame d, two for the section of conductors S1, S2, and one for 
the number of primary turns n1. There are 6 non-linear 
inequality constraints in this problem. The copper and iron 
temperatures Tco, Tir should be less than 120°C and 100°C, 
respectively. The magnetizing current Iμ/I1 and drop voltage 
∆V2/V2 should both be less than 10%. Finally, the filling 
factors of both coils f1 and f2 should both be lower than 0.5. 
The objective functions are to maximize the efficiency η and to 
minimize the total mass Mtot of iron and copper materials. 

A. Coarse and fine models 
The multi-physical phenomena within the transformer are 

electric, magnetic and thermal. They are modeled by a 
lumped-mass (coarse) model (LM) and a 3D finite element 
(fine) model (3D FE) [3]. 

The LM model is built with the assumption that the voltage 
drop due to the magnetizing current is neglected. Therefore the 
maximal induction depends on the primary voltage. The 
computational time of the coarse model is very short (50 ms on 
an Intel Pentium M 2.13 GHz machine). 

The 3D FE magneto-thermal model is built with the 
assumption that all magnetic and electric quantities are 
sinusoidal. The iron loss is computed with Steinmetz formula 
described in [3] and the leakage inductances are calculated 
with the magnetic energy. Full-load and no-load simulations 
are used to compute all characteristics of the safety isolating 
transformer. The 3D FE model with magneto-thermal coupling 
requires a very expensive computational time (about 2 hours 
on an Intel Pentium M 2.13 GHz laptop). 

B. Designer’s dilemma 
Generating 100 optimal solutions of the Pareto optimal set 

by means of the 3D FE model requires 10 000 hours while 5 
minutes only are needed with the LM model. In fact, as solving 
3D FE model is very expensive only six points are computed 
and considered as a reference set (Fig. 1). The points are found 
by using the classical OSM technique. The LM model is used 
to build an extended Pareto optimal set in a short time. It is 
obvious that this last optimal set is far from the reference set. 

A first solution to this dilemma is to interpolate the 
reference set. Unfortunately, no information on the design 
parameters can be obtained because the interpolation can only 
be made in the objective space. 

T 

536

OB2.3



Therefore, the authors propose to adapt OSM technique for 
bi-objective optimization problems in order to generate an 
extended and accurate Pareto optimal set in less than 100 
hours. 

III. ADAPTED SPACE-MAPPING TECHNIQUE 

A. Bi-objective optimization algorithm 
According to the state of the art, the ε-constraint method is a 

useful approach to build a Pareto optimal set [1]. Moreover, 
this method may reach Pareto optimal solutions in the non-
convex region. The ε-constraint method consists to transform 
the multi-objective problem in a single-objective problem. 
Among the objectives, one is kept and the others are 
transformed in inequality constraints. 

B. Space-mapping techniques 
Space mapping techniques aim to use both coarse and fine 

models to reduce the computational time and increase the 
accuracy of the obtained solution [4]-[7]. 

One approach of SM techniques, called Output Space-
Mapping (OSM) [7] consists to modify the coarse model by 
adding some corrective coefficients computed with the fine 
model, in order to align the results of  both models. 

C.Corrective spline functions 
In the case of a mono-objective optimization only a set of 

scalar coefficients is searched. In the case of a multi-objective 
optimization, the corrective coefficients’ values must be 
changed for each solution from the Pareto set. So that these 
coefficients are replaced by corrective functions. 

IV. APPLICATION CASE 
The bi-objective optimization problem of the safety 

isolating transformer presented in section II is solved with the 
proposed algorithm. Fig. 2 shows the Pareto optimal set 
obtained by using the corrective functions. 30 points are given 
at each iteration. At the end of the optimization, a Pareto 
optimal set very close to the reference set is found. 

Finally, only 17 3D FE simulations are needed to obtain an 
accurate Pareto optimal set. The computational time of the 

proposed algorithm is approximately 34 hours (1.4 day) on an 
Intel Pentium M 2.13 GHz laptop. The reference Pareto 
optimal set requires 60 hours (2.5 days) on the same machine. 
To have an accurate Pareto optimal set by using the 3D FE 
model only, approximately 10,000 hours (14 months) are 
required. 

V.CONCLUSION 
The output space-mapping technique is adapted to provide a 

practical way to build an accurate Pareto optimal set in bi-
objective optimization using full 3D coupled finite element 
model and keeping the computational time in an acceptable 
limit. Cubic spline interpolation functions are used to predict 
the values of the corrective coefficients. By using these 
corrective functions, the ε-constraints bi-objective 
optimization algorithm gives an extended and accurate Pareto 
optimal set in less than 2 days. 
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Fig.1. Pareto optimal set using the coarse and fine models. 
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Fig.2. Pareto optimal set obtained at each iteration. 
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Abstract—Many real world optimization problems turn out to
be multi-objective optimization problems revealing a remarkable
number of locally optimal solutions corresponding to the chosen
objective function. Therefore, it seems desirable to detect as
many of those solutions with as few objective function calls
as possible. A Niching Higher Order Evolution Strategy (NES)
can successfully be applied to locate a remarkable number of
local soutions during a single optimization run. Additionally,
it turns out that all of these solutions can be found next to
the front of non-dominated solutions. Therefore, evaluting more
than one objective function (in parallel or in series) yields a good
approximation of the Pareto-optimal front. The proposed method
will be tested against several test functions and then applied to
the solution of a magnetic shunting/shielding problem.

Index Terms—Stochastic Optimization, Niching Evolution
Strategies, Multi-Objective Problems.

I. INTRODUCTION

Applying optimization algorithms to technical design prob-
lems has become a standard procedure within the last decades.
Stochastic methods like Evolution Strategies among many
others have become frequently used tools for this task. Besides
their major advantages like high convergence stability, these
methods still suffer from an inherent high number of function
calls. Even if CPU power has risen incredibly since the intro-
duction of these methods for optimizing electromagnetic fields,
in dealing with complex real world applications one must still
economize computational effort. This calls for an optimization
strategy which supplies the user with as much information
as possible from as few runs as necessary. Niching Higher
Order Evolution Strategies (NES) take advantage of a modified
recombination operator. In contrast to the classical version
[1], NES group the population into clusters and perform
recombination within a cluster with a higher probability than
among different clusters [2]. It turns out that over the course
of the optimization process several sub-populations start to
flock together temporarily in the vicinity of different local
solutions and give them up again on their way to the final
solution. The entity of these local solutions corresponding to
a single objective function form a part of the front of the non-
dominated solutions [3]. Taking multiple objective functions
into account in parallel or in series, more than one part of the
front of the non-dominated solutions can be found. Moreover,

in a predominant number of optimization runs, NES finally
converges to the global solutions among the detected local
ones. The optimization strategey must be able to report on all
solutions to the user. It is obvious that the population size has
to be related to the number of local solutions. To keep the nu-
merical effort still reasonable, it is very important to estimate
the number of these solutions reasonably well and to adapt
it continuously during the optimization run. The proposed
strategy is applied to several test functions for comparison of
the number offunction calls or global bevaviour and finally to a
2D real world shape optimization problem, namely a magnetic
shielding and shunting problem for industrial devices.

II. THE MAGNETIC SHUNT/SHIELDING PROBLEM

Fig. 1. Topology of the Shunt Problem with Trial Variables p1 to p10

Figure 1 shows the magnetic shunt/shield problem [4]. Eddy
currents can flow in the tank (made of steel) only. The
magnetic shunt is made up from a certain number of slices.
They all have the same thickness but different widths. A layer
of copper acting as a magnetic shield can additionally be
inserted between the shunt and the tank. The magnetic field
is produced by a three phase system. The goal is to minimize
the power losses in the tank while keeping the volume of the
magnetic shunts (and later also of the conductive shielding)
as low as possible.
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III. OPTIMIZATION STRATEGY: NICHING HIGHER ORDER
[κ(µ/ρ, λ)] EVOLUTION STRATEGY

A higher order [κ(µ/ρ, λ)] Evolution Strategy (NES) [1] re-
lies on the application of features of biological evolution, like
population, mating and environmental selection, recombina-
tion, reproduction and mutation [5]. Recombination is usually
done by arithmetic crossover, taking the fitness of all parents
under consideration into account. Prior to this step the whole
generation is clustered using a complete linkage clustering
method [2]. Then, recombination within a cluster is performed
with a higher probability than recombination between different
clusters. This leads, even after a few generations, to a certain
number of sub-populations gathering around local solutions.
The best solution of each cluster is stored in order to remember
all individual local solutions. Since the population is adjusted
depending on the number of clusters under investigation, it
is very important to estimate this number as accurately as
possible in order to spend CPU resources economically. This
can be done by monitoring the cluster radii, both in a static
way (comparing the radii of the individual clusters of one
generation) and dynamically (tracing the behaviour of the
radius of the largest clusters). Then, over the course of the
optimization process, one local solution after another is given
up, which leads to a continuously decreasing population. At
last, all individuals can be found next to the final solution only,
which more often than not turns out to be the global of all
distinguished solutions.

IV. FRONT OF NON DOMINATED SOLUTIONS

To detect a major part of the front of non-dominated
solutions [3], more than only the main objective function
is taken into account. Using a fuzzy scheme [6] to supply
the NES with a scalar value characterizing the quality of the
current configuration, this can be done by selecting appropriate
sets of weighting factors as indicated in (1).

µ(p) = (w1 + w2)− w1µlosses(p)− w2µvolume(p). (1)

Putting more emphasis on one or the other objective (in
parallel or in series), a large part of the pareto front can be
detected.

V. RESULTS

A [κ(µ/ρ, λ)] NES with κ =10 clusters, µ = 4 parents with
ρ = 2 of them performing recombination leading to λ = 10
children is used to solve the above magnetic shunt/shielding
problem. The electromagnetic field problems are solved using
the 2D Finite Element code ELEFANT2D [7]. In the first
stage only magnetic shunts are taken into account. Ten trial
varibles (Fig. 1) can be adjusted to minimize both the losses
and the volume of the shunts. In a sequential way, four
different objective functions (1) with different weights are
used (Fig. 2). Each problem was run once, leading to a single
optimal solution for each objective function, respectively. The
best result - obtained with w1=1 and w2=1 - was able to
decrease the volume by 53% and the eddy current losses by

40% compared with a massive shunt of the same dimensions.
Additionally, the best solutions of each of the ten clusters were
stored and evaluated. The non dominated ones of each problem
were selected and are plotted in Fig. 2 together with a vast
number of solutions obtained in the different optimization runs
and the respective front of non-dominated solutions. It can be
seen that the cluster solutions are quite close to the front of
pareto optimal solutions.

Fig. 2. Front of Non-Dominated Solutions.

VI. CONCLUSION

A Niching Higher Order Evolution Strategy was applied
to determine the optimal design and location of five layers
of magnetic material in order to shield as much magnetic
field from the tank wall of a transformer as possible. Es-
timating the number of clusters (and hence the number of
local solutions) fairly well, the population size can be kept to
a minimum, saving CPU time. Running this strategy several
times sequentially with different objective functions (stressing
one or another objective), it turned out that additionally to the
respective optimal designs, several solutions along or close to
the pareto front can be detected.
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6. OPTIMIZATION (B) 

Abstract — This paper presents a new methodology for design 
optimization of dielectric waveguide filters based on continuum 
design sensitivity analysis in conjunction with standard 
electromagnetic software. To achieve this, an analytical sensitivity 
formula and unified program architecture applicable to optimal 
design of high-frequency devices are proposed. A three-
dimensional dielectric resonator used in waveguide filters has 
been tested to illustrate the validity of the method.  

I. INTRODUCTION 
In recent years, a few attempts at optimizing waveguide 

filters based on the design sensitivity analysis (DAS) have 
been made. Depending on the technique used to compute the 
derivative of an objective function, DAS can be categorized as 
the discrete DSA (DDSA) [1] or the continuum DSA (CDSA) 
[2]. However, from the practical viewpoint of combing with 
general-purpose electromagnetic (EM) software packages, 
DDSA has a critical drawback as it requires some amendments 
to the software code to perform sensitivity calculation. In the 
meantime, Yang et al [2] proposed the analytical sensitivity 
formulas by using the bilinear mapping obtained from the 
weak form of wave equations. Even though CDSA could 
overcome the aforementioned problem of DDSA, no in-depth 
work on CDSA concerning high-frequency device design has 
been carried out to date. It is believed that the complication of 
the sensitivity derivation based on the bilinear mapping may 
lead researchers to the ambiguity of the adjoint system. 

In this paper, an analytical sensitivity formula for shape 
optimization in frequency domain is newly derived from a 
fairly routine procedure, where the augmented Lagrangian 
method (ALM), the material derivative concept and the adjoint 
variable method (AVM) are exploited [3]. During the 
mathematical expansions, the adjoint system equation is 
systematically deduced and compared to the wave equation 
referred to as the primary system equation. It is well known 
that the analytical formula facilitates calculating the first-order 
gradient information of an objective function with respect to 
shape design variables and saves a lot of computing time in 
finding an optimal solution especially as the number of design 
variables increases. To utilize the advantages of CDSA, a 
unified program architecture, where engineering software 
packages are integrated into a design tool, is proposed.  

II. SHAPE DESIGN SENSITIVITY FORMULA 
In order to deduce the design sensitivity and the adjoint 

system equation systematically, the variational form of source-
free wave equation in time-harmonic case, referred to as the 

primary system, is added to objective function g based on the 
augmented Lagrangian method: 
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where g is scalar functions differentiable with respect to the 
electric field E, which is itself an implicit function of design 
variable vector p,  the boundary of analysis region , 
ko=(oo)1/2,   the Lagrange multiplier vector interpreted as 
the adjoint variable, e a known parameter and V a known 
vector. To obtain an explicit expression for the deformation of 
the interface boundary  between different materials, 1 and 
2, the second integral on the right-hand side of (1) is split 
into the two regions. After taking the material derivative on 
both sides of (1), the adjoint system equation is defined as: 
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where E denotes an arbitrary variable vector and the pseudo-
source, gE=g/E, plays the role of incident field imposing on 
the boundary . It is noted that only the boundary value used is 
different in the dual system consisting of the primary and the 
adjoint systems.  

Finally, the design sensitivity formula applicable to design 
optimization of high-frequency devices is given by 
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where the subscripts, n and t, are the normal and tangential 
vectors to the interface boundary, respectively.  

III. NUMERICAL IMPLEMENTATION  

Using the analytical formula (3), the first-order gradient 
information of an objective function with respect to the design 
variables can be easily calculated from the field values 
obtained in the dual system. To implement this, a unified 
program architecture applicable to high-frequency device 
design is presented in Fig. 1. The program consists of three 
independent modules that are distinguished by the dotted 
boxes shown in Fig. 1. The optimization module outside the 
two boxes controls the overall design procedure and evaluates 
crucial quantities such as the objective functions, adjoint 
source terms, and design sensitivity. On the other hand, the 
analysis module inside the upper box estimates the 
performance of the dual system whenever the design variables 
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6. OPTIMIZATION (B) 

change. The optimization toolbox module provides efficient 
searching techniques for seeking out an optimal solution in 
infinite design space and returns optimal displacement values 
to design variables. The proposed method has been executed 
by combining the commercial EM code HFSS with the general 
optimizer DOT, where a modified feasible direction algorithm 
with the first-order sensitivity information is used.  

 
Fig. 1. Flowchart of the proposed method 

IV. RESULTS 

The proposed program architecture has been successfully 
applied to optimization of a dielectric waveguide filter in 
conjunction with the two different commercial software 
packages without the need to modify the source code. For 
analyzing the 3-D design model depicted in Fig. 2, the 
frequency domain solver with the second-order tetrahedral 
elements is used. The objective function is defined as (4) to 
achieve a second-order Chebyshev Type I lowpass transfer 
function from 1.4 GHz to 3.4 GHz, where the cutoff frequency 
is 2.4 GHz with passband ripple of 0.5 dB.  
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where n is total frequency points of 21 selected at 0.1 GHz 
intervals, Tri the transmission coefficient calculated at the ith 
frequency, Tro the desired value at the same frequency, gj the 
jth constraint function imposed on the design variables. The 
optimization problem is solved using two different searching 
techniques. The first adopts finite differencing method (FDM) 
for calculating the sensitivity information; the second approach 
is based on CDSA. In this paper, 6 design variables as shown 
in Fig. 2 are selected for the purpose of comparison between 
the two methods. 

Starting with an initial design, the CDSA-based and the 
FDM-based optima are presented in Table I. The objective 
function values obtained from the two methods almost reach 
the same value of -38.40 dB but total iteration number and 
computing time required by the CDSA-based method is 
smaller by nearly 60% compared to the FDM-based method. 
In Fig. 3, the amplitude of the transfer functions is compared 
with each other before and after optimization. Even though 
some discrepancy in the target and optimized values is 

observed, it is inferred that the current optimum is the best 
optimal solution provided by the real 3-D structure. 

 
Fig. 2. Configuration of the design model with 6 design variables 

TABLE I 
DESIGN VARIABLES AND PERFORMANCE INDICATORS  

AT THE CDSA AND FDM OPTIMA 

Design variables Unit Initial values CDSA optimum FDM optimum 
p1(y) mm 117.50 118.56 118.56 
p 2(y) mm 122.50 121.10 121.11 
p 3(y) mm 147.50 147.61 147.62 
p 4(y) mm 152.50 151.63 151.63 
p 5(y) mm 177.50 178.45 178.45 
p 6(y) mm 182.50 180.91 180.92 

Objective 
function F dB -20.76 -38.39 -38.40 

Computing time  min.  244 (17 iterations) 684 (57 iterations) 
A desktop computer equipped with a 2.67 GHz, Intel Xeon processor was 

used. 
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Fig. 3. Transfer functions before and after optimization  

V. CONCLUSION 

An analytical sensitivity formula and a unified program 
architecture applicable to high-frequency device design have 
been introduced in this paper. The results reveal that the 
proposed method offers high performance compared to FDM-
based optimization method. 

VI. REFERENCES 

[1] Jin-Kyu Byun and Il-Han Park “Design of dielectric waveguide filters 
using topology optimization technique,” IEEE Transactions on 
Magnetics, vol. 43, no. 4, pp. 1573-1576, 2007. 

[2] Y. Yang, et al., “Gradient optimization of microwave devices using 
continuum design sensitivities from the adjoint problem,” IEEE 
Transactions on Magnetics, vol. 41, no. 5, pp. 1780-11783, 2005. 

[3] D-H Kim, J. K. Sykulski and D. A. Lowther, “Design optimisation of 
electromagnetic devices using continuum design sensitivity analysis 
combined with commercial EM,” IET Sci. Meas. Technol., vol. 1, no. 1, 
pp. 30-36, 2007. 

541



7. Material Modeling

Abstract — The inspection of the hardened depth of surface 
hardening spheroidal graphite cast iron is important in 
maintenance of various mechanical parts etc. There is a 
difference of the electromagnetic property in the layer with and 
without hardening. Therefore, the evaluation of the hardened 
depth is possible by detecting the difference of the 
electromagnetic characteristic. 

In this paper, the electromagnetic method for measuring the 
depth of a hardened layer using an alternating magnetic field is 
proposed. The flux density in the surface hardening spheroidal 
graphite cast iron is estimated by 3-D nonlinear FEM taking 
into account of interpolation of the electromagnetic property of 
the layer with and without hardening. In addition, the 
experimental verification is also carried out. 

I. INTRODUCTION 
The surface hardening spheroidal graphite cast iron is used 

for various mechanical parts etc. It is necessary to inspect the 
depth of hardened layer in keeping the quality of machine 
parts etc. The ultrasonic wave testing, or the four-point probe 
method [1] using the change of resistivity in hardened 
material are generally used. However, the non-contacting 
inspection is difficult in these techniques.  

The permeability and conductivities of hardened layer is 
decreased rather than the layer without hardening. Therefore, 
the evaluation of the hardened depth is possible by detecting 
the difference of the electromagnetic characteristics [2]. 

In this paper, the non-contacting inspection method of the 
hardened depth of surface hardening spheroidal graphite cast 
iron by applying the alternating magnetic field is investigated. 
The B-H curves and conductivities of the layer with and 
without hardening are measured. Then, the evaluation of the 
flux density between the layer with and without hardening 
inside the surface hardening spheroidal graphite cast iron is 
estimated by the 3-D nonlinear FEM taken into consideration 
of alignment interpolation of these electromagnetic property. 
In addition, the experimental verification of this method is 
carried out.   

II. INSPECTION METHOD AND MODELING OF MAGNETIC 
PROPERTY OF SURFACE HARDENING SPHEROIDAL GRAPHITE 

CAST IRON 
Fig.1 shows the 1/2 domain of the proposed non-

contacting inspection model for evaluating hardened depth in 

the surface hardening spheroidal cast iron. The lift-off 
between the spheroidal graphite cast iron and the ferrite yoke 
was set to 0.1mm. Fig.2 shows the initial magnetization 
curves of the layer with and without hardening of the 
spheroidal graphite cast iron. Table I shows the conductivities, 
respectively. The permeability and conductivity are decreased 
with the increase of the hardness.   

Fig. 3 shows the example of a measurement result of the 
hardness using the Vickers hardness meter when the effective 
hardening depth is 2.5mm. The figure denotes that the  

 
TABLE I  

CONDUCTIVITIES OF LAYER WITH AND WITHOUT 
 HARDENING OF THE SPHEROIDAL GRAPHITE CAST IRON 

 Conductivity (S/m) 
without hardening (275HV) 6.59 x105 

with hardening  (775HV) 4.62 x105 
•
•
•
•
•
•
•
•
•
•

 
Fig.1. Initial magnetization curves of the spheroidal graphite cast irons with 

and without hardening. 
 
 

 
 
 
 
 
 
 
 
               (a) x-z plane                                              (b) x-y plane 

Fig.2  Inspection model of surface hardening spheroidal graphite cast iron 
(1/2 domain).  

hardness in 2.5mm depth from the surface is about 775HV, 
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7. Material Modeling

the hardness of 2.5mm to 3.5mm depth is decreased rapidly, 
and that of more than 3.5mm depth becomes about 275HV. 
The B-H curve of the domain of the depth of 2.5mm to 
3.5mm is obtained by the linear interpolation using the B-H 
curves of the layer with (0mm-2.5mm depth) and without 
hardening (more than 3.5mm depth). Fig.4 shows the method 
of linear interpolation of B-H curve using the B-H curves of 
the layer with (µH) and without hardening (µA). The angles θA 
and θH of the interpolated permeability µI at the point of 
which the depth is equal to Dx shown in Fig.3 is obtained so 
that the following relationship is satisfied: 

            
HX

XA

H

A

DD
DD

−
−

=
θ
θ

                                                            (1) 

The conductivity σ is also interpolated similarly.  

III. INVESTIGATION OF INSPECTION OF HARDENED DEPTH 
Fig.5 shows the effect of the hardened depth on the change 

of flux density |Bz| of a search coil. Several specimens with 
0mm-10mm hardened depth are prepared, and |Bz| is 
measured and calculated. The frequency and the flux density
BE inside the exciting coil are 100Hz and 0.166T, 
respectively. The figure denotes that |Bz| is decreased when 
the hardened depth is increased. Fig.6 shows the distribution 
of flux density inside the surface of hardening spheroidal 
graphite cast iron when the hardened depth DI is 2.5mm. The 
figure illustrates that the flux is more distributed in the layer 
without hardening, since the permeability of hardened 
domain is lower than that of the layer without hardening.  

 
 
 
 
 
 
 
 
 

 
 
 
 

(a) measurement domain        (b) measurement result of hardness 
Fig.3. Example of a measurement result of the hardness using the Vickers 

hardness meter when the effective hardening depth is 2.5mm.  
 
 
 
 
 
 
 
 
 
 

Fig.4. Interpolation of B-H curves. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.5. Effect of hardened depth on change of flux density  |Bz|  in a search 
coil (100Hz, BE =0.166T). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.6. Distribution of flux density in the surface hardening spheroidal 
graphite cast iron (100Hz, BE =0.166T, 1/4 domain).  

 
In the full paper, the optimal magnetization condition for 

the inspection is examined using the 3-D edge-based 
hexahedral FEM. In addition, the experimental verification is 
also carried out. 

IV. CONCLUSIONS  
The results obtained are summarized as follows:  

(1) The permeability and conductivity of the layer with 
hardening in the surface hardened spheroidal graphite cast 
iron are lower than that of the layer without hardening. 

(2) The flux density in a search coil of the proposed 
inspection method is decreased when the hardened depth is 
increased, because the permeability and conductivity are 
decreased in the hardened layer. Therefore, the non-
contacting inspection of the hardened depth is possible by 
detecting the change of flux density of search coil. 
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13. EDUCATION

Abstract⎯ The magnetic modeling of Si-Fe magnetic steels is 
presented in this paper. The modeling is based on a class of 
vector Hysteresis operators recently introduced. The vector 
approach works  without the additional manipulations and 
corrections of the scalar case. Some preliminary experimental 
verifications are also reported.  

I. INTRODUCTION

This paper discusses the modelling of vector Hysteresis in 
Si-Fe magnetic steels. The modelling applied has been 
recently introduced, and it is based on a vector hysteresis 
operators, hysterons, defined in the applied field space.  The 
model is rate independent, so that the applied field variation 
when comparing with experiment must be sufficiently slow so 
that no dynamic effects are excited.  The vector hysterons 
each of which obey certain behavior rules that depend upon its 
critical surface, defined in the applied field plane for that 
hysteron.  This critical surface is a closed convex surface so 
that the model is consistent with the laws of thermodynamics.  
The magnitude of the magnetization of the hysteron is 
constant for all fields.  Thus, we can normalize it, and we will 
refer to the magnetization of the hysteron as unit magnitude 
hysteron. The rules for computing the magnetization of the 
unit magnitude hysteron are: 
• When the applied field lies outside the critical surface, the 
unit magnitude hysteron magnetization is a conservative 
function of the applied field. 
• When the applied field lies inside the critical surface, the 
unit magnitude hysteron magnetization is constant. 
• When the applied field enters the critical surface, the unit 
magnitude hysteron magnetization is frozen to the value that it 
had just before entering the critical surface. 
• When the applied field exits the critical surface the unit 
magnitude hysteron magnetization experiences a Barkhausen 
Jump to a direction that it is normal to the critical surface. 

It is under this last rule that there is a dissipation of energy 
in the material. Further explanation about the modelling above 
mentioned can be found in [1], [2], [3]. The resulting model is 
the extension in 2-d and 3-d of the classical Preisach model in 
that it obeys the vector generalizations of the congruency and 
the deletion properties [4].  To obtain realistic behavior for 
magnetic materials, such as Si-Fe magnetic steels, the classical 
scalar Preisach model has to be modified introducing 

correction and additional terms [5], [6], [7]. The model here 
presented has intrinsically a reversible component of the 
magnetization, and the distribution function is intrinsically 
magnetization dependent, as will be discussed in the full 
paper. Therefore it can be implemented to the numerical 
analysis of hysteresis in magnetic materials without the 
additional manipulations and corrections of the scalar case. 
This fact is discussed in the paper, where we show the 
implementation of the model for the case of Si-Fe magnetic 
steels, and the experimental verification of the material 
behaviour predicted by the model.  

II. NUMERICAL IMPLEMENTATION OF THE MODEL TO THE 

CASE OF 2-D SI-FE STEELS

The numerical approximation of the model for the Si-Fe Steels 
has been made following these points: 

1) It is defined a suitable memory allocations grid defined on 
the space (HIx, HIy, u). This structure contains nx × ny × nu 
allocations, where nx × ny is the number of the hysterons for a 
given value of u, and nu is the number of the u values taken 
into account. On each allocation  there are stored two 
parameters: the probability density Pi,j,k and the 
magnetization state Qi,j,k of the corresponding hysteron.  
2) It is defined the zero magnetization state (virgin state) 
when  the applied field is zero, and the previous history has 
been deleted. The virgin state is obtained imposing all the 
Qi,j,k unitary vector to be aligned in the direction that links 
the center of the hysteron (i, j, k) to the H-plane origin for 
each location of the memory grid. 
3) The magnetization state Qi,j,k  for a given hysteron is 
computed through the value v of the orientation of the 
magnetization calculated by 

1
sin(v)

HH

cos(v)

HH IyyxIx =
−

−
−

       (1) 

4) The probability density values Pi,j,k  in the memory 
allocations grid are defined a priori using a suitable 
identification procedure of the model. These values are 
constant for the entire magnetization process. When the 
magnetic field changes, the memory allocations grid also 
changes in term of hysteron magnetization state. We used her  
a “Least-Squares” approach with a “Tikhonov regularization” 
scheme. Defining  the following error functional  
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13. EDUCATION

2 22( )=ε α− ⋅ + ⋅ ⋅p M * m p R p    (2) 

we find the estimated solution  pest  that minimizes ε

( ) 1T 2 T T
est = α

−
⋅ + ⋅ ⋅ ⋅ ⋅p m m R R m M *

  (3) 

The term 
2− ⋅M * m p

 represents the quadratic error on the 
data space (“discrepancy”), whereas α and R are the 
regularization parameter and matrix respectively. The 
probability of the k-th hysteron must be in the range (0, 1). So 
it has been introduced a projection operator “F” defined as 

k k

 0

(F )  p

 1

⎧
⎪= ⎨
⎪
⎩

p
k

k

k

if         p <0

if     1 p 0

if         p >1

≤ ≤

(4)
The value of α it is choosen in order to have a local minimum 
of the functional ε. The total magnetization components Mx 
and My are computed for each step using the data stored in the 
memory allocations grid. For a given index k the products 

ji,x,ji, QP ⋅  and ji,,yji, QP ⋅  define two piece-wise values of the 

surfaces on the nx × ny grid. The volumes defined by these 
surfaces are calculated and represent a part of the 
magnetization Mx and My . In particular they are the 
magnetization created by the family of the hysteron with the 
value of u corresponding to the index k . The sum of these 
partial magnetizations for k from 1 to nu gives the total 
magnetization.  

III. NUMERICAL CALCULATION AND EXPERIMENTAL

VERIFICATION

In this section we report some preliminary calculations 
made and the experimental verification of the computational 
accuracy attained. We used a “single disk tester” [8] to 
characterize the magnetic behaviour of disks of 3.2% wg Si-
Fe steel. The experimental system is driven by a 
programmable board which generates and records arbitrary 
waveforms. The signals generated are amplified by a set of 
linear amplifiers operating in four quadrants in the frequency 
range DC - 5 kHz. The amplifiers feed the stator of an 
induction motor with two poles, which generates on the 
sample of magnetic material a magnetic field drived in  
modulus and direction. The probes for the detection of the 
magnetic field and the magnetization components x and y are 
placed on the sample and connected to the driver board. The 
applied field frequency is less than 5 Hz, so we can neglect 
the effect of eddy currents.

In Figure 1 we show the magnetization path predicted and 
measured when an increasing rotating field is applied starting 
from the virgin state. In figure 2 rotational and scalar static losses, 
either computed and measured are shown, for different values of 
the magnetization.  

-0.8

-0.5

-0.3

0.0

0.3

0.5

0.8

-0.8 -0.5 -0.3 0.0 0.3 0.5 0.8

Mx [ T ]

My [ T ]
Measured data

Computed data

Fig. 1. Comparison between measured and computed rotational magnetization.  

0

5

10

15

20

25

30

35

40

45

0 0.5 1 1.5 2M [ T ]

E
n

er
g

y 
L

o
ss

es
 [

 m
J/

kg
 ]

rotational losses computed

scalar losses computed

rotational losses measured

scalar losses measured

Fig. 2 – Rotational and scalar static losses vs  the amplitude of applied 
magnetic field. 

IV. REFERENCES

[1] E. Della Torre, E. Pinzaglia, E. Cardelli, Physica B, Vol. 372, pp. 111-
114, 2006. 

[2] E. Cardelli, E. Della Torre, and A. Faba, IEEE Transaction on 
Magnetics, VOL. 45, NO. 3, March 2009. 

[3] P. Burrascano, E. Cardelli, E. Della Torre, G. Drisaldi, A. Faba, M. 
Ricci, A. Pirani, IEEE Transaction on Magnetics, VOL. 45, NO. 3, 
March 2009.  

[4] E. Cardelli, E. Della Torre, A. Faba, Journal of Applied Physics 103, 
07D927, 2008. 

[5] I.D. Mayergoyz, Mathematical Models of Hysteresis, Springer Verlag, 
New York (1991). 

[6] E. Della Torre, Magnetic Hysteresis. New York, NY: IEEE Press, 2000. 
[7] E. Cardelli, E. Della Torre, B. Tellini, IEEE Transaction on Magnetics, 

VOL. 36, NO. 4, July 2000.    
[8] E. Cardelli, A. Faba, Physica B 372 (2006) 143-146. 

545

 



9. NUMERICAL TECHNIQUES

Size Is in the Eye of the Beholder: Technique for Non-destructive
Detection of Parameterized Defects

Flavio Calvano, Pasi Raumonen∗, Saku Suuriniemi∗, Lauri Kettunen∗, and Guglielmo Rubinacci
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Abstract—The paper presents a technique to compute
magneto-quasi-static non-destructive testing problems with pa-
rameterized defect geometry. A single mesh is used for compu-
tations within a range of parameters, and the metric variations
due to parameter variations are compensated for in the numerical
values of the material parameters.

I. INTRODUCTION

A typical problem in non-destructive testing (NDT) is to
specify the defect that generates a certain signal into a probe.
This is an indirect problem –the geometry of the defect
that causes the signal is not known– and consequently, a
number of computations is required to sketch the defect.
Moreover, finite element-type NDT computations are known
to be rather sensitive to numerical errors and all this makes
NDT problems burdensome. This paper suggests exploitation
of metric properties of space in solving NDT problems. The
dimensions of a defect depend on the metric chosen for a
space. At first this may sound preposterous, as obviously the
defect is what it is and cannot be changed by some modeling
choice. This is indeed the case, but the issue is how we as the
modelers observe the defect.

The change of metric is like viewing the defect through
eyeglasses that magnify locally the view, making the defect
appear large. This alleviates the FE-mesh generation problems
caused by narrow defects. Moreover, the magnification can be
made adjustable, and a family of defect widths can then be
modeled with a single (topological) mesh. This reduces the
errors sensitive to the mesh. [1]

Practically, the change of eyeglasses in this sense is done
by a transformation between different systems that reflect the
choices of metric one makes. Pre-processors use hardwired
Euclidean metric to measure distances of coordinates. Stan-
dard parameterizations [1] assign coordinates to points such
that their distance equals the measured distance of the points.
Reparameterization changes the points’ coordinate distances
(as we cannot redefine the hardwired coordinate metric) and
this induces a new metric into the space. The change of metric
affects the constitutive laws’ material parameters, whose nu-
merical values depend on the particular metric. Another view
to the matter: Each finite element stiffness matrix corresponds
to some field problem. If one changes locally the metric, al-
tering the numeric values of distances, one can counterbalance

Work supported by the Academy of Finland, project 5211066, and ERASMUS
exchange program.

this by adjusting the material parameters such that the entries
of the stiffness matrix remain the same.

II. TRANSFORMATIONS

In most NDT applications, the probe must be placed into
the immediate vicinity of the defect in order to detect it
reliably, and because the geometry of the probe is independent
of the defect width, it is not practical to extend the trans-
formation into the probe. We shall consequently restrict the
transformations into the immediate vicinity V of the defect.
V may be tessellated into subdomains if practical. The feasible
transformations
• must not displace any points at the boundary of V , and
• be continuous and piecewise differentiable with piecewise

differentiable inverse.
It is usually practical to tessellate the vicinity into polyhe-

dra [1]. Despite the high number of different transformation
types required, the model can be created and the transforma-
tions derived with moderate effort. The Jacobians of the trans-
formations must be reasonably well-behaved: Their condition
numbers must not be excessive, and their determinants must
not be extreme. A rectangular defect example and its boundary
regions are shown in figure 1.
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Fig. 1. Defect (shaded) and its vicinity regions

The defect model is drawn to be w wide. The original
width of the defect is αw, and the transformation is produced
by displacement of points of V in y-direction only. α is a
parameter for the computation of a family of defects with
different widths. We denote the coordinates as seen in the
pre-processor by x, y, z, and the coordinates related to the
original metric by ξ, υ, ζ. We derive a piece-wise transfor-
mation that maps from x-positions to ξ-positions, and denote
it by h = ξ ◦ x−1. The Jacobian J of the transformation h is
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needed when the material parameters –readily available in the
original metric– are adjusted to the modified metric. The new
parameters are [1]:

σx = J−1σξJ
−T det(J), νx =

1
µx

=
JT νξJ

det(J)
. (1)

These expressions are convenient, because the Jacobian is ex-
pressed in terms of x-coordinates, and σξ and µξ expressed in
ξ-coordinates are constant for the media. The transformations
from x to ξ and z to ζ are identities, and the only interesting
component of each transformation is y to υ, expressed in
figures 2 and 3 , and equations (2)–(6).
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υ1 = αy, υ1 = y + (1− α)(w/2)
y − ye
ye − w/2

. (2)

υ2 = y − y(1− α)(1− z − zc
zv − zc

) (3)

υ3 = y − (1− α)(w/2)(1− x− xc
xv − xc

− y − w/2
ye − w/2

) (4)

υ4 = y − y(1− α)(1− x− xc
xv − xc

− z − zc
zv − zc

) (5)

υ5 = y

− (1− α)(w/2)(1− x− xc
xv − xc

− y − w/2
ye − w/2

− z − zc
zv − zc

) (6)

III. COMPUTATIONAL EXAMPLE

TEAM test problem number 8 [2] is used as the compu-
tational example. The problem features a 40 × 10 × 0.5 mm

rectangular defect at the surface of an austenitic 18-10MO
steel plate with relative permeability µr = 1 and conductivity
σ = 0.14 × 107 S/m. We used 1A current with 100 turns in
the active coil, and calculate the average differential flux in
the receptive coils.

This problem demonstrates two strengths of the proposed
technique: The high aspect ratio of the defect can be reduced
somewhat to ease the meshing, and defects of different width
can be computed with a single mesh. Compared to different
meshes generated from scratch, the use of a single mesh
provides a better idea of the development of the flux estimate
when the defect width is altered.

We used the symmetrized version of A, V − A formula-
tion [3] with the tree-co-tree gauge [4]. The models were
constructed with gmsh [5], and the computations were carried
out with GetDP [6].
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Fig. 4. Real and imaginary part of the magnetic flux in the receptive coils

Figure 4 shows the real and imaginary part of the computed
magnetic flux in the receptive coils, for a paraller scan of the
active probe [2], with values 1, 1/2, 1/3 for α. The results with
different values of α show reasonable mutual agreement. It is
to be noted that generation of high quality mesh was easiest
when the defect scale-up was greatest.
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Abstract — The numerical simulation of open structures 
requires the truncation of the computational domain and the 
definition of appropriate boundary conditions. However, this 
artificial boundary at finite distance causes additional non-
physical modes in the eigenanalysis of waveguides which must be 
excluded from the computed spectrum. We propose an extension 
of the Jacobi-Davidson method by introducing a special 
weighting function that enables a reliable suppression of 
undesired eigenmodes already during the solution process. 
Moreover, the number of iteration steps as well as the 
computation time can be drastically reduced by this process. We 
show the improvement of efficiency by means of an eigenmode 
computation in a photonic crystal fiber discretized by the finite 
integration technique. 

I. INTRODUCTION

The computation of eigenvalues in two- and three-
dimensional electromagnetic structures is a challenging task in 
engineering. Since dielectric waveguides for optical 
applications (fibers) can be highly multi-modal, the 
corresponding 2D-eigenvalue problem may include a high 
number of guided modes, with only little differences in their 
propagation constants. For such modes, the power is confined 
within the core of the fiber, and the field strength in the cross 
section decays exponentially with increasing radius. With this 
a-priori knowledge, one may wish to apply an adequate 
transversal boundary condition, which allows truncating the 
mesh close to the core of the fiber. Such an 'open boundary' 
can be modeled, for example, by a perfectly matched layer 
(PML), which absorbs the evanescent wave parts by real-
coordinate stretching [1]. However, the application of any 
boundary condition changes the discrete eigenvalue problem, 
and an ideal boundary condition as well as the staggered 
material layers of the PML themselves can act as a 
waveguiding structure. This leads to a spoiled spectrum, 
which consists not only of the desired guided modes within 
the core, but we observe a lot of additional, non-physical 
modes, which are guided inside the PML. In order to get rid of 
these spurious modes, we propose a new variant of the Jacobi-
Davidson eigenvalue solver [2, 3] which allows to distinguish 
between the two classes of eigenvectors within the solution 
process and to produce only the desired core-modes in an 
efficient way.

II. WEIGHTED JACOBI-DAVIDSON ALGORITHM

The Jacobi-Davidson (JD) algorithm [2, 3] is feasible for 
the computation of a few interior or exterior eigenvalues of 
the spectrum. Within the algorithm, the original eigenvalue 
problem is projected onto (and solved in) a low-dimensional 

subspace, which is gradually refined by solving a correction 
equation. We use a Matlab implementation of the JD-
algorithm from its original authors which is available from 
[3]. As so-called target value, an end of the spectrum or an 
arbitrary value within the spectrum can be specified. 
According to this target value, the approximated eigenvalues 
are sorted in different sophisticated ways during the solution 
process. The solution of the low-dimensional, projected 
eigenvalue problem, however, does not only yield 
approximations of the eigenvalues, but of course we also 
obtain approximations of the corresponding eigenvectors. If 
we map them back in the original space, we can interpret these 
vectors as approximations of field solutions of the discrete 
formulation. To establish a new criterion for the choice of the 
desired modes, we test these field distributions against a 
weighting vector f, which describes a scalar spatial 
distribution for each field component with its maximum at the 
core and an evanescent decay towards the boundaries. We 
choose a Gaussian profile as components of these vectors, 
since it is easy to define and it fulfills the requirements of a 
strong decay toward the boundaries. Now, we can measure the 
quality of our approximate eigenvectors ui within the JD-
algorithm very easily. The standard scalar product 

i i 2
f , u with u 1, f 1

∞
Ψ = = =  (1) 

can be used to decide, whether the field strength is 
concentrated around the core (Ψ>1) or whether it is 
concentrated inside the boundary (Ψ «1). 

III. NUMERICAL RESULTS

A. Photonic Crystal Fiber 

We choose a hollow-core photonic crystal fiber (PCF) [4] 
as an example, which is operated at 2µm wavelength (Fig. 1). 
It consists of a glass core (nG = 1.45) with a surrounding 
hexagonal lattice of air holes. Each hole has a radius of 2.9µm 
and the lattice constant is 9.4µm. The discrete model is 
truncated by a PML boundary condition and has the 
dimensions 74µm × 84µm. The cross section of the fiber is 
discretized by the finite integration technique (FIT, [5]), using 
CST Microwave Studio [6] for all preprocessing steps. The 
resulting two-dimensional model has 155 × 193 grid points, 
and we add 4 grid lines in each transversal direction for the 
PML boundary condition. The eigenvalue problem [7] for the 
squared propagation constants β2 is linear, of the type 

2 0,+ =i i iβAu u  (2) 
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and has 64438 degrees of freedom. We are interested in the 
first two guided modes of the PCF. Fig. 2 shows the part of 
the spectrum with the smallest real part of the propagation 
constants βi. The first 36 modes are guided within the PML 
region. Modes 37 and 38 are the ones we are looking for and 
which fulfill our weighting criterion in (1). 

TABLE I 
RESULTS OF THE STANDARD AND THE WEIGHTED JD METHOD 

JD Core Modes Total Modes CPU Time Iterations 
Standard 2 38 2687 s 108
Weighted 2 2 165 s 46

IV. CONCLUSION AND OUTLOOK

We have shown that a simple extension of the selection 
process of the approximate eigenpairs within a Jacobi-
Davidson algorithm leads to a superior convergence behavior 
for waveguide models which are surrounded by a PML 
boundary condition. The number of eigenvalues which have to 
be computed until we arrive at the desired ones is drastically 
reduced.

The final paper will discuss a couple of improvements 
concerning the performance, the computationally efficiency, 
and the range of application of the modified eigensolver: At 
first, other weighting functions can be used, e.g. it should be 
possible to find only modes with a specific polarization, 
modes with an energy transport in specific regions of the cross 
section, etc. In the current implementation only the values of 
the electrical grid voltage are taken into account by the 
weighting function. However, it may also be applied to 
Poynting's vector or other secondary quantities. Secondly, the 
performance of the modified Jacobi-Davidson algorithm itself 
can be significantly improved. An important issue is the 
solution of the correction equation: An only approximate 
solution here typically deteriorates the convergence rate in 
terms of the number of iterations, but increases the overall 
computationally efficiency. Besides, the number of iterations 
can be further reduced by re-using the weighting function as 
start solution of the eigensolver. 

Finally, the weighting could also be implemented into 
other eigensolvers such as the implicitly restarted Arnoldi 
algorithm, where it should also be possible to eliminate the 
undesired eigenvectors from the approximate subspace. Of 
course, this kind of solver can also be applied to other types of 
waveguides such as microstrip lines with PML boundary 
conditions. 

Fig. 1. Electric field strength of a core mode (left) and a spurious mode (right) 
caused by a transversal truncation of the computational domain. 

Fig. 2. Propagation modes of the PCF.  

B. Performance Comparison  

We used the unmodified Jacobi-Davidson solver as well as the 
weighted JD solver to compute the first two guided modes of 
the PCF from the previous subsection. For all eigenmodes 
computations, the system matrix is shifted and scaled before 
the solver starts, which significantly improves the condition 
number of the problem. The target is chosen to be the smallest 
real part. The initial subspace is generated randomly and is fed 
in each of both solvers in order to have equal starting 
conditions. The correction equation within the JD algorithm is 
solved exactly in both solvers. This is time-consumptive, but 
we can expect at least a second order convergence. The results 
are given in Table 1. We look for two core guided modes, 
which are found by both solvers. The weighted JD 
outperforms the standard JD by a factor of 15 in time. The 
number of iterations, which are needed to gradually refine the 
subspace, is reduced by a factor larger than two. The reason 
for the disagreement of these two factors can be seen in the 
convergence history in Fig. 3. A lot of iterations are needed at 
the beginning of both algorithms, in order to improve the 
quality of the subspace. Once refined, the subspace allows the 
quick computation of the consecutive eigenvalues. 
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Fig. 3.  Convergence history of the standard and the weighted JD method. 
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Abstract—A multirate Adams-Bashforth (AB) scheme for sim-
ulation of electromagnetic wave propagation using the discon-
tinuous Galerkin finite element method (DG-FEM) is presented.
The algorithm is adapted such that Single Instruction Multiple
Thread (SIMT) characteristic for the implementation on a
Graphics Processing Unit (GPU) is preserved. Accuracy and
performance is analyzed with help of suitable benchmarks.

Index Terms—GPU-computing, Multirate, GPGPU, CUDA,
Discontinuous Galerkin, FEM, High Order, Multiscale.

I. INTRODUCTION

Increasing complexity of modern electromagnetic devices
is challenging current simulation tools. When large structures
should be considered, small parts within these structures are
leading to large aspect ratios of the mesh size. These aspect
ratios have severe performance effects on explicit time integra-
tion schemes in use, since the smallest element is determining
the maximum stable timestep for the entire mesh in a global
scheme.
One way of coping with these restrictions is the use of
multirate timestepping schemes, which integrate elements
of different sizes with different timesteps. In this work, a
multirate scheme using AB time integration is adapted such
that it can be implemented on a GPU. This combines the
performance gain of the multirate algorithm with the highly
parallel computing power of GPUs. Multirate schemes using
AB methods have been presented first in [1]. Relevant results
in local timestepping for solving Maxwell’s equations with
DG-FEM was published by Piperno [2], Hesthaven & War-
burton [3] for 2D domains and Montseny et. al. [4] in 3D on
hexahedral meshes.

II. DG-FEM DISCRETIZATION

Electromagnetic wave propagation in lossless medium can
be described with help of Maxwell’s curl equations. A nodal
variational form of Maxwell’s equations is derived in [3],
where the unknown fields are approximated using local high-
order multi-dimensional Lagrange polynomials. This leads to
a system of ordinary differential equations, reading
d
dt

εE = M−1S H + M−1F
�
n̂×

�
H∗−H−


, (1)

d
dt

µH = −M−1S E − M−1F
�
n̂×

�
E∗ −E−


. (2)

Here, E and H denote the eletric and magnetic field strength,
respectively. Regarding elementwise compuations, the index −

refers to the value in the element, the index ∗ to a combination
of field values of neighboring elements. A special character-
istic of DG-FEM is that the DG-operators M,S and F yield
mass-, stiffness and flux-matrices that have compact support
only within each element’s boundary. As a consequence, M is
locally defined on the reference element and can be inverted
without much numerical effort providing the opportunity of
using explicit time integration schemes. Furthermore, this
formulation includes good parallelization characteristics [5].

III. MULTIRATE GPU IMPLEMENTATION

A. Timestep Selection

Explicit time integration is not unconditionally stable since
the timestep has to comply with the Courant-Friedrichs-Lewy
criterion

∆tmin = min

∆x
v
C

. (3)

Here, ∆x denotes the characteristic size of the element, v
the wave speed and C the Courant number which depends on
the time integration scheme and on the spatial approximation
order. Regarding multirate timestepping, the use of arbitrary
numbers of levels as presented in [6] results in complex
code design when all inter-level dependencies are considered.
Consequently, a direct transition of the multirate CPU code
is not appropriate. Multiple inter-level dependencies would
introduce a complexity breaking with the NVIDIA SIMT
approach associated to high performance GPU computing.

B. Level Classification

In order the respect the parallelization design aspects, a 2-
level multirate scheme with selectable temporal separation is
proposed. In this case, temporal separation describes the way
fine and coarse elements are classified and also how the fine-
coarse boundary is defined. Starting with the timestep ∆tmin

of the smallest element, all elements with a stable timestep
∆t < 2s ·∆tmin with s being a positive integer greater than
zero belong to the fine level. The timestep ratio 2s is computed
adaptively with respect to the mesh, minimizing computational
costs. Eqn. (4) highlights the splitting configuration for the
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discretized Ampère’s law.

d
dt


EF

EC


=


LFF LFC

LCF LCC

 
HF

HC


(4)

The linear operator L represents the right hand side compu-
tation in (1). The indices C and F denote coarse and fine
elements, CF and FC coarse-fine interactions, respectively.

Fig. 1. Multirate scheme for a
timestep ratio 4.

The benefit of this multirate
approach is that all evalu-
ations of the LCC operator
have to be executed only every
2sth timestep, as highlighted
in Fig.1 for s = 2. Regard-
ing stability, the intermediate
zones are of special interest.
With this configuration, the
Courant number has to be cho-
sen slightly smaller than in the
global scheme.

This behaviour has already been reported in [7] and will be
investigated in the full paper in detail.

IV. FIRST NUMERICAL RESULTS

As a first numerical benchmark, a cavity discretized with
398 tetrahedra was excited with its fundamental mode. Regard-
ing the different element sizes of the mesh, a level separation
with a timestep ratio 4 was chosen. This corresponds to 182
fine elements having an individual stable timestep lower than
4 · ∆tmin and 216 coarse elements having a larger stable
timestep. Computations were carried out on a AMD Opteron
8356 CPU at 2.3 GHz and on one of the four NVIDIA TESLA
S 1070 GPUs. Table I is listing computation time and speedup

TABLE I
COMPARISON OF GLOBAL CPU, GLOBAL GPU AND MULTIRATE GPU

Example Implementation Computation
time

Speedup compared
to CPU global

CPU global 4 h 56 min 54 s 1.0

GPU global 10 min 51 s 27.4

GPU multirate 8 min 6 s 36.7

CPU global 29 h 6 min 46 s 1.0

GPU global 39 min 1 s 44.8

GPU multirate 11 min 50 s 147.6

for CPU-GPU acceleration and in a second step with enabled
multirate. Although this academic example is not providing
large aspect ratios, the efficiency can benefit from the multirate
scheme. Regarding accuracy, Fig. 2 highlights the maximum
error of the electric field during several computations, each
evaluating 200 periods of the cavity mode with a maximum
of 1 577 781 micro-timesteps. The error of the computation
with DG-FEM of order 4 is below 10−3 for all compuations.
In detail, there is almost no difference in accuracy between
the GPU multirate and the GPU global scheme.

Regaring efficiency of the multirate scheme, a scattering
object as presented in Fig. 3 is discretized with 130 413
tetrahedra, as shown in Fig. 4. The adapted timestep ratio

Fig. 2. Maximum relative error of the electric field computed in a 3D cavity
with multirate and global schemes on GPU and CPU.

Fig. 3. Scattering object - CAD
model.

Fig. 4. Scattering object - mesh
with 130 413 tetrahedra.

is 4, separating the mesh into 127 676 coarse and 2737 fine
elements. The global GPU computation was accelerated by a
factor of 44.8 compared to the CPU implementation and could
be further accelerated by a factor of 3.3 using the multirate
scheme as presented in Table I. The electric field at the surface
of the scattering object (y-component) is presented in Fig. 5.

Fig. 5. Electric field of a scatterer hit by a TEM wave, computed with
15.6 · 106 unknowns at 52 043 microsteps.

V. CONCLUSION

A multirate GPU accelerated DG-FEM algorithm was pre-
sented. The multirate timestepping scheme can further accel-
erate GPU computations, especially when high aspect ratios
of multiscale problems are of concern. The full paper will
provide more detailed information about the theory as well as
the stability and accuracy of the timestepping scheme.
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[6] N. Gödel, S. Schomann, T. Warburton, and M. Clemens, “Local timestep-
ping discontinuous Galerkin methods for electromagnetic RF field prob-
lems,” EUCAP 2009 – Full paper accepted for publication, 2009.

[7] E. Montseny, S. Pernet, X. Ferriéres, and G. Cohen, “Dissipative terms
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Abstract — In this paper, two methods for calculating 
induction motor (IM) end-winding leakage inductances are 
presented. The 3-D geometry of the winding ends, the motor 
cross-section and the motor housing is very complex and difficult 
to model using a conforming finite element (FE) mesh. Both 
presented methods propose an alternative to this standard 
procedure. The first method is based on the numerical 
calculation of the Biot-Savart field using a non-conforming FE 
mesh. The Biot-Savart field is used to obtain an edge element 
representation of the rotational part of the magnetic field. In the 
second method, the source current distribution of the winding 
ends is described by spline functions and the rotational part of 
the magnetic field is defined by identifying the loops generated by 
co-tree edges within a simple graph associated with only one 
single finite element at a time. All elements are treated in defined 
succession using just one sweep. Applying either method, the 
eddy current analysis is carried out, thus the induced currents in 
the housing and in the front-end steel plate of the machine are 
calculated and their influence on the field distribution and on the 
leakage inductances is taken into account.   

I. INTRODUCTION 
The end-winding leakage inductance is a very important 

parameter whose influence is most significant during the 
starting behavior of the IM. In [1], a strong dependence 
between the end-winding leakage inductance and the 
acceleration time of the IM motor has been proven. In order to 
enable the accurate dynamic simulation of the IM starting 
procedure, the end-winding leakage inductance should be 
precisely defined and incorporated in the 2-D FE model as an 
additional lumped parameter [1]. In order to extract IM 
equivalent circuit parameters, like stator and rotor leakage 
inductances, a magnetizing inductance and a rotor resistance, 
the 2-D finite element method (FEM) is usually used. 3-D 
leakage fields present in the end region of the machine are, 
therefore, neglected. These inductances are usually estimated 
using design formulas that combine approximate analytical 
results with measurement statistics. In [2], different  
semi-empirical equations first presented by Alger and Gray 
are compared with measurement results. The improved 
analytical approach based on multiple solutions of the 
Neumann integral and on the method of images is presented in 
[3]. Owing to the complex geometry of the end-winding and 
due to the complicated boundary conditions of the problem, 
these analytical expressions are able to give only a rough 

estimation of the leakage inductances. On the other hand, 
numerical methods can contribute to the accuracy of these 
calculations. In order to calculate the leakage reactance of the 
end-winding, a static 3-D FEM simulation has been applied in 
[4] and [5]. A problem associated with the FEM simulations of 
the motor end-regions is the modeling process of the  
end-winding itself. To obtain a conforming FE mesh of the 
two layered windings and the surrounding air, an enormous 
number of FE is required which results in a huge computation 
time. Therefore, the production units only rarely use 3-D FEM 
computations for defining the leakage inductance. 
Furthermore, the static FEM analysis of end-region effects is 
not sufficient. Namely, the induced eddy currents in the  
front-end steel plate of the machine and in the machine 
housing have significant influence on the magnetic field 
distribution and, therefore, on the inductance values. The aim 
of this paper is to present methods to overcome these 
problems, hence to propose a numerical procedure that would 
simplify the modeling of the end-winding, the machine and 
the surrounding end-region. The influence of the eddy currents 
on the magnetic field distribution and, consequently, on the 
leakage inductance is also taken into consideration by 
performing the FEM analysis in the frequency domain.  

II. NUMERICAL ANALYSIS 

A. Method 1 – Non-conforming FE mesh 
Nowadays, companies commonly use the support of CAD 

modeling in the manufacturing process, thus drawings of the 
end-winding are often already available. It is relatively simple 
to mesh the winding ends without the surrounding air. In the 
present method, such a FE mesh has been used in order to 
perform a static current flow analysis and to obtain the current 
distribution in the winding. Knowing the current distribution, 
the Biot-Savart field has been calculated in the integration 
points of another FE mesh representing the motor, its housing 
and the surrounding air. The two meshes are non-conforming 
(Fig. 1). The eddy current problem is solved in the frequency 
domain using the T,Φ-Φ formulation [6]. Thus, the given 
current density J0 is represented by an arbitrary function T0, 
which satisfies the following condition: 

 
  . (1) 0 0( )curl =T J
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Knowing the numerically calculated Biot-Savart field Hs, the 
rotational part T0 of the magnetic field is represented with the 
aid of the edge element shape functions in order to avoid 
cancellation errors:  

 
e

0
EdgeEdge

d ;
n

i s
ii

t l= ∑∫ i itH T = N  , (2) 

where Ni stands for the vectorial edge element shape functions 
associated with the i-th edge and ne for number of FE edges.  

 
Fig. 1. 3-D FE model of the induction motor, its end-winding and housing 

 

B. Method 2 – Generating T0 by a procedure based on 
element graphs 

Since only an edge-element representation of T0 is 
required, it is sufficient to compute the coefficient ti in (2) in a 
way that the integral form of (1), 
   (3) 0 0d d

i iC Γ

=∫ ∫T l J S

holds for any closed path Ci in a fundamental set of loops in 
the graph with Γi being a surface bounded by the curve Ci. 
Following the idea first presented in [6], a general algorithm 
for the generation of T0 has been developed. The coefficients ti 
in (2) are computed by evaluating the surface integrals of the 
current density J0 over a surface bounded by the loop defined 
by the co-tree edge in a simple element graph (Fig. 2). The 
advantage of this method is that the surface integrals are 
defined equally for each finite element by one fixed co-tree 
(Fig. 2a), hence it is not necessary to define global loops in the 
FE mesh.  

t=0

t=0t=It=It=I

 
Fig. 2. a) Tree and co-tree definition within FE, b) A simple 3-D mesh 

 
All elements are treated in defined succession which 

ensures that no element is arrived at after all its neighbors 
have been treated. The coefficients ti on tree branches of the 
treated element are set to zero if no value has been assigned to 
these edges in previous steps, and the ti values of the co-tree 
edges are calculated by numerical surface integration of the 
current density over the surface generated by the co-tree edge. 

A simple example of four elements and one current filament is 
shown in Fig. 2b. Using this approach, the FE mesh of the 
end-winding is not required. Additional details of this method 
with emphasis on the numerical description of the  
end-winding geometry and the numerical integration 
procedure will be presented in the full paper.  

III. PRELIMINARY RESULTS AND CONCLUSION 

Using the first presented method, the magnetic field in a  
3-D model of a 2.2 MW IM (Fig. 1) has been calculated. As 
presented in the Fig. 3 also the eddy currents in the 
surrounding metal parts were taken into consideration. By 
calculating the magnetic energy in the motor end-region the 
leakage inductance of 74 μH has been determined (the leakage 
inductance of 44.5 μH has been calculated using  
semi-empirical formulas). A very important influence of the 
eddy currents on the inductance values has been established, 
showing that static FEM analyses are not sufficient to 
calculate the leakage inductance. In the final paper results of 
both methods are going to be presented, mutually compared 
and, additionally, advantages and disadvantages of the two 
procedures are going to be discussed in detail. 

 
Fig. 3. Induced eddy currents in the surrounding metal parts of the IM. 
 

ACKNOWLEDGMENT 

This work has been supported by the Christian Doppler 
Research Association (CDG) and by the ELIN EBG Motoren 
Gmbh. 

IV. REFERENCES 

[1] A. Stermecki, O. Biro, K. Preis, S. Rainer and G. Ofner, "Determination 
of the Starting and Operational Characteristics of a Large Squirrel Cage 
Induction Motor Using Harmonic and Transient FEM," presented at 18th 
International Conference on Electrical Machines, Vilamoura, Portugal, 
Sep. 2008. 

[2] V. B. Honsinger, "Measurement of End-Winding Leakage Reactance," 
Power Apparatus and Systems, Part III, Transactions of the American 
Institute of Electrical Engineers, 78(3): 426-431, 1959. 

[3] D. Ban, D. Zarko and I. Mandic, "Turbogenerator End-Winding Leakage 
Inductance Calculation Using a 3-D Analytical Approach based on the 
Solution of Neuman Intefrals," IEEE Transactions of energy 
Conversion, 20(1): 98-105, 2005.. 

[4] W. M. Arshad, H. Lendenmann, Y. Liu, J.-O. Lamell and H. Persson, 
"Finding end winding inductances of MVA mashines," in Industry 
Applications Conference, 40th IAS Annual Meeting, Vol. 4, 2005, pp. 
2309-2314. 

[5] A. Tounzi, T. Henneron, Y. Le Menach, R. Askour, E. Dumetz and F. 
Piriou, "3-D Approaches to Determine the End Winding Inductances of 
a Permanent-Magnet Linear Synchronous Motor," IEEE Transactions on 
magnetics, 40(2): 758-761, 2004.  

[6] O. Biro, K. Preis, G. Vrisk, K. R. Richter and I. Ticar, "Computation of 
3-D Magnetostatic Fields Using a Reduced Scalar Potential," IEEE 
Transaction on Magnetics, 29(2): 1329-1332, 1993. 

553
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Abstract — A combination of computational techniques for 
analyzing unbounded magnetic field problems involving 
ferromagnetic materials is presented. The proposed approach is 
mainly based on a synergy between a Neural Network (NN) and 
the Finite Element Method.  In particular, the unbounded 
problem is solved by using an iterative scheme based on a 
fictitious boundary that encloses all the hysteretic regions. The 
boundary conditions on the fictitious boundary are initially 
guessed and successively updated according to the solution 
obtained in the previous iteration step. The hysteretic nature of 
the material is taken into account by an original NN able to 
perform the modelling of any kind of quasi-static loop (saturated 
and non-saturated, symmetric or asymmetric). An application to a 
simple 2.5-D geometry is presented in order to illustrate the whole 
procedure. 

I. INTRODUCTION 

In this paper the authors present a Finite Element code for 
the analysis of magnetic problems in unbounded domains 
combined with a Neural Network (NN) approach for the 
characterization of magnetic hysteresis. By starting from a 
small set of measured loops, the NN manages the values of the 
magnetic field, H, and the flux density, B, as inputs while the 
differential permeability is the output. In particular, the 
proposed NN is capable to perform the modelling of saturated 
and non-saturated, symmetric or asymmetric hysteresis loops. 
In order to treat boundlessness in the system of coupled 
equations that must be used for solving the magnetic problem, 
we adopt an iterative scheme based on a fictitious boundary 
that encloses all the field sources and the material hysteretic 
regions with the aim to define a bounded domain. In this way 
the unbounded coupled problem solution is converted into the 
iterative solution of a sequence of bounded Dirichlet magnetic 
hysteresis problems. The boundary conditions on the fictitious 
boundary are initially guessed and successively updated 
according to the solution obtained in the previous iteration 
step. This treatment of boundlessness closely follows an 
analogous approach, successfully used for the solution of 
uncoupled electromagnetic problems in unbounded domains 
[1]. An application to a 2.5-D geometry is presented in order 
to illustrate the whole procedure. 

II. FE SOLUTION OF THE MAGNETIC PROBLEM IN UNBOUNDED 
DOMAINS 

Starting from Maxwell’s equation for the stationary 
magnetic field and considering the constitutive law for 
magnetic hysteresis materials  

)(0 MHB += µ                  (1) 

where M is the nonlinear magnetization function and µ0 is the 
vacuum permeability, it is possible to obtain the following 
equation in terms of the magnetic potential vector A: 

MJA ×∇+=







×∇×∇

0

1
µ

            (2) 

By introducing a fictitious boundary ∂ this equation is 
considered in a bounded domain M enclosing all the density 
current sources J and all the magnetic materials. In this way 
the unbounded problem solution is converted into the iterative 
solution of a sequence of bounded Dirichlet magnetic 
problems. The boundary conditions on the fictitious boundary 
are initially guessed and successively updated according to the 
magnetic vector potential and current density distributions 
obtained in the preceding iteration step. In particular, the 
boundary values of magnetic potential vector can be derived 
by exploiting its Laplacian behaviour in a region which does 
not contain sources by means of the Green's function. In fact, 
for a generic harmonic function, Φ , in the external 
homogeneous unbounded source free region one has: 

( , )( )
( ) ( , ) ( )F

F F

G
G ds

∂∂
∂ ∂Γ

Φ Φ = − − Φ  
r rrr r r r

n n
           (3) 

where: Γ is an arbitrary surface contained in M enclosing all 
the sources and magnetic materials; n is the unit vector normal 
to Γ, oriented toward M; r and rF are point vectors relative to 
Γ and ∂M, respectively and G is the Green's function for free 
space. Since in the FEM approximation, the surface curve Γ is 
conveniently selected as constituted by finite element sides, the 
(3) can be rewritten for each boundary “unknown” AF in the 
form: AF = RM A  where RM is a rectangular matrix of purely 
geometrical coefficients. The solution of the coupled problem 
from equations (2) and (3) are well suited to be solved 
iteratively, arbitrarily guessing at the beginning the magnetic 
vector potential on boundary ∂M. On the other hand even the 
solution of the discretized equation (2) requires an iterative 
scheme. Consequently several choices for the hierarchical 
relationships between the two kinds of iterations are possible; 
in the full paper the performance of the different schemes will 
be discussed in details.  

III. THE NEURAL NETWORK HYSTERESIS MODEL  

The possibility of using Neural Networks to model 
magnetic hysteresis has been largely verified in literature [2]; 
and it is a valid alternative to classical models such as the 
Preisach or Jiles-Atherton ones. In fact, any hysteresis model 
requires the experimental characterization of the material by 

Neural FEM for Hysteretic Materials 
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7. MATERIAL MODELING 

using measured loops. Moreover, as shown in [2], the 
characterization performed by using the saturated major loop 
is often not suitable for accurately simulating minor loops. 
Then the identification of hysteresis models is an open 
problem as it is testified by the huge production available in 
literature about this task. Thus, the aim of the presented NN 
approach is to provide a computational tool able to predict the 
quasi-static magnetic hysteretic behaviour of a ferromagnetic 
material by the direct exploitation of few simple 
measurements. They consist of the generation of an 
asymmetric loop obtained by following a path involving a 
portion of the major-saturated-loop branch and an ascending 
non-symmetric branch as in Fig. 1. 

 
Fig. 1. Example of the Saturated loop used for NN training (M indicates the 

Major Loop Branch while A indicates the Asymmetric Branch ). 
 

In this way the NN is able to simulate any possible kind of 
loop (symmetrical or asymmetrical, saturated or non-saturated) 
by exploiting the transplantation technique [4]. In particular, 
the implemented NN is a simple feedforward net trained by 
using the Levenberg-Marquardt backpropagation algorithm. 
The NN consists of two input neurons, representing the 
magnetic field, H, and the flux density, B, one hidden layer 
with 9 neurons and one output neuron that gives as a result the 
value of the differential permeability, ( , ) /d H B dB dHµ = . The 
training set exploits 100 H-B sampled points for each 
asymmetric saturated hysteresis loop (see Fig.1) obtained by 
measurements. Altogether, 20 measured loops are used. 
Moreover, the NN is able to reproduce symmetric loops even 
if it is trained on asymmetric ones because a symmetric loop 
can be obtained by the superposition of mirror asymmetric 
branches (see Fig. 2). Finally, the reconstructions of minor 
loops are performed in two subsequent steps: while the NN 
predict the first ascending (or descending) branch of the minor 
loop, the second descending (or ascending) branch is obtained 
by the transplantation technique proposed in [4]. Thus, the 
present approach can be easily and usefully embedded into a 
set of field equations since it does not require a preliminary 
knowledge of the H (or B) waveform. More in detail, let us 
consider the NN input [H(k),B(k)] and the returned NN output 

( ( ), ( )) ( ) / ( )d H k B k dB k dH kµ = at the k-th step of an iterative 
procedure.  Let us assume dH (or dB) the imposed increment 
of the magnetic field (or flux density). Thus, at the  k+1-th step 
we can input the NN with 
[ ( 1) ( ) ( 1), ( 1) ( ( ), ( ) )dH k H k dH k B k H k B k dHµ+ = + + + =  
(similarly for an imposed dB). In Fig. 3, an example of 
validation is shown. 

 
Fig. 2. Symmetric loop obtained by the superposition of mirror asymmetric 

branches. 

 
Fig. 3. Example of NN approach validation 

IV. EXAMPLE OF APPLICATION 

Hereafter a test of the proposed method is applied to a 
magnetic problem involving a simple geometry: a 
ferromagnetic cylinder is considered having a length of 8 cm 
and a radius 1 cm, surrounded by a coil solenoid of inner 
radius 2 cm, outer radius 2.5 cm and length 10 cm, carrying an 
uniform current of 1 A. Since the problem is axisymmetric it is 
possible to analyze only ¼ of the whole geometry, as shown in 
fig. 4, where the domain considered for the problem is 
represented together with the results expressed in terms of 
magnetic potential vector intensity.  

 
Fig. 4. Magnetic potential vector intensity for the considered example.  
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Abstract — The paper presents an innovative  
computational methodology dedicated to establishing 
equivalent characteristics of anisotropic laminated 
structures. The method is based on the homogenization 
technique. The influence of eddy currents on the equivalent 
characteristic is also counted. 
Key words — anisotropic laminations, equivalent magnetic 
characteristics, homogenization, eddy currents, lamination 
stack 

I. INTRODUCTION 
Iron cores in electrical machines and transformers are 

usually made of lamination stacks in order to reduce eddy 
current losses. It is impossible to model with finite element 
software the eddy currents in each lamination. Indeed, full 
3D numerical modeling of such structures is time 
consuming and it requires large memory. That is why the 
main idea is to replace the complex three-dimensional 
structure by a homogenized ‘equivalent’ material. This 
material, magnetically equivalent, allows the real 3D 
structure made of thin sheets to be treated computationally 
as a 2D problem. It requires to establish a family of 
equivalent characteristics. For instance, joints in power 
transformers are made of internal air gaps and thin 
anisotropic laminations (0.17-0.5mm) of varied rolling 
directions. Such a structure may be replaced by an 
equivalent homogenized material [1]. In the first stage, it 
has been assumed that the normal flux density component 
Bz is negligible compared to the components Bx and By in 
the lamination surface. As a consequence, the effects of 
eddy currents have been neglected too and such an 
approximation inevitably causes some inaccuracies. 
Although the component perpendicular to the sheets is 
typically only a few percent of the tangential components, it 
is distributed on large areas. This paper describes the 
second stage of the investigation: objective is to replace the 
3D region by an equivalent 2D structure taking into account 
the eddy currents inducted by the longitudinal flux. The 
complete influence of the flux normal to the lamination 
plane [2-4] will be introduced in a further paper. 

II. ANALYSIS OF THE 3-D SIMULATION RESULTS 
In order to set out in detail the possible simplifications, 
several 3D simulations have been made. The influence of 
the eddy currents created by longitudinal and normal fields 
are analyzed for the following structures: 

1. Several superposed sheets with different lamination 
directions 

2. Corner of Epstein frame 
3. Step-lap joint with internal air-gaps. 
The main purpose of these 3D simulations is to estimate the 
effect of the eddy currents induced by the normal flux on 
the field distribution. For each structure, two simulations 
were made: with and without the eddy currents. 
Conclusions from the 3-D simulation are the following: 
1) The perpendicular flux is non negligible only in the air 
gaps and in the non conducting regions because of the 
continuity of zB  between the non conducting and 
conducting layer, but also because Bz is very low 
comparing with the longitudinal component).  
2) The longitudinal flux density component in the air is 
negligible (the eddy current flowing on the sheet surface 
are too low to disturb Hx and Hy, so due to the field 
continuity on the lamination surface, the field and the flux 
density in the air are very low) 
3) The surface eddy current in the lamination generated by 
the normal field causes the adequately losses, but it does 
not intervene on the flux penetration from one lamination to 
another.  
4) It is only necessary only to take into account in the 
mathematical model the dependence between the 
longitudinal flux in the lamination and the normal flux 
penetrating from non conducting layers.  
 

 
 
Fig.1 Flux density components for the penetration of flux from one to 
another lamination by non conducting layer.  
a) Longitudinal component in the lamination (max. 1.22T)  
b) Normal component in the air-gap between laminations (max. 0.076T) 

III. DESCRIPTION OF THE METHOD  
The macrostructure in the homogenization technique is a 
complete stack, while the microstructure is a repeatable set 
of several layers. It is customary, when describing a family 
of B(H) curves for different angles, to assume that 0° is in 
the rolling direction for one lamination and x the direction 
for the equivalent structure. For every layer i, of the 
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thickness di it has been assumed that the flux density iB  
and the time derivative of flux density 

t
B




is spatial overage 

along the layer thickness:  
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The flux density components in a sample of dimensions
xyz may be found as:  
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where i=1, 2, …, n denotes the structure’s layer, is the 

flux ‘in’ through the surface yz, is the flux ‘out’,  , 

, and are similar fluxes respectively through the 

surface xz and xy . The field distribution results of the 
system’s tendency to achieve a minimum of magnetic 
energy. Unknowns in the minimization task are the flux 
density components in every layer. The starting values for 
B1x, B1y, B2x ,B2y, B1z and B2z follow an initial assumption 
that magnetic flux goes entirely through the laminations 
avoiding the gaps. The model is established with the 
following simplifications: 
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a) For the non-conducting layers, the three components of 
the flux density exist. The total energy of the layer is the 
magnetic field energy  
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where o is the vacuum reluctivity. 
b) For each lamination of thickness di and electric 
conductivity  the analytical solution is established. As 
they are in every sheet two main magnetic fluxes (one 
parallel to the lamination surface and the second 
perpendicular to the lamination surface), two eddy currents 
densities are considered. The total current density results 
from the vector superposition of eddy current densities.  
 

d1 (conductor) 

d3 (conductor) 

d2 (air gap + insulations) z

y
x

z

z
x1

x3y3

y1 sxy1

sxy3
x2y2 x2y2

 
Fig.2 Fluxes in three consecutive layers 
 
When reaching the boundary between non-conducting and 
conducting layers, the normal component of the flux 
density turns and became tangential (fig.2). The magnetic 
flux is harmonic function of time. Compliance of these 
phenomena is established by the boundary conditions on 
the surface of the lamination.  
The energy per time unit into the ith lamination equals 

the integral of Poynting’s vector along the lamination 
surface.  The current density in the isolating layer is 
function of all flux density components in the layer and of 
the normal component in the neighboring isolating layer. 

iW

The steady-state eddy current loss density P (W/m3), averaged 
over a time period and over the lamination thickness, for the 

flux parallel to the lamination surface is given by the 
following expression:
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where  are the flux density on the boundaries 

of the i-th lamination.  
)1()1( ,  isis BB

For the whole structure, the following argument exploits 
the system natural tendency to achieve the minimum of the 
field energy which may be expressed as:  





n

i

iii BWW
1

min ),(
            (4) 

where i  is the permeability, and iB  the induction in 
individual laminations, n is number of laminations in the 
microstructure. The equivalent permeability at any point of 
the core is a function of the resultant flux density and the 
minimal field energy ),( min WBeq . A standard Hooke and 

Jeeves Direct Search Method has been used as it is known 
to be robust and insensitive to the starting point. The 
equivalent reluctivity eq of the homogenized replacement 
material may be found by equaling the energies of the real 
and equivalent structures. In the following, a numerical 
procedure and the eddy currents generated by the 
perpendicular flux will be described in detail. The material 
modeling and its implementation inside the procedure will 
be discussed. The equivalent characteristics for different 
anisotropy directions have been computed by varying the 
equivalent flux density from 0.01T up to saturation for 3D 
structures presented in advance. 

IV. CONCLUSIONS 
In order to provide independent verification of the proposed 
approximations and gain more insight into the behavior of 
the magnetic field in the laminated structures, and in 
particular to study the effects of the eddy currents induced 
by the transverse flux, an attempt was made to model the 
systems studied using full 3D and homogenized 2D finite 
element code. The results will be presented in the full 
paper. 
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7. MATERIAL MODELLING 

Abstract — A simple anisotropic vector hysteresis model is 
developed for representation of 2D weakly anisotropic vector 
hysteretic property. An isotropic vector play model is identified 
from azimuthally averaged vector property of anisotropic 
material. An anisotropic matrix is multiplied to the isotropic 
vector play model to represent anisotropy. Vector properties of a 
non-oriented steel sheet are represented by the proposed model.  

I. INTRODUCTION 
The play model is an efficient and precise hysteresis model, 

which has several vector versions [1]-[3]. However, the 
representation of anisotropic vector hysteretic properties of 
silicon steel sheets is still an open problem for the play model 
and other hysteresis models. This article proposes a simple 
generalization of vector play model for representation of two-
dimensional (2D) weakly anisotropic vector hysteretic 
property, which is observed in non-oriented steel sheets.  

II. ISOTROPIC VECTOR PLAY MODEL 
An isotropic vector play model is given as 

∫==
s

0
d))(,()(

B
ζζ ζ BpfBPH         (1) 
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p

p
ppf ζζ f=             (2) 

where f(ζ, p) is a shape function,  BS is the saturation magnetic 
flux density, and pζ is a vector play hysteron having a radius ζ. 
The hysteron pζ [4] is given as  
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where pζ0 is the vector pζ at the previous time-point.  
The play model (1) is a 3D vector model. However, this 

article discusses its 2D property for the representation of 
rotational and alternating hysteretic properties of silicon steel 
sheets. 

Anisotropic properties of non-oriented silicon steel sheet 
(JIS: 50A1300) are averaged along the azimuthal direction to 
obtain isotropic properties for simulations. An averaged 
alternating property is used to identify the shape function f. 
The dashed line in Fig. 1 shows the simulated rotational 
hysteresis loss of the steel sheet, which is larger than the 
measured one.  

To adjust the rotational hysteresis loss, the vector play 
model is modified similarly to a vector stop model [5] as 

P*(B) = (P(B)⋅e//)e// + r(|B|)(P(B)⋅e⊥)e⊥      (5) 

where e// and e⊥ are parallel and perpendicular unit vectors to 
B, respectively, and r(|B|) is the ratio of the measured 
rotational hysteresis loss to the simulated loss given by P. The 
solid line in Fig. 1 shows the rotational hysteresis loss given 
by P*, which agrees with the measured one.  
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Fig. 1. Rotational hysteresis losses given by isotropic vector play models  
 
 

III. ANISOTROPIC VECTOR HYSTERESIS MODEL 

A simple 2D anisotropic version of the vector play model 
is given as 

PB(B) = WB(B) P*(B)             (6) 

where WB(B) is a matrix of which components are single-
valued function of B. For example, WB is determined so as to 
reconstruct anisotropic alternating property from averaged 
alternating property as  
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where B = |B| and φB = tan−1(By/Bx); (Hx(B, φB), Hy(B, φB)) is 
the measured initial magnetization property for unidirectional 
input of B along the φB-direction; Have(B) is the azimuthally 
averaged initial magnetization property for unidirectional 
input, which is accurately represented by the isotropic vector 
play model P*.  

Another anisotropic vector play model is given as 

PH(B) = WH(P*) P*(B)             (9) 
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where WH is a matrix of which components are single-valued 
function of P*. WH is determined similarly to WB as  
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where P* = |P*| and φH = tan−1(P*y/P*x). Functions wHx and 
wHy are given as 
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because φH =  φB for alternating input. 

IV. SIMULATION RESULTS 

Vector hysteretic properties of non-oriented silicon steel 
sheet, JIS: 50A1300, are simulated.  

Fig. 2 depicts alternating hysteretic properties of isotropic 
model P* and anisotropic model PB for φB = 0, π/4, π/2, where 
H// = H⋅e//. The anisotropic model gives accurate amplitudes of 
H//. The alternating hysteretic property of PH is not shown 
because it is similar to PB. 

Figs. 3(a), (b) and (c) portray the loci of H for 
counterclockwise rotational inputs of B with |B| = 0.5, 1.0, 1.5 
T, which are simulated by P*, PB and PH, respectively. The 
isotropic model P* yields circular loci of H. The loci obtained 
by PB are directly affected by the phase lag of B to P* because 
of WB(B). The loci obtained by PH are not affected by the 
rotational direction because WH(P*) does not depend on the 
phase lag of B to P*. Fig. 3(d) shows the loci of H given by 
(PB+PH)/2, which approximately agree with the measured loci. 

V. ACKNOWLEDGEMENT 

This work was supported in part by the Japan Society for 
the Promotion of Science, Grant-in-Aid for Scientific 
Research (C), 19560288. 

 
 

-600

-400

-200

0

200

400

600

-400 -200 0 200 400

H
y 

(A
/m

)

Hx (A/m)

(a) simulated
measured

   

-600

-400

-200

0

200

400

600

-400 -200 0 200 400

H
y 

(A
/m

)

Hx (A/m)

(b) simulated
measured

 
 

-600

-400

-200

0

200

400

600

-400 -200 0 200 400

H
y 

(A
/m

)

Hx (A/m)

(c) simulated
measured

   

-600

-400

-200

0

200

400

600

-400 -200 0 200 400

H
y 

(A
/m

)

Hx (A/m)

(d) simulated
measured

 
Fig. 3. Simulated loci of H for rotational inputs of B, where Bx = 0 or By = 0 at 
“•”(simulated) and “o”(measured): (a) H = P*, (b) H = PB, (c) H = PH, 

and (d) H = (PB+PH)/2 
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Fig. 2. Alternating hysteretic properties of isotropic model P* and anisotropic model PB: (a) φB = 0, (b) φB = π/4, and (c) φB = π/2. 
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13. M M

Abstract — In electromagnetic applications, hysteresis 
phenomena in magnetic materials are responsible of 
considerable causes of losses especially in transformer 
modelling cases. In specific case, such as current sensor, the 
output signal can be modified because of this loss. The paper 
presents the implementation proceeding used for some 
hysteresis material models and how they are applied in a 
sensor study case. A priori loss computation, simultaneously 
carried out with the simulation is one of the main advantages 
of this implementation. A transformer application is performed 
with the dynamic hysteresis characteristic taken into account 
and compared with experimental measurements.  

I. INTRODUCTION

Nowadays, electrical engineering is concerned with 
energy efficiency. In addition, in the case of electromagnetic 
devices, such as current sensors, the energy losses change 
the output signals; so, to approach an ideal sensor, losses 
have to be minimized. Thus, to improve electrical device 
design, loss computation has to be carried out with a 
maximal accuracy. Many works allow a posteriori loss 
estimation [1], however,”Real time” approach, meaning a 
priori computation is furthermore interesting as it allows 
more accuracy in simulation. 

 Generally, in such devices, the total losses come from 
different sources as resistances and magnetic cores. The first 
one, copper losses are practically calculable by resistance 
and current measurements. However, the last one, magnetic 
losses or iron losses is more complicate to identify. In soft 
magnetic materials, experimental results show that they can 
be evaluated in two terms: hysteresis static losses, and 
dynamic losses. By adding these two terms, we obtain the so 
called iron losses. The static part corresponds to the B(H) 
loop area in quasi-static mode, i.e. at low frequency. The 
dynamic one depends on the variation speed of the 
excitation source which is more important at high 
frequency. 

II. MATERIAL MODEL WITH HYSTERESIS 

A. Hysteresis model 

Studies have shown that the mechanism that causes 
magnetization phenomena depend on many factors [2]: the 
material, the excitation field, the external environment, etc.  

From an experimental point of view, two operating 
conditions can be distinguished: the quasi-static and the 
dynamic one. In quasi-static condition, the B(H) loop 
representing the material behavior  does not depend on the 
excitation frequency.. Following the predefined criteria such 
as induction response and losses computation, some 
compatible models are identified. Among them, the 
chemical model [3] provides a good accuracy for soft 
magnetic materials by a description of two main 
microscopic mechanisms of the static magnetization: Bloch 
wall displacement and domain rotation. Furthermore, based 
on the balance of chemical equation analogies, this model 
has the advantage of a fast implementation and a quick 
computation. Another model, with a different approach, is 
called Derivative Static Hysteresis Model (DSHM). It 
focuses in the knowledge of memorization effect in the 
material during the magnetization. DSHM uses a matrix 
representation. Its accuracy depends only on the matrix size. 

In dynamic operating conditions, the loop B(H) expands 
according to the increasing frequencies (Fig.1). 
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Fig. 1. B(H) loop in static mode measurement (narrow cycle) and dynamic 
mode by  measurements (large cycle in continuous line) and by simulation 
(large cycle in dotted line) 

The area of this loop represents the energy of the material 
losses during a period. This energy loss is higher in dynamic 
state (the area is bigger). The flux tube model using a single 
dynamic parameter has been studied [4] to represent the 
additional dynamic losses: 

dt

dB
BH exc γ+= )(Hstat

 (1) 

with Hexc the excitation field, Hstat virtual static 
excitation field for a given flux density and  γ a coefficient 
depending of the electrical and magnetic properties ( 
resistivity, permeability, etc.) of the material. 
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B. Model identification on soft magnetic material 

A test bench able to automate material characterization 
proceedings was carried out in Ampère laboratory (Lyon). 
The output is given in the form of B(H) loops. 

For each sample/material, a numerous of measurements 
corresponding to a variation of excitation field and of 
frequency are realized. Optimization algorithms allow an 
automatic identification of models parameters. 

III. ELECTROMAGNETIC DEVICE SIMULATION

Once the magnetic material model parameters have been 
identified, the relation between the excitation current and 
the flux in the magnetic circuit is established. Magnetic 
equation system is so obtained. By a coupling with electrical 
equation system, all the system is completely described. 

For the coupling equation solving, some numerical 
techniques as Newton-Raphson are applied at each time 
step. A numerical ODE solver is used to give the system 
behavior in transient mode. 

All these algorithms are implemented inside a new tool 
called RelucTool [5], dedicated for the modelling of low 
voltage electromagnetic devices. 

IV. APPLICATION AND RESULTS

A. Simulation of a current sensor 

To illustrate that hysteresis causes considerable losses in 
electromagnetic devices, a simple current sensor is 
simulated. The primary coil is supplied by a pseudo-
sinusoidal current source, 50Hz with a variable primary 
current Ip; the secondary coil is connected to a load, flowed 
by a current Is. The magnetic core is made of a grain 
oriented silicon iron (SiFe) used in industrial production 
that provides a good characteristic in saturation induction 
and magnetic losses. In the ideal case, without loss, the Is/Ip
ratio is equivalent to Np/Ns, the ratio of the number of wire 
turns respectively in the primary and secondary. Here the 
ideal ratio Is/Ip is 0.1. 

B. Result  

Simulations with a chemical model have been carried 
out. The comparison with experimental results is taken via 
the secondary currents and the core losses found out, in two 
cases, according to the introduced primary current value 
(fig.2). A very good match between our model and the 
measures is observed. The non-ideal characteristic of the 
transformer that is represented by the variation of the 
quotient Is/Ip is correctly modeled. The iron losses in the 
magnetic core, obtained by modelling, are very close to the 
experimental value. 

These losses contribute to the system total losses so the 
energy balance that is established during the simulation 
process, not a posteriori. 
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Fig. 2. Comparison of simulation and measurements results. On the top: 
losses make the ratio Is/Ip lower than the ideal one. On the bottom: iron 
losses in percentage of input coil energy.  

V. CONCLUSIONS AND INCOMING WORK 

Simulations with variable frequency have been carried 
out. They allow confirming the model performance in 
dynamic mode. 

From these results, the same proceedings can be applied 
to other hysteresis models. A comparison between different 
models can be thus performed to aid in the choice of an 
adapted model according to the application needs. The 
authors are carrying out a material model library of soft 
magnetic materials, useful for designers. Additional results 
will be presented in the full paper. 

For sensor applications, further interesting studies can be 
developed such as amplitude and frequency range limits 
research thanks to the simulation with dynamic hysteresis 
models. In the future, a complete electronic component 
library will allow simulating more complex systems.
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Interlamination Shorts in Transformer Cores:
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Abstract—In large transformer cores, burr-induced short cir-
cuits can cause hot spots which may locally damage the core.
This paper presents a Finite Element (FE) analysis of this
problem for Grain Oriented (GO) sheets; results are confirmed
by measurements. The equivalent circuit derived from both
measurements and FE simulation allows the power dissipated
in a hot spot to be determined for the worst case.

I. INTRODUCTION

GO magnetic sheets in transformer cores are insulated on
both sides with a thin inorganic coating on the glass film
layer that forms during annealing. Before core assembly, the
sheets are cut by mechanical shears; although great care is
bestowed on this process, burrs may remain which can cause
interlaminar shorts on edges of columns and yokes. Such
shorts are known to increase eddy current loss [1]. In some
cases, the currents circulating in the contact points cause small
hot spots which may spread and locally damage the core
through melting.

Considering the stochastic nature of a cutting burr, the
contact is assumed to have an unknown resistance. The power
dissipated in the contact point depends thus on this unknown
value, but also on the characteristics of the equivalent electrical
circuit in which the current flows. The purpose is to model
this equivalent circuit and derive the power dissipation in
the contact point in the worst case. A first model is based
on experimental results. It is then extended to more general
cases using a 3D FE simulation taking into account the strong
anisotropy and the non-linearity of GO sheets.

II. MODEL BASED ON EXPERIMENTAL RESULTS

A current may flow in a cutting burr only if a closed path
embracing a magnetic flux exists, so at least two contact points
are needed. Considering the simplest case, it is possible to
model an interlamination short by an equivalent circuit defined
through two quantities: the electromotive force (e. m. f.) and
the internal impedance. This kind of model is typically linear,
therefore, it is important to identify the limits of validity using
an experimental test bench built with GO sheets. The e. m. f. is
the voltage measured in open circuit condition and the internal
impedance is deduced from the short circuit current.

In order to determine these elements experimentally, the
random aspect of burr-induced contacts is eliminated. Two
low-resistance contacts are created by depositing solder on
locally skinned GO sheets. Four thin wires are included in
order to measure e. m. f. and voltage drop over the contacts.
Fig. 1 shows the two instrumented sheets before stacking. The

short-circuit current is measured by means of a miniaturised
Rogowski coil having 350 turns at a thickness of 600µm and
an internal diameter of 5 mm. Since its output voltage is in
the range of microvolts, a low-noise differential amplification
system and filtering circuitry is used. The phase shift of the
filters and the transversal flux density gradient in the Rogowski
coil are compensated [2].

Solder contact with thin wire

Miniaturised flat
Rogowski coil

Fig. 1. Instrumented magnetic sheets.

After stacking, the instrumented sheets are placed in a
square magnetic circuit with excitation coils, so as to form
one of its legs. The main flux is measured with a 10-turn coil
directly wound around the instrumented sheets.

The quantities e. m. f. and short circuit current have been
recorded for various flux density levels. Fig. 2 presents data
for 1,8 T; the plotted curves are normalized with respect to
their peak values in order to allow an easy comparison of the
waveforms.
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Fig. 2. Short circuit current and e. m. f. under saturation.

Measurement results show that the short circuit current has
almost the same waveform as the e. m. f. and that there is no
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phase lag. The congruence of the two curves is even better
for lower flux densities. A detailed analysis of experimental
results has been performed for different flux density levels and
sheet widths. The equivalent circuit impedance is determined
dividing the e. m. f. by the short circuit current and taking into
account the small voltage drop over the artificial contacts.
Analysis shows that, admitting an accuracy of 10%, the
impedance of the equivalent circuit can be seen as a pure
resistance which depends on sheet width and thickness for
constant frequency. The e. m. f. is proportional to the cross
section of the sheets and can be calculated analytically [3].

III. NUMERICAL MODEL

The FE model is designed to determine the parameters
of the equivalent circuit for interlaminar shorts with more
complex geometries. Numeric modelling of the short circuit
in 3D is challenging since both anisotropy and nonlinearity of
the GO material have to be taken into account. Furthermore,
the very thin sheets have to yet be meshed with a number
of layers to allow eddy currents to be represented correctly.
The magnetisation curves B(H) used in simulation were
previously measured with Epstein strips cut in rolling direction
and in transverse direction. These measurements were done
at 1Hz and up to strong saturation; an extrapolation formula
yielding points up to 2 T and µ = µ0 was applied in order
to achieve computation convergence with Opera 3D. Fig. 3
presents an example of the simulation results, showing a detail
of the mesh and the convergence of the current lines towards
a contact point.

Fig. 3. Mesh and convergence of current lines towards a short-circuit

Short circuit current and e. m. f. are determined in post
processing. Calculated quantities are compared to the experi-
mental results for several flux densities and sheet widths. The
differences found between simulation results and measurement
were 5% for the e. m. f. and 4% for the short circuit current,
respectively.

The FE simulation is used to determine e. m. f. and internal
resistance of the equivalent circuit for the case when the
contacts are not located exactly opposite to each other, as well
as for configurations such as non-punctual contacts due to long
burrs. Fig. 4 presents results for two shifted punctual contacts.

As predicted by the analytical analysis, the e. m. f. does not
depend on the shift s. It can be seen that the short circuit
current decreases more slowly than the inverse of the distance
between the contacts. Analysis reveals that this phenomenon
is due to the spreading of the current in the sheet plane and

amplified by the anisotropy of the material. Fig. 4 also shows
that for large shifts of the burr-induced contacts (s  b), the
short circuit current can be neglected.
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Fig. 4. Influence of a shift between the contacts on the current

For a given transformer core width, it is possible to de-
fine the equivalent circuit but not the current, because the
burr resistance remains unknown. However, assuming a local
contact, the worst case can be defined: it is obtained when
the burr resistance is equal to the resistance of the internal
circuit. Therefore, the power dissipation in the hot spot can be
estimated. For example, assuming a large core (b = 500mm)
made of 0,3 mm GO sheets, magnetized at 1,7 T, 50 Hz and
containing a burr-induced short with zero shift, the equivalent
circuit resistance estimation is 10 mΩ and the e. m. f. 85 mV
peak. For a perfect contact, the short circuit current is 8,6 A
peak. For the worst case, the estimation of the peak power in
the hot spot is 0,10 W. This small power can correspond to a
very high power density when it is concentrated in a burr of
small section.

IV. CONCLUSION

FE simulation of short circuits between GO magnetic sheets
has been performed and verified by experimental measure-
ments. Power dissipation in a microscopic short circuit can be
estimated for the worst case. Associated with a capacitive test
method [4], this model can be used to estimate the extra core
loss due to a multitide of microscopic burrs.
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Abstract—Homogenization techniques are efficient tools to
determine macroscopic properties of heterogeneous materials.
These techniques, mainly developed in the framework of uncou-
pled behavior, have been recently applied to coupled behavior.
Finite Element Method is a classical approach for such hetero-
geneous problems. We propose to compare these two approaches
in the case of magnetoelectric composite materials made of the
assembly of piezomagnetic and piezoelectric constituents. The
two approaches are shown to be in good agreement in the
case of matrix-inclusions microstructures, with a much lower
computational cost for homogenization technique.

Index Terms—Magnetoelectric effect, homogenization, finite
element method.

I. INTRODUCTION

The study of coupling effects is a long-standing domain
of interest in physics. The possibility of applications such
as sensors or actuators have made materials with strong
coupled properties receive more and more attention in the
past years. In the case of magnetoelectric (ME) materials,
composite materials made of the assembly of piezomagnetic
and piezoelectric constituents have shown to exhibit a much
stronger (extrinsic) ME effect than homogeneous materials [1].

In order to design properly corresponding applications,
the material microstructure (essential in the definition of the
macroscopic properties) has to be accounted for. This is
the reason why advanced modeling tools are needed. Finite
Element modeling is a classical approach and can provide a
full description of the fields in the composite [2]. But its main
disadvantage is the computational cost. Another approach is
the use of homogenization techniques, that can be adapted
to coupled behavior [3], with a very low computational cost
(especially in the case of linear behavior for which analytical
solutions can be provided).

The purpose of homogenization is the deduction of the
effective properties of heterogeneous materials [4], meaning
the properties of a (fictive) homogeneous material with the
same macroscopic properties than the heterogeneous material.
Homogenization techniques only use a few pieces of infor-
mation about the microstructure and can provide bounds or
estimates on the effective properties.

In this paper Finite Element and homogenization approaches
are compared in the case of a magneto-electric composite with

matrix-inclusion type microstructure.

II. PIEZOMAGNETIC/PIEZOELECTRIC COMPOSITE

For the composites studied in this paper, the magnetoelectric
effect is extrinsic: none of the phases exhibits such an effect.
The coupling effect appears through mechanics (see Fig. 1):
the piezomagnetic phase deforms when a magnetic field is
applied to the composite, then the strain spreads to the
piezoelectric phase, leading to an electric polarization (the
converse phenomenon also appears: an applied electric field
leads to a magnetic polarization).

Piezomagnetic

phase

Piezoelectric

phase

Magnetism

Mechanics

Electricity

Magnetoelectric effect

through mechanical incompatibilities

Fig. 1. ME effect in piezomagnetic/piezoelectric composites.

The constitutive laws for the phases are (the subscript m
stands for the piezomagnetic phase, e for the piezoelectric
phase):




Tm

Bm

Dm


 =




Cm −tq 0
q µm 0
0 0 ǫm


 ·




Sm

Hm

Em


 (1)




Te

Be

De


 =




Ce 0 −te
0 µe 0
e 0 ǫe


 ·




Se

He

Ee


 (2)

where T and S are the stress and strain tensors, B and H are
the magnetic induction and the magnetic field, D and E are
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the electric induction and the electric field. C, µ and ǫ are
respectively the stiffness tensor, the permeability tensor and
the permittivity tensor. The tensors q and e are respectively
the piezomagnetic and piezoelectric coupling tensors.

III. HOMOGENIZATION

The homogenization technique used to model these compos-
ites is based on inclusion problems [5]. The method developed
in the framework of uncoupled behavior has been extended
to coupled behavior thanks to an appropriate decomposition
of the fields [3]. The classical homogenization tools still
apply and the uncoupled constitutive laws can be extracted.
The coupling effects appear through additional relations. The
obtained effective properties of the composite are written:




T

B

D


 =




�C −t�q −t�e
�q �µ t�α
�e �α �ǫ


 ·




S

H

E


 (3)

where the notation X stands for the average value of X over the
volume. It has to be noticed that the macroscopic constitutive
law exhibits a magnetoelectric coupling tensor �α whereas none
of the phases exhibits such an effect. This coupling tensor links
the macroscopic magnetic induction B to the macroscopic
electric field E (B = t�α · E) when the macroscopic strain S

and the macroscopic magnetic field H are null. It can also be
defined as the link between the macroscopic electric induction
D and the macroscopic magnetic field H (D = �α · H) when
the macroscopic strain S and the macroscopic electric field E

are null.

IV. RESULTS

The example of application is the study of the magneto-
electric effect in composites made of BaTiO3 (piezoelectric)
and CoFe2O4 (piezomagnetic). The material properties can
be found in [6]. The studied microstructures are random
distributions of CoFe2O4 cylinders in a BaTiO3 matrix (see
Fig. 2). Both phases have their poling directions along the
y-axis.

Piezoelectric phase Piezomagnetic phase

x

y

Fig. 2. Matrix-inclusions microstructure (in 2-D).

For this kind of microstructure, a satisfying estimate of the
effective properties in homogenization can be obtained with
the Hashin & Shtrikman estimate [3]. In this application, the
2-D coupling tensor �α has the following shape:

�α =

�
α11 0
0 α22

�
(4)

The homogenization results (presented in Fig. IV) are com-
pared to the corresponding results obtained from a Finite
Element computation using COMSOL software for random
2-D microstructures.
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Fig. 3. ME coupling coefficients as a function of the volumetric fraction f
of the piezomagnetic phase (homogenization and FE results).

The ME coefficients are shown to depend on the volumetric
fraction f of the piezomagnetic phase. The results obtained
from homogenization and Finite Element method are very
similar. The corresponding computational time is more than
a thousand times lower when using the homogenization tech-
nique.

V. CONCLUSION

Homogenization approach is able to catch structure effects
such as the ME effect exhibited in piezomagnetic/piezoelectric
composites. The interest of this modeling approach is its
very light computational cost compared to the Finite Element
method. The comparison with the results obtained from a
Finite Element model shows a very satisfying agreement in the
case of matrix-inclusion microstructures. More comparisons
with Finite Element computations will be proposed in the full
paper.
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Abstract — To reduce the loss of reactor driven by inverter 
power supply using magnetic field analysis, the eddy 
currents generated in laminated steel plates should be 
taken into account. To calculate the eddy currents in steel 
plates accurately, the anomalous eddy current induced by 
domain wall motion should be considered. In this paper, a 
simple numeric modelling of anomalous eddy current 
taking account of domain wall motion is proposed. The 
proposed method is compared with the ordinary modelling 
of modifying the conductivity of steel plate in the loss 
calculation of one sheet of steel plate. It is shown that the 
eddy current losses obtained from the proposed method 
can agree with the measured data in lower frequencies, 
however, error occurs in high frequencies as skin effect is 
neglected at present.

I. INTRODUCTION

We have developed the method of magnetic field analysis 
which models a laminated core as a solid one taking account 
of eddy currents in the steel plate by using the finite element 
method [1]. In this method, the 1D eddy current sub-analysis 
of steel plate is carried out for each element in main-analysis 
of the solid core model and the classical eddy current loss can 
be obtained directly. However, in the iron loss calculation of 
reactor under inverter power supply, the calculated iron loss 
are much smaller than the measured one [2] because the 
anomalous eddy current loss [3] generated by domain wall 
motion was neglected. In order to taking account of the 
anomalous eddy current loss, the numeric modelling of 
modifying the conductivity of steel plate has already been 
proposed [3] but the physical phenomena of domain wall 
motion can not be expressed by this method [4].  

In this paper, a simple numeric modelling of anomalous 
eddy current taking account of domain wall motion, which 
should be simple for introducing it into the sub-analysis, is 
proposed. The proposed method is applied to the loss 
calculation of one sheet of steel plate and compared with the 
measured data and the ordinary numeric modelling mentioned 
above.  

II. METHODS OF MODELLING

First, the ordinary numeric modelling for considering the 
loss increase by modifying the conductivity σ of steel plate is 
described. In this modelling, the classical eddy current in the 
steel plate with the modified conductivity σ∗ is calculated. The 

modified conductivity σ∗ of steel plate is determined by fitting 
the calculated eddy current loss of one sheet of steel plate with 
the measured data. The eddy current is calculated by using the 
1D nonlinear eddy current finite element analysis (FEA). 

Next, a simple modelling of anomalous eddy current loss 
taking account of domain wall motion using a 1D domain 
model shown in Fig. 1 is described. In this model, the steel 
plate is assumed to be infinity in x and y directions and 
composed of domains with uniform magnetization M which 
have y component only and are 180 deg different in turns
periodically lining in x direction as shown in Fig. 1. The 
position of domain wall can be determined by making the 
average value of magnetization M equal to the applied average 
flux density B. In this modelling, not only the classical eddy 
current but also the anomalous eddy current due to domain 
wall motion can be taken account of as shown in Fig. 1. The 
eddy currents due to the domain wall motion is calculated by 
using the 2D linear eddy current FEA in x-z plane only in the 
region R shown in Fig. 1 due to periodic and symmetric 
phenomena of the domain model. The length Lx of region R is 
determined by fitting the calculated eddy current loss with the 
measured data. 

x

z y
M

domain domain wall analyzed region R

(a) By=0

M
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anomalous eddy current classical eddy current
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x

z y
M

domain domain wall analyzed region R

(a) By=0

M

(b) By>0
anomalous eddy current classical eddy current

Lx

Fig. 1.  A simple 1D magnetic domain model (proposed method). 

III. VERIFICATION MODEL 

Both methods are applied to the eddy current loss 
calculation of one sheet of steel plate. The magnetic material 
used for the steel plate is AISI: M-36 (thickness 0.35 mm,  
σ  = 1.852×106 S/m) and the steel plate is assumed to be 
infinity in x and y directions. In this case, the ordinary and 
proposed methods become 1D and 2D eddy current analyses, 
respectively. The saturated magnetization M for the proposed 
modelling is set to be 2.1T. The applied average flux density B
is the sinusoidal waveform with amplitude Bmax. By fitting the 
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7. Material Modelling 

eddy current loss calculated when the maximum average flux 
density Bmax is 0.5 T and the frequency f is 100 Hz with the 
measured data in catalogue, the modified conductivity σ∗ in 
the ordinary modelling and Lx in the proposed modelling are 
determined to be 3.0×106 S/m and 0.3 mm, respectively.  

IV. RESULTS AND DISCUSSION

Fig. 2 shows the flux and eddy current distributions of half 
region of the steel plate obtained by using the classical 1D 
eddy current analysis with the real and modified 
conductivities at the instant when the average flux density in 
the steel plate is the maximum. It is seen that the eddy current 
obtained from the modified conductivity is greater than that 
obtained from the real conductivity, so the eddy current loss 
increase due to the anomalous eddy current loss can be 
considered by the modification of the conductivity of steel 
plate. However, the skin effect is greater when the modified 
larger conductivity is used than that when the real 
conductivity is used. This is not the same with the real 
phenomenon resulted from the domain wall motion and it 
seems to cause error in the hysteresis loss calculation. 

Fig. 3 shows the flux and eddy current distributions of half 
region of the steel plate obtained by using the proposed 
modelling at the same instant. It can be seen that the classical 
eddy current loop and the anomalous eddy current loop due to 
domain wall motion are represented. However, the skin effect 
cannot be observed in the flux distribution because the 
magnetization M is assumed to be uniform in z direction at 
present. 
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(i) Flux distribution

(ii) Eddy current distribution
(b) σ∗ = 3.0×106 S/m

y

z

y

z

x

z

x

z
: 0.5 T

: 1.4 ×106 A/m2: 1.0 ×106 A/m2

: 0.5 T

(a) σ = 1.85×106 S/m

(i) Flux distribution

(ii) Eddy current distribution
(b) σ∗ = 3.0×106 S/m

y

z

y

z

x

z

x

z
: 0.5 T

: 1.4 ×106 A/m2: 1.0 ×106 A/m2

: 0.5 T

Fig. 2.  Flux and eddy current distributions obtained from the ordinary 
modelling (Bmax  = 0.5 T and f = 1 kHz). 
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Fig. 3.  Flux and eddy current distributions obtained from the proposed 
modelling (Bmax  = 0.5 T and f = 1 kHz). 

Fig. 4 shows the eddy current losses at different maximum 

average flux densities Bmaxs and frequencies fs obtained from 
the ordinary modelling with the modified conductivity σ∗  =3.0
×106 S/m and the measured data. To show the anomalous 
eddy current loss, the eddy current loss with original 
conductivity σ at Bmax = 0.5T is also shown in Fig. 4. The 
measured eddy current losses are obtained from the iron loss 
curves at different frequencies fs in catalogue. The eddy 
current losses of one sheet of steel plate obtained from the 
ordinary modelling are in good agreement with the measured 
data in a wide range of frequencies. However, it is not 
physical modelling. 

Fig. 5 shows the eddy current losses obtained from the 
proposed modelling with Lx = 0.3mm and the measured data. 
In lower frequencies, the eddy current losses obtained from 
the proposed modelling are in good agreement with the 
measured data, however, error occurs in high frequencies due 
to neglect of the skin effect. The method of considering the 
skin effect in the proposed modelling will be discussed in the 
full paper.  
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Fig. 4.  Comparison of eddy current losses between the ordinary modelling 
and measured data. 
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7. MATERIAL MODELING

Abstract — The inclusion of eddy currents in electrical steel 
sheets in a two-dimensional (2D) finite-element analysis is 
studied. For the eddy-current modeling a so-called one-
dimensional (1D) approach is applied. Two different techniques 
for the eddy currents within the 2D field equations are 
investigated and shown. According to the computation results a 
suggestion for a proper coupling method is made. 

I. INTRODUCTION

A two-dimensional (2D) field analysis is commonly 
applied to analyze electromechanical applications. Although 
such an approach is sufficient in many cases, from it certain 
phenomena such as eddy currents flowing in electrical steel 
sheets are by definition excluded. For modeling the eddy 
currents within the 2D analysis, for instance a so-called one-
dimensional (1D) approach has been proposed [1], [2]. In this 
work, this approach is adopted. The novelty of this work lies 
in the careful analysis of the coupling, i.e. how the eddy-
current solution can reliably be included in the 2D equations. 
The results show the scale of errors to which an improper 
coupling might lead thus emphasizing the importance of the 
topic. 

II. COMBINED 2D-1D METHOD

In this work, a simple geometry consisting of a stack of 
electrical steel sheets and a voltage source i.e. a coil is 
applied. The volume of the stack is 1 m3 and the volume of the 
coil side is 0.2 m3.

In the 2D scheme the magnetic vector potential and current 
density are given as 

( ), , zA x y t=A e  (1) 

( ), , zJ x y t=J e . (2) 

in which x and y denote Cartesian spatial coordinates, t
denotes time, and ez denotes the unit vector of the z-axis.

The magnetic flux density in the studied geometry fulfills 

( )ec
N
S

ν∇× ∇× + =
i

A H . (3) 

ν is the reluctivity given as a spline function of the second 
power of the magnetic flux density, B2, Hec is the component 
due to the eddy currents, N is the number of turns in series, i is 
the current in the coil, and S is the cross sectional area of the 
coil. 

The voltage in the coil satisfies 

d zS
lN R
S t

∂
= ⋅ +∫

∂
A

u Se i . (4) 

in which l denotes the length of the coil and R the DC 
resistance of the coil. 

The 1D eddy-current model of the electrical steel sheets is 
developed in the lamination depth. The magnetic vector 
potential and current density are defined as 

( ) ( ), ,x x y ya z t a z t= +a e e  (5) 

( ) ( ), ,x x y yj z t j z t= +j e e . (6) 

in which z denotes a Cartesian spatial coordinate and ex and ey
are the unit vectors of x- and y-axis, respectively. 

The magnetic vector potential in the laminations satisfies 

( )
t

ν σ ∂
∇× ∇× = −

∂
a

a  (7) 

( ) ( ), 0, 0x y xa d t dB a t− = =  (8) 

( ) ( ), 0, 0y x ya d t dB a t− = − = . (9) 

ν is the reluctivity given as a spline function of the second 
power of the magnetic flux density, b2, σ and d are the 
electrical conductivity and half of the thickness of the 
laminations, respectively, and Bx and By are the x- and y-
components of the 2D magnetic flux density, respectively. 

For the discretization of the coupled problem, the Crank-
Nicolson and finite-element method are applied. The 
nonlinearities of iron are handled by the Newton-Raphson 
technique. In the 2D scheme, the Newton-Raphson is applied 
in an incomplete manner. Incomplete, as the terms originating 
from the Hec are omitted from the Jacobian matrix. Resulting 
from this, over-relaxation is required for convergence. For the 
1D scheme, a complete Newton-Raphson is applied in a novel 
manner as discussed in [3]. 

In the derivations, the eddy-current component, Hec, is 
defined as a difference of the 1D magnetic field strength, h, at 
the boundary of the sheets (z = –d) and the magnetic field 
strength obtained from the 2D analysis, H

( ) ( ) ( )ec , , , , ,x y t d t x y t= − −H h H . (10) 

It will be shown that the accuracy of the coupled method 
greatly depends on how well the estimation of the magnetic 
field strength at the boundary of the sheets succeeds. For the 
estimation, two approaches are proposed. Firstly, one can 
calculate h exactly at the boundary (in the point z = –d) by the 
shape functions as a product of magnetic flux density and 
reluctivity. This option is later referred to as conventional. The 
second option is to use the relation 
∇× =h j . (11) 

from which following formulae are derivable 
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( ) ( ) ( )i
i, , ,z

x y xdh d t j z t z h z t−− = ∂ +∫  (12) 

( ) ( ) ( )i
i, , ,z

y x ydh d t j z t z h z t−− = − ∂ +∫ . (13) 

in which zi is upper value of the integration interval. Term 
integration is used to refer to this approach. 

III. RESULTS AND DISCUSSION

The computations were carried out utilizing the example 
geometry described above. The 1 m2 2D geometry was 
discretized with eight second-order elements. The thickness 
and conductivity of the sheets in the stack were 0.65 mm and 
2.5 MS/m. For the space discretization of the 1D solution 
sector (half of the thickness of the sheets, 0.325 mm) three 
equally sized elements were applied. The input voltage 
waveform utilized in all the computations is shown in Fig. 1. 
The time-discretization was done with 400 time steps per 
period. Altogether 2000 time steps were computed. 
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Fig. 1.  Input voltage used in the computations. 

The successiveness of the coupling of the 2D and 1D field 
solutions was studied in the frame of two criteria: the power 
balance and computational efficiency. With both the 
approaches proposed for the evaluation of h at the boundary, 
three computations were performed varying the number of 
integration points in the 1D elements. 

The BH-loops obtained with the conventional method are 
depicted in Fig. 2. Furthermore, the input powers, losses, and 
power balances from the computations are shown in Table I. 
The eddy-current losses presented in Table I were computed 
from the eddy-current density and the power balance is 
defined as the difference of the total losses and the input 
power divided by the input power. Clearly, with the 
conventional method combined with the first-order elements, 
the eddy-current phenomenon in the sheets is not properly 
included in the 2D field analysis. The eddy-current losses 
integrated from the BH-loop are about half of the ones 
computed from the eddy-current density. A significant 
improvement in the accuracy is gained by using higher order 
elements. With the third-order elements the total losses in the 
example geometry are almost the same as the input power. 

In terms of power balance, the integration technique 
performs very well with the first-order and third-order 
elements. When utilizing the second-order elements the 
solution of the coupled problem starts to oscillate as depicted 
in Fig. 3. This results in a rather significant error in the power 
balance. 
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Fig. 2.  BH-loops when applying the conventional approach. 
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Fig. 3.  Close-up of the BH-loops when applying the integration approach. 

TABLE I
COMPARISON OF THE POWERS AND POWER BALANCE

h at the 
boundary 

Order of 1D 
elements 

Eddy-
current loss 

(W)

Resistive
loss of the 
coil (W) 

Input power 
(W)

Power
balance (%)

1 16593 247 9004 87.04 

2 15643 248 15613 1.78 Conventional

3 15663 248 15946 0.22 

1 16502 248 16705 0.27 

2 16196 248 15376 6.94 Integration 

3 15637 248 15872 0.08 

The computational times of the two approaches were 
nearly the same with a certain number and degree of elements. 
The greatest difference was obtained with the first-order 
elements; computing one period of line voltage took about 3.4 
percent more time with the conventional approach than with 
the integration one. 

Based on the results the integration method seems to be 
the most promising technique for defining the eddy currents in 
the 2D analysis. With it, a power balance is achieved with the 
first-order elements that leads to significant savings in 
computation time. 
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Abstract —A new multi-scale homogenization method is 
introduced to calculate the field and current distribution inside 
carbon fiber reinforced polymer composites submitted to an 
external electromagnetic field. In the microscopic scale, the real 
structure of the material is taken into account and 
electromagnetic and electrical equivalent properties are 
calculated using finite elements method. In macroscopic scale, 
these properties are introduced in an impedance network or in a 
shell elements-finite elements method according to the working 
frequency. The results obtained are in accordance with 
experimental results. 

I. INTRODUCTION

Carbon Fiber Reinforced Polymer (CFRP) composites are 
used in various industrial applications and more especially in 
aeronautics. This is due to the fact that CFRP has better 
mechanical characteristics than aluminum for a lighter weight.  

In different periods of their life cycle, the CFRP may 
interact with electromagnetic fields. This is the case for 
example, of induction welding of the composite structures or 
the lighting attacks on flying airplanes. The telecommunication 
or radar transmission between the plane and the earth station is 
another example of electromagnetic field interaction with the 
CFRP. According to the application, the field frequency may 
vary between several kHz and some GHz.  

A perfect comprehension of field propagation inside the 
CFRP needs a through analysis of the conducting and 
displacement currents distribution in the carbon fibers and in 
the resin polymer. In fact, in CFRP composites, the conducting 
carbon fibers are separated from each other by non conductive 
resin as shown in Fig1. The current circulation in the fibers 
and in the whole material presents a difficult problem which 
should be solved. In addition, the composite materials are 
highly anisotropic and non homogeneous. They present also an 
important scale factor between the fiber diameter which is 
around 7 µm and the size of the composite sheet which may be 
up to several meters. In this paper, we study the case of a 
unidirectional CFRP where the carbon fibers, parallel to each 
other, are distributed randomly inside the resin as in Fig. 1. 
The scale factor is too important to simulate the real structure 
of CFRP. Homogenization method is then used to overcome 
this problem. A two scales model is introduced to calculate the 
eddy current distribution. For this purpose, the CFRP sheet is 
divided into elementary bricks which are representative of the 
whole material as shown in Fig. 2.  

In microscopic scale, the finite elements method (FEM) is 
used to calculate the equivalent impedance of the bricks. In 
macroscopic scale, these properties are incorporated in an 

impedances network to obtain the current distribution in the 
whole material. 

II. MICROSCOPIC SCALE

The size of the bricks is an important parameter in the 
homogenization technique. They should contain a reasonable 
number of fibers to represent statistically the whole material 
without complicating the local or global solution of the 
problem. In the full paper we will give more details about the 
elementary brick size calculation.  

To determine the equivalent impedance of each element, it 
is necessary to find the eddy current circulation in an 
elementary brick. When an electromagnetic field orthogonal to 
fibers direction is applied to the material, the current has two 
possible paths to circulate in the composite as shown in Fig.3. 
In the first path (dotted line), the current loop ends in the fiber 
itself. In the second path (dashed line), the current loop is 
shared by several fibers passing through the capacities between 
them. For the two paths, the current has to go through two 
different impedances. The favorite path is obviously the one 
with lower impedance. To determine the local impedances of 
the bricks, one should solve the electromagnetic and 
electrostatic equations.   

Fig. 3. Circulations of currents

A. Electromagnetic formulation 

The resistances, the self inductances and the mutual 
inductances of the fibers are calculated using the following 
potential vector formulation of the Maxwell equations [1]: 

Electromagnetic Multi-scale Homogenization of 
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        ).(][)
1

( 00 HJAσcurlAcurl curlj ==+ ω
µ

                 (1) 

Where  is the permeability, [σ] is the conductivity tensor, 
ω is the field pulsation and H0 is the source magnetic field. 
Figure 4 presents the geometry of a brick with a random 
distribution of the fibers. Equation (1) is solved by FEM using 
Withney’s elements to obtain the vector potential A, the 
induction B, the magnetic field H and the self and mutual 
inductances. 

Fig.4. Random distribution of fibers in elementary brick 

If the current loop ends in the fiber itself, it has to flow 
through an inductance L which is calculated as follows:  

                .)²(
2

1
.

2

1
∫∫∫∫∫ == J.dSB.H LdVE                      (2) 

 Where E is the electromagnetic energy, J is the current 
density, V is the volume and S is the section of the fiber.   

B. Electrostatic formulation 

The capacities are calculated using the Poisson's equation: 

                                      ./ ερ−=∆V                                    (3) 

Where ρ is the electrical charge density, ε is the permittivity 
of the matrix and V is the electrical potential. This equation is 
solved using the floating potential concept to obtain the matrix 
of capacities between the fibers [2]. 

                                         .[C]VQ =                                     (4) 

In our case, it is not necessary to calculate the whole matrix 
C but only the lines corresponding to the fibers, in black in 
Fig. 4, at the left, right, top and bottom of the cell. The details 
of the floating potential calculation will be presented in the 
final paper.  

C. Results and discussion 

The impedance calculated from (2) is about 1.15x1021 /m 
for a welding frequency of 150 kHz. This impedance is too 
high compared to the impedance due to the inter fiber 
capacities which is about 4,44x107 . The possibility that the 
current loops ends inside the fiber is practically negligible. For 
this frequency, the impedances due to self and mutual 
inductances are less than 1% of the fiber resistances. In this 
case, the equivalent impedance along the fibers is directly 
related to the filling rate and the carbon conductivity and each 
cell is linked only to its neighbors. For high frequencies, 
however, the self and mutual inductances can not be neglected 
and each cell is coupled inductively to all other cells.   

III. MACROSCOPIC SCALE      

For the applications such as welding, the field frequency is 
relatively low. The impedances obtained from microscopic 

calculations can be then incorporated in a 3D impedances
network [3]. On each node, the electrical potential is 
calculated by Kirschhoff's law using the finites differences 
method. The current along each edge is then calculated by: 

                     ./))(( ZjVVpI ∫−−= A.dlω                           (5) 

Where Vp and V are the end electrical potentials of the 
segment, Z is its impedance and A is the source potential 
vector along the segment.  

For high frequencies such as radar transmissions, the self 
and mutual impedance have to be taken into account. In this 
case, the impedance network method leads to a full matrix 
which limits the size of material to be studied. To overcome 
this difficulty, the microscopic phase is used to obtain a 
complex equivalent conductivity. This property is then 
introduced in an anisotropic shell elements - finite elements to 
calculate the field and current distribution inside the material 
[4]-[5]. This method will be developed in the full paper.  

IV. APPLICATION ON HEATING PROBLEM

To validate the model, a rectangular CFRP plate (120mm 
x80mm x1.5mm) is heated by a rectangular inductor (40mm 
x20mm) with a RMS current of 1000A at a frequency of 150 
kHz. The fibers are in the direction of the length (120mm) and 
the filling rate of fibers is equal to 70%.  

For this frequency, the equivalent impedances are resistive 
along fiber axis and capacitive along others axes. The 
calculated heating power is equal to 814 W which is close to 
experimental results. 

V. CONCLUSION

In this paper, a two scales homogenization method of CFRP 
composites is introduced. In the microscopic scale, the 
equivalent impedance of an optimized size elementary brick is 
calculated using FEM to solve both electromagnetic and 
electrostatic equations.  For low frequencies, the macroscopic 
scale problem is solved by an impedance network approach. 
For high frequencies, an anisotropic shell elements-finite 
elements method is applied. In the full paper we will give the 
details on the brick size calculations and the different methods 
to obtain the local impedance, the field and the current 
distribution inside the composite sheets. 
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Abstract — A 3-dimensional (3D) transient finite element 

analysis (FEA) approach taking into account the effects of steel 

lamination core loss is proposed. When using the T-ΩΩΩΩ method, the 

effects of lamination core loss are considered by introducing an 

additional field component in lamination regions which is derived 

from the instantaneous core loss in the time domain. The 

proposed approach is validated by two applications in terms of 

the power-balance testing, that is, the input power increase due to 

the core-loss effects must be equal to the total core loss.  

I. INTRODUCTION 

The steel lamination core loss with sinusoidal excitation is 

commonly computed based on loss separation, which breaks 

the total core loss into static hysteresis loss, classical eddy 

current loss, and excess loss in the frequency domain [1]. In 

order to apply the method to the time domain, an equivalent 

elliptical loop (EEL) method was presented to model the 

hysteresis loop [2], and therefore, the instantaneous core loss 

at each time step can be predicted in the transient FEA. 

However, the instantaneous core loss presented in [2] is 

computed as “post process”, that is, the effects of the core loss 

on the transient magnetic field are not taken into account.  

In this paper, the effects of the lamination core loss on the 

3D transient magnetic field are considered by introducing an 

additional field component in lamination regions when using 

the T-Ω method. This additional field component is derived 

from the total instantaneous core loss including the static 

hysteresis loss, classical eddy current loss and excess loss. The 

proposed approach is validated by two applications in terms of 

the power-balance testing, that is, the input power increase due 

to the core-loss effects must be equal to the total core loss in 

the device.  

II. EFFECTS OF LAMINATION CORE LOSS 

A. Basic field equations  

The field equation using T-Ω method [3] is 

)]([)]([
1

Ω∇+
∂

∂
+×∇×∇

−
TT µσ

t
a  

)]([ ps
t

HH +
∂

∂
−= µ  (1) 

where T is the vector electric potential in conducting regions, 

Ω is the scalar magnetic potential, [µ], the permeability tensor, 

is anisotropic in lamination regions [4], [σa] is the anisotropic 

conductivity tensor to be discussed below, Hs corresponds to 

all exciting current sources, and 

pephpcp HHHH ++=  (2) 

is an additional field component due to core loss effects.  

In (2), Hpc, Hph and Hpe correspond to the classical eddy 

current core loss, static hysteresis core loss and excess core 

loss, respectively.  

B. Effects of eddy current loss caused by the normal 

component of flux density  

When a flux density component in z direction Bz changes, 

an eddy current field distributed in the xy plane will be 

produced, as shown in Fig. 1.  

The equivalent conductivity in lamination regions is 

anisotropic, and can be expressed by a conductivity tensor  
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where klam is the lamination factor, σ is the conductivity of the 

laminated steel, and σmin, the minimum conductivity limit, is 

used to ensure that the system equation is non-singular.  

 
Fig. 1  Eddy current produced by the normal component of flux density 

C. Effects of eddy current loss caused by the tangential 

components of flux density 

When the flux density components Bx and/or By, tangential 

to the lamination plane, alternate, the produced eddy current 

field is bounded in each lamination, as shown in Fig. 2.  

 
Fig. 2 Eddy current produced by the tangential components of flux density 

The effects of eddy current produced by the tangential flux 

components is considered by means of an equivalent magnetic 

field component Hpc, which can be computed by eddy current 

core loss. The eddy current core loss per unit volume is 

normally given in the frequency domain as shown below  
2

mcc fBkp )(=  (4) 

where f is the frequency, Bm is the flux density amplitude, and 
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kc is the eddy current loss coefficient. In the time domain, the 

eddy current core loss is computed from  

t
tp pcc

∂

∂
⋅=
B

H)(  (5) 

where  
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B
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with 
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D. Effects of hysteresis loss 

The hysteresis core loss per unit volume computed in the 

frequency domain is given below  
2)( mhh Bfkp =  (8) 

where kh is the hysteresis loss coefficient. In the time domain, 

the hysteresis core loss can be calculated based on the 

equivalent magnetic field component Hph, as expressed below  

t
tp phh

∂

∂
⋅=
B

H)( . (9) 

The equivalent field component Hph is determined by the 

equivalent elliptical loop (EEL) method [2]. Each component 

in the x, y or z direction is computed independently from  
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where B is the current flux density, Bm is obtained from a 

historical record of the maximum and minimum flux densities, 

and Hm is  

m
h

m B
k

H
π

= . (11) 

E. Effects of excess loss 

The excess core loss per unit volume is given in the 

frequency domain as  
51

mee fBkp
.)(=  (12) 

where ke is the excess loss coefficient. In the time domain, the 

excess core loss can be calculated based on the equivalent 

magnetic field component Hpe, as expressed below  

t
tp pee

∂

∂
⋅=
B

H)( . (13) 

The equivalent field component Hpe is determined by 

requiring that the average excess core loss calculated in the 

time domain must be the same as that obtained in the 

frequency domain under the same sinusoidal excitation, and it 

is derived as  
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and Ce = 8.763363.  

III. APPLICATIONS 

The first application is for the computation of core loss of 

250 kVA three-phase amorphous metal power transformer 

with five legs. The delta-connected three-phase primary 

windings are energized by three-phase voltage sources, and the 

secondary windings are open-circuit.  

The input power increase due to core loss effects is shown 

in Fig. 3, compared with the computed core loss. The average 

input power increase and the computed core loss in the last 

period (80ms ~ 100ms) are compared with the measured data 

in Table I. 
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Fig. 3 The input electrical power increase due to the core loss effects 

compared with the computed core loss (kh=21.08, kc=0, ke=0) 

TABLE   I. COMPUTED AND MEASURED CORE LOSS OF THE 250 KVA THREE-

PHASE AMORPHOUS METAL POWER TRANSFORMER  

 Value Unit 

Input power increase 118 W 

Computed core loss  119 W 

Measured core loss 126 W 

The second application is for the no-load core loss 

computation of a 165W, 4-pole interior permanent magnet 

(IPM) brushless DC (BLDC) motor. The mechanical input 

power increase due to core loss effects is compared with the 

computed core loss in Fig. 4. 
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Fig. 4 The input mechanical power increase due to the core loss effects 

compared with the computed core loss (kh=260.4, kc=0.822, ke=40.54) 
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Abstract — Analytical calculation of interaction forces 
between two cylindrical magnets is a difficult problem. 
Solutions can be obtained by elliptic integrals or by 
numerical computation. Thanks to the development of the 
analytical calculation for parallelepiped magnets 
(interaction energy, force and torque), the calculation of the 
force component between two cylinders can be obtained in 
analytical form by decomposition in a finite number of 
elements.  

This type of calculation allows the calculation of many 
systems that uses the forces of interaction between cylinder 
magnets. For example it can be used to directly calculate the 
force exerted in permanent magnet bearings in non-centred 
position. 

I. INTRODUCTION

Recent works on the analytical calculation of forces 
between permanent magnets allow calculating the 
interactions between magnets of parallelepiped shapes. 
The forces, interaction energy and couples can be 
expressed as analytical expressions, parameterized by the 
geometrical dimensions and magnetization of the 
magnets [1 to 4].  

However, the problem of rod-shaped magnets has 
never been analytically solved. The simpler problem of 
the 3D calculation of the magnetic field is made with 
elliptic integrals. This field calculation needs two 
integrations. For the calculation of interaction energy and 
forces, four successive integrations are necessary.

We will present an innovative analytical method, to 
calculate the interaction forces between two magnets of 
cylindrical shapes. The final analytical expression is a 
series with a limited term number. The accuracy depends 
on the number of elements.  

This method allows calculating the interaction forces 
in three directions, as well as energy interaction, through 
a relatively simple analytical expression. 

II.CALCULATION PRINCIPLE

  
      Npm=4              Npm=10             Npm=20 

Figure 1: Principle of cutting of the cylindrical magnet in 
parallelepiped elements.  

 Figure 1 shows the principle of the cutting of the 
cylinder in parallelepiped elements. The first case 
corresponds to a cut in 4 parts, the second 10 and third 
20. The number of elements is given by the parameter 
Npm (Number of elementary permanent magnets). 

III. INTERACTION ENERGY

 We give in the page 2 of this summary only the 
expression of the energy of interaction. The forces are 
then obtained by derivation of this energy. 

IV. EXAMPLE OF CALCULATION
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Figure 2: Calculation of the forces components for a magnet moving 
above a fixed one. 

 Figure 2 shows a direct example of use of these 
analytical results. It is the calculation of forces between 
two cylinder-shaped magnets. The two magnets have a 
diameter of 10 mm and a height of 10 mm. The second 
moves horizontally above the first and the distance 
between the magnets is 5 mm. Polarization J is  
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 Analytical expression of the interaction energy : 
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normalized to 1 tesla. The results show the values of 
the three force components, Fx, Fy and Fz. 
 The accuracy of analytical results is directly related 
to the number of elementary parallelepiped components 
used for each of the magnets. The complete study of the 
accuracy shows that one can easily obtain a relative 
error less than 1/1000, when the number of elements is 
sufficient. For this example of two cylindrical magnets, 
the precision of 1/1000 is achieved when the number of 
elements is about 20, even for a gap down to 2 mm. 

V. APPLICATION TO MAGNETIC BEARING 

CALCULATION

 For example, the calculation of the force exerted in a 
radial magnetic bearing is a relatively complicated. The 
permanent magnet magnetic bearings are composed of 
two rings in magnetic repulsion. Each magnet may be 
likened to two nested cylinders, representing the 
external volume, the other representing the internal 
volume. The problem of calculating the interaction 
forces between the two rings can be treated as one of 
four cylinders in interactions. The radial force can be 
expressed as an analytical expression involving a 
limited set of sums 

 . SUMMARY AND CONCLUSION

The calculation of interaction forces between two 
cylindrical magnets had never been resolved so far as 
analytical. Following the development of the analytical 
calculation of parallelepiped magnets, the calculation 
of these forces between two cylinders can be obtained 
in analytical form by decomposition to a finite number 
of elements.  

This type of calculation allows the calculation of 
many systems that uses the forces of interaction 
between the cylinder magnets. For example it can be 
used to directly calculate permanent magnet magnetic 
bearings.
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7. MATERIAL MODELLING 

Abstract  — This paper deals with two-dimensional modelling 
of a multifilamentary wire composed of two superconducting 
filaments in a conducting matrix. In order to avoid the three-
dimensional problem solving, a novel technique is proposed to 
solve the coupled problem in two-dimensions. For that, it is 
enough to divide the filaments in several sections in the direction 
of the length of the wire. The difference of the currents in the 
superconducting filaments between two successive sections is 
equal to the current which losses in the copper matrix. The 
relation between the currents crossing the matrix and the electric 
fields in the filaments obtained by the analytical method is 
implemented in the finite element program. For a given 
geometry, the critical length of the wire where the filaments are 
coupled can be found. The numerical simulation results present 
the distributions of the current density in the modelled domain. 
The influence of the wire length on the total magnetization is also 
considered. 

I. INTRODUCTION 
A better understanding of the electromagnetic coupling 

phenomena in the superconducting filaments can be done by 
numerical simulation. For that, a finite element program has 
been developed at the LGEP in France for modelling the 
superconducting materials. 

In [1], we proposed new methods for solving the problem 
of partially coupled superconducting filaments in two-
dimensions. In order to approach the three-dimensional 
problem with better behaviour, we propose in this paper a new 
technique by dividing the superconducting filaments into 
several sections and searching the relation between the 
currents crossing the copper matrix and the electric fields in 
the filaments. 

II. PROBLEM ANALYSIS 
In order to solve the problem, it is well to take the problem 

of several partially coupled filaments in [1], but by treating the 
problem with the minimum hypothesis. For that, we have 
considered a multifilamentary wire constituted of two 
superconducting filaments embedded in a copper matrix. The 
current density is supposed parallel to the wire axis in each 
section and invariant along this axis. It only depends on x, y 
and t. The magnetic induction is thus parallel to the x-y plane 
and also depends on x, y and t. 

To avoid the large number of elements required by three-
dimensional modelling, we have then divided the wire into 
elementary sections of � �⁄  length, where L and n are the wire 
length and the number of sections respectively. In a simple 
case, we have taken � � �. The two-dimensional presentation 
of the currents and voltages of two filaments along a wire 
length L shows in Fig. 1. Because of the symmetry of the 

problem, only the half of length has been studied in order to 
reduce the number of sections. Due to the low conductivity of 
the matrix compared to that of the superconductor, some small 
currents can circulate between the filaments. The difference of 
the currents in the filaments for two successive sections is 
equal to the current circulating in a section of matrix [2]. By 
using Kirchhoff’s current law, we have obtained the relation 
between the currents inside the superconducting filaments (i) 
and the currents crossing the copper matrix (im) for the section 
k as follows:  

�� � ����� � ���        �   � � ���� � � �� �⁄ � �� 
���                     �   � � � �⁄                                     (1) 

where ��� � � �. 
And by using Ohm’s law, we have obtained the relation 

between the currents and the voltages for the section k as 
follows:  

��� � ���� �⁄            �   � � ���� � � �� �⁄ � ��
�� �⁄              �   � � � �⁄                                     (2) 

where �� � � � and � is representative of the resistance of a 
section of � �⁄  length, its value could be determined by an 
electrokinetic formulation. It is interesting to note that, the 
resistance of the last section is twice because its length is two 
times smaller. 

 

 
Fig. 1.  2D presentation of two filaments over a wire length L. 

 
The equation of the electric fields (e0) defined in Fig. 1 

could be obtained as in [2]. 

��� � ���������
�� �⁄ �     ��  � � �������

��     �   � � ���� � � � �⁄      (3) 

Equation (3) can be rewritten as follows:  

�� � � �
� ∑ ����

���                                �   � � ���� � � � �⁄      (4) 

By substituting (2) and (4) in (1), we have obtained the 
relation between the currents and the electric fields. 

�� � �
���� � ��

�� ∑ ����
���       �   � � ���� � � �� �⁄ � ��    

� �
�� ∑ ����

���                 �   � � � �⁄                               
(5) 

Numerical Modelling of Superconducting 
Filaments for Coupled Problem 

T. Satiramatekul 1 and F. Bouillault 2

1 Faculty of Engineering, Kasetsart University, Kamphaengsaen Campus, Nakhon Pathom, 73140, Thailand 
2 LGEP, UMR 8507 CNRS, SUPELEC, Gif sur Yvette Cedex, 91192, France 

thitipong.s@ku.ac.th 

576

PC1.13



7. MATERIAL MODELLING 

Equation (5) can be rewritten in the following matrix form:  

� � �����                                        (6) 
where � � ��� �� � ��� �⁄ ���, �� � ���� ��� � ���� �⁄ ��� and 
��� is a matrix of constant value whose dimension is �� �⁄ � �
�� �⁄ �. For � � �, we have found that:  

��� � �
�� �� �� ��
�� �� �� ��
�� �� �� ��
� � � �

�                              (7) 

where � � � � ��⁄ . 

III. NUMERICAL MODELLING 

The domain of the problem shows in Fig. 2 (in 2D). To 
reduce the computing time, by looking at the symmetries of 
the problem, we have only modelled a quarter of the domain. 
A technique proposed for this modelling is to execute � �⁄  
computations of finite element in parallel. For that, we have 
just created a mesh and then regenerated a super mesh with 
� �⁄  times more elements and � �⁄  times more nodes. The 
coupling between the calculations of finite element would be 
done via (6). 

 
Fig. 2.  Domain of the problem in 2D with given boundary conditions. 

 
Bean’s critical state model [3], which is replaced by a 

nonlinear function defined in [4], have been selected to 
characterize the electrical behaviour law of superconducting 
materials. As in [1], [5], in this case we have found that the 
matrix systems obtained by using the finite element method 
are as follows:  

������� � ������ � �������� � �   �   � � ���� � � � �⁄     (8) 

�������� � ������� � ����                 �   � � ���� � � � �⁄     (9) 
where � is the current density. ��� is the matrix of dimension 
� � �. ����, ����� and ���� are the matrices of dimension 
� � �, � � �� �⁄ � and �� �⁄ � � �� �⁄ � respectively (�, � are 
the number of unknowns and the number of sections). � is the 
source vector. 

IV. SIMULATION RESULTS 

The simulation results have been obtained by using a code 
based on the finite element method and Bean’s model. A 
series of numerical simulations has been realized for the 
superconducting filaments immersed in an external magnetic 
induction varying sinusoidally in time. Figure 3 shows the 
results of the current density distributions in the modelled 
domain at � � � �⁄  where � is the period of the applied 

magnetic induction. The four subfigures from left to right 
indicate respectively the current density distributions at 
� � � ��⁄ � �� ��⁄ � �� ��⁄ � �� ��⁄ . In the case that the wire 
length (�) is equal to the critical length (��), we have obtained 
the results in the case of partially coupled (Fig. 3(a)). We have 
observed that the total current in the middle of the wire is 
equal to �����, where � is the radius of the filament and �� is 
the critical current density (� � ���  A m�⁄ ). These results 
show clearly the electromagnetic coupling phenomena in the 
superconducting filaments and are in agreement with those in 
[6]. For � � �� and � � ��, the obtained results show the 
case of perfectly coupled (Fig. 3(b)) and perfectly decoupled 
(Fig. 3(c)) respectively. We could observe that the total 
current in the filament in Fig. 3(b) is the maximum value and 
the same in all sections. But in Fig. 3(c), this total current is 
zero and the same in all sections too. These results are in 
agreement with those shown in [1], [5]. In addition, the total 
magnetization of the wire could be computed by using the 
obtained value of the current density. 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

Fig. 3.  Current density distributions in the modelled domain: (a) partially 
coupled case, (b) perfectly coupled case, and (c) perfectly decoupled case. 
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7. MATERIAL MODELIN 

Abstract — This paper presents thorough investigations of the 
accuracy of the classical technique used to compute the eddy-
current losses in nonlinear laminated electrical steel. The 
investigations show the weakness of the classical technique and 
point out how it should be improved. Based on the investigations 
and findings, an improvement is proposed and its accuracy is 
quantified. The accuracy of the classical and the improved 
technique is assessed by comparing the results of these techniques 
with results from a previously validated advanced method. 

I. INTRODUCTION 
The computation of power losses is a key feature in the 

design stage of electrical machines. The losses are 
conventionally separated into copper losses and core or iron 
losses. The latter ones are themselves separated into eddy- 
current, hysteresis, and excess losses. The adequate modeling 
of iron losses within the FE simulation of electrical machines 
requires advanced magnetodynamic vector hysteresis models 
of the underlying magnetic materials [1]. However, the 
computation time of these models when used in the design or 
within an optimization procedure presents a sever drawback. 

Simplified techniques based on statistical or analytical 
methods are used in every day design. The most controversial 
techniques are related to the computation of eddy-current 
losses in the lamination of the machines. Two different 
variations of the classical technique [2] are widely used for 
this purpose. One is a direct application that does not put any 
condition on the waveform of the flux density, and the second 
one uses the Fourier decomposition of the flux density and 
applies the classical method to each harmonic separately. 

In this paper we investigate the accuracy of the classical 
technique by comparing its results to these obtained from an 
advanced model [3], which is based on the numerical solution 
of the magnetic field in the depth of the steel sheet. 
Investigations on the accuracy of the second technique as well 
as its comparison with the classical one will be presented in 
the extended paper. 

The advanced model itself has been previously 
demonstrated to give accurate results when compared with 
measured ones [4]. We also propose an improvement of the 
classical technique to make it more accurate without 
considerably increasing its computational burden. 

II. DESCRIPTION OF THE MODELS 
The advanced model is based on solving two coupled 1D 

magnetodynamic equations in the lamination depth. These 
equations are coupled through the material reluctivity and 
require iterative solution as the reluctivity is non linear 

 

( ) ( )

( ) ( )

2

2

2

2

, ,

, ,

x x

y y

h z t b z t
tz

h z t b z t
tz

σ

σ

∂ ∂
=

∂∂

∂ ∂
=

∂∂

 (1) 

where xh and yh are the components of the magnetic field 
strength and xb and yb these of the magnetic flux density in the 

lamination depth z. The instantaneous eddy-current losses are 
then computed from the current density ( , )z tJ , the lamination 
thickness d, and the conductivity of the materialσ as 
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The classical model has been derived from the analytical 
solution of (1), assuming uniform flux density in the depth of 
the material [2]. In both models the end effects of the eddy 
currents loops are ignored due to the small size of the 
lamination thickness. 

In the classical model the instantaneous losses are given by 

 
2

( )
12
d

p t
t t

σ ∂ ∂
= ⋅

∂ ∂
B B  (3) 

The classical model does not take into account the 
nonlinearity of the magnetic material in the depth of the 
lamination and thus ignores the skin-effect related to this 
phenomenon. An improvement of the classical model consists 
of introducing in (3) terms that describe in a way or another, 
the effect of nonlinearity. In stead of (3), we propose that the 
instantaneous losses be calculated as follows 

 
2

( )
12

yx y yx x
x y

B Bd B B
p t

t t t t

γγσ
δ δ
⎛ ⎞∂ ∂∂ ∂ ⎟⎜ ⎟⎜= + ⎟⎜ ⎟⎟⎜ ∂ ∂ ∂ ∂⎝ ⎠

 (4) 

where ( )x xsignum Bδ = , ( )y ysignum Bδ = ,and xγ and yγ are  
functions of xB and yB respectively. 

In this version, the functions γ are quadratic functions of 
the magnetic flux density components. Different options for 
the choice of γ will be presented in the extended paper. 

The instantaneous power loss in all the above cases is then 
integrated to obtain the power per unit volumeP over one 
time period of the fundamental frequency. 

III. COMPUTATION RESULTS  

The three models described above have been implemented 
using 1D finite element method for the advanced one and 
related routines for the classical and improved ones. In all 
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computations the advanced model is fed from a predefined 
flux density, which is used to set its boundary values. The 
waveforms, frequencies, and amplitudes of the source flux 
density are varied and the relative difference between the 
power loss per unit volume over one time period of the 
fundamental frequency from the advanced model and the two 
other techniques are calculated as 

 _ advanced

advanced

P P
relative error

P
−

=  (5) 
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Fig. 1. Relative error in the computed losses from the advanced model and the 
classical one in the case of alternating flux density with different frequencies 
and amplitudes. The classical model works fine for most practical flux (under 
the dashed line) though it overestimates the losses in some cases.  
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Fig. 2. Relative error in the computed losses from the advanced model and the 
classical one in the case of alternating fundamental increased with the 25th 
harmonic with amplitude 0.0525 1B B= . The frequencies and amplitudes are 
these of the fundamental one. The classical model does not give adequate 
results; it overestimates the losses in all practical cases (under the dashed line). 
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Fig. 3. Time dependence of the losses from the different models. When the 
flux density is alternating at 2000 Hz with an amplitude of 1.5 T. The classical 
technique gives losses that are lagging behind these of the advanced one while 
the improved technique models well the lag.  

Fig. 1. shows the contour plot of this relative error (5) for 
the classical technique, when the source field was alternating 
with only the fundamental harmonic. Fig. 2. shows similar 
results when the field was alternating with the fundamental 
harmonic but contained also the 25th harmonic with an 
amplitude 25 10.05B B= . Fig. 3 presents the time dependency 
of the losses computed by the advanced model and these 
computed by the classical technique and the proposed 
improved one. It is clear that the classical technique can not 
model the lag of the losses behind the flux density caused by 
the time constant of the flux penetration phenomenon. The 
improved technique on the other hand can deal with this 
phenomenon thanks to terms that depend on the sign of the 
time derivative of the flux. 

IV. DISCUSSION AND ANALYSIS 

The classical eddy-current loss computation technique 
although gives acceptable average power losses in the case of 
a single harmonic (see Fig. 1.), does not model correctly these 
losses in time (see Fig. 3.) and thus introduces large errors as 
soon as the flux density contains higher harmonics (Fig. 2). 
The proposed improved method, though is not yet fully 
studied seems to be able to model the instantaneous power 
losses adequately (see Fig. 3). 

In electrical machines, the situation is so that there is no 
localization where the variation of the flux density is purely 
sinusoidal, even if the supply voltage of the machine is 
sinusoidal. When the machine is used with frequency 
converters, the situation is even worse as the voltage 
harmonics of the supply will produce additional harmonics in 
the flux density resulting in low accuracy of the loss 
computation if the classical technique is used.  

V. CONCLUSIONS 

We presented investigations of the accuracy of different 
techniques for the eddy-current loss computation in nonlinear 
laminated electrical steel. The investigations showed the 
weakness of the classical technique and pointed out that there 
is a need for improved and time efficient techniques as well as 
the kind of improvements needed (lag of the instantaneous 
power loss). In the extended paper we will present different 
improvements and more comparisons of the losses computed 
with different techniques. 
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Abstract — This paper presents an efficient reluctivity model 
for taking account of two-dimensional (2-D) magnetic properties 
of grain-oriented electrical steel sheets. The measured hysteretic 
H-waveform is approximated to alternating one which the direc-
tion of H-waveform can be taken by a constant under a specific 
B-waveform, and the approximated H-waveform is expressed by 
using Fourier series expansion. The magnetic reluctivity model is 
proposed to apply the approximated 2-D magnetic properties to 
finite element analysis, and the effectiveness of the proposed 
method is investigated. 

I. INTRODUCTION 
Recently, an efficient magnetic reluctivity model consider-

ing two-dimensional (2-D) magnetic properties of silicon steel 
sheet has become an important issue for precise performance 
analysis of electrical machines. There have been researches, 
therefore, to effectively describe the 2-D magnetic properties 
of silicon steel including Grain-oriented materials as well as 
Non-oriented materials [1]-[6]. Under alternating field condi-
tion, in order to express the 2-D behavior of the magnetic field 
intensity (H), some magnetic reluctivity models have been 
developed [1]-[3]. In these models the hysteretic H-
waveforms measured by using 2-D single sheet tester are ap-
proximated to alternating waveforms, and their magnitudes 
and phase angles are modeled as functions of magnitude and 
direction of the corresponding magnetic flux density (B). Al-
though these models are quite effective and can be expressed 
as relatively simple form, they can hardly describe the 2-D 
magnetic properties under rotating magnetic field condition 
[1]. On the other hand, under rotating field condition, a few 
reluctivity models are developed based on Chua-type model 
by means of Fourier series expansion of B- and H-waveforms 
[4]-[6]. It is proven that the accuracy of these models can be 
enhanced by taking more harmonic components of the meas-
ured H-waveform into account [6]. However, as considering 
more harmonic components, these models become more com-
plicated and require more data in terms of few hundred mega-
bytes, and accordingly computing time becomes very huge 
when they are applied to non-linear FEM.   

In this paper, a numerically efficient reluctivity model is 
proposed to describe the 2-D magnetic properties of silicon 
steel sheet under both the alternating and rotating field condi-
tions, and applied to non-linear FEA. 

II. APPROXIMATION OF H-WAVEFORM  
For a specimen of silicon steel sheet, the H-waveform cor-

responding to an arbitrary B-waveform can be measured by 
using 2-D single sheet tester, shown in Fig. 1, where the 

waveform of exciting voltage is controlled using waveform 
control technique so that a desired B-waveform is obtained. 
An elliptically rotating B-waveform is expressed, as shown in 
Fig. 2(a), for given parameters; maximum magnitude BBmax, 
axis ratio α (=BminB /B B

x y

max) and inclination angle φ, as follows: 
( ) ( ) sin( )

cos sin , ,k k

k mk k

B B

B B
R I k

τ τ τ φ
τ τ

= −
= + =

 (1) 

Fig. 2(b) shows the measured hysteretic H-waveform under 
50Hz for a specimen of Grain-oriented silicon steel sheet 
30PG158 when a rotating B-waveform of which parameters 
B Bmax, α, and φ are 1.0, 0.5 and 45 , respectively.  o

In this paper, the measured H-waveform is approximated, 
as shown in Fig. 2(b), to an alternating one of which maxi-
mum magnitude and phase angle are  and Ĥ Hθ′ , respectively. 
In this approximation, a magnetic field intensity (H) on the 
measured H-waveform correspond to its projection (H') on the 
approximated waveform as shown in Fig. 2(b). The approxi-
mated H-waveform for a rotating B-waveform with 
( , ,maxB )ϕ α  is defined as follows: 

( ) ( ) cos( ( ) ), 0 2m m H HH Hτ τ θ τ θ τ π′ ′= − ≤ ≤  (2-a) 
( ) , 0 2H maxHθ τ τ π′ = ≤ ≤  (2-b) 

where Hm(τ) and θH(τ) are the magnitude and phase angle of H,  
respectively. In this approximation, H-waveform is expressed 
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Fig. 1. A two-axes excitation two dimensional single sheet tester. 
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Ĥ

-1.2 -0.6 0.0 0.6 1.2
-1.2

-0.6

0.0

0.6

1.2

 

 

B
TD

 (T
)

BRD (T)

minB
maxB

ϕ

-200 -100 0 100 200

-400

-200

0

200

400

 

H
y (T

)

Hx (T)

H
H ′

Hθ ′

Measured 
Approximated 

Ĥ
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(a) B-waveform                                 (b) H-waveform 
Fig. 2. Approximation of H-waveform (BBmax=1.0, α=0.5, φ=45º) 
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as a function of direction of B, θB, when (BBmax, α, φ) is defined.  

III. MAGNETIC RELUCTIVITY MODEL AND FEA APPLICATION 
The magnetic reluctivity model considering 2-D magnetic 

properties of anisotropic materials is defined as follows: 

xx xyx x

y yyx yy

H B
H B

ν ν
ν ν
⎡ ⎤⎛ ⎞ ⎛= ⎢ ⎥⎜ ⎟ ⎜

⎝ ⎠ ⎝⎣ ⎦

⎞
⎟
⎠

 (3) 

The approximated H-waveform is expressed, by using Fourier 
series expansion considering up to 5-th order harmonics, as 
follows: 

3
(2 1) (2 1)1

3
(2 1) (2 1)1

( ) sin[(2 1) ] cos

( ) sin[(2 1) ] sin
m

m

x n m n H Hn

y n m n Hn

H H n

H H n H

τ τ φ θ

τ τ φ θ
− −=

− −=

′ ′= − +

′ ′= − +
∑
∑

′⋅

′⋅
 (4) 

Substituting (1) to (3), and comparing (3) with (4), after some 
algebraic manipulations, the reluctivity tensor in (3) is derived, 
for fixed parameters (BB

⎤
⎥⎦

)
)

4

4

max, α, φ), as follows: 

1 2

1 2

cos 0
0 sin

xx xy H

Hyx yy

k k
k k

ν ν θ
θν ν

⎡ ⎤ ⎡ ⎤⎡=⎢ ⎥ ⎢ ⎥⎢⎣ ⎦⎣⎣ ⎦
 (5-a) 

     

    
Fig. 3. Magnetic reluctivities when α=0.75, φ=45º 
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The coefficients in (5) are obtained, for a specific (B B

,I I
c I

= −
= + +
=

max, α, φ), 
as follows:  
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S R R I R I
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 (6-b) 

where RnH and InH (n=1, 3, 5) are real and imaginary parts of 
Fourier expansion of the magnitude of H-waveform approxi-
mated by the proposed method. The coefficients c in (6-a) are 
smoothed by using Bezier spline to be applied to the FEM. 
From (5), it is found that the number of the coefficients in the 
proposed method is a lot reduced compared with those in [4]-
[6]. It is, therefore, expected to give better convergence char-
acteristics when it is applied to FEM. 

Fig. 3 shows the magnetic reluctivities calculated from (5) 
for Grain-oriented silicon steel sheet 30PG158 when the rotat-
ing flux condition is α=0.75 and φ=45. It is observed that the 
curves are smooth enough to give a good convergence.  

Fig. 4 compares the computed magnitudes and phase an-
gles of H-vector using the proposed reluctivity for the case of 
BBmax=1.0(T), α=0.75 and φ=45, shown in Fig. 3, with the 
measured ones. It can be seen that the computed H-waveform 
using the proposed magnetic reluctivity model has a good 
agreement with the measured one although the rotating field is 
approximated to an alternating field.  

The overall flow of the FEM using the proposed reluctiv-
ity is as follows: 
Step 1. Using conventional B-H curve method, analyze for 

one period, 

Step 2. Set the parameters (BBmax, α, φ) for all elements using 
the analyzed results, and analyze again for one period 
using the proposed reluctivity. In this analysis, the de-
rivatives, ij k ij B B kA Aν ν θ θ∂ ∂ = ∂ ∂ ⋅ ∂ ∂ , for Newton-
Raphson iteration is calculated, from Fig. 3, by using 
Bezier spline [6].  

Step 3. Repeat the Step 2 until converged parameters are ob-
tained for all elements.  

In the version of full paper, the proposed algorithm will be 
applied to the analysis of the single phase transformer core 
model in [6], and its results will be compared with experimen-
tal ones. 
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Abstract — Soft magnetic composite (SMC) material is widely 
applied in three-dimensional (3-D) magnetic flux machines. 
Conventional methods for detecting the magnetic properties of 
SMC material are not accurate due to the rotational magnetic 
domains. Taking the 3-D properties into account can help 
complete the understanding and modeling of the magnetization 
process. In order to precisely measure magnetic field distribution 
of the rotating flux machine, 3-D reluctivity tensor should be 
considered in the electromagnetic field analysis. By using a 3-D 
magnetic property tester, this paper presents the measurement of 
3-D vector magnetic properties considering the 3-D magnetic 
reluctivity tensor. Moreover, finite element analysis is used in 
electromagnetic field calculation by means of Femap software 
package.  

I. INTRODUCTION 

One and two dimensional (2-D) measurements are widely 
employed for characterization of soft magnetic materials. 
However, they are still far from describing the actual 
properties of the materials, where the vector properties with 3-
D magnetic fluxes should be considered [1]. By using a novel 
3-D magnetic property tester developed at University of 
Technology, Sydney (UTS), a kind of SMC material, 
SOMALOY™500 developed by Höganäs AB, Sweden, is 
measured and analyzed [2]. A cubic SMC sample with the 
side length of 22 mm is cut from the cylindrical perform. 
Some experimental results under time-varying magnetic flux 
density vector B loci and magnetic field strength vector H loci, 
and the power losses when the B loci are controlled to be 
circles with increasing amplitudes and ellipses evolving from 
a straight line into a circle in three orthogonal planes, 
respectively [3].  

A 3-D reluctivity tensor which is a second-order three-
dimensional full rank matrix can be constructed by means of 
the experimental data of H vectors and B vectors. Therefore, 
taking the off-diagonal elements into account can precisely 
express the relationship between B and H under rotational 
excition conditions. The reluctivity tensor is a key factor for 
accurate numerical analysis of magnetic field in 3-D flux 
SMC electrical machines [4].  

In this paper, the 3-D magnetic properties are expressed 
through tensor magnetic reluctivity under rotating flux 
conditions, which is used in the magnetic field analysis with 
the finite element method (FEM). A model of current-carrying 

solenoid is built in Femap, and the FEM results are presented. 
Some key codes in the program are also presented. 

II. IMPROVEMENT OF 3-D TESTING SYSTEM 

A. Original Structure  
The UTS 3-D magnetic property testing system consists of 

a tester, a digital control system, a data acquisition and three 
power amplifiers [2]. Fig. 1 shows the structure of the cubic 
sample with B coils and surface H sensing coils. The 
components of the sample surface field intensity H are 
measured by 12 search coils and the flux density B 
components are measured by three search coils wrapped 
around the cubic sample. The components of H and B on each 
coordinate axis can be calculated from the induced emf of the 
search coils by 

∫= dtV
K

H
i

i
H

H
i

0

1
μ

    ),,( zyxi =              (1) 

∫= dtV
K

B
i

i
B

B
i

1     ),,( zyxi =                    (2) 

where
iBV and

iHV  are the terminal instantaneous voltages of 

the iB  and iH search coils, 
iHK is the iH search coil 

coefficient obtained by calibration, spBB ANK
ii

= the 

coefficient of the iB  search coil, 
iBN the number of turns of 

the iB  coil, and spA the cross-sectional area of the sample. 

        
Fig. 1.  Cubic sample and B, H coils                  Fig. 2.  Improved structure 

B.  Improved Structure 
The original tester structure can be improved considering 

that the surface area of the H coil equals that of a side of the 
cubic sample and the magnetic field in the sensing area may 
not be uniform.  An improved structure is proposed so that the 
H coil size is minimized and it can be attached to the central 
area of each side of the cubic sample, as shown in Fig. 2. It 
has been found the field near the central area is quite uniform.  
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The tangential component of H is continuous if no applied 
current flows on the sample surface. The sensing area is now 
centralized and the gap between sample and H coil is 
contracted. The adoption of the guard piece which is the same 
material as the sample, can significantly improve the accuracy 
of measurement of the sample surface field since this structure 
can significantly decrease the equivalent reluctance of the 
magnetic circuit and the excitation current required to 
magnetize the sample can be reduced. The cubic sample, six H 
search coils, and six guard pieces are integrated into the 
sample house. Furthermore, the method of wire wrapping is 
adopted, which can shrink the area of the circle and optimize 
the magnetic circuit.   

C. Calibration of Sensing Coils 
The H coils must be calibrated for accurately measuring 

the magnetic field strength components. The calibration is 
performed in a long solenoid, which can generate a uniform 
magnetic field. The surface of the coil is set to be parallel to 
the generated field. The H coil coefficient is calculated by 

m

H
H Hf

VK
02 μπ

=                                (3) 

where f is the excitation frequency, HV the rms value of the 
induced emf, and mH0μ the peak value of the air flux density 
in the middle of the solenoid. 
      In experiment, when the magnetic field to be measured, 

),,( zyx HHHH = , is not parallel to any axis of H box, the 

measured emfs in the H coils can be expressed as 
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Then the magnetic field components can be worked out. 

III. MEASUREMENT RESULTS 

By using the 3-D magnetic tester, the magnetic properties 
of an SMC sample have been systematically measured when 
the B vectors with alternating, circular and elliptical loci are 
controlled to lie in the three orthogonal planes and the 
corresponding H vectors have been investigated.  
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Fig. 3.  Hysteresis loops and losses for alternating  

magnetizations on the x-, y-, and z-axes.  
 

Fig. 3 plots the hysteresis loops and core losses when the 
B is controlled to be sinusoidally alternating at 50 Hz along 
the x, y and z-axis, respectively. It is noticed that the loops for 

the x and z axes are similar, while the y axis seems to be the 
easy axis, though the sample is expected to be isotropic. These 
measurements will provide the necessary data for modeling 
the reluctivity tensor and core loss. 

IV. 3-D RELUCTIVITY TENSOR 

In 3-D condition, H and B vectors are not parallel, so the 
x, y and z-axis components of H and B should be expressed as  

⎪
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⎧

++=
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                  （5） 

The reluctivity tensor which symbols to the relationship 
between B and H can be written to a second-order three-
dimensional full rank matrix as 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

zzzyzx

yzyyyx

xzxyxx

ννν
ννν
ννν

ν                              （6） 

V. NUMERICAL ANALYSIS OF 3-D RELUCTIVITY TENSOR 

Fig. 4 shows the finite element analysis of the 3-D model 
of a square current-carrying solenoid by using Femap software 
package in several directions. Based on laboratory test results, 
several types of experimental data at different locations by 
setting the parameter of the reluctivity tensor, the tendency 
distribution of magnetic flux density can be obtained.  

   
(a) Diametric view             (b) Front view              (c) Top view of Solid 

Fig. 4.  FEM simulation of 3-D magnetic property model  

VI. DISCUSSION AND CONCLUSION 

This paper presents an improvement method of 3-D 
magnetic properties testing and simulation. Magnetic 
anisotropy is found in the 3-D measurement of SMC material. 
Under 3-D vector excitations, experimental data generates a 
magnetic reluctivity tensor which is a full matrix with off-
diagonal elements due to the rotating magnetic flux. The 
results are verified by FEM analysis. More detailed analysis 
and results will be reported in the full paper.  
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Abstract — A new model is presented capable of taking 
account of the dependence of the specific loss curves (giving loss 
per weight versus flux density) of grain-oriented steel on the 
angle between the direction of the flux density and the rolling 
direction. It uses the loss curves in the rolling and transverse (i.e. 
the principal) directions only. It is assumed that, for constant loss 
per weight, the flux density vector traces a modified elliptic 
curve. The curves for flux densities not oriented in one of the 
principal directions are reconstructed and compared to 
measurements, illustrating the feasibility of the model. 

I. INTRODUCTION 
Grain oriented steel is routinely used in transformer cores 

and various shielding parts. These are invariably made of 
laminated steel and are designed so that the expected direction 
of the flux density in them should be parallel to the laminates 
and coincide with the rolling direction. Deviations from this 
ideal situation lead to additional losses. On the one hand, flux 
density components normal to the sheets cause large eddy 
currents flowing in the laminates. They can be taken into 
account by bulk models with an anisotropic conductivity [1], 
[2]. On the other hand, measurements indicate that the specific 
losses in the sheets (i.e. the sum of eddy current losses, 
hysteresis losses and excess losses, see e.g. [3]) are higher if 
the flux density is not parallel to the rolling direction (see Fig. 
1). 

The specific loss curves are obtained by measurements 
carried out in an Epstein frame [4] and are usually provided 
by steel manufacturers for the principal directions, i.e. the 
rolling direction of easy magnetization and the transverse 
direction perpendicular to the rolling direction. In some rare 
cases curves for intermediate directions are also measured (see 
Fig. 1) indicating that at angles around 60° to the rolling 
direction, the specific losses can be higher than at the 
transverse direction. 

The aim of this paper is to present a model using the 
measured specific loss curves for the principal directions 
which predicts the specific loss curves in intermediate 
directions, too and takes account of the above behavior. 

II. THE MODEL 
The starting point is the well-known elliptic model often 

used for representing the magnetic anisotropy of nonlinear 
soft magnetic materials [6]. The model assumes that the loci of 
the magnetic flux density trace an ellipsis if the modulus of 
the magnetic field intensity is kept constant. This cannot 

reproduce the typical property of grain-oriented steel having 
the worst direction of magnetization not in the transverse 
direction, but also at angles around 60° with respect to the 
rolling direction. Following an idea of [7] using modified 
elliptic curves to describe the loci of the magnetic field 
intensity for constant values of the co-energy density, a 
modified elliptical model capable of mimicking this behavior 
has been proposed recently [8]. 

Turning to the question of specific losses in anisotropic 
materials, let p denote the specific loss per unit weight of a 
grain-oriented steel sheet and B the modulus of the magnetic 
flux density. Typical measured p(B) (or B(p)) curves obtained 
in an Epstein–frame [4] are shown in Fig. 1 [5]. The curve 
marked by 0° has been obtained on a cut wherein the magnetic 
flux density vector B is parallel to the rolling direction 
whereas the curve denoted by 90° shows the p-values if B is 
perpendicular to the rolling direction, i.e. it points in the 
transverse direction. For most commercial sheets, these two 
curves which will be denoted by B1(p) and B2(p), respectively, 
are routinely provided by the manufacturer. It is remarkable 
that the losses in B2(p) for flux densities in the transverse 
direction, are higher than in B1(p) with B pointing in the 
rolling direction.  

 

 
Fig. 1. Measured loss curves of grain-oriented steel in various directions 
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Let the unit vector e1 point in the rolling direction and the 

unit vector e2 in the transverse direction. Our proposed model 
predicts the losses for an arbitrary vector B by assuming that, 
for constant p, B traces a modified elliptical curve: 

 

 1 2

1 2

1
( ) ( )

⎛ ⎞ ⎛ ⎞⋅ ⋅
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⎝ ⎠ ⎝ ⎠

n n

B p B p

B e B e
= . (1) 

 
The exponent n defines the curve: a value of n=2 describes 

an ellipsis, n=1 corresponds to a straight line and for  
the curve becomes a rectangle. Fig 2 shows the curve for 
n=1.5 at p=1.8 W/kg. 

→∞n

If the model is used to predict the specific losses from the 
magnetic field distribution obtained by a finite element 
analysis (as described in e.g. [2]), p has to be determined from 
(1) if B is given. Since both B1(p) and B2(p) are monotonous 
functions, the nonlinear equation (1) can be easily solved by a 
simple regula falsi iterative method. 
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Fig. 2. The loci of B described by (1) with n=1.5 for p=1.8 W/k

III.  MODEL TUNING 
The key the choice of t

par

d, in most practical cases, the 
me

g 
 

 question of the model is he 
ameter n. For the particular steel represented in Fig. 1, the 

measured loss curves for some intermediate angles are also 
shown in the figure [5]. Using these curves, least-square 
techniques can be employed to determine the parameter n. It 
can be made to depend on p to improve the fit. This will be 
shown in the full paper.  

On the other han
asurements for the intermediate angles are not provided. It 

is, therefore, a relevant question, whether it is possible to 
obtain a model with a fixed value of n which reproduces the 
typical behavior seen in Fig. 1, i.e. that the losses for angles 
around 60° are higher for larger values of B than in the 
transverse direction. The answer is affirmative: the loss curves 
for various directions of B with the choice n=1.5 are shown in 
Fig. 3. Comparison with Fig 1 indicates a good qualitative 

agreement. It is, therefore, reasonable to use a value around 
1.5 for n if no information on intermediate angles is available. 

 

 
Fig. 3. Loss curves of grain-oriented steel in various directions reconstructed 

from the curves in the principal directions using (1)with n=1.5 
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11. ELECTRIC MACHINES AND DRIVES

Abstract — This paper investigates the starting and braking   
performance of a three-phase induction motor with the Smith 
connection. A time-stepping, coupled circuit, two-dimensional 
finite element method is used for the study. It is found that for 
certain rotor positions, short periods of speed reversal could 
happen during starting. Severe torque oscillations at low speeds 
could be excited when the single-phase voltage is applied at a 
positive zero-crossing instant. Optimum initial rotor position for 
starting has been identified. Two methods of electric braking, 
namely capacitor braking and regenerative braking, are also 
investigated.

I. INTRODUCTION

The Smith connection (Fig. 1) enables a three-phase 
induction motor to be started and run on a single-phase supply 
[1] and is useful for drive applications where only a single-
phase supply is available. Transient performance of this 
asymmetrical motor system, however, has seldom been 
reported, in particular the dynamic motor response at very low 
speeds. The analysis is complicated due to the general phase 
imbalance, heavy saturation, existence of space and time 
harmonics, deep-bar effect in the rotor conductors, and 
mechanical motion. A rigorous and comprehensive analysis 
therefore requires an approach based on the finite element 
method (FEM). In this paper, a time-stepping, coupled circuit, 
two-dimensional (2-D) FEM [2] is used for studying the speed 
and torque responses during motor run up, with special 
emphasis on the low-speed region. Two important factors that 
may affect the run-up performance of the Smith motor system, 
namely, the initial time phase of the supply voltage and the 
initial rotor position, will be investigated. Typical motor 
transient run up characteristics of the induction motor will be 
presented. Besides, the transient performance for two braking 
modes will also be studied.  

II. ANALYSIS METHOD

The time-stepping, coupled-circuit, two-dimensional finite 
element method (2-D FEM) developed in [3] will be the basis 
for the present study. Fig. 2 shows the schematic diagram of  the 
FEA which consists of the following steps: 

Establish the state model for the stator circuit 
connection based on the circuit equations. For the 
Smith motor circuit, ten state variables, and hence ten 
state equations, are needed.
Establish the rotor circuit model: the model will take 
into account the effect of uneven current distribution 
in the rotor bars and end rings.  
Coupled circuit and field analysis: the stator and rotor 

circuit equations are coupled to the 2-D FEM 
equations with magnetic vector potentials as 
variables. The field and circuit equations are solved 
simultaneously for each rotor time step.  
Time-stepping: the Maxwell’s stress method [4] is 
used to compute the electromagnetic torque and hence 
the rotor dynamics for rotor time-stepping. 

Fig. 1 Smith connection for single-phase operation of a  
three-phase induction motor. 

Fig. 2 Time-stepping 2-D FEM model for analysis of induction motor  
with the Smith connection.

III. RESULTS

A. Starting Performance 

The subsequent computations refer to a 2.2-kW, 380-V, 
50-Hz, four-pole, three-phase induction motor with the Smith 
connection (Fig. 2). The motor is started on no load with the 
starting capacitances (C1 = 147 μF, C2 = 35 μF and C3 = 70 
μF) initially in the circuit. At a rotor speed of 1200 r/min, the 
starting capacitances are replaced by the running capacitances 
(C1 = 6 μF, C2 = 30 μF and C3 = 60 μF) in order to reduce the 
steady-state torque pulsations. 
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11. ELECTRIC MACHINES AND DRIVES

Two motor parameters that affect the rotor run-up 
performance are identified. They are the initial phase angle θu of 
the applied voltage and the initial rotor position θr. The angle θu

=0 means that the motor is started at a voltage zero, whileθu = 
900 means that the motor is started with maximum instantaneous 
voltage. The angle θr = 0 refers to the rotor position such that 
the centre line of a rotor slot coincides with the centre line of the 
first slot of stator phase-A winding. The effect of θu on motor 
torque response, when θr = 0, is illustrated in Table I. The 
initial motor torque is negative in general, implying that a 
brief period of rotor speed reversal would precede motor run 
up. It is also found that severe torque pulsations will be 
produced at low speeds when the the motor is started with θu = 
900 and θr = 00, as shown in Fig. 3. 

The effect of initial rotor position θr on the motor response 
at starting is shown in Table II. We may conclude that the 
experimental motor should be started with θr between 40e and 
90e in order to avoid initial rotor speed reversal, and the best 
initial speed response is obtained when θr = 6.750e.

TABLE I 
EFFECT OF INITIALVOLTAGE PHASE ANGLE ON MOTOR

RESPONSE AT LOW SPEEDS (θr = 0) 

Initial voltage 
phase angle θu

(0e)

Initial value of 
motor torque 

(N.m) 

Maximum value 
of  torque during 

rotor speed 
reversal (N.m) 

Duration of 
rotor speed 

reversal (ms)  

90 -1.45 -12.9 6.1 
60 -1.08 -15 6.7 
30 -0.36 -14.4 7.9 
0 0 -14.0 9.5 

TABLE II 
EFFECT OF INITIAL ROTOR POSITION ON NO-LOAD

MOTOR RUN-UP PERFORMANCE

Initial rotor 
position θr

(0e)

Initial value of 
motor torque 

(N.m) 

Maximum value 
of negative 

torque (N.m) 

Duration of 
rotor speed 

reversal (ms)  
0 -1.45 -9.74 6.3 

2.25 -0.62 -2.36 2.7 
4.5 +0.95 nil nil 
6.75 +1.98 nil nil 

9 +0.42 -0.55 1.5  
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Fig. 3 Computed transient motor run-up performance at no load with starting 

capacitances (θu =0, θr =0): (a) Torque-time characteristic;  
(b) Speed-time characteristic. 

B. Capacitor Braking 

When the single-phase supply is cut out with the induction 
motor running at normal speed, the capacitances in the motor 

circuit is sufficient to cause self-excitation and the machine 
runs temporarily in the generation mode. An electrical braking 
torque is produced and the rotor kinetic energy is converted to 
losses in the motor windings. Fig. 4 shows the speed and 
torque curves of the motor which is started on no load with the 
running capacitances and at t = 600 ms the supply is cut off. It 
is observed that an average negative torque is produced and 
the speed drops from about 1500 r/min to 1000 r/min within 
1.2 s.
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Fig. 4 Transient performance of motor started on no load with running 
capacitances, followed by capacitor braking. 

C. Regenerative Braking 

When the load is overhauling in nature, such as in crane 
hoists or winders, the motor may be driven by the load in the 
reverse direction. The motor enters the regenerating braking 
mode and at steady state the motor speed is maintained at a 
value slightly above synchronous speed. Electric energy is 
then returned to the single-phase supply. Fig. 5 shows the 
transient motor performance when a negative torque of 18.6 
N.m is applied to the motor at standstill and with C1 =16 μF,
C2 = 24 μF and C3 = 48 24 μF.
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Fig. 5 Transient performance of motor when driven in the reverse direction. 
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Abstract — A 9 pole 10 slot permanent magnet linear synchro-
nous motor (PMLSM) is optimized in Pareto sense to reduce the 
detent force and to maximize the thrust force per mass of arma-
ture core. In the optimization, the objective functions are ap-
proximated by using response surface method with radial basis 
function to reduce the computing time related with finite element 
analysis. Additionally, the objective function values at sampling 
points are computed by using grid computing with 60 personal 
computers.    

I. INTRODUCTION 
Conventionally permanent magnet linear synchronous mo-

tors (PMLSM) with the structure of (2τp=3τs) or (4τp=3τs), 
where τp and τs are PM pole and winding slot pitches, respec-
tively, have been exclusively used for general purpose appli-
cations in factory automation. However, the PMLSMs em-
ploying these conventional structures such as PMLSM with 8 
poles and 12 slots or PMLSM with 12 poles and 9 slots, gen-
erate very big detent force composed of cogging and end force, 
and impede precise position and speed control purpose appli-
cations [1].  

Very recently a new structure of (9τp=10τs) with two extra 
end-teeth without armature winding, as shown in Fig. 1, is de-
veloped based on that of (8τp=9τs) in rotating PM motor, and 
is proven to give almost no-cogging force [2]. In the new 
structure, each winding slot locates at /10π  shifted position 
from its previous slot, and only generates very small 10n order 
harmonic components of cogging force. This structure, al-
though having very small cogging force, still has quite big de-
tent force due to the end forces acting on the left and right end 
sides.  

In this paper, in order to reduce the detent force and maxi-
mize the thrust force per mass of a PMLSM at the same time, 
the new structure of (9τp=10τs) is adopted and the shape of the 
exterior teeth are optimized in Pareto-optimal sense.   

II. DESIGN PARAMETERS AND OPTIMIZATION ALGORITHM 

A. Design Objectives and Parameters 
The model PMLSM is initially designed as shown in Fig. 1 

and Table I. The optimization targets are defined as follows: 

Minimize  Cogging force (1-a) 
Maximize  Back-emf/Armature mass (1-b) 

where the cogging force is computed by using nodal force 
method and back-emf by calculating the flux linkage of arma-

ture winding from the finite element analysis (FEA) results 
obtained at 34 moving positions of the primary during a pole 
pitch without applying armature current. The back-emf per 
mass is approximated as its maximum value. 

In order to achieve the design objectives, the three design 
parameters are defined as shown in Fig. 2, where the parame-
ter R determines the chamfering while X1 and X2 total length 
and mass of the armature core.     

B. Optimization Algorithm 
The two design objectives Minimizing cogging force and 

Maximizing Back-emf/Armature mass are in conflict with each 
other. For example, the exterior teeth might have enough 
thickness for minimizing the cogging force but it will decrease 
the Back-emf/armature mass via increasing armature mass.  

In this paper, hence, Pareto-optimization technique is 
adopted. The fitness value for a design parameter vector, xi, is 
assigned as its corresponding Pareto strength [3]. 

As an optimization algorithm, (1+λ) evolution strategy is 
employed. At the same time, in order to reduce the computing 
time required in non-linear FEA for objective function calcu-
lation, the two objective functions defined in (1-a) and (1-b) 
are approximated in design space by using response surface 
method with radial basis function. In the response surface con-
struction, sampling points are generated by using random 
Latin hypercube design, and corresponding objective function 
values are computed through FEA.   
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Fig. 1. PMLSM with 9 pole and 10 slot structures.  

TABLE I 
SPECIFICATIONS OF 9 POLE 10 SLOT PMLSM 

Item Specification 
Thrust force(N)/Detent force(%) 500/ ± 1.5 
Maximum speed (m/s) 3 
Speed command error ± 1.5 % 
Air-gap(mm) 1.0 
Primary Ampere·turn/phase 709.4 
 Lamination(mm) 50 
Secondary Height(mm) 4.0 

 Residual magnetic flux  
density (T) 1.23 
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Fig. 2.  Design parameters. 
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Fig. 5. Comparison of the performances.  

TABLE II 
DESIGN SPACE 

Specification  Parameter 
lower upper

X1 0.0 14.0 
X2 4.0 21.0 
R 20.0 40.0 
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Fig. 3. Architecture of Internet based sky@home grid computing framework.

III. GRID COMPUTING BASED ON INTERNET 

Among the whole process of optimization, most of the 
computing time is related with non-linear FEA for calculating 
objective function values. Even when the objective functions 
are approximated in design space by using response surface 
method, a lot of computing time should be given to the prepa-
ration of the sampling data, i.e. calculation of the objective 
function values at sampling points. Since the objective func-
tion values at sampling points are independent on each other 
and can be obtained through off-line FEA, the computing time 
can be dramatically reduced by utilizing grid computing sys-
tem based on internet.  

A grid computing system is generally composed of stan-
dardized Internet protocols such as TCP/IP, HTTP based web 
services, XML, etc. Such protocols have many advantages 
such as access to a number of computers in Internet, ease of 
communication, reliability, and firewall friendly. In this paper, 
the sky@home grid framework, which is developed by MEC 
Korea, Co. Ltd., based on Korea@home project [4]-[5], is 
adopted for the construction of a temporary and dedicated sys-
tem. In this system, there are, as shown in Fig. 3, three major 
elements; users which request scheduled job, a server which 
distributes the job to computing agents according to job 
scheduling, and computing agents which actually perform as-
signed job. The user registers a job by sending specific pro-
grams and required data to the server. Then the server distrib-
utes the job to computing agents, and gathers the calculated 
results. The overall flow of the grid computing suggested in 
this paper is summarized as follows:  

Step 1 - Generate sampling points for predefined objective function 
in design space. 

Step 2 - Request a job by sending FEA, mesh generation programs 
and all sampling point data to server,  
- Repeat for all sampling points 

~ [Server]: to a computing agent, assign a part of job using 
dynamic load balancing, and send programs and 
assigned sampling point data    

~ [Agent]: generate finite element meshes for the sampling 
points, and calculate the objective function val-
ues and return the results to server,  

~ [Server]: return all computed results to User, 

IV. OPTIMIZATION RESULTS AND DISCUSSION  
The suggested optimization algorithm is applied to an opti-

mal design of the PMLSM shown in Fig. 1 and Table I. In the 
optimization, 180 sampling points are generated by using ran-
dom Latin hypercube design, and 60 personal computers (PC) 
are employed as computing agent. Each computing agent per-
forms the calculation of objective function values for 3 sam-
pling points i.e., 102 times of non-linear FEA.  

Fig. 4 shows a comparison of the optimized shape of the 
proposed PMLSM with a conventional one having 12 pole 
and 9 slots. It can be seen that the proposed PMLSM has 
11.15(mm) longer armature than the conventional one. Fig. 5 
shows the detent and thrust forces of the proposed PMLSM 
together with those of conventional one. It is shown that the 
proposed PMLSM gives both smaller detent force and higher 
thrust force.  
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Abstract — This paper presents the equivalent 2D FEA method 
for back-EMF of high speed permanent magnet synchronous 
motor in order to consider a leakage flux in the end region of 
stator and air-gap. The presented method can be also applied to 
low speed SPMSM that has a small air-gap length. For the 
general PMSM having small air-gap provides precise 2D FEA 
result of back-EMF. However, for the high speed PMSM, due to 
large air-gap length flux density in the air-gap is not uniform 
along axis direction. Therefore, 2D FEA does not provide precise 
analysis results for design. Presented analysis method is applied 
to the high speed SPMSM using a can, and verified by 3D FEA 
and experimental results. 

I. INTRODUCTION

In maximum torque control of SPMSM, d-axis current will 
be zero (id=0) and at that time the electric torque equation is 
represented by (1). In equation (1), we can know the back-
EMF is very important parameter that governs a performance 
of motor. Therefore, it is important to estimate accurate back-
EMF . 

3
( )

2 2e q mf
PT i= ×Λ                                          (1) 

where, Te is electric torque, iq is q-axis current, P is number of 
pole, and Λmf is back-EMF constant for peak of phase voltage 
per mechanical angular velocity. Generally, SPMSM has 
small air-gap length, therefore, leakage flux in the end of 
stator is small, and therefore, there is no problem with back-
EMF analysis result. However, a can should be used for the 
high speed SPMSM, and this leads to the increase magnetic 
air-gap length and increased leakage flux in the rotor and 
stator end region [1]-[2]. In addition, for the margin of rotor 
dynamic, high speed motor generally has short axial length. 
Therefore, the effect in the stator end region becomes 
significant. And, the back-EMF analysis results by 2D FEA 
have significant difference with experiments from 10% to 3%.  
It is obvious that the 3D FEA provides more precise result. 
However, modeling and computation are expensive. Therefore, 
this paper presents the 2D equivalent analysis methods. 

II. MODEL AND ANALYSIS METHOD

A. Limitations of 2D FEA Model with Large Air-gap 
Fig. 1 shows the 2D FEA model of high speed SPMSM 

having relatively large air-gap comparing to low speed 
SPMSM. For the analysis of 2D FEA, it is assumed that the 
analysis model has symmetric along axial direction with  

Fig. 1. 2D FEA model of high-speed motor with can  

symmetric flux distribution. However, due to axial leakage 
flux, 2D FEA results shows higher back-EMF comparing to 
experiments. 

B. Equivalent 2D FEA Model and Assumption  
Fig. 2(a) shows a equivalent 2D FEA model corresponding 

to 2D FEA model, and derating coefficient of back-EMF is 
calculated by equivalent 2D FEA. In the Fig. 2(a), L is the 
stack length of stator and R is outer radius of rotor. 

For the equivalent 2D FEA, following assumptions are 
made. 
Firstly, the flux in tooth and yoke is not saturated. In general 
motor design, flux in tooth and yoke is designed to be not 
saturated. Therefore, the first assumption is reasonable. 
Secondly, there is linear relation between flux density on a 
surface of teeth in 2D FEA model and equivalent 2D FEA 
model. The second assumption is reasonable by the first 
assumption. In equivalent 2D FEA model, to block flux 
saturation on teeth and yoke, and to prevent leakage flux that 
can go to yoke directly, length of teeth, width of yoke and 
length to yoke from end of permanent magnet is modeled by 
3R, L and 2L for each other. 

Fig. 2(b) shows definition for line regions of (slot length)/2
and (surface of teeth). Line regions have the length that is 
equal to stack length of stator and y-axis position that is equal 
to length from zero point to half of slot length by radial 
direction and length from zero point to teeth for each other. 

. ( _ ) / 2

( _ _ )

avg slot length
derating

peak surface of teeth

B
EMF

B
=                            (2) 

2final derating d FEMEMF EMF EMF −= ×                         (3) 

(a)                                                   (b) 
Fig. 2. (a) Equivalent 2D-FEM Model, (b) Definition of line region for 

(surface of teeth) and (slot length)/2
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The derating coefficient of back-EMF by equivalent 2D 
FEA is represented by (2), and final estimated back-EMF is 
represented by (3).  EMFderating is derating coefficient of back-
EMF, Bavg.|(slot length)/2 is the average flux density at (slot 
length)/2 line region, Bpeak|(surface of teeth) is the peak flux density 
at (surface of teeth) line region, and EMFfinal is final estimated 
back-EMF by 2D FEA and equivalent 2D FEA. 

Fig. 3 shows flux density distribution at (surface of teeth)
line region. When Bpeak|(surface of teeth) is selected, flux density at 
(surface of teeth) should be saturated and has constant value at 
center of teeth by axis direction. If flux density is not saturated 
around center of teeth, stack length of stator(L) of equivalent 
2D FEA model could be modified to be longer more than 
actual stack length of stator to get more precise result. 
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Fig. 3. Definition of saturation flux density on surface of teeth (red line) 

C.  Analysis Model  
Fig. 4 and Table I show the cross-section and brief 

specifications of the analysis model-1. 
Fig. 5 and Table  show the crossⅡ -section and brief 

specifications of the analysis model-2. Especially, permanent 
magnet of model-2 is buried in magnetic shaft so that flux 
leakage and drop of back-EMF is larger. 

Fig. 4. Cross-section view of analysis model-1 

Fig. 5. Cross-section view of analysis model-2  

III. RESULT AND DISCUSSIONS

Fig. 6(a) and Fig. 7(a) show the comparison of back-EMF 
of model-1 calculated by 2D FEA, corrected by equivalent 2D 
FEA, and measured or 3D FEA back-EMF waveform for each 
analysis model-1 and model-2. And Fig. 6(b) and Fig. 7(b) 
show the flux density distribution of equivalent 2D FEA at the 
position of (slot length)/2 and (surface of teeth) along axis for 
each analysis model-1 and model-2.  

Table Ⅲ shows result of back-EMF peak by 2D FEA, 
corrected by equivalent 2D FEA, and measured or 3D FEA 
back-EMF waveform, and error of corrected back-EMF by 
experimentally measured or 3D FEA. 
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IV. CONCLUSION

High speed SPMSM with large magnetic air-gap has flux 
leakage more than low speed SPMSM in air-gap and stator 
because of can and larger mechanical air-gap for reducing 
eddy current loss in can and core loss of stator. 

In this paper, correction method of back-EMF is suggested 
by equivalent 2D FEA, and that is verified by experimental 
measurement or 3D FEA. And the result of suggested method 
is very precise with 0.5% error comparing to experimental 
measurement or 3D FEA.    
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TABLEⅢ
BRIEF SPECIFICATIONS OF ANALYSIS MODEL-2 

Analysis
Model 

2D FEA 
Equivalent  
2D FEA 

Experimental 3D FEA Error

Model-1 242.77V 234.52V 233.29V - 0.5%
Model-2 192.67V 175.52V - 176.43V 0.5%

TABLEⅡ
BRIEF SPECIFICATIONS OF ANALYSIS MODEL-2 

Item Value Item Value 
Pole number  2 Magnet Br (T)  1.100 @ 20℃
Slot number  12 Recoil Perm.  1.077 
Stator outer rad. (mm) 40  PM direction Parallel 
Magnetic Air-gap (mm) 3.9 Stack length (mm)  55 

TABLE I
BRIEF SPECIFICATIONS OF ANALYSIS MODEL-1 

Item Value Item Value 
Pole number  2 Magnet Br (T)  1.084 @ 20℃
Slot number  24 Recoil Perm.  1.077 
Stator outer rad. (mm) 78.6  PM direction Parallel 
Magnetic Air-gap (mm) 11.2 Stack length (mm)  130 
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A performance model of an induction motor for 
transient simulation with a PWM drive

Derek N. Dyck, Geoff Gilbert, and David A. Lowther 
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300 Leo Pariseau, Suite 2222, H2X 4B3, Canada 
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Abstract —The goal of this paper is the simulation of an 
induction motor driven with a PWM three phase bridge.  The 
approach taken here decouples the circuit simulation from the 
electromagnetic field simulation by first constructing a 
performance model of the machine using 2d finite element 
analysis.  The model consists of the complete matrix of the self- 
and mutual inductances of the stator windings and each of the 
rotor bars.  Skew is take into account by a correction applied to 
the winding-bar inductance entries in the matrix. 

I. INTRODUCTION

Induction motor design has more than a century of history, 
but recently a new approach has become necessary.  The 
advent of inexpensive power electronics allows complete 
control over the synchronous frequency and phase voltage, 
which gives better performance for variable speed drives but 
also gives rise to new design challenges.  Understanding the 
design trade-offs requires a multiphysics approach with 
cosimulation of the electromagnetic and circuit physics.  
However, the time scale is different for these two domains: the 
motor rotates at speeds on the order of 10-100 Hz, whereas the 
PWM bridge usually switches at frequencies on the order of 
10-100 kHz.  A time-stepping finite element analysis coupled 
to the circuit equations [1,2] has a prohibitive  computational 
cost if the time step is small enough to capture the switching 
waveform, since it requires on the order of 10000 time steps to 
simulate even one revolution of the rotor.  This cost is 
exacerbated if skew is present in the stator or rotor since this 
requires either the simultaneous solution of several 2d slices 
[3] or a 3d approach [4] which would be intractable. A 2d 
unskewed time-stepping approach with coupled circuit 
equations to a PWM three-phase bridge is presented in [5] and 
[6], but in both cases the authors do not give the switching 
frequency or the computational cost of the method. 

The alternative is to decouple the electromagnetic and 
circuit equations.  This necessitates a two step process, where 
the first step is to use finite element analysis (either 2d or 3d) 
to create a performance model of the motor, after which a 
time-stepping simulation of the circuit coupled to the 
performance model is performed in a second step.  The 
conventional equivalent circuit model is not suitable for the 
performance model, since it treats each phase independently, 
whereas in reality there is significant coupling between the 
phases.  One successful approach [7-9] uses a D-Q model for 
the rotor.  A similar approach [10] uses an impedance matrix 
model for the stator coupled with a harmonic decomposition 
of the rotor currents.  A more detailed comparison of these 
methods is given in [11]. 

II. METHOD

The approach introduced here uses finite element analysis 
to create a full impedance matrix model of the motor including 
the mutual inductances between rotor bars and also between 
stator windings and rotor bars.  This is in contrast to [10] 
which uses the impedance matrix only for the stator windings. 

A. Motor performance model 

The full motor impedance matrix can be decomposed into 
three inductance matrices and two resistance matrices.  In the 
following, a subscript capital “A” refers to the stator 
windings, while a lowercase “a” refers to the rotor bars.  The 
three inductance matrices are: LAA, a 3 x 3 matrix of the 
mutual inductances between stator windings, Laa, a Nbar x Nbar

matrix of mutual inductances between rotor bars, and LAa, a 
3 x Nbar matrix of mutual inductances between stator windings 
and rotor bars.  The two resistance matrices are: RA, a 3 x 3 
diagonal matrix of the resistances of each stator winding, and 
Ra, an Nbar x Nbar matrix of rotor resistances.  We also use  
LaA = LAa

T, and note that this matrix is actually a function of 
the rotor position.  Also note that the skin-effects due to the 
PWM will not be taken into account in this model, since it 
assumes that the current distribution in the rotor bars is fixed. 

B. State equations 

Given the inductance and resistance matrices, the state 
equations for the stator and rotor are: 

VA = RA·IA+LAA·dIA/dt +LAa·dIa/dt + dLAa/dt·Ia         (1) 
0= Ra·Ia + Laa·dIa/dt + LaA·dIA/dt + dLaA/dt·IA           (2) 

where IA is the vector of stator winding currents, Ia is the 
vector of rotor bar currents, and VA is the vector of stator 
winding voltages.  Solving the second equation for dIa/dt
gives: 

     dIa/dt = - Laa
-1 (Ra·Ia + LaA·dIA/dt + dLaA/dt·IA )        (3) 

Substituting this into the first equation and collecting factors 
of the current terms gives: 

VA = (RA- LAa·Laa
-1·dLaA/dt)·IA + 

        (dLAa/dt - LAa·Laa
-1·Ra)·Ia + 

 (LAA - LAa·Laa
-1·LaA)·dIA/dt                   (4) 

Equation (4) can be solved for dIA/dt in conjunction with 
the circuit equations of the three-phase PWM bridge. 

C. Matrix Structure 

The physics of the induction motor imply that there are far 
fewer unknowns in the model than the number of matrix 
entries.  This section gives the detailed structure of each 

592

PC2.4



11. ELECTRIC MACHINES AND DRIVES

matrix, which allows it to be represented more economically 
and, more importantly, determined more accurately. 

[2] Arkkio, A., Time-stepping finite element analysis of induction motors, 
Proceedings of International Conference on Electrical Machines (ICEM 
88), Pisa, Italy, September 12-14, 1988, pp. 275 - 280.  

[3] Ho, S.L., Fu, W.N., Wong, H.C., “Direct modeling of starting process of 
skewed induction motors using a multi-slice technique,” IEEE Trans. on 
Energy Conversion, vol. 14, no. 4, Dec 1999 pp. 1253 – 1258. 

A. Stator matrices 

Assuming a balanced symmetric three-phase winding, the 
stator inductance matrix LAA has only two independent values, 
the self-inductance and the mutual inductance between any 
two stator phases.  The stator resistance matrix RAA is 
diagonal with only one independent value. 

[4] D. N. Dyck, B. Forghani, C. S. Brett, J. P. Webb, D. A. Lowther, "A T-
Omega Finite Element Method for Arbitrary Motion in 3D," Proceedings 
of COMPUMAG 2005, Shenyang, China, June 26-30, 2005. 

[5] Ho, S.L.   Shiyou Yang   Rahman, M.   Wong, H.C., “Transient analysis 
of PWM inverter-fed AC motor drives using finite element method 
coupling with external circuit model,” Proceedings of the IEEE 
International Conference on Power Electronics and Drive Systems 1999
(PEDS '99), vol. 2, pp. 591-596. 

B. Rotor matrices 

By symmetry, and ignoring the effect of stator slots, the 
rotor bar-bar inductance matrix Laa is a symmetric Toeplitz 
matrix, which means it has only Nbars/2+1 independent values.    
Solving the state equations requires the inverse of Laa, which is 
also Toeplitz and symmetric, and can be precomputed before 
the circuit simulation. The rotor resistance matrix is 
tridiagonal (the off-diagonal terms are due to end-ring 
resistance).

[6] Jeong-Jong Lee, Hyuk Nam, Young-Kyon Kim, Jung-Pyo Hong, Don-
Ha Hwang , “Finite element analysis of 3-phase induction motor with 
PWM inverter,” Sixth International Conference on Electrical Machines 
and Systems, 2003 (ICEMS 2003), vol. 2,  pp. 744- 746. 

[7] Dolinar, D., De Weerdt, R., Belmans, R., Freeman, E.M., “Calculation of 
two-axis induction motor model parameters using finite elements,” IEEE
Transactions on Energy Conversion, vol. 12, no. 2, pp. 133 – 142. 

[8] Do-Wan Kim, Hyun-Kyo Jung, Song-Yop Hahn, “Equivalent circuit 
modeling for transient analysis of induction nmotors with three 
dimensional finite element analysis,” Intl. Conference on Electric 
Machines and Drives, 1999. (IEMD '99), May 1999, pp. 201-203. C. Stator-rotor matrix 

The mutual inductance matrix between stator winding and 
rotor bars is position dependent, but the entire matrix can be 
represented by a function of the angle between the stator 
winding and the rotor bar. Since this function is even and 
periodic, a Fourier cosine series can be used to represent it. 

[9] Alberti, L., Bianchi, N., Bolognani, S., “Finite element modeling of 
induction motor for variable speed drives,” 18th International 
Conference on Electrical Machines, 2008 (ICEM 2008), 6-9 Sept. 2008, 
pp. 1-5. 

[10] Williamson, S., Begg, M., “Analysis of cage induction motors - A 
combined fields and circuits approach,” IEEE Transactions on 
Magnetics, vol. 21, no. 6, pp. 2396 – 2399 

[11] Knight, A.M., “A comparison of time stepped finite element modelling 
methods for induction motor analysis,” International Conference on 
Power Electronics, Machines and Drives, 4-7 June 2002 pp. 375 – 380. 

III. DETERMINATION OF MATRIX VALUES

The matrix values are determined using a least squares fit 
to three time-harmonic finite element solutions.  The first 
solution is at the rated voltage and slip, and is quasi-nonlinear 
in that permeabilities are taken from the material B-H curve at 
the RMS field values.  The permeabilities are frozen for the 
other two solutions, the first of which excites one stator 
winding, the second excites one rotor bar. 

IV. RESULTS AND CONCLUSION

This model was validated by comparison to a time-
stepping transient simulation of a 12 slot, 13 bar, 4 pole 
induction motor at 1000 rpm and driven with sinusoidal 
voltages.  Comparison of the rotor bar currents (Fig. 1) shows 
that the model agrees well with the time-stepping simulation 
and also shows that it captures effects which are not present in 
the simpler D-Q models (the ripple on the bar currents).  It 
should be noted that each time step of the circuit simulation 
requires several matrix multiplies, however the entire 
simulation including the FE solves for parameter estimation is 
more than 100 times faster than the time-stepping transient FE 
simulation. Finally, Fig. 2 shows the waveforms from a 
simulation with a PWM three-phase bridge.  In conclusion it 
can be said that this model has been demonstrated to be 
accurate and compatible with a circuit simulator. 

Figure 1 – Comparison with conventional method showing  the current in 
       one rotor bar over 5 periods under sinusoidal excitation. 
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Abstract —This paper presents the design, analysis and test of 
a dual-rotor, dual-output-shaft, radial-flux, PM BLDC motor. In 
conventional air conditioners, two motors are usually used to 
drive the condenser and evaporator. This paper develops a motor 
with two rotors and two shaft outputs as an alternative. The 
motor has an inner and outer rotor with a stator in between 
which is toroidally-wound (such that the two rotors are 
synchronous). The power sharing on the two rotors is designed to 
meet the requirement of the condenser and evaporator. Finite 
element analysis (FEA) is employed to verify the design. A 
prototype is made and tested for performance evaluation. Surface 
(radial) windings for individual rotors to achieve asynchronous 
rotation between the rotors are also investigated using FEA.

I. INTRODUCTION

Some applications, such as the condenser and evaporator 
drives in an air conditioner, require two electric motors of 
different speeds and power ratings in the same unit for high 
efficiency operation. The power rating of the evaporator motor 
is less than that of the condenser motor. Usually, two 
independent motors of appropriate ratings are used. 
Alternatively, one motor with two side shaft outputs can be 
utilized although it may not meet the requirement for the 
different power ratings and cause low system efficiency.  

This paper aims to develop a radial-flux PM brushless DC 
motor with dual rotors, dual air-gaps and two output shafts to 
fit the demand of air conditioners, as illustrated in Fig. 1(a). 
Dual rotor induction machines were first reported by Kelly [1]. 
Qu and Lipo [2-3] discussed dual-rotor, radial-flux, toroidally-
wound PM machines. However, the machine combined the two 
rotors to form a joint shaft output. The characteristics of the 
individual rotors were not discussed and it is not suitable for 
the application here. Some comparative analyses for dual-air-
gap radial-flux machines and axial-flux machines were 
described in [4-6]. Both types of machines were designed to 
produce a joint shaft output.  

In this paper, the individual specifications of the inner and 
outer rotors are first determined from the load requirement of 
the condenser and evaporator in an air conditioner. With a 
toroidally-wound stator [2], the two rotors are designed to 
satisfy the two output power ratings. Hence, this configuration 
has a different design principle from that presented in [2-3]. It 
only has one control and allows the two rotors to run only at 
the same synchronous speed. To explore the feasibility of 
operating the two rotors asynchronously, the stator can be 
radially-wound in slots with two independent winding sets, as 
shown in Fig. 1 (b). In this paper, FEA is conducted to verify 
the design and a prototype machine is fabricated. Experiments 
are carried out to evaluate the machine performance.

II. MACHINE SPECIFICATIONS AND DESIGN

The dual-shaft (dual-rotor), radial-flux, permanent-magnet 
(DSRFPM) machine has a power sharing ratio for the rotors of 
62.5 % and 37.5 %. This is obtained from a total power rating 
of 80 W, as indicated in Table I. This specification was 
derived from the test data of an air conditioner manufacturer. 
At a speed of 1150 rpm, the two rotors should be able to 
separately offer 50 W and 30 W at 35 V. The outer rotor, with 
a larger diameter, is more suitable as the larger condenser 
drive while the inner one is used as the evaporator drive. When 
designing the DSRFPM motor, the output characteristics of 
both rotors can be regulated by other parameters such as 
magnet length, etc., to meet the specification (Table 1).  

Some air conditioners may require the evaporator to operate 
with variable speed. For the present study, the evaporator is set 
to run at 1150 rpm, 950 rpm and 850 rpm while the condenser 
remains at 1150 rpm.  

(a)                                                              (b) 
Fig. 1.  DSRFPM motor with (a) toroidal and (b) radial windings. 

TABLE I 
DSRFPM MOTOR SPECIFICATIONS

Parameter Value Parameter Value
Rated voltage [V] 35 Overall rated power [W] 80 
Outer rotor power [W] 50 Inner rotor power [W] 30 
Rated speed [rpm] (cond.) 1150 Rated toque [N-m] (cond.) 0.415

Rated speed [rpm] (evap.)
1150 (regulable
to 950, 850)

Rated toque [N-m]  (evap.) 0.249

Magnet (NdFeB) Br = 1.243 T; Hcb = 943kA/m; Hcj = 1469kA/m

The stator has 18 slots while each rotor has 12 poles. The 
effective length for both rotors is the same but the diameters 
are different. The torque of a motor can be expressed as:  

2T kD L= (1) 
where k is a constant for the electric and magnetic loadings, D
is the diameter of the rotor/air-gap, and L is the motor stack 
length. The ratio of the inner diameter to the outer diameter 
(Di/Do ratio) can roughly determine the load sharing 
characteristics for the two rotors. An appropriate selection of 
the length-to-diameter ratio (L/D ratio) allows the motor to be 
compact, hence increasing power density. The main 
dimensions of the design results are shown in Table II.  

Design of a Dual-Rotor Dual-Output Radial-Flux 
Motor for Variable Speed Air Conditioners
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TABLE II 
DESIGN RESULTS FOR DSRFPM MOTOR

Parameter Value Parameter Value
Outer rotor diameter  [mm] 79.9 Air-gap length [mm] 0.67
Inner rotor diameter [mm] 46.7 Magnetic length [mm] 3

Stack length [mm] 25.6 Air-gap Flux density [T] 0.92

(a) 

(b) 
Fig. 2. Asynchronous flux distributions for two different relative rotor 
positions at: (a) 1150 rpm/950 rpm and (b) 1150 rpm/850 rpm 

III. FINITE ELEMENT ANALYSIS

FEA is used to verify the design. The toriodally-wound 
arrangement (which has synchronous-speed rotors) was studied 
but is omitted in this digest. For the radially-wound stator (Fig. 
1), the speeds of the inner and outer rotors can be 
asynchronous. Example flux distributions are given in Figs. 
2(a) and (b) (1150 rpm outer - 950 rpm inner; 1150 rpm outer 
- 850 rpm inner); they show some flux interaction which varies 
with the relative position of the two rotors and their position 
with respect to the stator. Nevertheless, the flux linkage from 
the other side of the stator will still contribute to torque 
production with a noticeable but minor effect. In Fig. 3, the 
air-gap flux density for individual rotors at the three speed 
ratios is not significantly affected by the asynchronous speeds 
between the two rotors. Another simulation (result not 
presented here) also reveals that the peak flux linkage in any 
phase of the inner stator for the 1150 rpm – 850 rpm case 
drops by only about 10 % compared to the synchronous case. 
The performance drop seems acceptable when compared to the 
advantages gained from the machine configuration. This 
indicates that it is feasible to utilize radial windings in the 
DSRFPM machine for asynchronous operation. The complete 
simulation results will be presented in the final manuscript. 

The DSRFPM design was fabricated (Fig. 4) and tested to 
verify the design and FEA analysis. The verification proved 
successful. Detailed findings are omitted here; however, the 
synchronous operation of the rotors over a speed range is 
shown in Fig. 5, where the test power sharing matches that of 
the design. Also, the efficiency for both rotors is around 85 %. 

IV. CONCLUSION

A dual rotor, dual output shaft, radial flux, permanent 
magnet brushless DC motor has been developed for a variable-
speed air conditioner. The two rotors have been designed to 
meet the requirement for the condenser and evaporator under 

the machine configuration. FEA and experiments were carried 
out to verify the design. The design successfully achieved the 
requirement. Also, from the simulation, the performance drop 
due to flux interaction between the two rotors during 
asynchronous operation was found to be acceptable. From the 
results presented in this paper, a cost-competitive high-power-
density motor design, suitable for use in an air conditioner 
application, has been achieved. 
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Fig. 4.  Motor prototype 
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Abstract—An approach for synthesizing electromagnetically
excited vibrations in electrical machines is presented. The struc-
tural vibration responses for a machine’s generic set of force
excitation shapes are calculated. They are scaled by the operating
point dependent force excitation amplitudes and superposed. This
leads to a computationally efficient process. It allows to use
complex structural 3D models and to synthesize the vibrations
in the entire operating range of the machine. Furthermore,
the influence of different control strategies on the vibration
characteristics can be investigated. As a first result, measured
and synthesized vibration spectrograms of a run-up test on a
traction motor are presented.

I. INTRODUCTION

For electric or hybrid electric vehicles low acoustic emis-
sions of the electric traction motor are required. The acoustic
characterization of the machine needs to be efficiently inte-
grated into the design process. This addresses machine de-
signer (machine configuration, force shapes), control engineer
(operating point dependent currents) and mechanical design
engineer (housing, mounting).

The approach presented here can be summarized as follows:
In a first step, the force excitation for the entire operating range
of a machine is calculated using 2D electromagnetic FEM. The
vibration responses for the machine’s generic force excitation
shapes are calculated in a second step by 3D structural FEM
for the entire frequency range. Operating point dependent
machine vibrations are subsequently found by superposing
the vibration responses scaled by the operating dependent
force excitation. The high computational costs that typically
limit 3D models to selected frequencies as pointed out in
[1] can be overcome with the presented approach. Simulated
and measured run-up spectrograms are a first result and
underline the validity of this approach. The electromagnetic
noise components inherent to the machine design [2] are
considered. Switching frequency harmonics are currently not
included. The force decomposition and vibration synthesis is
performed using MATLAB. ANSYS is used for solving the
electromagnetic and structural FE models. SolidWorks is used
for CAD data handling.

II. ELECTROMAGNETIC FORCE EXCITATION

The investigation is based on a 15 kW interior permanent
magnet synchronous machine (IPMSM) for a hybrid electric
vehicle. The outer diameter is 30 cm and the stack length
7.5 cm. It is a 3 phase machine with 10 pole pairs, 24 stator
slots and q = 0.4 slots per pole per phase.

IPMSM for traction applications are typically current con-
trolled in terms of d- and q-axis currents (id, iq) [3]. The
force excitation has been calculated for the entire id/iq range.
It is mapped to the torque T and speed n range as defined a
control strategy. The effect of different control strategies will
be investigated.

The electromagnetic simulations here are performed stati-
cally using non-linear 2D FE models of a symmetry section of
the machine. The force distribution fd,M (α) in N/m along the
airgap is described by the superposition of excitation modes
m up to the M th spatial component as

fd,M (α) =
M

m=0

�
ad,m(t) · cos(mα)+bd,m(t) sin(mα)


, (1)

where α is the angle of a location in the airgap. Index d
denotes the direction, i.e. radial (’r’) or tangential (’t’). Skewed
machines are going to be investigated in a next step.

The time dependent amplitude factors ad,m(t) and bd,m(t)
are decomposed into their complex frequency components [4].

ad,m(t)  Ad,m(f) and bd,m(t)  Bd,m(f) (2)

Displaying Ad,m and Bd,m over the id/iq or T/n range al-
lows to judge and compare the force excitation characteristics
of a machine as will be shown in the full paper.

Due to the magnetic configuration of the machine in this
study, the frequency components of all modes are multiples
of 20fmech. The circumferential orders of the two dominant
excitation modes are 0 and 4. Mode 0 has frequency com-
ponents at 60, 120, . . . fmech while those for mode 4 are at
20, 40, 80, 100, . . . fmech with fmech being the shaft speed in
Hz.

III. STRUCTURAL VIBRATION RESPONSE

The 3D structural model is built directly from the machine
assembly’s CAD drawing. Non-critical structural details are
eliminated to decrease the model size. In this study, the model
consists of the machine stator in a test bench housing which
is flange mounted to a test bench.

Harmonic analyses based on the modal superposition
method using force excitations Funit,k are performed. Funit,k

represents a force excitation with a unit amplitude of 1 N and
a spatial distribution associated with one particular Ad,m or
Bd,m.

vunit,k(f) = H(f) ·Funit,k (3)
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where H(f) is the general structural transfer function and
vunit,k(f) the resulting surface vibration for one spatial force
excitation shape with unit amplitude.

IV. VIBRATION SYNTHESIS

For synthesizing the machine vibration v(f) at a frequency
f for a particular operating point, the K unit force velocity
responses vunit,k(f) from (3) are superposed with the complex
amplitudes Fk(f) of force excitation modes k as weighting
factors for this particular operation point,

v(f) =
K

k=1

vunit,k(f) · Fk(f). (4)

Fk(f) represents an Ad,m(f) or Bd,m(f) from (2).
Superposing the force contributions leads to low com-

putational costs for the full frequency range 3D structural
simulations (6 h in total on a 2 GHz Intel Core 2 PC with
3 GB of RAM for a 44405 element model and 345 frequency
points). The superposition can be performed within seconds.

The interface between electromagnetic force excitation and
structural dynamic response on the basis of force excitation
shapes is very flexible. Any type of model (FE, analytical,
etc.) and simulation (2D or 3D, static or transient, etc.) can
used. For example, an analytical force calculation may be used
as in [5] for an induction machine.

V. RESULTS

Using the above presented process of force excitation calcu-
lation, structural dynamic response calculation and vibration
synthesis, a run-up spectrogram is synthesized as shown in
Fig. 1. The force excitation uses mode 0 at 60 and 120fmech

and mode 4 at 20, 40, 80 and 100fmech with radial and tangen-
tial components. The simulated spectrogram is compared to a
measured spectrogram of this run-up in Fig. 2. For the sake of
comparability, higher electromagnetic frequency components,
low frequency mechanical noise components and switching
frequency harmonics are filtered from the measurement. Both
figures use the same dB-scale on the color-axis. The vibration
was measured at 4 sensor positions along the circumference
of the housing, evaluated as the power sum of these signals
and synthesized accordingly.

The simulated and measured spectrograms match well, in
particular in terms of the amplitudes of the simulated vibration.
The simulated eigenfrequencies tend to be higher than the
measured ones which is attributed to a too high stiffness for
the stator and the neglected winding mass in the simulation.
Structural tests (i.e. an experimental modal analysis [6]) or a
detailed analysis of material parameters (e.g. for laminations
[7] and windings; damping ratios) have not been performed
on the model. This data would further improve the results.

VI. CONCLUSION

A modular and universal approach for simulating electrical
machine vibrations is presented and validated. The given
results show that the vibration characteristics of a machine
can be synthesized without any measurement input, only based
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Fig. 1. Spectrogram of synthesized surface vibration for run-up from 0 to
6000 r/min
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Fig. 2. Spectrogram of measured surface vibration for run-up from 0 to
6000 r/min

on machine configuration, control strategy and engineering
drawings. The approach presented here can easily be applied
to other electrical machines or vibrating structures in general.
Skew or eccentricity effects as well as mechanical vibrations
and switching harmonics can be included. Further details and
results will be given in the full paper.
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Abstract — This paper presents the efficient calculation 
method for torque ripple of permanent magnet assisted 
synchronous reluctance motor (PMa-SynRM) by FEM analysis 
for load angle curve. On an assumption that the sinusoidal 
current of stator is controlled by inverter, torque ripple 
characteristic according to load angle is calculated by 
superposing load angle curves from each instantaneous three 
phase current. Therefore, the load angle range having minimum 
torque ripple as well as the average torque according to the load 
angle can be induced easily by the proposed method. Finally, 
torque ripple characteristics of PMa-SynRM with different rotor 
are analyzed. 

I. INTRODUCTION

Although PMa-SynRM is similar to interior permanent 
magnet (IPM) motor from an aspect of utilizing reluctance 
torque as well as magnetic torque, demerit of IPM motor 
compared with PMa-SynRM is the generation of large d-axis 
current at a high speed region which corresponds to field 
weakening control [1]. On the contrary PMa-SynRM has 
larger torque ripple due to its complex barrier structure. So, 
several papers for decreasing method of torque ripple have 
been presented [2]. The target of this paper is not the study on 
the reduction of torque ripple, but the study on the analytical 
calculation method for torque ripple. In this paper, we present 
an efficient calculation method for torque ripple of PMa-
SynRM without steady state analysis by FEM including 
motion equation. The magnitude of torque ripple as well as 
average torque according to load angle is changed.  

The paper presents torque ripple calculation method from 
an analysis of load angle curves with each instantaneous three 
phase current. We also perform the experiment for the 
verification of proposed method. We can find the load angle 
for minimum torque ripple with ease by proposed method. 
Moreover, we analyzed the torque ripple characteristics 
according to rotor types.  

TABLE I
SPECIFICATIONS OF ANALYSIS MODEL

Item Unit Specification 
Rated Voltage / Current V / A 12  / 10.5 

Speed rpm 1000
Power W 130

Stator Stack width / Outer diameter mm 40  / 86
Parallel Circuit  4
Series turns / phase  44 

Rotor Number of poles   4 
Outer diameter mm 46.2 
Rib Thickness mm 0.3 
Remanence of Magnet T 1.2 @ 20℃ 

 Mechanical air gap  mm 0.4 

II. ANALYSIS MODEL

For the best use of reluctance torque with PMa-SynRM, 
barriers in the rotor and stator slots are designed to have the 
maximum saliency ratio and maximum gap of d-axis and q-
axis inductance [3]. Three pieces of permanent magnets per 
pole are inserted in the middle of each barrier. Fig. 1 shows 
the picture of analysis model, and Table I shows the 
specification of size and rated operation point of the motor. 

Fig. 1.  Stator and permanent magnet rotor structure of PMa-SynRM.

III. TORQUE RIPPLE ANALYSIS BY LOAD ANGLE CURVES 

The general method for calculating load angle curve by 
FEM is as follows. We input 2  times of rated current into 
the region of coil A, and then we input the half times of rated 
current with minus sign into the regions of coil B and C. 
Secondly, we calculate the output torque according to rotating 
angle while rotating the rotor. This is somewhat adequate 
analytical method for load angle curve with small reluctance 
torque or no reluctance torque such as interior PMSM and 
surface PMSM. 

Fig. 2.  The analysis results of load angle curve by using static FEM.

Fig. 2 shows the load angle curve of PMa-SynRM. There is 
so much fluctuation in it. In this figure, we cannot calculate 
the average torque owing to load angle. This paper presents 
the effective calculation for torque ripple as well as average 
torque without dynamic FEM simulation of time domain. Fig. 
3 shows the balanced sinusoidal current waveform of three 
phase winding. The load angle curve in Fig. 2 is analyzed 
under the condition of dc current set at 1st state in Fig. 3. In 
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case the motor is operated with sinusoidal current controller, 
we can calculate another load angle curve with the dc current 
set at 2nd state. The remaining dc current set from 3rd to 7th

state also can calculate load angle curves in the same way. The 
dc current conditions are repeated again with interval of 30°. 
We can make synthetic load angle curve by superposition of 
seven kinds of load angle curves as shown in Fig. 4. 

In Fig. 4, average torque curve is calculated by averaging 
seven torque values at each load angle, and torque ripple 
curve is calculated by subtracting minimum torque from 
maximum torque at each load angle. We can find that torque 
ripple in the vicinity of 90° load angle is smaller than that of 
130° load angle. That is, the PMa-SynRM is usually expected 
to be controlled with 130° load angle for the maximum torque 
production. However, torque ripple is also increased at this 
load angle.  

In order to verify the proposed method, we perform the 
dynamic analysis by FEM with sinusoidal rated current 10.5A 
and load angles of 90° and 130°, respectively. Fig. 5 shows 
the results of torque ripple waveform and it gives good 
agreement with torque ripples by the proposed method. 

Fig. 3.  Condition of input currents for load angle curve analysis  

Fig. 4.  Torque ripple and average torque owing to load angle  

Fig. 5  Torque waveform according to load angles by dynamic FEM 
simulation

IV. EXPERIMENT AND DISCUSSION 

Fig. 6 shows the experimental set for load angle test of 
PMa-SynRM. The test result of load angle curve is shown in 

Fig. 7(a) when dc current set of 1st state is inputted in each 
winding and the rotor is rotated by dynamometer, we can see 
the fluctuation of torque according to the load angle is similar 
to Fig. 4. Fig. 7(b) shows the experimental results of torque at 

two kinds of load angle 90° and 130°. Vector inverter is used 

and the rated current is distributed to d-axis and q-axis current 
relevantly according to the load angle. The comparison results 
between analysis and experimental result of load angle curve 
is shown in Fig. 8for the verification of validity of the 
proposed method. 

Fig. 6.  Experimental set for load angle test

(a)  Load angle curve test by dc current source  

(b) Test results on the average torque and torque ripple at 90° and 130° load
angle by vector inverter 
Fig. 7. Experimental results.

Fig. 8. Load angle curve by analysis and experiment. (average torque)

V. CONCLUSION

In this paper, we proposed a calculation method for torque 
ripple of PMa-SynRM by superposing load angle curves 
calculated by FEM. Moreover, we calculate an exact load 
angle curve which represents the average torque at each load 
angle in case of a motor with large torque ripples. 

VI. REFERENCES 

[1] Niazi, P. and Toliyat, H.A., “Design of a low-cost concentric winding 
permanent magnet assisted synchronous reluctance motor drive”, 
Industry Applications Conference, Fortieth IAS Annual Meeting. Vol. 3, 
pp. 1744–1748, 2-6 Oct. 2005. 

[2] Ohnishi, T. and Takahashi, N, “Optimal design of efficient IPM motor 
using finite element method”, IEEE Transactions on Magnetics, Vol. 36, 
Issue 5, Part 1, pp. 3537-3539, Sep. 2000. 

[3] I. Boldea, T. Fukao, T.A. Lipo, L. Malesani, T.J.E. Miller and A. Vagati, 
Synchronous Reluctance Motors and Drives A New Alternative, IEEE 
IAS 29th Annual Meeting, Oct. 1994. 

599

 



On the Importance of Incorporating Iron Losses in
the Magnetic Field Solution of Electrical Machines

Emad Dlala, Anouar Belahcen, and Antero Arkkio
Helsinki University of Technology, P.O. Box 3000 FI-02015 TKK, Finland

Email: emad.dlala@tkk.fi

Abstract—This paper is aimed at studying the effects of iron
losses on the magnetic field solution and evaluating their impacts
on the overall performance of electrical machines. Because of
the complications associated with the inclusion of iron losses
into the magnetic field solution, the losses are usually computed
as a posteriori and hence omitted in the finite-element (FE)
analysis, leading to an inaccurate solution of the magnetic field
and other relevant quantities. We propose a comparative FE
analysis to assess the role of iron losses in defining the behavior
and operation of electrical machines.

I. INTRODUCTION

Recent developments in material modeling have helped
estimate iron losses using macroscopic models that can im-
itate the magnetization behavior quite accurately. From an
engineering point of views, modeling of the magnetization
curves (or the B-H loops) can be considered as the most
“accurate and simple” way to predict iron losses, including
the static hysteresis and dynamic eddy-current losses. Such
an iron-loss model based on modeling the loop shapes usually
entails the development of a hysteresis model incorporated into
Maxwell equations. The resulting magnetodynamic problem
is three-dimensional (3-D) in nature, but it can be reduced
to the solution of two 1-D penetration equations when the
edge effects are neglected. If the geometry of the device at
hand can be expressed by a 2-D instead of 3-D approach,
as is the common practice adopted for modeling an electrical
machine, then coupling the 2-D model of the machine with
the 1-D model can represent a somewhat complete analysis of
iron losses. In practical situations, even the latter simplification
cannot be sufficient to avoid a highly augmented computation
time and convergence problems resulting from solving the
two coupled nonlinear problems of the 1-D and 2-D models.
Another occurrence that complicates the numerical analysis of
an electrical machine and requires the employment of vector
hysteresis models is the rotation of flux density in significant
parts of the machine.

For all these reasons and perhaps more, researchers and
developers of finite-element (FE) software packages have
frequently given up the inclusion of iron losses in the field
solution. Their alternative to predict iron losses is the em-
ployment of much more simplified techniques as a posteriori
(usually based on the statistical loss theory), leading to the
avoidance of the hysteresis and eddy-current models while
using a lossless single-valued magnetization curve for the
field solution. In addition to their recognized inaccuracy, the

simplified techniques have no means to include the iron losses
into the field solution.

The third possibility that could be best suited for many
applications is to predict the iron losses by employing the 1-D
model as a posteriori. This would alleviate the computation
time and convergence problems, but will, on the other hand, af-
fect the accuracy to some extent that has not been well figured
out. It is therefore highly desirable to assess the significance of
incorporating the iron losses into the field solution of electrical
machines. To do so, we propose to conduct a comparative
analysis on two electrical machines using a simplified version
of the 1-D model, called the hybrid model, which also, like
the 1-D model, predicts the magnetization curves and loop
shapes but it is more stable and efficient. The hybrid model
will first be incorporated into a 2-D time-stepping FE code
and, second, be also implemented as a posteriori in the same
code while using a lossless single-valued magnetization curve
for the magnetic field computation.

The machines chosen for the analysis are an induction
machine and a machine-like device that has no air-gap (see
Fig. 1). In rotating electrical machines, the air-gap plays a
vital role in characterizing the behavior and operation of the
machine and could therefore depreciate the impacts of iron
losses.

II. MODEL FOR ANALYSIS

The constitutive nonlinear relation can be expressed by the
fixed-point method as follows:

H = νfB +M (1)

where H is the magnetic field strength, B is the magnetic
flux density, M is a magnetization-like quantity, and νf is a
constant, which is optimally calculated at each time-step.

If a 2-D approach is performed, applying the magnetic
vector potential (B = ∇×A) with the fixed-point formulation
(1) results in the following

−∇ · (νf ∇A) + σ
∂A

∂t
− J = (−∇×M)z (2)

where A and J are the z-components of the magnetic vector
potential and the electric current density, respectively. The
resulting 2-D FE equations are coupled with the voltage equa-
tions of the stator windings and rotor cage. The overall system
of equations of the FE equations is solved iteratively and
discretized in time using the Crank-Nicolson time-stepping
scheme [1].

11. ELECTRIC MACHINES AND DRIVES

600

PC2.8



(a) Induction machine (b) Machine-like device

Fig. 1. Flux distributions and geometries of the simulated machines.

The Mayergoyz model of vector hysteresis is applied in its
inverted version [1] as the magnetic flux density B is projected
over several directions eϕ specified by an angle ϕ to calculate
the magnetic field strength

H(B) =
1
Q

N

i=1

eϕi
Hϕi

(Bϕi
) (3)

where N is the number of directions, Q is a parameter to be
identified, Bϕi are the projections of B along eϕi .

Now depending on whether the iron losses are included into
the field solution or are only computed as a posteriori by the
hybrid model, the scalar function Hϕi(Bϕi) will be served by

Hϕ(Bϕ) = Hh(Bϕ) + Hed(Bϕ) + Hex(Bϕ) (4)

or
Hϕ(Bϕ) = Hsv(Bϕ) (5)

where in (4), the hybrid model is used to predict three
magnetic field strength components, Hh, Hed, and Hex, which
are respectively responsible for generating the iron hysteresis,
eddy-current, and excess losses. In (5), the function Hsv is
a single-valued curve and must be prepared by averaging the
major loop used by Hh in (4) to ensure that the same magnetic
properties are used (most importantly the saturation property).

The procedure is carried out as follows:
• When the iron losses are included into the field solution,

(4) is employed and subsequently used with (3), (1), and
(2) in the iterative, time-stepping solution.

• When the iron losses are not included into the field
solution and only computed posteriorly, (5) is employed
and subsequently used with (3), (1), and (2) in the
iterative, time-stepping solution. After the field solution
is obtained at each time-step, (4) and (3) are employed
to compute, posteriorly, H , and hence, the iron losses.

In the two cases, the iron losses are determined using the
Poynting vector theorem. It should be noted that even in
the case when the iron losses are not included into the field
solution, (3) was used to calculate H with the single-valued
function (5) in order to make sure again that the saturation
properties for the two cases of (4) and (5) are identical, even
though one would not normally need to use (3) in the case of
(5).

III. NUMERICAL RESULTS

The influence of iron losses on the field solution will be
evaluated here through the simulations of two electrical ma-
chines: a conventional squirrel-cage induction machine and a
machine-like device, which has a conventional stator topology
but no air-gap in it, as the rotor has not been punched out
from the stator sheets (see Fig. 1 and [2]).

Numerical results carried out at the synchronous speed are
shown in Table I. The results were obtained by feeding the
machines from a 50-Hz, 380-V sinusoidal voltage supply. The
time-stepping, 2-D FE simulations of the models introduced
in Section II were run until the steady-state was reached.

TABLE I
SIMULATIONS CARRIED OUT WHEN THE IRON LOSSES WERE
INCLUDED IN FIELD SOLUTION AND WHEN THEY WERE NOT

(a) Induction machine
Computed Iron loss Iron loss Relative
Quantity included not included error %

Terminal current [A] 22.76 22.56 − 0.87
Shaft power [W] -146.12 -26.58 −81.80

Stator winding losses [W] 107.48 105.54 −1.80
Rotor-cage losses [W] 8.43 6.22 −26.21

Iron losses [W] 483.13 497.05 +2.90
Air-gap flux density [T] 0.845 0.845 +0.00

Power factor 0.0289 0.0056 −80.62

(b) Machine-like device
Computed Iron loss Iron loss Relative
Quantity included not included error %

Terminal current [A] 0.75 0.26 −65.33
Stator winding losses [W] 1.60 0.20 −87.50

Iron losses [W] 365.76 391.69 +7.12
Air-gap flux density [T] 0.260 0.264 +1.54

Power factor 0.7125 0.0011 −99.84

The simulated results show that the inclusion of iron losses
into the field solution has influenced the physical quantities
of the two machines, especially, the machine-like device. The
air-gap has a dominant role in rotating electrical machines as
manifested in the current drawn by the induction motor, which
is mainly resulting in reactive power. The loss inclusion has
obviously increased the power factor in the two machines,
particularly in the machine-like device. The effect of the iron-
loss incorporation on the iron losses themselves is not that
significant in the two machines, it could be also because the
machines were fed from a voltage source.

The induction machine was deliberately run at the syn-
chronous speed in order to provide a basis for comparison
with the machine-like device. It is therefore interesting to
study the effects of iron losses on a loaded machine. The
type of supply, whether sinusoidal or non-sinusoidal, voltage
or current source, is of interest too. These issues will be dealt
with in the extended paper in which experimental results will
be provided to support the simulations.
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Abstract—This paper deal with the efficiency evaluations in a 

Synchronous reluctance motor(SynRM) Vs. PMASynRM using 

a coupled transient finite element methed(FEM) and preisach 

modeling, which is presented to analyze the characteristics under 

the effect of saturation and hysteresis loss. 

The focus of this paper is the efficiency evaluation relative to 

hysteresis loss, copper loss, etc. on the basis of load condition in a 

SynRM and PMASynRM. Computer simulation and 

experimental result for the efficiency using dynamometer shoe 

the propriety of the proposed method. 

I. INTRODUCTION 

In high-speed applications of a SynRM, hysteresis loss can 

become the major cause of power dissipation. Therefore, 

whereas in other kinds of machines a rough estimation of 

hysteresis loss can be accepted, their importance in a SynRM 

justifies a greater effort in calculating them more precisely.                   

The preisach model is now generally accepted to be a 

powerful hysteresis model, and is therefore intensively 

studied [1]-[3]. 

By adding a proper quantity of permanent magnets the 

torque density and power factor of SynRM can be greatly 

increased. It is called Permanent Magnet Assisted 

Synchronous Reluctance Motor (PMASynRM). 

But, it must be that PMASynRM is more saturated than 

SynRM, due to the additional magnet flux density. 

In this paper, a coupled finite element analysis and Preisach 

modeling for a PMASynRM and SynRM are presented and 

characteristics analysis and efficiency evaluations are 

performed under the effect of saturation and hysteresis loss. 

The focus of this paper is the efficiency evaluation relative 

to hysteresis loss, copper loss, etc. on the basis of load 

condition in a SynRM and PMASynRM. 

Also, TMS320C31 DSP installed experimental device and 

dynamometer are equipped and experiments are performed. 

Computer simulation and experimental results for 

efficiency show the propriety of the proposed a coupled a 

coupled finite element analysis and Preisach model. 

II. ANALYSIS METHOD 

A. Governing Equation of PMASynRM and SynRM 

 

Maxwell’s equations can be written as 

 

∇ × =
 

H J0                                                      (1) 

                    ∇ ⋅ =
→

B 0                                                         (2) 

  

B H M= +
1

0υ
   
 

B H M PM= +
→1

0υ
                         (3) 

 

 where, 


M , 


M PM are the magnetization of magnetic 

material and permanent magnet with respect to the magnetic 

intensity 


H .


M PM is removed in a SynRM. The magnetic 

vector potential 


A  and the equivalent magnetizing current 


Jm  , 


JPMm  are expressed as follows 

 
 

B A= ∇ ×                                                                   (4) 


Jm = υ0 ( )∇ ×


M , 


JPMm = υ0 ( )∇ ×


M PM                   (5) 

 

The governing equation derived from (1)-(5), is given by   

 

υ0 0( )∇ ×∇ × =
 

A J +


Jm +


JPMm                                 (6) 

 

B. System Matrix 

 

The system matrix can be written as  

 

[ ]{ } { } { } { }( ) ( ) ( ) ( ) ( )
K A F M Me e e e

PM

e
+ + + = 0             (7) 

 

The overall model is therefore described by the matrix as 

follows 

 

       [ ]{ } { } { } { }K A F M M PM+ + + = 0                        (8) 

 

C. Application of Preisach’s Model 

 

The magnetization M can be expressed as a scalar model, 

because the rotor rotates according to the input current angle 

synchronously. Therefore, it can be supposed that the 

domain in stator is an alternating field with reference to x axis 

and y axis. B and H of the domain in rotor is constant and is a 

rotating field, but it is an alternating field with reference to x 

axis and y axis, also [4]-[6]. It is natural that M, H which is 

calculated on the same axis has a same vector direction. 

 

M t H t d d( ) ( , ) ( ( ))=
≥ µ α β γ α β

α β αβ                           (9) 
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= − −+  µ α β α β µ α β α β( , ) ( , )
( )( )

d d d d
S tS t

 

 

A more convenient treatment of this model is also to 

substitute the Everett plane for Preisach’s one as shown in 

(10).  

 

E H t d d( , ) ( , ) ( ( ))α β µ α β γ α β
α β αβ=
≥                     (10) 

 

In the Everett plane, the distributions of M, which is 

accepted from experimental data of material S40 and ferrite 

magnet, are Gaussian ones. 

D. Computing Algorithm 

The simple iteration method is applied to the iteration loop 

for the rapid convergence and magnetization M is modificated.  

 

M M r M Mi i i i' ' ( ' ' )( ) ( ) ( ) ( )

+ += + +1 1

θ θ θ θ                                 (11) 

 

Where r is the relaxation factor and 0.5 is used in this paper.  

Flux density and magnetic field intensity, which are 

composed of x-axis and y-axis components, are calculated 

from FEM. Each component of magnetization is calculated 

independently from x-axis and y-axis magnetic field intensity 

with Everett density distribution. 

III. RESULT AND DISCUSSION 

In this case of PMASynRM and SynRM, the hysteresis 

responses of a teeth part’s element are shown in Fig. 3, 4 

when P.M. is 0.4[T] and current id is 5[A], 25Hz. 

It can be found that PMASynRM is more saturated than 

SynRM, but have similar hysteresis characteristics in spite of 

inserting a permanent magnet. 

 

. 
Fig. 1 B-H Curve in a teeth of SynRM  

 

 
Fig. 2 B-H Curve in a teeth of PMSynRM  

 
Fig. 3. Efficiency, current angle and runaway point of SynRM and 

PMASynRM according to load in experimental test 

 






















 













  


















 
Fig. 4 loss analysis in each load condition of SynRM 

 

Experimental Comparisons are given with output power 

and currents characteristics of normal Synchronous reluctance 

motor (SynRM) and those of PMASynRM according to load 

as shown in Fig. 3, respectively. And It is confirmed that the 

PMASynRM result in high output power performance than 

SynRM. Fig. 4 shows the each loss ratio to the total loss in 

each load condition of SynRM.   

Through the more detailed analysis, the various loss and 

efficiency evaluations of PMASynRM and SynRM will be 

represented in next extended version.
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Abstract — This work proposes the optimization of a Magnetic 
Bearing applied to a Ventricular Assist Device using the Pareto 
Archived Evolution Strategy. The optimization problem is to 
minimize the power consumption and rotor oscillation. The 
optimization of the control system was also taken into account. 
The magnetic force was computed by the Finite Element Method 
to allow a dynamic simulation of the magnetic bearing.  

I. INTRODUCTION

The Ventricular Assist Device (VAD) and similar 
equipments that provide assistance to patients with 
cardiological diseases plays an important role in Health. Based 
on information from Brazilian Health Ministry, heart diseases 
represent about 27% of all deaths caused by pathological 
reasons in 2002. Previous studies about one degree of freedom 
magnetic bearing [1] shows that high consumption of energy 
makes unviable the implantation of a VAD for long periods. 
The magnetic bearing control system should be highly 
reliable. 

The objective of this work is to elaborate a methodology to 
perform the optimization of magnetic bearing in order to work 
in an efficient and stable condition. Therefore, a process that 
uses the Finite Elements Method (FEM), a bearing dynamic 
model to evaluate the mechanical solution and an algorithm to 
perform the optimization, using the Pareto Archived Evolution 
Strategy (PAES), have been developed. The obtained 
solutions were used to improve the performance of an existing 
prototype.  

II. PROBLEM DESCRIPTION

The magnetic bearing suspension provides to the rotor the 
elimination of the attrition by magnetic forces. The active 
magnetic bearing, as shown in Fig.1 [2], has a control circuit 
with a sensor on the base of the rotor. Thus, the circuit 
increases or decreases the current of the coils connected on 
series to control the force and the position of the rotor. Only 
the rotor will have contact with the blood. 

A. Bearing dynamic model

A simulation using FEM software has been done, and the 
resultant forces on the rotor were computed as a function of 
several parameters as position, number of turns and current. 
Theses forces values allow calculating the position of the rotor 
as a function of time, when an external mechanical 
perturbation is present on the bearing. 

A control circuit is then necessary, as presented on 
prototype and a proportional-derivative control was adopted in 
our simulations. In this model, a reference current (Iref) is  

Rotor 

Magnets 
φ6x6 (mm) 

Magnet φ13x6 
(mm) 

Sensor 
φ6 (mm) 

Airgap 
φ8 x 45 
(mm) Solenoid 

40 x 29 x 24 
(mm)  

Thickness 
2 (mm)

Steel Disc 
φ15 x 2 
(mm) 

Core φ8x35 
(mm) 

40 
(mm) 

adopted to make the resultant forces null. The current is 
adjusted 300 times per second to keep the rotor stable even 
with external forces actuating over it. 

For each pair of numbers of turns N1 and N2 for the 
electromagnets, a different reference current (Iref) value is 
necessary to sustain the rotor. Hence, in order to not calculate 
the reference current at the beginning of each simulation, a 
database, which determinate these current as a function of N1

and N2 has been done and the current is calculated by 
interpolation of these points. 

The Proportional-Derivative control circuit parameters Kp 
and Kd should be also evaluated. After some computer 
experiments we have observed that for a given ratio N1/N2, is 
possible to determine Kp and Kd, which provide a minimum 
overshoot and settling time.  

B. The Optimization Problem

The standard PAES, as proposed in [3] were adopted with 
some adaptations to include the constraints existing on magnet 
bearing design. The objective functions are to minimize the 
average power consumption during the simulation and to 
minimize the rotor oscillation. In order to measure this 
oscillation, we sum up the squares of the differences between 
the actual rotor position and the nominal rotor position. In this 
work, we will call it Σ(Displacement)2. The problem has the 
following constraints: the coil region for the upper and for the 
lower electromagnet was fixed; the ratio between coil volume 
and copper volume was defined as 0.80, the wire section 
varies from 1 to 39 AWG, the wire section was defined to 
occupy all available volume and the position (x) is constrained 
to a maximum value and a minimum value. The integration of 

Optimization of Magnetic Bearing applied to a 
Ventricular Assist Device 

Everton Shigueaki Yoshida, Luiz Lebensztajn 
Departamento de Engenharia de Energia e Automação Elétricas da EPUSP 
Av. Prof. Luciano Gualberto, tr. 3 nº380, 05508-970, São Paulo-SP - Brazil 

everton.yoshida@gmail.com, leb@pea.usp.br

Fig.1. Magnetic Bearing and Rotor Structure

604

PC2.10



11. ELECTRIC MACHINES AND DRIVES  C) ACTUATORS 

the electromechanical problem with the optimization problem 
could be understood on Fig.2 

Fig.2 . The Optimization Process 

III. RESULTS

The first step to solve this problem is to correlate the 
reference current and the parameters of the PD control system 
with respect to N1 and N2. Fig 3 and.4 show the used data. 

Fig 3 Reference Current as a function of N1 and N2
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Fig 4 Parameters of the PD Control System as a function of the ratio N1/N2

Due to the complexity of the dynamic model, the 
computation of the power consumption and rotor movement in 
function of time spend about five seconds for each pair (N1,
N2). The final result was obtained after 36000 iterations or 
five hours of processing. Fig. 5 is a zoom of the Pareto-set 
generated by PAES with some points generated by an 
exhaustive search. The nondominated solutions have a trend 
toward results between 3.7 W and 3.9 W and 
Σ(Displacement)2 about 50mm2.

Fig. 6 represents the position and the current for one of the 
non-dominated solution. It is possible to observe the reaction 
of the bearing for the 4 external perturbations, except for the 
initial condition, they are respectively, 20N upward, 20N 
downward, 0 to 30N upward and 0 to 10N downward. Theses 
same perturbations were applied in all generated solutions and 
the Average Power Consumption and the Σ(displacement)² 
were computed. 

Fig.5 Pareto Set – PAES and Exhaustive Search  

Fig 6. Position and current as a function of time for a non-dominated solution 

IV. CONCLUSIONS 

In this work, a multi-objective optimization of a magnetic 
bearing was performed. Besides the improvement suggested to 
the device, it has also changed some process on PAES 
algorithm, adapting it to handle with a constraint problem. 
Using the dynamic model of the bearing, the FEM simulation 
was only necessary in the beginning to obtain the Force x 
Position curve, while varying the number of turns and the 
current. Therefore, it was possible to apply the methodology 
to the magnetic bearing problem, obtaining the optimal values 
for its construction. This methodology has proved to be 
potentially appropriate and applicable to the optimization of 
an electric device. 
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Abstract —This paper describes the design process of a high 
performance 3-phase 3.7kW 4-pole line start permanent magnet 
synchronous motor. The starting torque characteristics of line-
start with high inertia load were optimized by studying the 
width and height of permanent. Time-step two-dimensional 
finite element analysis was utilized to perform electromagnet 
simulation. The dynamic characteristics are described and 
compared with those of the squirrel cage induction motor. 

I. INTRODUCTION

The induction motors have been widely used in industry 
application. But in recent years, the high efficiency motors 
are demanded in a large variety of industrial products for 
energy save. The line start permanent magnet synchronous 
motor (LSPMSM) has a high efficiency and an advantage in 
constant speed operation regardless of the effect of load 
variation, presenting an interesting alternative for induction 
motors. It has permanent magnets (PMs) buried bellow the 
squirrel cage in rotor, thus operates in steady state as 
conventional interior permanent magnet synchronous motor 
(PMSM); the squirrel cage is used for line starting on a 
conventional AC power source and damping of dynamic 
oscillations at fast load changes. Thus it combines the 
advantages of induction motor (robust construction and line-
starting capability) and PMSM (high efficiency, power factor 
and torque density). So, characteristics of LSPM have very 
complex characteristics until the synchronization and if the 
design is not suitable, the LSPM cannot be synchronized [1]-
[2]. 

II. DESIGN PROCESS

Through a combination of optimization methods and 
standard design techniques, the efficiency of an induction 
motor is increased by 3.8%. This motor is then used as basis 
for the design of a line start permanent magnet synchronous 
motor. Fig.1 shows the configuration of V-shape magnet 
LSPMSM and rotor of prototype. The performance of the 3-
Phase 3.7kW 4-poles LSPM was simulated by dynamic finite 
element analysis and was compared with the squirrel-cage 
induction motor in Table 1. At full load, the rms phase 
current  decreased from 7.6A to 6.4A, and the efficiency 
increases by 10%. 

Fig. 1. Configuration of V-shape magnet LSPMSM and rotor of prototype. 
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A LSPM, which presents good steady state performances, 
may have problems to start and synchronize, especially with 
high inertia load [3]. The start can fail because of a too high 
braking torque in comparison to the asynchronous torque. 
The breaking torques (due to permanent magnets and flux 
barriers) in the asynchronous operation region, which mainly 
depends on the placement and dimensions and the value of 
energy product of PMs, has principle effect on the 
synchronization capability. The design of high performance 
motor should make compromise between an adequate staring 
characteristic in the asynchronous operating region and 
power rating and efficiency in the motor's synchronous 
operating region. 

Fig.3 shows the simulation results of the characteristics of 
LSPMSM braking torque with different height and width of 
permanent magnet. The nonlinear relationship between 
leakage flux and the permanent magnet thickness is shown in 
Fig.3 (a). Torque characteristics changes a lot with different 
saturation degree between air duct and squirrel cage bar. The 
linear relationship of braking torque with difference 
permanent magnet width is shown in Fig.3 (b).  

Table1 shows the result of simulation and experimental 
comparison between induction motor and LSPM. The 
efficiency of LSPM is 10% higher than induction motor 
according to experimental test. Performance experimental 
results and FEM result are matched, which verifies the 
validity of this analysis. 

III. CONCLUSIONS

The design process of a high performance 3-phase 3.7kW 
4-pole line start permanent magnet synchronous motor was 
describes in this paper. Based on a high efficiency induction 
motor, the prototype was designed and analyzed by using 
time-step finite element method.  The efficiency of LSPM is 
10% higher than induction motor according to experimental 
test. In order to improve the starting capability, models with 
permanent magnet of different widths and heights were 
simulated. It could found that the shape of permanent magnet 
embedded under rotor bar has a large influence on braking 
torque.  
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(a)

(b)
Fig. 3. Comparison of breaking torque characteristics according to the change 

of the magnet shape: (a) braking torque curves according to thickness. (b) 
Braking torque curve according to width. 
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Induction motor LSPM 
Items 

Simulation Experiment Simulation Experiment

Input voltage 
[V] 

380 380 380 380 

Input current 
[A] 

8.2 7.6 6.5 6.4 

Rated speed 
[rpm] 

1,730 1,760 1,800 1,800 

Rated torque 
[Nm] 

20.4 20.0 19.6 20.0 

Efficiency 
[%] 

84.4 86.3 94.3 94.1 

Power factor 0.81 0.80 0.91 0.90 

Output [W] 3,700 3,686 3,700 3,768 
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Abstract — This paper shows a transverse flux rotary machine 
(TFRM) with laminated stator cores, which consists of two part 
laminated silicon steel cores in which the direction are 
perpendicular to each other. Although the TFRM is laminated to 
reduce eddy current losses, it exhibits rapidly increasing core 
losses as frequency increases. To solve the problem, slits are 
introduced on the stator core. The effect of the slits is confirmed 
experimentally first, then the effect is explained by 3-dimensional 
finite element analysis of eddy current losses in nonlinear 
laminated cores.  

I. INTRODUCTION

Transverse Flux Machines (TFM) have a 3-dimensional 
magnetic flux path, and due to this characteristic, fabrication 
with silicon steel cores can be difficult. [1] and [2] present 
stators with silicon steels, in which the silicon steel pieces are 
laminated circumferentially. Since TFMs have 3-dimensional 
flux path, either the stator or rotor has to be skewed; however, 
for manufacturing the stators, it is difficult to bend the 
laminated stator core pieces. 

In the prototype transverse flux rotary machine (TFRM) of 
this paper, in order to ease the manufacturing process with 
laminated stator core and to eliminate bending, the TFRM is 
manufactured with two part laminated stator cores in different 
directions. Although the lamination is incorporated to reduce 
eddy current losses, it exhibits increasing core losses as 
frequency increases. To solve the problem, slits are introduced 
on the stator core.  

This paper presents the slit effect with both experimental 
and analysis results. First, the configuration of the prototype 
TFRM is introduced in section II. And to show the slit effect, 
the experimental condition and the results are presented in 
section III. Then, the effect is explained by 3-dimensional 
finite element analysis (FEA) of eddy current losses with 
nonlinear laminated cores in section IV.  

Usually, lamination is not modelled in order to reduce 
computation time in the FEA process. In this paper, however, 
the lamination is expressed in the analysis to show the high 
eddy current loss even on the laminated core. To reduce the 
number of elements and save the computation time, the 
lamination is expressed with a few layers and with boundary 
condition instead of air-gap between layers, and electro-
motive force (EMF) is calculated by source variation without 
motion instead of rotor movement. 

II. A TFRM WITH LAMINATION STATOR CORE

Fig. 1 shows the configuration of a permanent magnet 
(PM) type, direct drive TFRM. A brief specification including 

magnetic material information is listed in Table 1. The PMs 
on rotor are arranged in circumferential direction and 
magnetized as shown in Fig. 1 (b) to concentrate the magnetic 
flux to the rotor core. Although such a construction is good 
for producing high power density, skewing the rotor to allow 
for the 3-dimensional flux path can be difficult. Therefore, the 
stator is divided into two sections that are laminated in 
different directions. The inner and outer sections are a yoke 
and teeth, respectively, and the laminations of two sections are 
perpendicular to each other as shown in Fig. 1 (b). 
Additionally, the outer teeth core is divided into upper and 
lower parts, and the lower teeth are shifted by a half pole-pitch 
with respected to upper teeth to create skewing effect.  

Fig. 2 shows flux path on cross section of L-L’ in Fig. 1 
(b) when current flows in counter-clockwise. From the Fig. 2, 
it is clear to see that both inner and outer laminations 
accommodate the flux flow and do not interfere. The 
lamination also intends to reduce core losses.  

(a) Configuration of a TFRM          (b) one phase rotor and stator 
Fig.1. Conceptual drawing of a prototypal TFRM 

Fig.2. Flux path on the cross section area along L-L’ 

Table 1. Specifications of a Prototyp TFRM 

Stator
Material S23 (Silicon steel, Lamination core) 

No. of Phase 2 phases (phase A and phae B) 

Mover Material 
Somaloy 550 (Soft magnetic composite 
(SMC) core) + Ferrite PM

Slit Effect on Laminated Stator Core in 
Transverse Flux Rotary Machine 

Ji-Young Lee1, Seung-Ryul Moon1, Do-Hyun Kang1, and Jung-Pyo Hong2

1Korea Electrotechnology Research Institute, Changwon, Gyeongnam, 641-120, Korea 
2Department of Automotive Engineering, Hanyang University, Seoul, 133-791, Korea 
jylee@keri.re.kr, srmoon@keri.re.kr, dhkang@keri.re.kr, and hongjp@hanyang.ac.kr  
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III. EXPERIMENTAL RESULTS

Fig. 3 shows the original stator configuration without slits 
and modified stator configurations with different numbers of 
slits. Slits are only on the outer teeth core. Fig. 4 shows the 
experimental results of EMF of different configurations as a 
function of electric frequency under no load condition. The 
EMF value is normalized with the base value being the EMF 
at 50 Hz. 

When the stator has no slit (Ns=0), as shown in Fig. 3 (a), 
the EMF is highly non-linear as shown in Fig. 4. This result 
indicates that the core loss of the prototype TFRM is 
increasing rapidly as frequency increases. 

While experimenting to reduce core losses, slits are 
inserted as shown in Fig. 3 (b), (c), and (d), and the 
experimental results show that the slits on teeth core improve 
the problem. As shown in Fig. 4, as the number of the slits 
increases the EMF characteristic become more linear. This 
experimental result indicates that the core losses are reducing 
with increasing the number of slits. 

IV. 3-DIMENSIONAL FEA OF EDDY CURRENT LOSSES

The prototype TFRM exhibits high core losses in spite of 
laminated core construction. The experiment indicates that the 
slits reduce the core losses, and to confirm and understand the 
slit effect from experimental results, the original and modified 
conditions are analyzed. 

Three models are considered for analysis. First is modeled 
without lamination as shown in Fig. 5 (a). Second and third is 
modeled with lamination as shown in Fig. 5 (b); however, the 
second does not include slits, while the third model includes 
slits. 

(a)  Original stator configuration (Ns = 0) 

         (b)  Ns = 1                    (c) Ns = 4                      (d) Ns = 8 

Fig.3. Stator configuration depending on number of slits (Ns) 

To explain the slit effect, eddy current losses in nonlinear 
laminated cores of the three models are computed by 3-
dimensional FEA. For effective computation, transformer 
EMF is calculated instead of motional EMF by time varying 
current. Furthermore, the lamination is modeled by boundary 
condition instead of air-gap modeling between layers [3].  

From the FEA, the eddy current state on the stator cores 
and the quantity of core losses and magnetic flux are 
compared among the three models. The analysis results will be 
presented in extended paper. 

Fig.4. Normalized EMF from experimental results for electrical frequency 
variation 

     (a) model without lamination                   (b) model with lamination  
Fig.5. Analysis model for 3D FEA 
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Abstract — In this paper a design and analysis method for a 
single-phase written-pole (WPM) is proposed. The magnet 
properties for a WPM are determined by using FEM. With the 
determined magnet, a steady state analysis is carried out with an 
equivalent circuit based on a symmetric field method. 
Experimental tests are also performed and compared with 
simulation results. 

I. INTRODUCTION

A written-pole motor (WPM) is a very special synchronous 
motor because it has an exciter in stator which is a 
magnetization fixture [1]-[3]. A WPM also has self-starting 
ability owing to conducting bars and end-ring on a rotor, like 
an induction motor. The interesting feature of a WPM is such 
that the magnet on a rotor loses its magnetism by field of stator 
during start-up and it regains the magnetism through action of the 
exciter just before synchronization, which brings an advantage of 
no braking torque and high efficiency simultaneously. 

Authors previously published a study on design of exciter 
pole [3]. In this paper, for a next procedure, methods for 
design and characteristic analysis of a single-phase WPM are 
suggested. At first, the design procedure for magnet using 
FEM is proposed, and then the analysis method for a steady 
state is given by using a symmetric field method.  

II. DESIGN AND ANALYSIS METHOD OF A SINGLE-PHASE 

WPM 

Fig. 1 shows the structure and circuit of a WPM which 
consists of a stator and a rotor. As shown in Fig. 1, the stator has 
an exciter pole which is driven by a common voltage source just 
before the rotor gets into synchronization.  

V

Switch

main

aux.

Exciter 

Magnet layer 

V

Switch

main

aux.

Exciter 

Magnet layer 

Fig. 1.  A single-phase WPM

A. Design of Magnet Layer 

For a WPM to normally operate, the magnet should be 
demagnetized as much as possible during start-up. Conversely 
it should not be demagnetized up to the maximum load after 
re-magnetization by exciter operation. Thus the coercive force 
of magnet is a very important factor for design of a WPM. In 

this study, a coercive force is searched through FE-analysis 
for an Nd-bonded magnet which has a flux density of 0.7T 
and a thickness of 1.5mm. In order to determine it, first, the 
field intensity in the magnet is calculated for the maximum 
load condition in synchronous operation without considering 
irreversible demagnetization. In other words, the linear B-H 
curve is used in the analysis, and a point a is found in Fig. 2. 
In turn, by analyzing field intensity during start-up, the point b
is also found.  

B[T]

knee

Load line with TmaxLoad line in 
Start-up

a
b

HaHb HkneeH[A/m]

Practical curve

Linear  curve

Br

Fig. 2. Properties for magnet for a WPM

Two simulations above are respectively performed, and 
both the maximum fields in the magnet obtained by 
simulations are depicted according to angular positions in Fig. 
3. From the results, we can see that the point a is near -
400kA/m and the point b is near -500kA/m. So we determine -
450kA/m for the knee point and -500kA/m for coercive force. 

-900
-800
-700
-600
-500
-400
-300
-200
-100

0

0 60 120 180 240 300 360

rotor angle [degree]

fie
ld

 in
te

ns
ity

 [k
A

/m
] Hmax in synch. motor mode (at max. load condition)

Hmax during start-up

Ha

Hb

Fig. 3. Magnetic field intensities on magnet (without consideration of 
irreversible demagnetization) 

To calculate how much demagnetization occurs in start-up, 
the no-load starting characteristics are simulated with FEM 
considering the irreversible demagnetization. Assuming that 
the initial magnet has been fully magnetized with 0.7T, the 
residual induction after start-up is calculated as shown in Fig. 
4. It shows that most part of magnet is demagnetized above 

Design and Analysis of a Written-pole Motor 
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50% of the initial state.  
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Fig. 4. Residual induction of magnet after start-up 

B. Steady State Analysis 

As stated above, the exciter in Fig. 1 operates and 
magnetizes the magnet just before synchronization. The 
design of an exciter pole and winding was presented in 
previous study [3]. The magnetization waveform is plotted in 
Fig. 5 and the back EMF can also be expected as 160V (RMS).  
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Fig. 5. Residual flux density in magnet (Simulation) 

In operation in synchronous speed, steady state 
characteristics can be obtained by using time-step FEM but it 
requires very huge computation times. Therefore, in this study, 
the symmetric field method is introduced to analysis of a 
WPM in steady state. With the symmetric field method, the 
stator circuit is depicted in Fig. 6 where the subscript p and n
mean positive and negative components respectively. Using 
superposition theory, the circuit including a rotor part is 
represented in Fig. 6 where E(d) means a back EMF in the 
load angle d. The calculated torque, power distributions and 
efficiency in steady state characteristics are shown in Fig. 8.  

Designed WPM is actually fabricated and back EMF is 
measured after exciter operation as shown in Fig. 9. The 
measured voltage (153V) coincides with the simulated value 
(160V). Other measured characteristics such as efficiency and 
maximum torque will be reported in the full paper.

jIp-jIn

Z1

Ip+In

aVa

Vp Vn

jVp

-jVn
Turns ratio 1:1

Vm

a2Z1a

Fig. 6. Symmetric fields in a WPM
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jaVp

Z1a

a:1

a:1

-jaVn

Va

(jIp-jIn)/a

(a) main winding                                 (b) auxiliary winding 
Fig. 7. Equivalent circuit of WPM based on symmetric field theory 

(a)  torque characteristics   (b) power distribution and efficiency 
Fig. 8. Characteristics (simulation) 

         

magnet

end-ring

magnet

end-ring

 

(a) stator                                 (b) rotor 

153V(RMS) in main winding

main winding auxiliary winding

(c) back-EMF at synchronous speed 
Fig. 9. Fabricated WPM and back-EMF 
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Abstract — A calculation method and an experiment method 
for the d- and q-axis inductances of interior PM synchronous 
motor are introduced in this paper. The calculation method is 
based on the torque and energy relationship, which are 
calculated by the magneto-static field finite element analysis. And 
the experiment is a standstill method. The motor is excited by 3-
phase AC voltage source. The measured 3-phase voltage and 
current will be used to calculate the inductances. Both the 
calculation and experiment methods consider the saturation and 
couple-magnetization effects, i.e. the inductances are described 
with the current magnitude and vector angle. Finally the 
calculated and experiment results will be verified by the results 
of conventional method.

I. INTRODUCTION

The dominant influences in the correct prediction of the 
steady-state characteristics and precise vector control for the 
interior PM synchronous motor (IPMSM) are the d- and q-
axis armature inductances [1]. However, due to the nonlinear 
electromagnetic characteristics including the saturation and 
cross-magnetization effect in the rotor of IPMSM [2], the d- 
and q-axis armature inductances of IPMSM become much 
difficult to be calculated accurately.

So far, the most arguments on the inductance calculation 
methods of IPMSM concentrate on three finite element 
methods (FEM). They are frozen permeabilities method, flux 
linkage vector method, and flux-linkage perturbation 
method.[3] Unfortunately, however, there is no special d- and 
q-axis calculation module in the most commercial FEM 
software. And making an associated program is not easy for 
usual users. A general method which is suit for all FEM 
software becomes more meaningful. Based on this issue, a 
novel d- and q-axis inductances calculation method is 
proposed in this paper. It uses the magnetic energy and 
average torque which can be easily calculated by any 
commercial FEM software to calculate the inductances. This 
method not only can consider the saturation and cross-
magnetization effect like the previous numerical methods, but 
also can easily eliminate the influence of space harmonics. 

Considering the practical requirements, this paper 
proposes a relative low cost, simple and tradeoff inductance 
measurement method. It measures the inductances in standstill 
condition, in order to avoid utilization of dynamometer. It uses 
a 3-phase low voltage AC source so that the vector controller 
and inverter are not required. Hence, it is very suitable for 
normal laboratory experiment. The most meaningful point is 
that this method still can consider the saturation and cross-
magnetizing effect. In this paper, the principle of this method 

will be introduced. And then, based on the deducted equations, 
the experiment scheme and the processing methods of 
measured data will be proposed. After briefly introduce a 
conventional inductance calculation method which has been 
verified by previous literatures, the results from the proposed 
calculation and measurement methods will be compared with 
those of the conventional method. These two inductance 
evaluation methods will be suitable for most software and 
hardware environments. 

II. PRINCIPLE OF INDUCTANCE CALCULATION METHOD

A. Magneto-static field FEA 
The 2D magneto-static field FEM is used to calculate the 

magnetic field distribution and energy with the known current 
waveforms. Its governing equation, i.e. the nonlinear Possion 
equation, is described in (1). 

( ) ( )0υ υμ× × = + ×� � �A J M                                      (1) 

where A: magnetic potential vector, 
J: current density vector, 
M: magnetization vector, 
υ: reluctivity, 

B. Flux linkage vector method 
Flux linkage vector method has been verified by the 

previous literatures. Its principle is shown in Fig. 1, the 
IPMSM phasor diagram in steady state in the dq frame of 
reference. As the relationship between the no-load flux 
linkage vector and load flux linkage vector, (2) and (3), the 
formula of the d- and q-axis inductances calculation can be 
obtained.[1] 

0 cos a
d

d

L
i

ψ α ψ−
=                                                          (2) 

0 sin
q

q

L
i

ψ α
=                                                                   (3) 

C. Energy-torque method 
A novel calculation method which makes use of the 

magnetic energy and torque are proposed in this paper. The 
principle is,  

Step 1: Calculating magnetic energy in no-load condition 
Wm and flux linkage of PM with FEM; 

Step 2: Calculating magnetic energy in load condition Wt

with certain current magnitudes and vector angles, meanwhile, 
get the generated torque. 
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Fig. 1. Phasor diagram of IPMSM in dq frame of reference  

Step 3: Calculating the mean value of obtained torques. 
Step 4: Depending on the simultaneous equations (4), (5), 

and (6), the d- and q-axis inductances can be calculated. 

l t mW W W= −                                                                   (4) 

2 21
( )

2l d d q qW L i L i= +                                                        (5) 

( )mean a q d q d qT P i L L i iψ⎡ ⎤= + −⎣ ⎦                                       (6) 

where Wm: magnetic energy in no-load condition, 
Wt: total energy in load condition, 
Wl: magnetic energy in armature windings, 

Due to the using of magnetic energy and mean torque, this 
method is named energy-torque method. The advantages and 
shortages of this method will be analyzed in the extended 
paper.

III. PRINCIPLE OF INDUCTANCE MEASUREMENT METHOD

The voltage equation of the IPMSM in the stationary 
reference frame is described in (1) [4]. 

0 0

0 0

s s s
sq q q

s s s
sd d d

r pv i
r pv i

ψ
ψ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦
                              (7) 
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qd erL L θ= Δ

where the subscript e: the unit in electrical angle,
θer

s is the rotor position in stationary reference frame,  
and

2

r r
q dL L

L
+

=                                                                   (8) 

2

r r
q dL L

L
−

Δ =                                                                 (9) 

i.e.,
r
qL L L= + Δ                                                                  (10) 
r
dL L L= −Δ                                                                  (11) 

where Lq
r and Ld

r are the desired q- and d-axis inductances in 
the rotation reference frame.  

It is obvious that the terms with ωer
s can be eliminated in 

the standstill condition. And in order to eliminate the sine and 

cosine terms, the rotor position θer
s is set to 0o (or 90o). Thus 

(7) are simplified as (12). 

s s r s
q s q q q

dv r i L i
dt

= +

s s r s
d s d d d

dv r i L i
dt

= +                                                          (12) 

According to the dq transformation in the stationary 
reference frame, the d- and q-axis inductances can be 
represented by 3-phase voltages and currents that are directly 
measurable variables. The experiment configuration is shown 
in Fig 2. More explanation will be extended in the full paper. 

IV. RESULTS AND DISCUSSION

Fig. 3 shows the calculated d- and q-axis inductance 
results by the flux linkage vector method. And Fig. 4 shows 
the experiment results by the proposed inductance 
measurement method. The large difference can be seen in d-
axis inductances. The measured is greater. This is because the 
d-axis aligns to the stator tooth at standstill condition. The 
motor parameters and more discussion will be presented in the 
full paper. 
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Fig. 2. Experiment configuration of proposed measurement method 
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Fig. 3. Inductances: (a) calculated inductances, (b) measured inductances 
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Abstract — The shape optimization of a Thomson-coil actua-
tor used in an arc eliminator is done for fast response by adopt-
ing topology modification method. The performance of the ac-
tuator is analyzed by using an equivalent circuit method. Both 
shape optimization and performance analysis are accomplished 
based on the segmentation of plate. The effectiveness of the pro-
posed method is proved by the comparison of results before and 
after the shape optimization.

I. INTRODUCTION 
An arc eliminator (AE) is a fault throwing device, as 

shown in Fig. 1, to protect electric systems and human lives 
from an arc fault by bypassing the power current to a ground 
with high speed in terms of just a few milliseconds at the 
moment of an arc fault ignition. Owing to the fast function, 
the AE can provide arc extinction and mitigate the after-
effects by the prolonged arc with poisonous and contaminat-
ing gas flow. For this reason, Thomson-coil actuator is being 
more and more employed as the driving unit of the arc elimi-
nator for its remarkable high speed compared with a conven-
tional electromagnetic actuator utilizing electromagnetic at-
tractive force [1].   

The Thomson-coil actuator is mainly composed of, as 
shown in Fig. 1, an exciting coil and a moving plate having 
ground connection. In order to get a quick ground connection 
when the switch S is on, the parameters, such as capacitance 
and its initial charging voltage, exciting coil configuration, 
might be optimally decided. When selection of the parame-
ters is limited for economic reason (the peak current is very 
often limited for a cheap switching device), however, the 
shape optimization of the conducting plate is a good alterna-
tive for quick response. 

In this paper, the conducting plate of a Thomson-coil ac-
tuator for an arc eliminator is shape optimized using ON/OFF 
method based on the contribution of each segment to objec-
tive function [2].   

II. PERFORMANCE ANALYSIS 
The electromagnetic force of the Thomson-coil actuator is 

generated by the interaction between the magnetic field by 
the exciting coil and eddy current induced on the conducting 
plate. The precise approximation of the eddy currents on the 
plate, therefore, is essential for accurate performance analysis. 
In this paper, the conducting plate is divided into a series of 
segments, as shown in Fig. 2(a), and the eddy current, in each 
segment, is assumed to be uniform. Each segment, then, 
physically corresponds to a conductive ring with its circuit 
parameters of resistance and inductance as shown in Fig. 2(a). 

In this way the whole system is transformed into equivalent 
circuits as shown in Fig. 2(b). The circuit equations, magnetic 
flux equations and motional equation are obtained, if the 
plate is divided into N segments, as follows [3]:  
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where the subscripts s and i stand for the exciting coil and i-
th segment of the plate, respectively, λ is the linkage flux, Fe, 
Fg, and Ff are the electromagnetic, gravitational and friction 
forces, M and Ma are masses of the plate and mechanical ap-
pendage, respectively, and other symbols have their usual 
meaning. The electromagnetic force, Fe, acting on the con-
ducting plate is computed as follows: 

1 1
[ ]

N N
si

e i s i
i i

LF f I I
z= =

∂= = −
∂∑ ∑ N  (5)             

III. SHAPE OPTIMIZATION USING ON/OFF METHOD 
The optimization target, in this paper, is the displacement 

of the conducting plate after 3.5 milliseconds from switching-
on. When the conducting plate is divided into N small seg-
ments, each segment will contribute to acceleration of the 
plate by developing electromagnetic force on its eddy current 
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Fig. 1. The simplified mechanism of the Thomson coil type actuator.   
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Fig. 2. Equivalent circuit model of the system. 

614

PC2.15



11. ELECTRIC MACHINES AND DRIVES 

and, at the same time, to deceleration by its own gravitational 
force. 

The acceleration of the plate is calculated from (4), and 
can be rewritten as follows:  

[ ( ) ] /(e a fa F M M g F M M= − + − + )a   (6) 

where g is the acceleration of gravity. When the i-th segment 
is removed from the plate, the acceleration of the plate will 
be expressed as follows: 

( ) ( ){ } ( )( ) ( ) ( )i e i a f ii
a F M M g F M M= − + − + a     (7) 

where (·)i is the quantity obtained without i-th segment. It is 
assumed, here, that elimination of the i-th segment does not 
change the friction force and eddy currents in other segments. 
The contribution factor of i-th segment to the acceleration of 
plate is finally estimated as follows: 

( ) ( ) ( )( )
f f

i i

t t
i i i a i i

t t
c a a dt m M M m a a= − = + − −∫ ∫ dt  (8) 

( )i i ia f m g m= − i  (9) 

where mi is the mass of the i-th segment. The final displace-
ment of the plate, finally, can be increased by removing the 
segments which have small contribution factor from the plate 
after computing the contribution factors for all segments.  

The overall procedure of the shape optimization of the 
proposed algorithm is summarized as follows:  

Step 1. Decision of the initial segmentation 
The number of segments should be enough to guarantee 

an accurate performance analysis.  
Step 2. Performance analysis and calculation of contribu-

tion factors 
The final displacement of the conducting plate, contribu-

tion factors of all segments are computed through perform-
ance analysis by using the equivalent circuit method.  
Step 3. Modification of topology 

According to the contribution factors the segments having 
small contribution factor are removed from the plate. At this 
stage some segments can not be removed due to a structural 
constraint.  
Step 4. Accept or not the modified topology 

With the modified topology, the performance will be ana-
lyzed again. If the modified topology gives a better perform-
ance (i.e. more displacement), the new topology is accepted 
as a new topology and go to Step 3 for next iteration.  
Step 5. Refinement of the segments 

If the modified topology gives worse performance than 
the previous topology in Step 4, it means the optimum shape 
exists between the previous and current topologies. If the 
sizes of all the segments to be removed are small enough, the 
previous topology is considered as an optimal shape. If some 
of the segments to be removed are not small enough, they 
will be divided into smaller segments, and go to Step 2 for 
more precise topology modification.  

IV. RESULTS AND DISCUSSION 

Fig. 3 shows the initial structure of the plate with the 
moving contact and structural constraints for enough me-

chanical strength. In the performance analysis the moving 
contact is ignored, and its mass is taken into account as the 
additional mass. The exciting circuit parameters are shown 
in Table.1. The optimized shape of plate with eddy current 
density distribution is compared with the initial one as 
shown in Fig. 4. Fig. 5 shows the variation of the final dis-
placement and mass of the plate with respect to iterations. 
After 10 iterations, an optimum shape which gives 47.5mm 
displacement with 0.325kg mass is obtained. 
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Fig. 3. Initial structure of plate and moving contact. 

TABLE I 
CIRCUIT PARAMETERS 

voltage (V) capacitor (μF) layers Turns/layer diameter (mm)
250 25000 19 2 2.6 
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Fig. 4. Plate shape and eddy current density distribution. 
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Optimized Axially Magnetized Permanent Magnet
Tubular Actuator: Pole-Piece Shaping
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Abstract—Axially magnetized tubular permanent magnet ac-
tuators can be designed to obtain a sinusoidal back-electromotive
force waveform and almost zero cogging force. The shape opti-
mization of the translator iron pole-pieces is proposed to further
enhance the actuator design. This is particularly beneficial
for actuators with an external translator where a significant
permanent magnet leakage flux is apparent. A space-mapping
type of optimization algorithm is implemented to solve the cor-
responding design problem. A modified approach that considers
a semi-analytical coarse model employing Fourier analysis and
a simplified magnetic equivalent circuit is proposed and verified
in this paper.

I. INTRODUCTION

TUBULAR permanent magnet (PM) actuators provide
high efficiency, high power/force density and excellent

servo characteristics [1]. In this respect, it has been shown
that the particular topology of the tubular PM actuators
using axially magnetized patterns have a number of attrac-
tive characteristics such as a sinusoidal back-electromotive
force (back-EMF) waveform, which coincides with a very
low electromagnetic force ripple, and the possibility of be-
ing optimized to achieve almost zero cogging force [2]. A
particularly attractive advantage is the ease of manufacture
of the axially magnetized translator. For an inner translator
configuration without back-iron, this magnetization pattern
provides virtually ”self-shielding”, hence most of the magnetic
loading is concentrated in the airgap. However, when an
external translator configuration is considered, a large amount
of leakage magnetic flux is apparent. The shape optimization
of the iron pole-piece is proposed in this paper to reduce the
leakage flux. This approach provides both an increased airgap
flux density and a lower translator mass. The resulting core
geometry is also rather easy to manufacture.

To enable a fast optimization procedure, a space-mapping
(SM) based technique is considered [3]. Automated electro-
magnetic actuator design can be achieved by means of several
approaches. For example, one might consider fast, however,
accuracy deficient coarse models or, in contrast, the design
could be achieved exclusively by employing accurate, time
expensive, fine models. The SM-based optimization, with its
input, output or implicit mapping implementations, merges
the advantages of the two extremes. Generally, finite element
(FE) models are the predominant choice for fine models,
while magnetic equivalent circuits (MEC) are considered as

Fig. 1. Cross-section of the external translator tubular PM actuator with
axially magnetization pattern illustrating (a) rectangular magnets (b, c) shape
optimized pole-pieces (b) triangular, (c) circular.

coarse models for actuators due to the presence of the iron
core [4]. However, MEC models provide only a restricted
validity because of the designer pre-defined flux paths, which
makes these models rather unsuited for optimization problems
that can lead to significant modifications of the geometrical
configuration of the actuator. Therefore, this paper proposes a
modified approach where a semi-analytical model, considering
Fourier analysis and a simplified MEC, is employed as a coarse
model.

II. SEMI-ANALYTICAL COARSE MODEL

The tubular structure of the actuator presents an axial sym-
metry and hence a 2D-cylindrical coordinate system, (r, z),
can be considered. This semi-analytical model calculates the
airgap field due to the PMs, where a linear PM demagne-
tization characteristic, infinite iron permeability and infinite
motor length are assumed. As shown in Fig. 1, four regions
are considered: the slotless winding region (Rs to Rw), the
airgap (Rw to Rg), the PM region (Rg to Rm) and the air
region outside the actuator. The PM region is separated to
include the pole-pieces. Appropriate boundary conditions are
defined at the interfaces between the defined regions and on
the outside boundary of the design domain. Essentially, at this
stage the back-iron and the pole-pieces are excluded from the
problem. The resulting boundary value problem is solved by
considering the magnetostatic Maxwell equations, reduced to
a Poisson equation written in terms of the magnetic vector
potential A as B = ∇× A,

∇2 A = −µ0∇× M, (1)

where M = 0 for the winding the airgap regions. Fourier
analysis is employed to describe the magnetization vectors in
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Fig. 2. Flux density in the middle of the source free region by semi-analytical
means compared to FE analysis.

the PM region and consequently, the solution for the radial
and axial flux density distribution is obtained as a Fourier
series [5]. The Poisson equation (1) is solved with the method
of separation of variables. This approach provides for a very
good agreement with the FE analysis if highly permeable,
linear iron is considered or saturation is not reached for non-
linear core material. Such a situation is illustrated in Fig. 2.
Once the distribution and amplitude of the magnetic flux in
the airgap and PM regions are obtained, a simplified MEC
model is used to approximate the magnetic flux amplitude
in the back-iron and pole-pieces. As such the geometry of
the pole-piece is included in the problem by approximation.
It is understood that this does not represent the real non-
linear material or flux distribution and hence an FE model
is introduced as a fine model to accurately determine the
influence of varying the shape of the pole-pieces. The SM
optimization routine compensates the misalignment between
the coarse and fine models by exploiting a reduced number of
fine model evaluations and effectively directs the optimization
effort onto the coarse model.

III. OPTIMIZATION APPROACH

The main idea of SM optimization is to replace a compu-
tationally expensive fine model, f : X ⊆ Rn → Rm, with
a surrogate based on an iteratively updated coarse model,
c : Z ⊆ Rn → Rm, which is significantly less time
demanding at the expense of accuracy. As a principle, the
aggressive output space-mapping (AOSM) algorithm, which
is considered in this paper, replaces the original optimization
problem x∗ = argminx∈Xf(x) − y, where y is a set of
design specifications, with the surrogate problem given by
x∗ = argminx∈Xo(c(x))−y, where o is a so-called output
mapping. However, from an algorithmic point of view, the
following inverse formulation to obtain a new iteration point
is preferred:

xk+1 = argminx∈Xc(x)− tk(y), (2)

i.e., the unmodified coarse model is re-optimized with respect
to an updated set of specifications. The updated coarse model
specifications, yk, account for the misalignment between the
coarse and fine models and are determined from quasi-Newton
steps considering a Broyden-type Jacobian update [4].

Fig. 3. Airgap flux density for the rectangular and triangular pole-pieces
(Fig. 1b).

IV. RESULTS

The proposed analysis and optimization approach is used to
determine the optimal magnet to pole-piece ratio (τm/τpp) and
the depth of the triangular slot of the external translator tubular
PM actuator for a given set of design specifications regarding
the actuator force, a maximum limit on the iron flux density
and a minimized translator mass. The influence of a modified
pole-piece on the airgap flux density is shown in Fig. 3. This
figure shows that the peak and RMS values of the airgap flux
density are increased when the pole-piece shape is considered
in the design procedure. Consequently, the pole-piece shape
directly influences the force and acceleration of the external
translator tubular PM actuator.

V. CONCLUSIONS

The shape optimization of the translator iron pole-pieces
of a tubular PM actuator with external translator is proposed
in this paper. As such, an increase in airgap flux density
and a reduction of the translator mass can be obtained. A
computationally efficient SM-based optimization algorithm is
employed to obtain the corresponding design solutions. In
this paper, a modified approach is proposed that exploits a
semi-analytical coarse model, considering Fourier analysis and
a simplified MEC, and an FE fine model. This combined
approach for the coarse model provides a significantly higher
accuracy of the airgap field calculation compared to a tradi-
tional MEC model.
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Abstract — Permanent magnet motors due to their increased 
efficiency are favored for electric vehicle applications. The 
geometry optimization of the motor enables to achieve an 
adequate compromise between the two important parameters of 
performance and efficiency. The paper presents a methodology 
based on 2D FEM and sensitivity analysis techniques providing 
such optimization for the cases of surface and internal permanent 
magnet motors. The obtained results are validated by 
measurements on respective prototypes. 

I. INTRODUCTION

Wheel motor is a promising traction solution that 
minimizes transmission loss. Meanwhile the cost of energy 
storage is considerably higher than the motor production cost 
and thus affects importantly the design and construction 
procedures of Electric Vehicle (EV) motors [1], [6].

Torque optimization is a very important issue when 
selecting a direct coupling of the motor into the wheel, as it is 
no more possible to increase power by increasing speed. The 
mean Magnetic Flux Density (MFD) in the air gap, per pole 
part, determines importantly the output torque capability of a 
motor. However, over sizing the magnetic loading of a motor
can create disadvantages, due to the associated core loss [2].

Fig. 1.  Wheel Motor Magnetic components geometry 
a. SPMM configuration, low magnetic loading 0.6 Tesla
b. IPMM configuration, high magnetic loading 1.2 Tesla

Two motor topologies and the respective prototype 
implementations, with different MFD values in the air gap, are 
being studied. A low power compaction 24 pole, 10 kW, 
Surface Permanent Magnet Motor (SPMM) shown in fig. 1a 
and a high power compaction 8 pole, 12 kW, Internal 
Permanent Magnet Motor (IPMM) shown in fig. 1b. 

II. METHODOLOGY

A. Sensistivity analysis based on 2D FEM
A two dimensional finite element model (2D FEM) has 

been employed to analyze the alternative motor topologies. 
Geometry optimization has been performed by using 
sensitivity analysis techniques, in order to obtain an 
appropriate compromise involving all geometrical criteria of 
the motor configuration [1].

Fig. 2. IPMM flux density distribution for different values of loading current

As shown in Fig. 2 the important flux on the right side of 
the pole part brings the iron core into saturation area. The 
MFD accumulation, limits down the capacity of the motor to 
produce torque [3], [5].

B. Iron loss evaluation technique
This section introduces our method of computing iron core 

loss for a given motor geometry. 

Fig. 3. IPMM Loss Matrix graphical representation at 50 Hz under no load 
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The motor area is quantized into small subregions, each of 
which is assigned the value of losses that derives from the 
material core loss curve, accordingly. The method makes use 
of the formula (1), in order to determine the total stator core 
loss:

Pcore  th  P  la  S  w Bmax,i , f 
i
      (1)

where th is the number of stator teeth per pole, P is the 
number of poles,  is the axial length of the motor, ΔS is the 
cross section area of the elementary surface used and w is the 
volume specific loss, as a function of the maximum flux 
density during rotation of one pole pitch and the supply 
frequency. i regards every square element that composes one 
stator tooth.

C. Global optimization procedure
The optimization procedure is based on a composite cost 

function that takes into account the total cost of construction 
and defines the relationship between performance, efficiency 
and cost. The adopted composite optimizing function F to be 
minimized is defined in (2), and consists of two parts, denoted 
by CK  and CA, defined in (3) and (4) respectively, which are 
expressed in cost units.

F p1, p2,..., pn CK p1, p2,..., pn CA p1, p2,..., pn   (2)

where p1, p2 ,..., pn
are the parameters that affect construction or 

operation cost.
CK  cmV Vm  clL Ll  clS Sl  cFeV VFe  cwL Lw    (3)

CA  ce Etot      (4)
where CK : total construction cost

CA : total operation cost
cmV : specific magnet cost (€/cm3)
clL : specific lamination cost (€/m)
clS : specific laminated iron core cost (€/m2)
cFeV : specific solid iron core cost (€/m3)
cwL : specific winding cost (€/m)
ce : specific energy cost (€/kWh)

Vx/Sx/Lx : Volume/Surface/Length x respectively
Etot : total energy consumed in motor lifetime.

The parts assembly of the optimizing function is made 
according to the needs and design specifications. The 
convergence obtained by using different numerical methods 
such as Golden Section Search, Simulated Annealing and
Enumeration is investigated [7].

III. RESULTS AND DISCUSSION

The proposed methodology has been implemented in the 
design of a surface and an internal permanent magnet motor, 
shown in Fig. 1. In order to validate the simulation results, two 
respective prototypes have been constructed. 

As an example, Fig. 4 compares the simulated values of 
the losses compared to the measured ones in the case of IPM 
motor configuration. The phase voltage ripple observed is 
mainly caused by the stator tooth harmonic distortion. Loading 
current increase accumulates field in one side of the pole, 
which is translated from space to time by distorting the 

voltage waveform, as shown in Fig. 5. Core saturation not 
only increases iron loss but also makes stator current less 
capable of producing torque [4], [5]. Saturation effects during 
high load can equally be observed in Fig. 5.

The good agreement between simulated and measured 
results illustrates the proposed method suitability for this class 
of problems.

Fig. 4. IPMM Stator Core loss at 50 Hz under no load

Fig. 5. IPMM Measured phase voltage for different values of loading current
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Abstract – The multiple advantages of the switched
reluctance machines (SRM) allow them to have various
applications. Hence, this led to a growing interest for the design
of new structures more successful and better adapted to the new
requirements. This paper describes the influence of the
geometrical parameters, especially the shape of the teeth, on the
performance of SRM based on a coupled finite elements method
and equivalent magnetic circuit approach FEM-EMC for an
optimal design.
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I. INTRODUCTION

The robustness, simplicity, reduced cost and high mass
torque ratio of the SRM allow them to have various
applications at high speed or low speed and high torque [1],
[2]. The drawback of these machines is the presence of a
pulsatory torque that the researchers try to minimize by
optimizing the geometric and control parameters [3-9].

The prediction of the behavior of an electromagnetic
system from the knowledge of its non-linear parameters, also
connected to external sources, has always been a difficult
problem to solve. The numerical solution is a priori appealing
for solving complex problems with better accuracy but the
computing time is penalizing [10]. While easy to implement,
the analytical models are relatively inaccurate due to the
simplifying assumptions [11].

Consequently, we choose a numerical-analytical method
by FEM-EMC modeling to properly design a prototype of a
doubly salient 6/4 SRM. The initial results are validated and
are encouraging for an optimization procedure of geometric
parameters which we develop in this paper [12]. The
originality of this work is mainly the study of the influence of
the teeth shape, particularly their tilting.

II. PRELIMINARY DESIGN PROCESS

A. The choice of a structure for study
The choice of the number of stator Ns and rotor Nr teeth

is important since they have significant implications on the
torque. Usually, Ns is selected to be greater than Nr with some
conditions [13]. Since the speed is related to the frequency of
the supply (f=Nr*W ), to minimize the iron losses without
using material of high quality, we try to reduce the number of
rotor poles. Among the most frequently used structures, we
finally chose to study a three phase 6/4 SRM represented
Fig.1.

The parameters of the 110 Nm, 3000 rpm, 6/4 SRM
studied machine are given in Table I.

B. Choosing angles teeth
The choice of the stator and rotor angles teeth (βs ; βr) has

significant effects on the torque ripple, duration of output
torque, winding space and is an important factor in motor
design optimization. Initially, they can be selected in the
middle of the lower half of the feasible triangle where bs £ br
and with the three following conditions [7], [8], [13]

)/(4530)3/2( NrsNr pbp =°££°=         (1)
)3/4(6030)3/2( NrrNr pbp =°££°=    (2)

)/2(90)( Nrrs pbb =°<+           (3)

III. FEM-EMC MODELING

A.  Results by FEM simulation
By combining all of the electromagnetic equations, the

vector potential equation governing the problem is

JA =÷÷
ø

ö
çç
è

æ
´Ñ´Ñ

m
1

         (4)

where A is the vector potential, J is the current density and m is
the permeability.

We solve equation (4) by finite element method which is
implemented in FEMM software [14].

Fig. 1.   Flux plot at fully unaligned position of the studied 6/4 SRM

(a) ar = - 10°                                     (b) ar = + 10°

Fig. 2.  Tilting of the rotor teeth
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Fig. 3.  Effect of rotor teeth tilting on magnetic flux curves
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Fig. 4.  Effect of rotor teeth tilting on average torque
Among the various results obtained by FEM approach and

validated [3-8], we will present in this paper only the influence
of the slope of rotor teeth (Fig.2) which is not studied in any
paper. In the case of the slope inclined towards the outside
(as>0), Fig. 3 shows an increase in the area included between
the magnetic characteristics of aligned and unaligned positions
which induces an increase in the average torque (Fig. 4). We
obtained the same results for the stator teeth.

B.  Results by EMC simulation
This is a classic analytical method based on the

calculation of reluctance portions of the equivalent magnetic.
For  the  two  extreme  positions  of  the  rotor,  we  had  to  work
with seven equal flux tubes quite representative of the field
lines [15]. We have exploited the previous results of the FEM
to make our calculations under MATLAB environment with
very user-friendly software. The process of optimization is
based on the constancy of the following expression of the
copper losses

JNtILmKPcu )(r=         (5)
where K represents the current waveform coefficient, r the
copper resistivity, Lm the mean length of turn, Nt the number
of turns per phase, I the current level and J the current density.
Since the excitation NtI is a constant for a design, copper
losses are thus proportional to current density.

Among the various results obtained by EMC approach,
we show here the optimal values: br»40° for the rotor tooth
(Fig. 5) and kcs»1 for the stator yoke thickness ratio (Fig. 6).
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Fig. 5.  Effect of rotor pole arc on average torque/copper losses ratio at bs=30°
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Fig. 6.  Average torque vs. kcs ratio at Pcu=1513 W and bs=br=30°

TABLE I
PARAMETERS OF THE STUDIED 6/4 SRM

Quantity Value
Stack length
Outer diameter
Rotor diameter
Shaft diameter
Air-gap length
Height of stator teeth
Height of rotor teeth
Stator yoke thickness
Number of turns per phase

150 mm
250 mm
150 mm
42 mm
0.8 mm

26.2 mm
28 mm

24.8 mm
23

IV. CONCLUSION

In this paper, we presented a sufficiently simple
numerical-analytical procedure by FEMM to MATLAB
software to design and optimize the geometrical parameters of
a 6/4 SRM. The obtained results are very interesting.
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Methods for efficient computation and visualization of magnetic flux lines in 3D
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Abstract—Flow visualization is essential to provide an insight
into complex flow patterns of electromagnetic devices. In this
paper, a method for the detection and evenly-spaced seeding
of closed flux lines in 3D quasi-static electromagnetic fields is
presented. The seeding is performed by weighting the magnetic
flux on a specified cutting surface. Due to discretization of a finite
element simulation, which is also applied for the flux density
solution, the force lines are usually not closed. Therefore, an
algorithm is introduced, monitoring the force line computation,
to provide the generation of closed force lines.

I. INTRODUCTION

An intuitive method for the visualization of vector fields are
flux lines, which provide a straightforward visual impression
of the field characteristic and the magnetic circuit. Applying
this technique to an electromagnetic field solution, one di-
rectly encounters the problem of closed flux line computation
arising from its solenoidal field characteristics. In this paper,
a method is introduced that monitors the stream computation
to detect closed curves and minimize the computational effort.
Afterwards, the flux line algorithm is combined with a seeding
strategy that places starting points in correlation with the flux
on a specified cutting surface to support quick flow pattern
recognition. The proposed method is generally applicable to
the electromagnetic field and comparable flow fields such as
eddy current distributions.

II. CLOSED FLUX LINE COMPUTATION

A. Flux Line Computation

A flux line is an oriented curve ρ in a vector field ν on a
domain Ω, which is everywhere tangential to the vector flow,
with the properties

∂ρ

∂τ
(τ) = ν (ρ (τ)) (1)

ρ (τ = 0) = a (2)

where ρ (τ) is a certain point on the flux line, ν (ρ (τ)) the
corresponding field vector and a an arbitrary start point in Ω.
Each point in Ω is strictly mapped to exact one curve ρ.

According to Maxwell equations, the evoked electromag-
netic vector field has an solenoidal field characteristic, so that
each flux line ρ has a characteristic, but unknown length L,
where

ρ (τ + n · L) = ρ (τ) , ∀n ∈ N . (3)

For a given start point ρ (τ = 0), the flux line ρ is obtained by
integrating (2) iteratively over a discrete length ∆τ (integration

step length), yielding

ρ (τ + ∆τ) = ρ (τ) +

� τ+∆τ

τ

ν (ρ (τ)) ∂τ (4)

For a rapid and accurate flux line computation, (4) is solved
by using a fourth-order Runge-Kutta integrator with adaptive
step size and error control [1].

B. Closed Loop Detection

In general, the numeric solution of (4) leads to a continuous
summation of the integration error, so that a computed curve
does not comply to (3), a typical example is given in fig. 1.
To detect such closed flux lines, without any knowledge of
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(a) Spiral progress of flux line in x-y
plane.
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(b) Displacement fluctuation, ≤ 1%,
in z-direction.

Fig. 1. Typically integration error of eq. (4) in 3D Space. Top and lateral
view of a flux line around a current excited rectangular wire in z direction.

the location and shape within the magnetic field, stop criteria
are necessary that evaluate the integration process step-by-step
and detect the characteristic length L. Basically, an end point
ρ (τi) is located in a sphere around ρ (τ0) with an error radius
ǫ, e.g.

�ρ (τi) − ρ (τ0)� ≤ ǫ . (5)

Since the mesh size of Ω typically varies, e.g. in the compar-
ison of an air gap to a back yoke, a more accurate end point
detection is required.

Therefore the basic idea of the algorithm is to monitor the
integration process and evaluate a modification of (5) by only
verifying a possible closing of the curve in 3D space. Counting
the number of sign reversal in:

δ (τi+1) = �ρ (τi+1) − ρ (τi)� · �ρ (τ1) − ρ (τ0)� (6)

A closed curve, independent from the simulated geometry,
requires at least 2k + 1, k ∈ N

0 sign alternations. For point
candidates that meet the latter precondition, the point distance
perpendicular to the stream direction, given by

�(ρ (τi) − ρ (τ0)) × (ρ (τ1) − ρ (τ0))� ≤ ǫ (7)
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is computed and compared to ǫ. The error control by (7) is,
in contrast to (5), independent from the displacement in curve
direction, caused by the variable step size ∆τ .

III. SEEDING STRATEGY

Magnetic flux lines provide a visual impression of the vec-
torial field direction, and if colorized an additional information
of the intensity of magnetic field density. To support a quick
recognition of the flow pattern by a set of flux lines, their
seeding points have to be correlated with the magnitude of the
vector field. By this requirement, the better part of seed points
is located in an area with high field values and vice versa.
Therefore, in this paper a seed point computation on a user
defined cutting surface, C ⊆ Ω, is presented. The proposed
algorithm is as follows:

• Initially, the flux on all cutting elements in C is evaluated
by

Φ = �BC · �aC (8)

where �BC is the vectorial flux per element and �aC the
corresponding oriented surface vector.

• According to a used specified flux range [Φmin,Φmax],
the plane C is sub-divided into a given number Nplane

of sub-planes

C =
�
C1, C2, · · · , CNplane

�
(9)

so that each sub-domain contains all elements with the
corresponding flux interval.

• To weight the flux in each sub-domain Ci, the average
flux Φaverage

i over all elements NCi
on Ci, given by

Φaverage

i =

NCi�

i

Φelem
i (10)

is computed, [2], [3].
• For a given number of starting point Ntot, the ratio of

Ni =
Φaverage

i�Nplane

i Φaverage

i

Ntot (11)

defines the number of seeding point per sub-domain Ni.

In the final step of the seeding algorithm, the points Ni are
placed in the sub-domains Ci. At present state, the starting
points are moved to those elements within Ci which have
the largest magnitude of the magnetic flux. This leads, as
exemplified in fig. 3, to a rough evenly-spaced seeding. An
alternative placing strategy is to place Ni on the inner bound-
ary of Ci equidistantly. The latter method is in preparation
and will be discussed and compared to the flux-value-based
seeding strategy in the full paper.

IV. APPLICATION

A rectangular wire surrounded by air is used as a test model
for the seeding strategy in combination with the presented
closed flux line algorithm presented in section II-B and III.
The source current density Js is injected into the cross section
area of the wire. Fig 2, visualized by [4], shows the applied
test scenario together with its vectorial representation of the

Fig. 2. Current excited rectangular wire in z direction together with its flux
density distribution.

flux density distribution, obtained by [5]. Fig. 3 shows the seed
point distribution of 100 start point, by a chosen flux interval
from 50 to 100 and a decomposition into 10 subdomains.
It can be noticed, that the starting point population density

Fig. 3. Closed flux lines seeded around the current excited rectangular wire.

increases by a distance reduction from the wire. The latter
provides a visual impression of the flux density distribution.
The flux lines are rough evenly-space which helps to recognize
the corresponding flow pattern.

V. CONCLUSION

In this paper, an algorithm which detects closed flux lines
by extending the integration process by a monitoring routine is
presented. The method relies on the assumption of a solenoidal
vector field characteristic. To give a visual impression of the
vector field solution, a seeding strategy is presented which
places seeding points in correlation with the magnetic flux on
a cutting surface. As a first test case, the proposed method is
exemplified on a 3D air surrounded wire model yielding a flux
line distribution which corresponds to the expected flow field
pattern.
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Abstract — This paper presents an accurate method to 
calculate high frequency copper losses in InterCell Transformers 
(ICTs) made with low permeability cores. Since this type of 
transformer cannot be well represented by 1D model, analytical 
calculation of the high frequency resistance is not accurate. The 
method presented here is based on 2D FEM simulations of the 
ICT. By the nature of this type of transformers, some 2D FEM 
simulations must be made in order to take into account non-
sinusoidal differential and common-mode currents.  

I. INTRODUCTION

Interleaved converters are used when high power density is 
needed. This type of converter has some advantages when 
comparing to standard converters, such as the increase of the 
apparent frequency of the voltage applied across the output 
filters and the improvement in the dynamic behavior of the 
converter. 

Usually an interleaved converter is composed by some 
identical commutation cells with the outputs interconnected 
through separate inductors. The association of these inductors 
may result in large ripple in the current flowing in each cell 
[1]. This leads to high conduction losses in the switches and 
high copper losses in the inductors. If we magnetically couple 
the inductors, we may obtain the same relative current ripple in 
the commutation cells and at the output. This is obtained by 
the use of InterCell Transformers (ICTs) [2]. 

II. SIMPLE INTERCELL TRANSFORMERS  

Let’s analyze the operation of ICTs by taking as an 
example the transformer on Fig. 1. In this transformer, each 
winding is connected to a commutation cell in such a way that 
the fluxes from both legs (Φ1 and Φ2) are summed up and are 
obliged to pass by the air (leakage flux). If we use the 
transformer of Fig. 1 in an interleaved converter composed of 
2 commutation cells, and supposing that output voltage is 
filtered (which is usually the case), we can note that the 
voltage across each winding is rectangular. Consequently, a 
triangular flux is imposed in each leg of the transformer.  

      
a) ICT magnetizing current      b) ICT coupled current 

Fig. 1. Simple intercell transformer and current directions 

A. Low Permeability Cores Used in Intercell Transformers 

Usually high permeability cores are used in the 
construction of ICTs in order to minimize magnetizing current. 
However, in certain applications it is preferable to use low 
permeability cores if we regard globally the magnetic flux 
density saturation, cost, size and loss density when designing 
the transformer. 

In an ICT, if a low permeability core is used, the core 
reluctance is comparable to the leakage reluctance. In this 
case, the current in each cell will be the sum of the 
magnetizing current (which the fundamental frequency is equal 
to the switching frequency) and the coupled current (which the 
fundamental frequency is equal to the double of the switching 
frequency), as shown in Fig. 2. 

Fig. 2.  Phase currents of a 2-phase ICT   

III. FEM SIMULATION TO COPPER LOSSES

Analytical calculation of AC resistance of conductors in a 
transformer was explained by Dowell, in his famous paper 
from 1966 [3]. He explains the proximity effect 
mathematically, solving Maxwell’s equations for a 1-D model 
of transformers. Since Dowell’s 1-D analytical approach 
models a 3-D phenomenon, several authors make use of FEM 
simulation to obtain more precise results [4,5]. In our case, 2D 
and/or 3D simulation is necessary since a great part of the 
windings is not contained inside the core window. 

The use of 3D FEM simulation may result on accurate 
calculation of the copper losses, but it is very time consuming. 
2D FEM simulation can be considered if the procedure used in 
the simulation takes into account 3D effects. 

As we can see in Fig. 2, the component of the current due 
to the magnetizing current in cell 1 has 180° of phase 
difference when comparing to the same one in cell 2. 
Additionally, the components of the current due to the coupled 
current are in phase in both cells. These facts confirm the need 
of FEM simulations. In this case, two different 2D simulations 
are needed: one for the magnetizing current and another one 
for the coupled current.   

Calculation of Copper Losses in Intercell 
Transformers by 2D FEM simulation
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The drawing of the transformer in the FEM software is the 
same for both simulations. When simulating the magnetizing 
current, the current imposed in each winding must have the 
same direction inside the core window, as in Fig. 1a. However, 
when simulating the coupled current, the current imposed in 
each winding must have opposite directions inside the core 
window, as in Fig. 1b.  

Since most of FEM softwares only allow sinusoidal current 
simulation, Fourier analysis may be applied to non-sinusoidal 
currents [6]. Both magnetizing and coupled currents must be 
decomposed into Fourier series, and a simulation for each 
important harmonic must be carried out. The easiest way to 
calculate total AC copper losses is to simulate for each 
frequency separately and then sum up all results to post 
calculate 4 equivalent AC resistances, which are:  

RACeqintmag (AC equivalent resistance of the conductors 
inside the core window, due to the magnetizing current), 
RACeqextmag (AC equivalent resistance of the conductors outside 
the core window, due to the magnetizing current), RACeqintcou 

(AC equivalent resistance of the conductors inside the core 
window, due to the coupled current) and RACeqoutcou (AC 
equivalent resistance of the conductors outside the core 
window, due to the coupled current). The equation of the ratio 
between the equivalent AC resistance and the DC resistance 
has the following form: 

2

1
n

n
n

DC

ACeq
eq aFr

R

R
Fr ∑

∞

=

==         (1) 

where Frn is the ratio between the equivalent AC resistance 
and the DC resistance of the nth harmonic and an is the 
normalized amplitude of the nth harmonic of the triangular 
current. a1 is always equal to 1 to facilitate the calculation.  

The DC resistances (RDCint and RDCext) are different for the 
conductors inside and outside the core window since their 
lengths may be different. For example, in the transformer in 
Fig. 1, the length of the conductors inside the core window is 
equal to the core window depth, while the mean length of the 
conductors outside the core window is equal to the mean turn 
length subtracted by the core window depth. 

IV. SIMULATION RESULTS 

An example will be used to illustrate the method. The ICT 
of Fig. 1, draw with 6 turns in each winding, was simulated 
using FEMM software, version 4.2. An example of the 
simulation output graphs, for one specific frequency, is shown 
in Fig. 3. We can see the difference between the magnetizing 
and coupled current density distributions. We also observe a 
difference in the current density distribution when comparing 
the current passing inside and outside the core window.  

   
a) Coupled current        b) Magnetizing current 

Fig. 3. FEMM simulation of a simple ICT (Current density plot) 

The ratios between AC and DC resistances simulated in 
FEMM are shown in Table I along with the first 5 terms of the 
Fourier series of the magnetizing and coupled currents when 
the duty cycle is equal to 0.25 (as the one shown in Fig. 2). 
Simulations were made at fundamental frequency equal to 
15kHz.  

TABLE I 
AC/DC RESISTANCE RATIO SIMULATION RESULTS 

Harmo 
nic 

an

Imag 
Frn

ext-mag 
Frn

int-mag 
an

Icou 
Frn

ext-cou 
Frn

int-cou 
1 1 1,64 1,43 1 3,12 2,28 
2 0,3536 2,12 1,81 0 4,78 5,86 
3 0,1111 2,58 2,26 0,1111 6,58 11,29 
4 0 3,07 2,78 0 8,55 17,97 
5 0,04 3,58 3,38 0,04 10,60 25,30 

  
Freq

ext-mag 
Freq

ext-mag 
Freq

ext-cou 
Freq

int-cou 
TOTAL  1,95 1,69  3,21 2,46 

Note that the equivalent AC/DC resistance ratios for the 
conductors outside the core window are different from the 
ones related to the conductors inside. Also, these ratios are 
usually higher for coupled current since its fundamental 
frequency is the double of that for magnetizing current. 

Having the four Freq, we can calculate the four equivalent 
AC resistances. The total copper losses are calculated by using 
these resistances and the phase current. 

V. CONCLUSION

Intercell transformers are used in interleaved converters in 
order to reduce current ripple in each commutation cell. Low 
permeability cores may be used in intercell transformers but its 
utilization results in the increase of the magnetizing current, 
which is superposed to the existing coupled current. We have 
proposed a simple procedure, based on 2D FEM simulations, 
which allows the precise calculation of AC resistances 
associated to the magnetizing and coupled currents, inside and 
outside the core window. Accurate prediction of these 
resistances is crucial in an ICT design. An example was given 
to illustrate the method.   
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Abstract — This paper deals with the loss analysis and 

efficiency evaluations in a synchronous reluctance motor 

(SynRM) using a coupled transient finite element method 

(FEM) and Preisach modeling, which is presented to analyze 

the characteristics under the effect of saturation and hysteresis 

loss. The focus of this paper is the efficiency evaluation 

relative to hysteresis loss, copper loss, etc. on the basis of 

speed, load condition in a SynRM. Computer simulation and 

experimental result for the efficiency using dynamometer show 

the propriety of the proposed method. 

 

I. INTRODUCTION 

In high-speed applications, hysteresis loss can become the 

major cause of power dissipation. Therefore, whereas in other 

kinds of machines a rough estimation of hysteresis loss can be 

accepted, their importance in a SynRM justifies a greater effort 

in calculating them more precisely. The Preisach model is now 

generally accepted to be a powerful hysteresis model, and is 

therefore intensively studied [1]-[3].  

Some papers which discussed the influence of hysteresis 

loss on a machine have been presented.  

Reference [4], [5] have been investigated the steady state 

characteristics of inductances etc. using coupled FEM & 

Preisach modeling in a PMASynRM. Reference [6], [7] have 

been developed the transient analysis method coupled with 

vector control algorithm in a LIM and a SynRM respectively. 

Reference [8], [9] have been discussed the hysteresis loss 

influence on the transient behavior of a SynRM and which 

have the coupled control algorithm & the analysis method.  

Reference [10] have been proposed the control algorithm, 

which selects appropriate stator d, q-axis current component 

combination that the influence of iron core loss on the 

developed torque can be minimized in torque control, by the 

coupled finite element analysis and Preisach modeling in a 

SynRM.  

In this paper, a coupled finite element analysis and 

Preisach modeling for a SynRM are presented and dynamic 

characteristic analyses are performed under the effect of 

saturation and hysteresis loss. The focus of this paper is the 

efficiency evaluation relative to hysteresis loss, copper loss, 

etc. on the basis of speed, load condition in a SynRM. 

Also, TMS320C31 DSP installed experimental device and 

dynamometer are equipped and experiments are performed.  

Computer simulation and experimental results for 

efficiency show the propriety of the proposed a coupled finite 

element analysis and Preisach modeling method. 

II. Coupled Fem And Preisach’S Modeling 

Coupling governing equation and circuit equation, the 

system matrix is given as follows: 
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Where, { }E : emf. vector in the winding, { }V : Supplying 

voltage vector, { }I   : Phase current vector, [ ]L0
: Leakage 

inductance, [LG]: Coefficient matrix related to emf, {M}: 

Magnetization calculated by Preisach modeling  

Fig. 1 shows the simulation scheme for the proposed 

analysis method. The torque acting on SynRM at each time is 

calculated by the line integral of the Maxwell stress tensor.  

 

 
Fig. 1 Block diagram of analysis system 
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III. Result & Discussion 
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Fig. 2 i-λ loci in each load condition at 2000 rpm 

 
TABLE I 

LOSS EVALUATION IN SIMULATION AT 2000 RPM 

load 

(kg-cm) 

ouput 

(W) 

Hysteresis 

loss 

(W) 

Copper 

Loss 

(W) 

mechanical 

loss 

(W) 

the 

rest 

loss 

(W) 

phase 

current 

(A) 

6 122 13.70 4.7 5 4.6 2.2 

8 163 12.96 9.03 5 8.01 2.7 

10 
204 9.92 15.65 5 

15.4

3 
3.68 

12 
244 16.02 25.61 5 

21.3

7 
4.7 

 
TABLE II 

EFFICIENCY EVALUATION IN EXPERIMENTAL TEST AT 2000 RPM 

Load 

(kg-cm) 

input 

(W) 

output 

(W) 

Efficiency 

(%) 

q-axis 

current 

(A) 

phase 

current 

(A) 

current 

angle 

(deg.) 

6 150 122 80 2.35 2 39.2 

8 198 163 82 2.8 2.77 47.9 

10 250 204 83 3.3 3.65 55.2 

12 312 244 78 3.9 4.7 61.5 

 

4 6 8 1 0 1 2 1 4
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Fig. 3 Efficiency in each load condition 

 

















  

   

   
      

   

  

   

   

        

          

    









       

       
       
       
         

 
Fig. 4 loss analysis in each load condition 

Fig.2 shows the i-λ loci per 1 cycle in each load condition 

at 2000 rpm. 

The hysteresis loss can be calculated by the area of the i-  

loci times the frequency (66.7 Hz), and the copper loss can be 

calculated by the resistance times rms value square of phase 

current. 

The mechanical loss is about 5 (W) in each load condition, 

which is experimental data. 

The rest losses are the eddy current loss and the stray load 

loss, etc. These losses are denoted in TABLE I.  

Output powers in simulation are the same with that 

developed in experimental test. Therefore, phase currents are 

similar to the experimental phase current as shown in TABLE 

II.  

Fig.3 shows the efficiency of each load condition.  

It is confirmed that the maximum efficiency current angle 

(55.2
o
) is deviated from  45

o
, as shown in Fig. 3. 

Fig. 4 shows the each loss ratio to the total loss in each 

load condition. Whereas in copper loss increasing current due 

to the increasing load should be enlarged, their rate in a 

hysteresis loss should be minimized in maximum efficiency 

condition precisely.  

Through the more detailed analysis and experiment for the 

another speed (rpms), the variable comparisons for 

performance of the SynRM will be represented in next 

extended version 
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13. WAVE PROPAGATION 
 

Abstract — In order to investigate the propagation of partial 
discharge pulses in transformer winding, the simulation models 
of a 40 turn and a 180 turn continuous transformer winding 
based on multi-conductor transmission line (MTL) theory are 
constructed. A novel method is proposed to calculate the K
matrix that decreases distinctly calculation cost without loss of 
accuracy. This new method also has been extended to inductance 
and resistance calculation, and obtained very good effect. To 
verify this method further, we solve PD propagation along 
winding, and compare with the experimental result. And in 
consequence, the simulation result can meet the experimental 
result very well. Therefore, this novel method is very reliable. 

I. INTRODUCTION 
In order to study the partial discharge (PD) propagation 

characteristics along transformer winding, we have built a 
distributed line model based on multi-conductor transmission 
line (MTL) theory [1]. Apparently, the calculation of 
distributed parameters is quite important for MTL model 
because it greatly determines the accuracy and efficiency of 
numerical model. However, although the analytical method is 
most commonly used, it is very limited because the formulas 
are from experience and just suitable for special winding with 
a simple geometry. According to the complexity of 
transformer winding, the field method has been proved to be 
more applicable. But for a large n-conductor system, it is 
considerably time consuming. Therefore, this paper proposes a 
novel method to calculate distributed parameters which 
decreases distinctly calculation cost without loss of accuracy. 

II. THE ESTABLISHMENT OF WINDING MODEL 
This paper chooses to establish two winding model: 40 

turn winding model and 180 turn winding model. The 
structural diagram for winding model is shown as Fig. 1. The 
40 turn winding is a single layer continuous hollow winding 
model. The 180 turn winding consists of 18 coils sections. 

 
(a) 40 turn winding model 

 
(b) 180 turn winding model 

Fig. 1. Structural diagram for winding model 

III. THE PROPOSAL OF NOVEL CALCULATION METHOD 

In order to simplify the verification for this novel method, 
we choose 40 turn winding model as analysis model firstly. If 
this method proves to be reliable, it can be extended to 180 
turn winding model. Because induction coefficient is scarcely 
affected by frequency, the distributed law is easier to analyze 
than inductance and resistance. Therefore, we try to propose a 
novel method by analyzing the induction coefficient 
calculation result firstly. Then, we can apply to inductance and 
resistance calculation to verify this novel method. 

Usually, we can calculate induction coefficient based on 
electromagnetic theory, total static electric energy W of an n-
conductor system in region V can be written as follows [2]: 

2

1 1

1
2

n n

ii i ij i j
i j

j i

W K U K U U
= =

≠

⎛ ⎞
⎜ ⎟= +⎜ ⎟⎜ ⎟
⎝ ⎠

∑ ∑                       (1) 

As the winding’s special structure, analytical formulas are 
hard to list. So a normal procedure to evaluate K by eld 
method is as follows. 

Kii—First, apply a unit potential on the ith conductor, 
while the others are set to zero potential. Due to an 
approximate axisymmetrical structure of the model, a 2-D 
static electric field FE analysis can calculate W. Then by (1), 
the diagonal elements of K are obtained. 

Kij—Apply unit potentials on the ith and jth conductor, 
while the other n-2 conductors are set to zero potential. As in 
step 1, after the FE analysis, other elements of K are obtained 
as well by (1). (i ≠ j, i is from 1 to n-1, j is from i+1 to n) 

Following the procedures above requires n(n+1)/2 FE 
solution steps to get K, which is almost impossible for large-
scale transformer winding (n>100) [3]. Some alternative 
methods should be carried out. By analyzing K of 40 turn 
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13. WAVE PROPAGATION 
 

winding model, we can find some interesting characteristics 
that will help us overcome this difficulty. It is known that the 
Kij decrease rapidly with the distance between ith and jth 
conductor increasing due to the shielding effect of their 
interval turns. This feature enables that we need fill a few 
elements in K only, which greatly reduce K’s half bandwidth 
and changes it to a banded matrix. Because Ki,i+3 is little 
enough to be ignored, we only consider the interaction 
between each coil with adjacent two turns. Considering that 
the winding model is symmetric with respect to the 20th turn, 
we can calculate the first 21 turns, and then obtain K[40×40] 
by matrix transformation. According to the novel method, we 
only require 3(n/2+1) FE solution steps to get K. As shown in 
Fig. 2, this novel method decreases distinctly calculation cost 
without loss of accuracy. Thus, the novel method can be 
applied to inductance and resistance calculation. 

 
Fig. 2. Distributed law of Kii (i=1,2,…,40) 

 
Fig. 3. Distributed law of Lii (i=1,2,…,40) at 1 MHz 

Due to the frequency effect, AC inductance and resistance 
should be calculated. However, if completely adopting FEM 
to calculate L and R, it would occupy great system resources 
and cost maximal computing time. Even if in static magnetic 
field, DC inductance calculation of 40 turn winding should 
cost 40GB hard disk space. So we must do some 
simplifications in calculation process. In this paper, we 
propose calculation of AC inductance and resistance based on 
the relation between apparent power and complex impedance 
[4]. In this method, inductance and resistance can be 
calculated together. Because of winding’s symmetry, we also 
only need calculate the first 21 turns just as the induction 
coefficient calculation. It takes n/2+1 FE solution steps and 
(n/2+1)(n/2+ n)/2 postprocessing steps to get L or R. Owing to 
considerable reduction of FE solution steps, the efficiency of 
this novel method can be improved greatly. To our excited, 
the novel method can replace completely FEM very well as 
shown in Fig. 3. In Fig. 3, both “direct” and “fluxv” are based 

on magnetic induction intensity integration. “VA” represents 
this novel method, and “ansoft” is inner macro instruction 
based on energy principle in ANSOFT environment. The 
efficiency and accuracy of this novel method are shown as 
TABLE I. 

TABLE I 
COMPARISON OF DIFFERENT CALCULATION METHODS 

Parameter Calculation 
method 

FE solution 
steps 

Maximum 
error 

Computing 
time(min) 

FEM n(n+1)/2 0 138 K
Novel method 3(n/2+1) 0.5% 25 

FEM n(n+1)/2 0 255 L
Novel method n/2+1 1% 53 

FEM n(n+1)/2 0 255 R
Novel method n/2+1 1% 53 

 
Because the novel method has been verified by calculation 

result of 40 turn winding model, it can be extended to 180 turn 
winding model. According to theory of novel method, except 
Kii, we need only evaluate the Kij (i=1,2,…n, i+1≥ j ≤i+2) in 
the same section and next to the section. As shown in Fig. 1(b), 
for example, in order to calculate the induction coefficient of 
18th conductor, it is necessary to consider 11 conductors in all 
coils: the 16th,17th,18th,19th,20th conductor in second section, 
the 2nd,3rd,4th conductor in first section, and 22nd,23rd,24th 
in third section. Furthermore, only half of conductors (1~10 
section) are necessary to calculated due to the plane symmetry 
of transformer winding model. 

IV. SOLUTION OF PD IMPULSE ALONG WINDING 

In order to verify the parameter calculation result further, 
we can solve PD propagation characteristics along winding. If 
the simulation result can meet the experimental result very 
well, the distributed parameters can be verified once more. 
Therefore, this novel method can be extended to the parameter 
calculation of real transformer winding model. 

V. CONCLUSION 
Because of the shielding effect of interval turns, the turn’s 

Kij decreases rapidly with the distance. K can be simplified as 
a banded matrix, and most of its elements need not to be 
evaluated. A novel method is proposed to calculate the K 
matrix that decreases distinctly calculation cost without loss of 
accuracy. This novel method also can be extended to 
inductance and resistance calculation. It is very important for 
us to research on PD propagation characteristics in winding. 
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Abstract — The accuracy of reconstruction of the MEG source 
is crucially dependent on the conditioning of the leadfield matrix 
to be inverted. However, the problem of reconstructing MEG 
source distributions from leadfield is very often ill-posed. In such 
cases, Tikhonov regularisation is widely employed in order to 
produce reasonable solutions. However, determination of the 
amount of regularisation is not straightforward in practical 
applications without prior knowledge of either the MEG sources 
or the contaminating measurement noise. Thus, two methods 
have been introduced, GCV and the L-curve method, which do 
not require prior information in order to determine the optimal 
regularisation parameter. In the present work, the abilities of the 
two methods are illustrated when these kinds of inverse problems 
are dealt with using Tikhonov regularisation. Finally, through 
simulations, some guidelines are proposed for determining the 
optimal degree of regularization for MEG inverse problems.  

I. INTRODUCTION

Magnetoencephalography (MEG) is a typical non-invasive 
human brain mapping technique to estimate neuronal 
electrical activities on the human cerebral cortex. The main 
object of MEG inverse problems is to accurately estimate 
neural current sources from external electromagnetic 
measurements [1, 2]. For the inverse problem, the field is 
sampled at different sensor locations and the underlying 
activity pattern must be determined [3, 4]. The accuracy of 
reconstruction of the MEG source is crucially dependent on 
the conditioning of the leadfield matrix to be inverted. 
However, the problem of reconstructing MEG source 
distributions from leadfield is very often ill-posed. In such 
cases, by using only the simple least-squares method, one 
cannot ensure a successful reconstruction of the MEG source 
distribution. Therefore, Tikhonov regularisation is widely 
employed in order to produce reasonable solutions. However, 
determination of the amount of regularisation is not 
straightforward in practical applications without prior 
knowledge of either the MEG sources or the contaminating 
measurement noise. Thus, two methods have been introduced, 
GCV and the L-curve method, which do not require prior 
information in order to determine the optimal regularisation 
parameter [5-7]. In the present work, the abilities of the two 
methods are illustrated when these kinds of inverse problems 
are dealt with using Tikhonov regularisation. Finally, through 
simulations, some guidelines are proposed for determining the 
optimal degree of regularization. 

II. SIMULATIONS AND RESULTS

We use simulations for the advantage that the correct 
answer is known a priori, allowing more detailed illustrations 
of the performance of the methods. A three-shell BEM model 

is made as the physical model. The outer shell models the 
skin, and the middle shell represents the skull surrounding the 
centrally located brain tissue. Fig.1 shows the cortical source 
patches to construct artificial MEG data which is 
contaminated by different levels of noise.  

Fig. 1. True sources with contaminating noise  

Fig. 2. Reconstruction results produced by Tikhonov regularisation using 
L_curve (contaminated sources) 

Fig. 3. Reconstruction results produced by Tikhonov regularisation using 
GCV (contaminated sources) 

As illustrated in Fig.2, Fig.3 and TABLE I, the relative 
errors of L_curve and GCV is almost same, however as the 
signal noise ratio (SNR) of active sources decreases the 
L_curve method produces more successful reconstruction 
results than the GCV method.  
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In order to compare directly the abilities of the two 
regularization parameter-determination methods in the 
different measurement noise environment, Fig.4 shows the 
sensor data with different SNR.

TABLE I 
RELATIVE ERRORS IN THE L_CURVE AND GCV 

RECONSTRUCTIONS OF CONTAMINATED SOURCES

One Activity Two Activities 
SNR(dB) L_curve GCV SNR(dB) L_curve GCV 
28.4612 0.985119 0.985119 30.744 0.977975 0.977975 
8.4677 0.986148 0.986148 10.737 0.97877 0.97877 
-3.63585 1.00347 1.00347 -1.23164 0.986418 0.986263 
-7.17023 1.02455 1.02455 -4.83143 0.999696 0.999696 
-9.70594 1.03179 1.05279 -7.28637 1.02531 1.02531 
-10.6968 1.05768 1.05768 -8.27992 1.03035 1.03035 
-11.5951 1.09995 1.09995 -9.18213 1.03204 1.03204 
-15.097 1.04399 1.22324 -12.7257 1.11327 1.12574 
-17.4995 1.15992 1.89713 -15.2689 1.17833 1.19953 
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Fig. 4. Sensor data with contaminating noise  

Fig. 5. Reconstruction results produced by Tikhonov regularisation using 
L_curve (contaminated sensor measurement data) 

It is clearly evident from Fig.5, Fig.6 and TABLE II that 
GCV seems to be more robust than the L_curve in the region 
with relatively high level noise contaminating the sensor 
measurement data. In other word, GCV method words well 
particularly in the regions completely dominated by 
measurement errors compared with L_curve. Therefore, based 
on the results presented, there seems to be no best method for 
determining proper regularization parameters in all situations. 
However, in the cases investigated, L_curve can be more 
reasonable when the sources with contaminating noise, whilst 
the GCV method may provide an effective method when the 
MEG sources reconstructed results are manly dominated by 
measurement noise. 

III. CONCLUSIONS 

The abilities of two different methods, GCV and the 
L_curve method, for the determination of the proper degree of 

regularisation have been simulated for a range of MEG 
reconstruction conditions in conjunction with sensor and 
source error. Based on the results of the numerical 
simulations, it appears that GCV is a better choice for 
estimating optimal regularisation parameters when the sensor 
noise levels are relatively high. However, the L_curve method 
seems to be a more effective method when the active sources 
are mainly dominated by errors such as contaminating noise. 
The results presented here may become useful guidelines for 
the right choice of regularisation parameter-determination 
method in real-world MEG source reconstruction. 

Fig. 6. Reconstruction results produced by Tikhonov regularisation using 
GCV (contaminated sensor data) 

TABLE II 
RELATIVE ERRORS IN THE L_CURVE AND GCV 

RECONSTRUCTIONS OF CONTAMINATED SENSOR DATA

One Activity Two Activities 
SNR(dB) L_curve GCV SNR(dB) L_curve GCV 
63.84 0.985377 0.985596 65.7671 0.978509 0.978516 
44.1597 0.987616 0.985836 45.6149 0.986649 0.981612 
23.3004 0.988211 0.989551 24.3205 0.985521 0.986429 
10.6012 0.992303 0.992243 10.3191 0.990259 0.990248 
3.84184 0.9944 0.995172 5.02998 0.99175 0.992199 
-1.79334 0.993747 0.993935 -0.792998 0.99327 0.993263 
-7.36803 8.58595 0.996125 -7.54336 0.999249 0.997855 
-12.8338 418.819 0.99963 -12.2077 1.00777 0.998804 
-15.5977 689.006 0.999796 -15.3296 12.5151 1.05075 
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12. DEVICES AND APPLICATIONS

Abstract —In this paper, the transient short circuit current of 
a three-phase saturated core high temperature superconducting 
(HTS) fault current limiter (FCL) is investigated by using a 
method combining 3-dimensional (3D) finite element analysis 
(FEA) and equivalent dynamic nonlinear model. The numerical 
computations are verified by the experiment results on a 380V 
prototype. Based on the short circuit current of the FCL, the 
three phase transient magnetic field is simulated and analyzed by 
3D FEA. According to the simulated results, the short circuit 
electromagnetic forces of a 220kV and a 35kV saturated core 
HTS FCLs are calculated. Combined with numerical calculation 
method, the relationship between prestress and peak dynamic 
force and displacement of each pancake coil are analyzed and the 
influence of prestress on axial kinetic characteristics of winding 
is revealed. Elliptical and circinal windings are applied on the 
35kV and 220kV FCLs respectively, and the dynamic force and 
displacements of each pancake coil of the two types of windings 
are compared and analyzed. 

I. INTRODUCTION

Short circuit is one of the major problems facing the power 
system, which immensely affects the system safety and 
reliability. All the devices in the power system, such as circuit 
breakers and transformers, have to be designed to withstand 
high mechanical and thermal stresses caused by the short-
circuit current. The superconducting fault current limiter (FCL) 
has been expected as a possible type of power apparatus to 
reduce the fault current in power transmission lines, and 
various types of FCLs have been proposed and tested [1-2]. 
The saturated core high temperature superconducting (HTS) 
FCL offers a fast and effective current limitation with 
automatic recovery [3]. 

When the short-circuit fault occurs, an enormous short-
circuit electromagnetic force is induced and the windings may 
be distorted and damaged resulting in limiting-current failure 
of FCL. Therefore, it is very important to calculate the short-
circuit electromagnetic force on the windings of saturated core 
HTS FCL and to analyze the displacements of each pancake 
coil and the influence of prestress on axial kinetic 
characteristics of the windings.   

II. CALCULATION OF SHORT-CIRCUIT CURRENT AND 

ELECTROMAGNETIC FORCE

This paper carries out the numerical simulation for the 
performance of a designed three phase HTS FCL using a 
method combining 3-dimensional (3D) FEA and equivalent 
mathematic modal, which can achieve high accuracy for 
transient performance calculation. Because of the nonlinearity of 
the ferromagnetic core, the inductance of the HTS FCL is 
associated with the currents flowing through the AC windings 
and DC windings. The nonlinear inductance of the FCL is 
calculated using the energy perturbation method [4] based on 
FEA. The transient short current could be acquired from the 
solution of equivalent dynamic nonlinear model, using the 
characteristics of inductance versus current (L-I curve).  

The computed transient current of FCL in both normal and 
three phase fault conditions are conformed through the 
measurement on the 380V prototype. Fig. 1 illustrates the 
measured and simulated currents, respectively. The transient 
currents of 35kV and 220kV FCLs are also calculated by using 
the same method. Fig. 2 shows the simulated current of 35kV 
FCL when three phase short circuit fault (the worst situation) 
occurs. Fig. 3 shows the simulated current of phase A of 220kV 
FCL. The figures of other two phases will be presented in the 
final paper.  

(a)                                                  (b) 
Fig. 1. Comparison between the measured and simulated current of a 380V 

FCL: (a) Measured, (b) Simulated. 
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Fig. 2. Simulated current of a 35kV FCL 

Fig. 3. Simulated current of a 220kV FCL 

Numerical calculation is carried out based on the theory of 
finite element method, considering the saturation of the silicon 
sheet and the non-sine variations of the current. 3D transient 
electromagnetic field in the saturated core FCL under short-
circuit condition is calculated, and then the distribution of 
electromagnetic field is obtained. Radial and axial 
electromagnetic forces are calculated by using the Lorentz 
formula. Based on the results, circumferential stress of each 
disk unit is calculated to check the strength of windings under 
short-circuit condition. 

Figs. 4 to 7 show the electromagnetic force of 220kV FCL. 
More results and analyses about the electromagnetic force will 
be presented in the final paper.   

Fig. 4. Distribution of radial force 

Fig. 5. Distribution of axial force 

Fig. 6.  Transient electromagnetic force of the middle pancake coil  

Fig. 7. Transient electromagnetic force of the bottom pancake coil  

During the transient process of short-circuit, both short-
circuit current and leakage magnetic field change continuously. 
Therefore, the short-circuit force, which is generated by the 
interaction between short-circuit current and leakage magnetic 
field, are a dynamic force actually. The calculation of dynamic 
force should consider these factors: the mechanical property 
of various insulation materials, inertia force, elastic force, and 
friction force which acts on the displacement of the structures. 
Combined with numerical calculation method, the relationship 
between prestress and peak dynamic force and displacement 
of each pancake coil are analyzed and the influence of 
prestress on axial kinetic characteristics of winding is revealed. 
The dynamic force and displacements of each pancake coil of 
elliptical and circinal windings are compared and analyzed. 
The two types of modals are shown in Fig. 8. The calculated 
results of dynamic force and displacement of each pancake 
coil and their analysis will be presented in the final paper. 

            
(a)                                                  (b) 

Fig. 8. Half modal of saturated core HTS FCLs with (a) elliptical windings, (b) 
circinal windings 
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Abstract — In the international scientific community there is 

an increasing interest in the application of minimally invasive 

techniques to the treatment of primary and metastatic tumours. 

Among the possible techniques, RadioFrequency Ablation (RFA)  

is considered potentially successful. For the monitoring of ablative 

treatment, Electrical Impedance Tomography (EIT) arises 

particular interest for its low cost and good sensitivity to tissue 

electrical properties changes. In this paper, an adaptive ablation 

treatment based on EIT measurements is presented. Remarks for 

configuring the ablation electrodes system are proposed in order 

to optimize the distribution of power deposition, in particular 

minimizing the power delivered to the more sensible healthy 

tissues. 

I. INTRODUCTION 

RFA is a technique used in the field of medical oncology, 

for the treatment of primary and metastatic tumours, in 

particular when patients are not candidates for surgical 

resection [1]-[3]. RFA destroys pathological tissue by raising 

their temperature. To this purpose, a radio frequency 

alternating current (450–550 kHz) is injected into the tissue 

through needles inserted percutaneously, laparoscopically, or 

during surgery [1]-[3]. The system is completed with an 

adhesive return electrode to close the circuit and to allow the 

current flow through the patient. A current field is, therefore, 

created between the probe and a return electrode usually 

placed on the back of the patient. When the temperature of 

cells exceeds 45–50 °C, the denaturation of intracellular 

proteins and destruction of cell membranes occurs; 

furthermore if the temperature is higher than 90°C the 

carbonization of tissues is achieved. The success of the 

treatment, therefore, relies on the accurate prediction of the 

thermal field distribution in pathological tissues as well as in 

adjacent healthy tissue. The selectivity in the treatment is most 

important indeed, because of healthy tissues have not to be 

affected, and consequently their temperature must be kept 

below 42 °C [5].  

The EIT is a non invasive imaging technique based on the 

identification of the complex admittivity profile inside a 

domain from measurements of electrical currents and voltages 

made on its boundary [6]-[10]. It has potential application in 

several fields such as geophysics, clinical diagnostics on 

human body, environmental sciences and non-destructive 

testing on materials. In particular, its clinical applications are 

intensively investigated because it exhibits some important 

advantages such as the absence of ionizing radiations, 

portability and relatively low cost of the instrumentation [9], 

and a good time resolution, which makes is particularly 

suitable for continuous monitoring of patients [10]. In addition 

the suitability of the EIT for real time monitoring of the 

temperature rise in ablation treatments have been assessed [6]-

[8]. In particular, it has been shown how a further 

improvement in EIT sensitivity could be  achieved if using the 

RFA needle as a further electrode [6].  

In this paper, the possibility of optimizing the distribution 

of Ohmic power deposed by the RFA treatments, minimizing 

the power delivered to sensible healthy tissues, is investigated. 

This is achieved by using a multiple return electrodes system, 

and designing an “optimal” current map starting from internal 

admittivity profiles, obtained using EIT measurements. In the 

following of this digest, an example of optimized ablation 

procedure will be presented, and some preliminary results will 

be briefly outlined. 

II. PROBLEM FORMULATION 

The temperature map actually achieved in internal tissues 

during a RFA treatment can be analysed using a coupled 

electrical and biothermal model [5]. Note that to be effective, 

RFA treatments require on one hand a localized temperature 

rise in cancerous tissue, but on the other hand safety issues 

must be taken into account in order to avoid unwanted damage 

of healthy tissues, causing eventually internal bleeding. For 

this reason any tool allowing to estimate and eventually drive  

the current density pattern in the patient’s body would be of 

great benefit, allowing to improve even state of the art RFA 

procedures. 

In this paper a formulation of the problem based on the 

estimation of the tissues properties during the treatment based 

on the EIT is presented. Such a piece of information can be 

used to optimise the current path driven by the RFA 

equipment.  

In order to include the therapeutical needs in the 

mathematical model of the RFA, a  target distribution of 

power density PT [W/m
3
] is defined, considering the 

physiopathological conditions of the subject to be treated. The 

target map PT is such that the power delivered to the tumour 

region allows sufficient temperature rise for treatment, while 

keeping sensible tissues “protected” by preventing excessive 

temperature rises. As a matter of fact, the power density 

portraying the instantaneous situation in the coupled 

biothermal-electromagnetic model is σmJ
2
, J being the module 
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of the current density field, while σm is the electrical 

conductivity, eventually estimated in real time by the EIT. The 

most general scenario envisages the use of FEM/BEM 

discretization of the subject’s body based on MRI pictures.  

The treatment efficiency can be optimized by minimizing 

the weighted discrepancy D(J, σm)  between target and actual 

Ohmic power delivered to the internal of patient’s body (which 

is described as a regular non homogeneous domain Ω): 
 

( ) ( ) ( ) ( )
Ω

Ω−= dPJJD
L

Tmm 2

2
);( rrrr σλσ  

(1) 

 

where r is the field point in Ω and λ is a weighting function 

accounting for different relevance of the tissues and for their 

sensitivity to temperature rises.  

In the minimization of D, the control parameter is 

represented by the current density amplitude J, while σm 

represents a parameter which cannot be modified but, 

nevertheless, impacts on D, and must be consequently kept 

under control (e.g. using EIT measurement for its estimation). 

The current density map is in turn “shaped” by adopting 

multiple return electrodes on the patients skin, connecting each 

to a different voltage or current source in the power supply 

system, and selecting the voltage/current sources amplitude 

able to minimize D. 

In the full paper, the adaptive strategy for power 

distribution design will be illustrated in detail, while a simple 

example of application is presented here. 

III. PRELIMINARY RESULTS 

For the sake of simplicity, a 2-D domain , representing the 

section of a patient’s torso, has been considered in this study. 

A subdomain T representing the tumoral tissue and a 

subdomain p to be protected from temperature rise are 

defined, and a two return electrodes system has been 

considered in alternative to the standard single electrode one 

(see Fig.1). The total area of the two electrodes in the 

configuration (b) is equal to the area of the single return 

electrode of the configuration (a). 

Comparisons between the total delivered power density, the 

power delivered in Ωp and in ΩT for the two different return 

electrodes configurations have been computed using a FEM 

model, and are reported in Table I. In addition, in Fig. 2 the 

Ohmic power density maps for case (a) and (b)  are reported, 

limitedly to the region Ωp. Note the different scale of delivered 

power density.  
The simple example highlights how a careful design of the 

return path of the current can be importantly influence the 

selectivity of the treatment without affecting its effectiveness. 
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I. INTRODUCTION 
For the last twenty years, microfluidic and labonachip 

devices have been widely investigated for biomedical or 
chemical applications. Miniaturization provides better 
sensitivity for molecular detection and reduces the volume of 
solvents and reactants handled. However, contamination 
phenomena raise significant issues for such small samples. 
Diamagnetic levitation above bulk magnets [1][2][3] or 
integrated micromagnets [3] have been investigated for 
providing a contactless handling of picoliter droplets. A 
“MEMS compatible” method to convey contactless some 
levitating droplets along a magnetic groove perpendicularly to 
the diamagnetic forces is presented. It combines diamagnetic 
levitation and dielectrophoresis (DEP). Corresponding 
computations are developed in this paper.  

II. DIAMAGNETIC LEVITATION AND DIELECTROPHORESIS 

A. Diamagnetic levitation 
Water is a diamagnetic element which corresponds a so 

weak negative susceptibility (χwater  9 106 SI) that the 
demagnetization field can be neglected. Hence, under a non 
uniform magnetic induction B


, water droplets experiment a 

small repulsive force [1][2]  
 ∫∫=

S
m dSBF water 2

2 0

χ
                   (1) 

 
Due to the favorable reduction scale laws in magnetism [4], 

water picoliter droplets can levitate above micrometric 
magnetic grooves. The grooves can be micromachined from 
bulk magnets (Fig. 1A) or fabricated by NdFeB sputtering 

onto patterned silicon wafers [][6] (Fig. 1B). The devices are 
then magnetized vertically (1.2T<Br<1.4T). 

 
Fig. 1. Levitating droplets (30m in diameter) within magnetic grooves above 

(A) bulk or (B) integrated NdFeB micromagnets [2],[3]. 

B. Dielectrophoresis 
DEP is an electrical phenomenon which attracts (positive 
DEP) or repels (negative DEP) polarizable particles by 
applying a non uniform AC electrical field [7]. For the 
particular case of water droplets in air, only the positive 
(attractive) DEP is possible [8]. The electric field is obtained 
from Indium Tin Oxide (ITO) planar interdigitated transparent 
electrodes (10 m wide, gap of 10 m) deposited on a glass lid 
perpendicularly to the magnetic groove (Fig.2). 

III. MICROSYSTEM MODELLING 

A. Description of the microsystem 
The DEP actuation of a 40m diameter levitating droplet 
above a 0mdeep and 0 mwide groove is presented (Fig. 
2). The system is inspired from Honegger’s works [9] where a 
4 m thick microfluidic photopatternable silicone channel is 
bonded between two glass wafers where electrodes are 
deposited. Here, a 0 mthick magnetic layer sputtered on a 
patterned Si wafer replaces the bottom electrodes. The 
magnetic layer can be modeled by  mlarge rectangular 
parallelepiped magnets. 

 
Fig. 2. MagneticDEP microdevice for the levitation and the translational 

transport of water droplets. 
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B.  Forces Computation 
The magnetic field created by the magnets is analytically 

computed in the CADES framework [10]. The diamagnetic 
forces are computed by integrating the magnetic energy over 
the droplet boundary (1). 

The electric potential created by the interdigitated 
electrodes is determined by solving Laplace’s equation, using 
the Finite Element Method with Comsol Multiphysics™. As 
for the DEP force, the dipolar approach commonly used is 
compared to the 2D and 3D Maxwell stress tensor methods 
applied on the computed electric field. Results show when 
droplet size (40 m) is not negligible compared to the 
electrode dimensions (width = gap = 10 m), the usual point 
dipole approximation and the 2D Maxwell stress tensor 
method reach errors around 100 % compared to the full 3D 
computation. The 3D Maxwell stress tensor method was thus 
selected for this study. 

IV. NUMERICAL RESULTS 

A. Force balance 
According to the superposition principle, the vertical 

resultant force ( zF


) applying on a droplet is:  
 

DEPMAGz FFPF


++=  (2) 

where P


 is the droplet’s weight, MAGF


 and DEPF


 are the 
vertical components of the magnetic force and of the DEP 
force, respectively. 

The electrode voltage is tuned so the droplet remains in 
stable diamagnetic levitation while having the strongest 
horizontal actuation. Curves of Fig. 3 show that a droplet has a 
stable levitation height between 16 and 18 m above the 
micromagnets for a voltage magnitude below 2.5 V. 
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Fig. 3. Vertical resultant force (Fz) vs. the height of the droplet: stable 

levitation (Fz=0 and dFz/dz<0) applies for a voltage inferior or equal to 2.5V. 

B. Voltage pulse sequence 
To actuate droplets along the magnetic groove using DEP, 

two adjacent electrodes are polarized with a 180° phase shift 
(Figures 2 & 4). The magnetic force component parallel to the 
channel direction is negligible [8]. Therefore, in the horizontal 
direction, the droplet motion is governed by the DEP force. 
Conversely, the vertical DEP force magnitude (~1 pN, Fig. 4) 
is far weaker than the diamagnetic one (~100 pN range). The 
diamagnetic levitation height is thus not disturbed by DEP, 
and the droplet reaches a stable position just under the 
electrode pair. For a DEP force of 0.5 pN (1 V, 10 kHz), the 
droplet can move at ~70 m.s1 due to the weak viscosity of 

air. Finally, joule heating is negligible: evaluation of heating 
and power consumption will be discussed in the full paper. 
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Fig. 4. Horizontal and vertical DEP forces along the magnetic groove for a 40 

µm droplet levitating at a 16m height. 

V. CONCLUSION AND PERSPECTIVES 
Computations show that a contactless DEP actuation of 
levitating micrometric water droplets in air in magnetic 
grooves is possible. This study raises some interesting 
questions about the models to use. Although the 3D Maxwell 
stress tensor is CPU consuming, the point dipole method 
appears to provide imprecise data. A multipolar approach may 
provide a satisfying compromise. Conversely, our semi
analytical diamagnetic force computations presently need an 
integration over the droplet boundary. Considering 
diamagnetic susceptibilities, a similar comparison with the 
point dipole and the multipole approaches could avoid using 
surface integration. 
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Abstract — This paper introduces a novel approach to create 
notch band filters in the front-end of ultra-wideband (UWB) 
communication systems based on electromagnetic bandgap 
(EBG) structures.  The design presented here can be 
implemented in any structure that has a microstrip in its 
configuration. The EBG structure is first analyzed using a full 
wave electromagnetic solver and then optimized to work at 
WLAN band (5.15-5.825GHz). Two UWB passband filters are 
used to demonstrate the applicability and effectiveness of the 
novel EBG notch band feature. Simulation results are provided 
for two cases studied.  

I. INTRODUCTION 
In recent years there has been a lot of interest in 

investigating electromagnetic bandgap (EBG) structures for 
various kinds of applications at microwave frequencies. EBG 
structures proposed over the past few years have been used 
primarily to enhance the functionality of antennas [1], but 
other applications − such as filters and baluns at microwave 
frequencies − have also been explored [2]. Moreover, the 
EBG structures have inherent features that can be used to 
reduce or suppress completely electromagnetic interferences 
(EMI) that can occur in electronic systems leading to 
electromagnetic compatibility (EMC) issues [3]. The EBG 
structures suppress the propagation of surface waves over 
specific frequency bands that directly depend on the 
dimensions and types of materials used to fabricate the EBGs. 
However, in this work we focus on a slightly different 
application of these structures. Consider the design of a notch 
band structure that can be used in ultra wideband (UWB) 
radio systems and can be easily integrated with microstrip 
circuitry fabricated with printed circuit board (PCB) 
technology. Since February 2002, when the Federal 
Communication Commission (FCC) released the 3.1-10.6GHz 
band for commercial communication usage, UWB has been 
receiving a lot of attention from both academia and industry. 
Unlike other existing wireless communication standards, 
which are narrowband, UWB has a very wide bandwidth, 
7.5GHz wide to be precise. However, the UWB emission 
power is limited to a maximum of −41.3dBm/MHz therefore it 
can co-exist with other narrow band services that occupy the 
same spectrum. One such service is the 802.11a WLAN that is 
located at 5.15-5.45GHz and 5.725-5.825GHz. Recent work 
has shown that the effect of the 802.11a interference on UWB 
can be harmful and, depending on the probability of signal 
overlap and the relative distance between the two transceivers, 
the 802.11a interference can cause significant signal 
degradation of the attainable throughput of the UWB system 
[4]. Therefore it is very important to incorporate means that 

can mitigate the effects of 802.11a in an UWB front end. 
Different types of structures for the physical layers and 
techniques for the MAC layers have been suggested recently. 
The previously proposed notch filter solutions are very 
specific to certain types of filters or antennas, therefore they 
cannot be easily integrated in a different design [5, 6, 7]. In 
this paper we propose a more general approach that can be 
implemented in any physical design that has at least a 
microstrip structure in its front end.  

II. THE EBG STRUCTURE 
As mentioned in the Introduction, EBG structures have 

been used for different types of applications in the past few 
years. The most popular mushroom like EBG structure was 
first introduced by Sievenpiper in 1999 [1]. The physical 
mechanism of the mushroom like EBGs can be explained by a 
simple equivalent LC parallel resonant circuit. However, more 
recently the EBG structures have been used to suppress the 
noise propagating in parallel plate waveguide structures, such 
as the power planes of high speed electronic systems. In this 
environment the equivalent circuit that can be used to explain 
the EBG behavior is somewhat different to the initial LC 
parallel resonant circuit used by Sievenpiper to explain the 
behavior of the EBGs in an open environment. Due to the 
EBG’s proximity to the two metal planes in this set-up, the 
capacitances to the plane above and bellow the mushroom are 
much higher that the capacitance between the edge of the 
adjacent mushrooms. Therefore these capacitances will now 
dominate the response of the EBG structure.   

 
Fig. 1. EBG embedded between two metal planes and its equivalent circuit  

  
In this configuration the EBG behaves like a stop band 

filter for the electromagnetic wave propagating in the parallel 
plate waveguide. The center of the stop band frequency and 
the bandwidth of the stop band are determined by C1, C2 and 
L, where C1 is the capacitance between the top conducting pad 
and the above metal structure, C2 is the capacitance between 
the pad and the bottom metal plane and L is the inductance of 
the via connecting the bottom metal plane to the pad. The 
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capacitances of the structure C1 and C2 are determined by the 
size of the pad, the distance from the top and bottom planes 
and the dielectric material between the two planes. The 
inductance of the structure L is determined by the size of the 
via (length, diameter) but also by its position with respect to 
the center of the patch. As the distance between the two 
parallel plates is much smaller than the size in the xy direction, 
it can be assumed that the only mode travelling in this wave 
guide is a TEM mode. Therefore it is expected that, if the 
EBG structure is embedded within another wave guiding 
structure supporting a TEM mode, a similar response will be 
obtained. This has been confirmed through simulation of a 
microstrip line run above the EBG. As previously, the 
observed behavior can be explained by the circuit in Fig.1. 
The return loss of the microstrip routed above one mushroom 
has a zero at frequency f1 and a pole at f2, where f1 and f2 are: 

( )21
1

2
1

CCL
f

+
=

π
  and   

2
2

2
1
LC

f
π

=                  (1) 

Hence the stop band appears at the frequency f1. Another 
interesting behavior of this circuit is that the relative band 
width of the circuit is proportional to ( ) LCC 21 + ; therefore 
by controlling the size and the design of the EBG element one 
can tune frequency of the stop band as well as its bandwidth. 
This behavior has also been confirmed through numerical 
simulation. 
 The size of the EBG structure is critical when it has to be 
integrated into a practical design. Unfortunately the size of a 
mushroom EBG to be integrated into a practical substrate such 
as FR4 is quite large (4.4x4.4mm) if for example the 5.5GHz 
is chosen as the resonant frequency. Another drawback of the 
mushroom structure is the fact that its inductance is very small 
while C1 and C2 are much bigger; therefore the bandwidth of 
the stop band is relatively large and may not be useful for a 
notch filter application. A compact and novel EBG element 
based on small planar inductor is introduced to solve the 
above problem. The design and optimization of the size and 
shape of the inductor based EBG is done using a full wave 
simulation software. The numerical tool (CST-Microwave 
Studio) used for this work is based on Finite Integration 
Technique (FIT) [8]. Through this approach a much smaller 
EBG structure is obtained, only 2x2mm for a FR4 substrate. 
Moreover, the corresponding inductance is much higher while 
the two capacitances are much smaller. However, the design 
of such structure is not as straightforward as the design of a 
simpler mushroom structure as its total inductance and 
capacitances have to be computed through a rigorous three 
dimensional numerical model. The appropriate ratio between 
total capacitance and inductance of the structure has to be 
calculated carefully and an iterative process is necessary to 
obtain the optimum design.  

III. UWB FILTERS WITH EMBEDDED EBG ELEMENT 

Using the features described above one can design small 
structures with notch band characteristics that can be 
incorporated into existing designs without large and costly 
modifications. In this section two band pass filters that can be 

used in UWB applications were modified to incorporate the 
notch band feature for the WLAN. All the following results 
were obtained through full wave simulation using CST 
Microwave Studio. 

The first UWB filter studied here is based on the broadside 
coupling between a microstrip and a coplanar waveguide 
(CPW). The CPW is on the ground of the microstrip, while 
the two microstrip lines on the top surface are separated by a 
small gap. The second UWB filter has two coupled L-shaped 
microstrips on the top layer and a stepped impedance 
resonator (SIR) on a defected-ground structure (DSG) on the 
bottom layer. The UWB filters described above are considered 
to be built on different types of a substrate. The first design 
uses a dielectric substrate with a dielectric constant of 2.17 
whereas the second filter has a substrate with a constant of 4.4 
(FR4). 
 The simulations results in terms of the magnitude of the 
insertion loss (|S21|) obtained from the full wave numerical 
solution are presented in Fig. 2. It can be observed that both 
designs have a sharp stop band feature in the WLAN band 
without serious degrading of the passband for the designs with 
the novel inductor based EBG implemented.  

 
Fig. 2. Magnitude of the return loss for the four cases studied  
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12. Devices and applications, (e) fusion machines

Abstract — In this paper we compute the electromagnetic 
loads (forces, torques, Joule losses) on passive conductors of the 
ITER (International Thermonuclear Experimental Reactor) 
fusion device, currently under construction, following a 
disruption event, i.e. the sudden loss of magnetic confinement. An 
original integral formulation is used, able to automatically deal 
with complex topologies like the ones to be studied. Non-isotropic 
homogenized resistivities are used to take into account fine 
geometrical details. A suitable inverse problem is solved in order 
to compute the forcing terms. 

I. INTRODUCTION

In devices for the controlled thermonuclear fusion, the 
plasma disruptions are associated to a sudden loss of magnetic 
confinement, which causes the magnetic and thermal energy 
stored in the plasma to be released to surrounding structures. 
The consequent electromagnetic forces and heat load have an 
impact on the operational lifetime of several components and 
in extreme cases seriously damage the integrity of the devices 
themselves. For this reason, the problem of the disruptions is 
of the major concerns for both existing and future fusion 
devices [1], and plays a fundamental role in the design of new 
experimental devices like ITER (International Thermonuclear 
Experimental Reactor), currently in the construction phase in 
Cadarache, France, which will be the biggest tokamak ever 
built. 

To study this problem, we use an integral formulation of 
the eddy-currents equations [2], which is very advantageous in 
the description of fusion devices, since it is required to give a 
discretization only of the conducting structures, which are 
typically a small fraction of the overall solution domain in 
such devices. Moreover, it is possible to give separate 
discretizations of non-connected conductors, hence allowing 
easily a zooming approach. This integral formulation is able to 
deal automatically with complex geometries and topologies 
[3], like the ones arising for the present study. 

II. NUMERICAL FORMULATION

We assume that no magnetic materials are present and that 
the conducting materials are linear, although possibly 
anisotropic. Integral methods are therefore well suited for this 
analysis. They are characterized by full matrices, but the 
number of unknowns needed to get a required accuracy is 
relatively small, as only the conducting region has to be 
meshed, and the regularity conditions at infinity are 
automatically taken into account. The results have been 
obtained using the CARIDDI code, based on an integral 
formulation in terms of two-component current density vector 

potential [2]. The current density is expanded in terms of 
solenoidal shape functions with normal component zero on the 
boundary as J=ΣIk∇×Tk, whose coefficients are determined 
applying Galerkin procedure in the time domain: 

{L} d[I]/dt + {R} [I] = d[U]/dt       (1) 
and: 

∫ ∫ −

×∇⋅×∇
=

cV cV

ji
dVdV'L

'4
0

ij xx

TT

π
μ

    (2) 

dVR
cV

ji∫ ×∇⋅×∇= TT ηij         (3) 

∫ ⋅×∇−=
cV

i dVU 0i AT          (4)  

where t is the time, η is the resistivity tensor, Vc is the 
conducting domain, and A0 is the magnetic vector potential 
due to the external sources (plasma and current driven coils). 

III. PRELIMINARY RESULTS 

The geometry of interest includes the following items:  
• the blanket modules (BM), with the aim of shielding 

neutrons originating from nuclear reactions; 
• the vacuum vessel (VV), made by two nested shells 

with port extensions and port plugs; 
• the divertor, which must carry the heat load and 

particle flux. 
The disruptive event to be represented is a so-called VDE 

(Vertical Displacement Event), in which the plasma 
experiences an unstable vertical axisymmetric evolution. This 
is originally represented by a variable number of moving 
toroidal filaments, each carrying a time-varying current, 
whose values have been computed by the DINA MHD code 
[4]. Several different VDEs will be considered, both upwards 
and downwards. 

A. Equivalent filaments 

We have given an equivalent representation of the VDE in 
terms of a given number of fixed filaments, located inside the 
plasma region. The waveforms of the current in each filament 
are obtained by imposing that:  

a) the multipolar expansion of the original plasma 
current density and of this set of filamentary currents 
is the same up to the sixth order; 

b) the flux and the flux time derivative at a given set of 
points of the two current distributions are the same.  

The resulting algebraic system of linear equations (suitably 
normalized) is solved using the Tikhonov regularization. A 
typical result is reported in Fig. 1, showing a good agreement. 

Electromagnetic disruption loads
on ITER blanket modules

R. Albanese1, M. Furno Palumbo2, R. Palmaccio2, G. Rubinacci1, P. Testoni3, F. Villone2
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3Fusion For Energy, C/ J. Pla 2, Barcelona, Spain 
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Fig. 1. Original current filaments (right) and relative error on magnetic flux 
over the green line using a set of fixed filaments  

B. Equivalent anisotropic resistivity 

The BM have a rather complex geometry: the front panel 
(FP) facing the plasma is made by a beryllium layer, followed 
by a copper layer and a stainless steel (SS) layer, each having 
a number of void channels inside. Further from the plasma, 
the shielding block (SB) is present, which is a volumetric SS 
structure with void channels, slits, pockets etc. 

Figure 2 shows one typical example – around 20 different 
typologies of BM are present. While slits and pockets have 
been fully represented in the discretized model, the presence 
of channels has been taken into account via an an-isotropic 
equivalent resistivity. In particular, for each direction the void 
fraction α has been computed, and the resistivity has been 
enhanced of a factor 1/(1-α). Whenever possible/applicable, 
we estimated the resistivity enhancement factor using the 
Clausius-Mossotti formula, or resorting to 2D simplified 
computations, as proposed in [5]. 

Meshes with three different levels of discretization have 
been produced for each BM. We have compared the power 
losses, forces and torques following a VDE, finding a good 
agreement (within around 10%). Moreover, in one single case 
also a mesh accounting for all geometrical details (including 
channels) has been considered, obviously with the reference 
bulk isotropic values of resistivity for each material. The 
agreement on the aforementioned parameters, as computed 
using the equivalent anisotropic resistivity, is around 15%. 

C. Overall model 

The overall discretized model has been successfully 
produced, including all the aforementioned geometrical 
features. The mesh is reported in Fig. 3, and is currently being 
used for quantitative computations of the overall 
electromagnetic loads due to disruptive events in ITER. As 
anticipated, the complex topology of the conductors is 
automatically treated. 

This work has been supported by Fusion for Energy 
contract F4E-2008-OPE-08 (ES-AC). The views expressed in 
this publication are the sole responsibility of the author and do 
not necessarily reflect the views of Fusion for Energy. Neither 

Fusion for Energy nor any person acting on behalf of Fusion 
for Energy is responsible for the use which might be made of 
the information in this publication. 

Fig. 2. Typical geometry of one BM. The colors denote materials with 
different anisotropic resistivities.  

Fig. 3. Overall ITER geometry 
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12. DEVICES AND APPLICATIONS 

Abstract — Relative movements of permanent magnets and 
conductors cause forces which can be used to study the material 
characteristics of the conducting object. The paper describes a 
fast technique to compute the forces acting on a permanent 
magnet using the finite element method. The proposed approach 
allows studying the possibilities of defect identifications in 
conductors if e.g., the Lorentz force eddy current testing 
technique is applied.  

I. INTRODUCTION 
Moving a permanent magnet above a conducting object or 

moving a conducting object in the vicinity of a permanent 
magnet causes induction of eddy currents in the object 
(Fig. 1). The interaction between the magnetic field of the 
permanent magnet and induced eddy currents leads to two 
types of Lorentz forces acting on the magnet, the first one 
which tries to stop the magnet (drag force) and the second one 
which lifts the magnet (lift force). In the paper, we consider 
the force calculations which are important in Lorentz force 
velocimetry [1] or a non-destructive material testing.  

 
Fig. 1. Permanent magnet moving above conducting plate  

 

II. DESCRIPTION OF METHODS 
To solve above problem we have applied three approaches: 

(a) transient approach (TR), in which the global coordinate 
system is associated with the conducting plate and the 
permanent magnet is moving with a constant velocity v0 along 
x-axis, (b) quasi-static approach (QS), where the global 
coordinate system is associated with the permanent magnet 
and the conducting plate with a crack is moving with a 
constant velocity –v0 along x-axis, and (c) fast quasi-static 
approach (FAST), in which the global coordinate system is 
associated with the permanent magnet and the moving 
conducting plate contains no crack. In all analyzed cases, to 
avoid influence of edges effects, we have assumed that the 
moving magnet and the crack region are far away from the 
walls of the plate. Forces acting on the permanent magnet are 

calculated indirectly, by calculating Lorentz forces acting on 
the plate (Newton’s third law). 

A. Transient approach (TR) 
Assuming that the external current density Je equals 0, we 

have to solve the following equation [2]: 

 
0

1
0

t





   



 
 
 

A
A M   (1) 

where A is a magnetic vector potential and M a 
magnetization vector defined as B=µ0(H+M). To realize this 
approach, we define above the plate a rectangular region 
where the permanent magnet is moving (Fig. 2). In the 
movement region, the magnetization vector is defined as:  

 0

0 0 0 2( , , )

, , ,

( ) ( ),

y

lf x z t

M f x z t

x x vt x x w v t z



     

M 1

H H
  (2) 

where H(·) is the Heaviside step function, x0 is the start 
position of the magnet, w is the width of the magnet, and v0 is 
the velocity of the movement.  

 
Fig. 2. Definition of material regions in a transient approach  

 
In the numerical implementation, we have to take into 

consideration two facts: first, the finite element mesh in the 
movement region should be regular to fit the shape of the 
magnet  (Fig. 3),  and second, the time step used in a  solution 

 

 
 

Fig. 3. Sample finite element mesh with marked magnet position (2D, t = 0)  
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procedure should be chosen in such a manner that the position 
of the magnet coincides with the finite element mesh in the 
particular time. 

B. Quasi-static approach (QS) 
In the quasi-static approach, we have to solve the following 

equations: 

 

  
0

1
0

0

V

V

 


 

        

      

 
 
 

A M v A

v A

  (3) 

Although, the quasi-static formulation is fully correct for 
problems without spatial material changes in the movement 
direction, i.e. for the plate without crack, we have applied it to 
find the limits of its application when the plate contains a 
crack (Fig. 4) [3].  

 

 
Fig. 4. Configuration of the problem used in the quasi-static approach  

 
The implementation of the quasi-static approach is much 

easier and gives the results faster as in the transient one. The 
only problem which we have to take into consideration is a 
proper finite elements size in the conducting region 
determined with the help of Peclet number (Pe = v0µ0x) in 
order to avoid spurious solutions [4].  

C. Fast quasi-static approach (FAST) 
In the fast quasi-static approach, we solve (3) for the plate 

without crack. The presence of the crack is taken into account 
only in the force calculations where the region with the crack 
is simply eliminated from the integration loop (Fig. 5).  

 

 
Fig. 5. Configuration used in the fast quasi-static approach  

 
This kind of analysis is the fastest one because we have to 
solve the field problem only once and due to a suitable 
definition of the region with the possible crack position (e.g. 
by definition of several regions with different material codes) 
we receive the possibility to analyze various positions and 
shapes of the crack. 
 

III. RESULTS AND DISCUSSION 

We have realized all methods as Matlab® procedures using 
Comsol® as the FEM solver. In the digest, we present only 
sample 2D calculations of the drag force in the vicinity of the 
crack (Fig. 6). We can observe that the FAST approach gives 
results which are qualitatively closer to the transient approach 
than the QS approach even for high velocities. In the full 
paper we will present the results of 3D simulations as well as a 
detailed analysis of errors of the applied methods. 

 

 
Fig. 6. Drag force distribution in the vicinity of crack (w×h=5×5 mm) for 

different velocities   

IV. CONCLUSIONS 

The paper describes a fast technique to compute the forces 
acting on a permanent magnet that is moving relatively to a 
conductor. The proposed technique allows studying the 
velocity range in which the quasi-static approach can be used 
and thus, extensive transient FEM calculations can be avoided. 
The approach is very useful if the Lorentz force eddy current 
testing technique is applied to defect identifications in 
conductors.  
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12. DEVICES AND APPLICATIONS

Abstract — This paper presents a numerical approach, based 
on the Boundary Element Method, able to reconstruct the 
induced current and SAR distribution inside a human phantom 
from the knowledge of field quantities on the body surface. Some 
examples of application are reported and the parameters 
affecting the accuracy of the reconstruction are analyzed and 
discussed. 

I. INTRODUCTION

Guidelines limiting human exposure to electromagnetic 
fields are set by the International Commission on Non-
Ionising Radiation Protection (ICNIRP) [1]. Basic restrictions 
are established in terms of induced currents (up to 10 MHz), 
specific absorption rate (SAR) (between 100 kHz and  
10 GHz), and incident power density (from 10 GHz to 300 
GHz). In Europe, the directive EC 2004/40/EC “Physical 
Agents Directive” [2] will make the provisions of ICNIRP a 
legal requirement with respect to the exposure of workers to 
electromagnetic fields. 

Artefact standards for SAR exist only within the frequency 
range 380 MHz to 6 GHz, while difficulties arise in the lower 
and higher frequency ranges. As a consequence, limitations to 
future use of high power radio-frequency in industrial and 
medical applications (e.g. plastic welding, induction furnaces, 
and Magnetic Resonance Imaging) may arise, particularly for 
frequencies below 380 MHz. Within this context, the 
EURAMET-iMERA project [3] aims at providing traceable 
metrology for SAR in the whole ICNIRP frequency range. In 
this work, we describe and discuss some results obtained in 
the aforementioned project, with specific attention to the 
development of models able to relate surface field 
measurements to SAR in human phantoms. This approach will 
provide a valuable tool for more accurately assessing work 
place exposures in the low frequency range. 

The numerical simulations are based on an integral 
formulation (IE) of the electromagnetic field equations. In 
particular, the Boundary Element Method (BEM), which 
deduces the fields within a homogenous body from the surface 
values, seems to be tailored for the specific requirements. The 
results of simulations performed by BEM on a simplified 
version of the standard SAM phantom [4] are first compared 
with those provided by a commercial code based on Finite 
Integration Technique (FIT) [5]. The parameters affecting the 
reconstruction of induced currents and SAR starting from a 
limited set of surface field measurements are finally discussed. 

II. MODELING APPROACH

In order to relate field quantities induced within the body to 
the fields measured on its surface, we derive an integral 
formulation of the complete Maxwell’s equations, assuming 
sinusoidal supply conditions with angular frequency ω:

s

s

k

ik

JHH

JEE

×∇+=×∇×∇

ωμ−=×∇×∇
2

2

        (1) 

The field source is a known current density Js, distributed in a 
domain Ωs. Considering the source and phantom sizes and the 
wavelengths at the considered frequency range, the near field 
assumption can be assumed and we refer to a magnetic field 
source. E and H are the phasors of the electric and magnetic 

fields. The complex propagation constant εμω= ~k  depends 

on the magnetic permeability μ and the complex electric 
permittivity of the media '''~ ε−ε=ε i . Here 'ε  is the dielectric 
constant and ωσ=ε '' , where the equivalent electrical 

conductivity σ includes all material losses. The values of ε~

are given as a function of frequency. The medium is isotropic, 
so that vector E and J are always collinear.  

By applying the Green vector identity over the phantom 
body (domain Ω), the integral form of (1) for the electric field 
(EFIE) within the considered body becomes [6]: 
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The body surface ∂Ω, separating the external region in air 
(volume 0) from the internal one filled by a weakly 
conductive medium (volume 1), is discretized into N triangles. 
In (2) the field quantities E and H are assumed to be constant 
on each triangle e (e = 1,..,N), T(r) represents the singularity 
factor, the normal unit vector n(1) points outward (toward 
volume 0) and ψ is the Green’s function satisfying Helmholtz 
equation. The electric and magnetic field values in the right-
hand side are deduced from the external measured quantities 
(in volume 0) through the interface conditions. Relation (2) 
enables the computation of the value of E(1) and 

)1()1()1( ~ EJ εω= i  in any point inside Ω; the local values of 
SAR are then deduced as ( ) δℜ *EJ , being δ the mass density 

of the media. 
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III. DISCUSSION OF RESULTS

The numerical model has been applied to the analysis of the 
homogeneous SAM phantom (see pictures in Fig. 2). In the 
results here reported, the phantom is exposed to the magnetic 
field generated by a small loop located laterally to the head, at 
a distance of ∼4 cm. Assuming a working frequency of 100 
MHz, the electric conductivity, relative permittivity and mass 
density of the SAM phantom are 0.33 S/m, 76 and 1000 
kg/m3, according to average properties of muscle tissues [7]. 

In order to validate the proposed approach and verify its 
accuracy, the electromagnetic fields on the body surface are 
determined by a numerical solution of problem (1). For such a 
purpose, we add to the discretized relation (2) the magnetic 
field integral equation (MFIE) for the external volume: 

( ) ( )
( ) ( )

∫

∑ ∫∑ ∫

∑ ∫

Ω

Ω∂Ω∂

Ω∂

ψ∇×

+ψ×εω+ψ∇⋅

−ψ∇××−=

s

ee

e

dv

dsids

dsT

s

ee

e

)0(

)0()0()0()0()0()0()0(

)0()0()0()0(

~

J

EnHn

HnHr

 (3) 

Following the BEM approach, a set of algebraic equations 
is then obtained by projecting Eqns. (2) and (3) along local 
coordinate systems, defined on each triangle by the normal 
and tangential unit vectors, and introducing interface 
conditions on the field quantities [6]. The system solution 
provides the electric and magnetic field on each surface 
triangle, effectively substituting the set of experimental 
values. The use of the numerical field solution allows us an 
easy investigation about the factors that affect the 
reconstruction of induced quantities and SAR within the body. 
Thus, we can verify the influence of the number of measuring 
points, of their distance from the investigation point and of the 
contributions of the single terms in (2) containing the electric 
and magnetic field components. 

The induced currents flowing in the SAM phantom, 
together with the distribution of SAR are depicted in Fig. 1, 
making reference to a unitary supply current in the loop. 

Fig. 1.  Map of SAR distribution (values in mW/kg) over the central plane. 

The corresponding induced electric field, along the 
investigation line A shown in Fig. 2, obtained by BEM 
approach are compared with those provided by a commercial 
code, based on Finite Integration Technique [5]. The same 
figure presents two additional curves obtained including for 
each evaluation point only the contribution within a given 
sphere of influence (having radius R). The results prove that 

this simplifying assumption does not give rise to a satisfactory 
reconstruction of the induced field. More encouraging results 
are obtained neglecting the contributions of the normal 
component of the electric field on the body surface. The effect 
of the tangential components of E and H cannot be 
disregarded (see Fig. 3). 

Fig. 2.  Model of the SAM phantom, with field source and computed values of 
the induced electric field along the investigation line A.  

Fig. 3.  Influence of the surface E and H components on the reconstruction of 
the induced electric field along the investigation line A. 
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Abstract — This paper investigates a mutually reverse (MR) 
unit coil as a wheel detector which is more insusceptible to 
electromagnetic noise than conventional wheel detectors. We 
carry out the design optimization of the coil for the improvement 
of reception sensitivity by means of magnetic field computations.  

I. INTRODUCTION

Recently, with the advancement of semiconductor devices, 
the wide spreading of railcars equipped with VVVF has 
become an issue due to the electromagnetic noises it creates. 
Therefore, the environment of the railway signaling system is 
deteriorating [1]. When developing new railway signaling 
devices, we need to consider the protection against noise. 
Especially, the noise reduction is indispensable in the case of 
wheel detectors, which are one of the railway signaling 
devices.  

Thus, this paper deals with mutually reverse (MR) unit 
coil as a wheel detector, which is more insusceptible to 
electromagnetic noise than conventional wheel detectors. 
Unlike the conventional detector with only single receiving 
coil, in the MR wheel detector, two receiving coils are 
arranged one above the other. As the output, the difference of 
voltage which is induced in the two receiving coils is utilized. 
Therefore, the noise, i.e., magnetic field generated by the 
traction power converter of the railcar, is canceled by using 
two receiving coils, which results in the high accuracy of the 
wheel detector.

For the further improvement of reception sensitivity, we 
evaluate the performance and carry out the design 
optimization of MR wheel detector by using electromagnetic 
field computations. 

II. INVESTIGATED MODEL

MR wheel detector is made up of a transmitting coil and 
two receiving coils, and a magnetic field from a transmitting 
coil which induces the voltage in receiving coils. When the 
wheel comes beside the detector, induced voltage of receiving 
coils is decreased by electromagnetic shielding effect due to 
eddy current generated in the wheel. The wheel detector 
judges the wheel presence based on the variation of signaling 
receive level.

In this paper, we analyze the MR wheel detector shown in 
Fig. 1.  The current in transmitting coil is 500 mA, 33 kHz. 

III. METHOD OF ANALYSIS

We adopt finite element method (FEM) using the magnetic 
vector potential A and electric scalar potential φ in analysis. 
We adequately utilize two kinds of mesh, i.e., the hexahedral 
and tetrahedral meshes [2]. Coils, wheel, and rail are 
independently divided with hexahedral elements. On the other 
hand, the tetrahedral mesh is applied to the air regions around 
both the coils and the wheel, which enables us to easily 
connect the meshes of each region mentioned above. This also 
makes it possible to easily displace the coils and wheel in the 
optimization procedure. 

IV. ANALYSIS RESULTS

We compare the computational results with the measured 
value of signaling receive level. As a sampling rate, MR 
wheel detector judges signaling receive level at the points 
when the wheel comes right beside the receiving coils (0 mm), 
and when the wheel is in front or behind the receiving coils by 
125 mm. And if signaling receive level is less than the 
threshold, the wheel is detected (Fig. 2). The wheel detector is 
more insusceptible as the attenuation of induced voltage in 
receiving coil becomes larger, which results in the prevention 
of false detection. First, we calculate signaling receive level in 
the following three cases, and compare the calculated values 
with the measured ones (TABLE I).  
1. Static state (in case of no wheel)
2. When the wheel is located 125 mm away from the coils 
3. When the wheel is located right beside the coils (0 mm) 

The flux density distributions around the receiving coils in 
each case are shown in Fig. 3. In the case of no wheel, 
interlinkage flux of the lower receiving coil is decreasing 
more than that of the upper receiving coil due to the effect of 
eddy currents generated in the mounting hardware. 
Accordingly, we can obtain the obvious difference of 
signaling receive level between two receiving coils. On the 
other hand, flux density becomes parallel to the receiving coils 
when the position of the wheel is at 125 mm, resulting in the 
variation of signaling receive level. Additionally flux 
magnitude rapidly decreases when the wheel comes to the 
point of 0 mm due to the shield effect of the wheel. TABLE I 
shows that the calculated values of signaling receive level are 
well coincident with the measured ones.
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TABLE I 
COMPARISON BETWEEN MEASURED AND CALCULATED 

SIGNALING RECEIVE LEVEL

-63.09-52.59-44.89measured

-63.01-53.43-43.26calculated

0 mm125 mm

Position of wheel 
No wheel

Signaling receive level (dBV)

-63.09-52.59-44.89measured

-63.01-53.43-43.26calculated

0 mm125 mm

Position of wheel 
No wheel

Signaling receive level (dBV)

V. IMPROVEMENT OF RECEPTION SENSITIVITY

In this chapter, as a design example, we carry out the 
layout optimization of receiving coils in the simulated wheel 
model so as to maximize the variation of signaling receive 
level. Considering the sizes of the coil case and mounting 
hardware, we assume the following constraint conditions for 
the receiving coils’ position.

1. Distance between center of upper and lower receiving 
coils : 15-35 mm 

Fig. 1.  MR wheel detector (half model). 2. Position of upper receiving coil : 80-105 mm 
3. Position of lower receiving coil : 95-120 mm 

Here, the coil position is defined as the distance between the 
top of the rail and the center of the coil.  

0 mm 125 mm-125 mm signaling 
receive level

direction of movement

sampling points

position 
of wheel

threshold

noise

① ②

noise

0 mm 125 mm-125 mm signaling 
receive level

direction of movement

sampling points

position 
of wheel

threshold

noise

① ②

0 mm 125 mm-125 mm signaling 
receive level

direction of movement

sampling points

position 
of wheel

threshold

noise

① ②

noise

The result of design optimization is shown in TABLE II. 
The layout optimization, taking account of the flux 
distributions effected by the wheel and mounting hardware, 
indicates the possible improvement of the reception sensitivity. 

In the full paper, we will model the electromagnetic noise 
from the traction power converter, and investigate the design 
optimization of the receiving coils in detail. 

TABLE II 
IMPROVEMENT OF RECEPTION SENSITIVITY 

20.54 -61.61 -41.07 Optimized layout

18.99 -62.25 -43.26 Initial layout

Variaton
(dB)

With wheel
(dBV)

No wheel
(dBV)

20.54 -61.61 -41.07 Optimized layout

18.99 -62.25 -43.26 Initial layout

Variaton
(dB)

With wheel
(dBV)

No wheel
(dBV)

Fig. 2.  Conceptual figure of wheel detector principle. 

a)  no wheel

b)  position of wheel is at 125mm c) position of wheel is at 0mm

xy

z

1.0 μT

0

0.5 μT

a)  no wheel

b)  position of wheel is at 125mm c) position of wheel is at 0mm

xy

z

xy

z

1.0 μT

0

0.5 μT
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Abstract  — The purpose of this contribution is to evaluate the 
feasibility, potential benefits and associated costs, of generalizing 
and improving finite element formulations used to model, analyze 
and simulate, the theoretical and practical operation and efficacy 
of internal myocardium defibrillation systems.  The primary focus 
of this study addresses the issue of generalizing the finite element 
models to better represent the biological tissue anisotropies of the 
myocardium, for the purpose of simulating the bioelectromagnetic 
response to conventional internal defibrillation stimuli.  From the 
electrical viewpoint, the dominant impact of the tissue anisotropy 
affects conductivity modeling.  The critical goal of this research is 
to establish the importance of modeling myocardium conductivity 
anisotropy for predicting internal defibrillation performance, and 
to determine the quality and detail of the models required to yield 
operationally correct results.  Full tensor anisotropy formulations 
suitable for representing individual myocardial fibre bundles and 
sheets are considered and evaluated against simpler models.  It is 
shown that isotropic tissue models can overestimate defibrillation 
efficacy, while macroscopic anisotropy formulations are sufficient 
to predict accurate and reliable bioelectromagnetic responses, for 
a range of practical internal defibrillation case study applications. 

I. INTRODUCTION

Ventricular fibrillation (VF) is a dangerous, unstable state of 
the heart in which the cardiac muscles of the ventricles tend to 
twitch or quiver in an unsynchronized and chaotic manner.  VF 
is commonly linked to malfunctioning electrical activity of the 
heart, and usually yields abnormal contractions which prevent 
efficient distribution of blood and oxygen to the tissues.  VF is 
responsible for about 300,000 deaths in the USA annually [1]. 

The most effective approach to resolve VF is using internal 
defibrillation, i.e. by applying electrical shocks directly to the 
heart via an implantable cardioverter-defibrillator (ICD).  The 
performance and operational lifespan of an ICD is tied to both 
the placement of the electrodes surrounding the heart muscle, 
and the energy storage capacity of the batteries which power it.  
Optimizing ICD electrode design, configuration and discharge 
characteristics can play a vital role in increasing the reliability 
and safety of defibrillation, as well as in reducing the electric 
shock energies required, and increasing the ICD lifespan [1]. 

Until relatively recently, these issues were addressed largely 
based on practical clinical trial results, until the introduction of 
detailed thoracic and cardiac models facilitated computational 
simulations of heart defibrillation.  These models are now used 
to optimize both electrode design and placement, and electrical 
stimulation strength and waveform, to improve the efficacy of 

the defibrillation process [2], [3].  However, due to the lack of 
concrete conductivity data for the myocardium, finite element 
studies seldom attempt to represent the anisotropies associated 
with the highly fibrous and multilayered structure of the tissue, 
and the potential ramifications and impact of these aspects for 
practical internal defibrillation systems remain unclear [4], [5]. 

The defibrillation threshold (DFT) is conventionally defined 
as the minimum electrical stimulation required for a successful 
defibrillation result.  While this specification is not unanimous, 
a widely held interpretation is the critical mass hypothesis [4].  
This DFT stipulates that 75-90% of the myocardium should be 
raised to an average electric voltage gradient of 300-800 V/m, 
or more directly, exposed to an average electric current density 
of 70-200 A/m2, for the duration of the stimulation, in order to 
achieve defibrillation [6].  It should be noted that higher tissue 
stimulation levels are also used in some applications, but they 
need higher capacity ICD energy storage sources, and render a 
greater risk of localized cardiac electrode-tissue damage.  The 
critical mass hypothesis DFT is considered in this study. 

The primary purpose of this contribution is to determine the 
potential advantages and related costs of generalizing the finite 
element formulations used to model, analyze and simulate the 
practical operation and efficacy of ICD systems, to account for 
the inherent electrical anisotropies of the myocardium tissues.  
At the cellular level, the myocardium consists of muscle fibres 
composed of co-aligned myocytes (muscle cells), organized in 
complex three-dimensional laminar structures (muscle sheets), 
which are oriented transversally to the heart walls [7], [8].  At 
the macroscopic level, sets of adjoining and similarly directed 
muscle sheets can be interpreted to represent averaged laminar 
muscle layers, which specify undulating and twisting preferred 
electrical conduction paths that transect the myocardium walls.  
In terms of macroscopic material conductivity modeling, these 
layers may be described using anisotropic conductivity tensors, 
with preferred conductivity directions aligned along the “flow” 
of the layers, which circulate azimuthally around the heart, and 
non-preferred conductivity directions oriented perpendicular to 
the muscle fibres.  Other conductivity anisotropies also arise at 
sub-macroscopic levels, but they are operationally secondary. 

An application-specific, recursive-refinement, second-order, 
isoparametric, tetrahedral, finite element formulation, with full 
tensor continuum conductivity modeling, for both macroscopic 
and sub-macroscopic analyses, is used in this study.  The intent 
of this research is to establish the merits of using macroscopic 
anisotropy models for analyzing practical ICD performance. 
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II. ILLUSTRATIVE  EXAMPLE  AND  RESULTS

A straightforward example that demonstrates the importance 
of modeling the anisotropic nature of myocardial conductivity 
for predicting ICD performance and efficacy is presented.  The 
physical system geometry and finite element model for a basic, 
low-frequency ICD stimulation study are described by Fig. 1.  
In this case, two small rectangular patch electrodes are used to 
externally stimulate the lower mass of the left ventricle (LV) of 
the myocardium.  Fig. 1 illustrates an exploded cut-away view 
of the LV tissue mass and the ICD electrode configuration.  

Three sets of results are reported, for three mean equivalent 
LV tissue conductivity models: (i) isotropic σ = 0.240S/m; (ii) 
anisotropic with σ = 0.48S/m along the fibres and σ = 0.12S/m 
perpendicular to the fibres; (iii) anisotropic with σ = 0.412S/m 
along the fibres, σ = 0.206S/m perpendicular to the fibres and 
tangential to sheets, and σ = 0.103S/m normal to fibre sheets.  
Sample LV wall field penetration plots are presented in Fig. 2. 
 In opposition with the conclusion of [9], the results in Fig. 3 
indicate that using isotropic myocardium conductivity models 
in ICD DFT analyses can yield significantly different threshold 
predictions, compared to using anisotropic models.  In fact, the 
isotropic model results over-estimate the anisotropic minimum 
DFT stimulation levels by 50-85%, in the 70-90% range of the 
LV tissue volume.  This difference may be due to modeling the 
anisotropy of myocardial sheets – which was not done in [9].  
In addition, Fig. 3 also indicates that it may not be necessary to 
model all the detail of the myocardial sheets to estimate useful 
DFT results; macroscopic anisotropy models may be adequate. 

Fig. 1.  Exploded cut-away view of the second-order, curvilinear, tetrahedral 
mesh for the lower portion of the LV (39,690 elements and 57,009 DOF). The 
cutout section illustrates the laminar structure of the myocardial wall; the ICD 
patch electrodes are shown in red (one on the cutout; one at the upper right). 

Fig. 2.  Normalized scalar electric potential solution plots for steady-current 
flow analysis over cutout section:  (a) represents the homogeneous isotropic 
conductivity result [case (i)]; (b) represents the layers included anisotropic 
tissue response [case (iii)].  Both correspond to +/– 1V electrode excitations.  
Note the sizable difference in potential field penetration into the LV free-wall. 

Fig. 3.  DFT results for the isotropic and anisotropic conductivity simulations:  
the curves describe the maximum average current density magnitude achieved 
per fractional volume of the LV myocardium; the knots indicate the minimum 
current density stimulation levels delivered to these partial LV tissue masses. 
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Abstract — The inductive method for measuring the critical 
current density in a high-temperature superconductor (HTS) has 
been investigated numerically. In the method, a HTS sample is 
exposed to the magnetic field which is generated by a small coil 
placed just above the sample. While applying an ac current 
I(t)=I0 sin2πft  in the coil, the 3rd-harmonic voltage V3 induced in 
the coil is measured. In order to simulate the inductive method, 
I0-V3 curves are numerically determined and the critical current 
density is estimated from their characteristics. The results of 
computations show that, for a HTS bulk, the accuracy of the 
inductive method is significantly influenced by the coil radius. In 
addition, for double-sided HTS films on an MgO substrate, the 
accuracy is strongly affected by the substrate thickness.  

I. INTRODUCTION

The inductive method [1]-[3] has been widely used for 
measuring the critical current density jC of a high-temperature 
superconductor (HTS) thin film since it was developed by 
Claassen et al. [1] Recently, Mawatari et al. [3] have 
improved the inductive method so that it can be applicable to 
the measurement of jC in a HTS bulk. In the method, a HTS 
sample is exposed to an inhomogeneous ac magnetic field that 
is generated by an Nc-turn coil placed just above the HTS 
sample. While applying an ac current 0( ) sin 2I t I ftπ=  in the 

coil, the third-harmonic voltage 3 3sin(6 )V ftπ θ+  is measured. 

On the basis of the measured values, 0 3I V−  curves are 

obtained. In the inductive method, the value of jC is estimated 
from the characteristics of the curves. However, their shapes 
differ remarkably depending on what type of a HTS sample is 
used: a bulk or a thin film. Hence, the jC-estimation method 
for a bulk is widely different from that for a film. 

By using the critical state model, Mawatari et al. analyzed 
the mechanisms of the V3 generation to get the following 
formulas [2], [3]: 

S 2
C 3 0 32 ,j fG I Vπ=  (1) 
A
C m T2 .j F I b=  (2) 

Here, S
Cj  and A

Cj  denote the value of Cj  for a bulk and that 

for a film, respectively, and b is the thickness of a HTS film. 
Furthermore, G3 and mF  are both constants determined only 

by the configuration of a coil and a HTS sample. In the 
inductive method, the value of jC for a HTS bulk and that for a 
HTS film are estimated by using (1) and (2), respectively. 

The purpose of the present study is to numerically 
investigate the applicability of the inductive method to a HTS 
bulk or to double-sided HTS films on a substrate. In particular, 
we elucidate the following two problems: 

1)  How is the inductive method for a HTS bulk affected by 
the experimental conditions?  

2)  Can the inductive method be applied to the jC-
measurement for double-sided HTS films on a substrate? 

II. GOVERNING EQUATIONS

We assume that a HTS-sample shape is a disk of radius R
and thickness b, and that a coil has a rectangular cross section 
of width W and height H. In addition, the coil is placed so that 
its symmetry axis may correspond to that of the HTS sample. 
Since these assumptions lead to the axisymmetric problem, we 
can use the cylindrical coordinate (r, θ, z). In terms of the 
coordinate, the cross section of the coil is expressed as  

c c{( , ) :| | 2 ,| | 2}.D z r z z H r r W= − < − <
Under the multiple-thin-layer approximation, the state of 

the shielding current density can be represented in terms of a 

vector-valued function 1( , ) [ ( , ), , ( , )]T
MS r t S r t S r t≡ , where 

( , )pS r t  is z-component of the current vector potential in the 

pth layer. In addition, the time evolution of ( , )S r t  is 

governed by the following integral-differential equations [4]: 

0 R

1ˆ ˆ 0.Q I S B E
t t

μ
ε

∂ ∂⎛ ⎞+ + + =⎜ ⎟∂ ∂⎝ ⎠  (3) 

Here, B  and RE  originate from the applied magnetic flux 

density and the electric field, respectively, and 2ε denotes the 

thickness of each layer. Moreover, Î  is an identity operator, 

whereas Q̂  is the operator defined in [4]. For the J-E

constitutive relation, the following power law is assumed: 

C C(| |) | |,    ( ) ( ) ,N
p p p pE E j E j j= =E j j j  (4) 

where EC denotes the critical electric field and N is a constant.  
For the initial and the boundary conditions to (3), we 

assume ( ,0) ( , ) 0S r S R t= = . The time evolution of the 

shielding current density can be determined by solving the 
initial-boundary-value problem of (3). By using the high-
performance integration method [5], the authors recently 
developed an accurate numerical code for solving the problem.  

III. NUMERICAL SIMULATION FOR HTS BULK

In the present section, we investigate the accuracy of the 
inductive method for a HTS bulk. To this end, two 
dimensionless quantities are defined as follows: 

( )0 0 C* ,I I j Rb≡
2

3 3 3 C* 2 ( ) .V V fG j Rbπ⎡ ⎤≡ ⎣ ⎦
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In terms of the above quantities, the relative error between S
Cj

and Cj  can be written as  
2

r 0|1 (1 *) |,kε = −  (5) 

where 0 *k  denotes a slope of a 1/ 2
0 3* ( *)I V−  curve at the 

origin. As is apparent from (5), it is 0 *k  that determines the 

value of rε . Hence, 0 *k  can be used as a measure of the 

accuracy of the inductive method. Throughout the present 
section, the physical and the geometrical parameters are fixed 
as follows: Nc = 400, f = 1 kHz, W = 1.2 mm, H = 1 mm, zc = 
0.75 mm, R = 10 mm, b = 0.4 mm, M = 10, N = 16, EC = 1 
mV/m, and jC = 10 MA/m2.

Fig. 1.  The dimensionless third-harmonic voltage V3* as functions of the 
dimensionless coil current I0*. The inset shows the dependence of the relative 

error rε  on a coil radius rc.

The 1/ 2
0 3* ( *)I V−  curves are numerically determined for 

various values of rc and are depicted in Fig. 1. We see from 
this figure that 0* 1.00k ≅  for c 7.5 mmr ≤  and 0* 1.20k ≅  for 

rc = 9.4 mm. In other words, the relatively good accuracy is 
achieved for c 7.5 mmr ≤ , whereas the accuracy is drastically 

degraded for rc = 9.4 mm. For the purpose of investigating 
these tendencies quantitatively, 0 *k  is determined by 

applying the least-squares fitting to the 1/ 2
0 3* ( *)I V−  curves 

and, subsequently, the relative error rε  is evaluated by using 

(5). The results of computations are shown in the inset of Fig. 
1. This inset indicates that, for c ~

7.5 mmr < , the relative error 

slightly decreases with an increasing coil radius. On the other 
hand, for c ~

7.5 mmr > , it drastically increases with rc. This 

result suggests that there exists an optimum value of the coil 
radius. 

IV. NUMERICAL SIMULATION FOR DOUBLE-SIDED HTS FILMS 

As is well known, double-sided HTS films are generally 
grown on an MgO substrate and are frequently used for RF 
filter designs. In the present section, we numerically 
investigate whether the inductive method is applicable to the 
jC-measurement of double-sided HTS films on an MgO 
substrate. Throughout the present section, the geometrical and 
the physical parameters are fixed as follows: Nc = 300, f = 1 

kHz, W = 1.25 mm, H = 3 mm, (zc, rc) = (1.56 mm, 1.625 mm), 
R = 10 mm, b = 500 nm, M = 1, N = 16, EC = 1 mV/m, and jC

= 3 23.3 10  MA/m× . Note that b does not denote the total 
thickness of a sample but the thickness of each film. In the 
following, the thickness of an MgO substrate is denoted by d.

The I0-V3 curves are numerically determined for various 
values of d and are depicted in Fig. 2. Especially, for the case 
with d = 15 10  mm−× , the behavior peculiar to double-sided 
HTS films is observed. Just after I0 exceeds the threshold 
current IT1, V3 abruptly develops. A further increase in I0 will 
cause a monotonous increase in V3 until V3 reaches a plateau 
at I0= IT2. Moreover, for the case with I0> IT2, it increases 
again with I0. In other words, just after I0 = IT1 or just after I0 = 
IT2, the third-harmonic voltage rapidly develops with an 
increase in I0. Such a rapid increase in V3 is attributable to the 
breakdown of the magnetic shielding behind either an upper 
film or a lower one. These tendencies are also observed in 
Saito’s experiment [6]. In the following, the value of V3 at I0 = 
IT2 is called an upper third-harmonic voltage. Fig. 2 also 
indicates that an upper third-harmonic voltage monotonously 
decreases with a decrease in d until it almost vanishes for the 
case with d = 22 10  mm−× . Hence, the equality IT=IT2 is 
approximately satisfied for this case. This result suggests that, 
for d ≤ 22 10  mm−× , the accuracy of (2) is deteriorated 
remarkably. 

Fig. 2.  The third-harmonic voltage V3 as functions of the coil current I0.
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12. BIOMEDICAL AND BIOLOGICAL APPLICATIONS

Abstract — In this paper an effective approach to generate 
specimen-specific finite element head models for 
bioelectromagnetic simulations is presented. The goal of the 
research is to develop a fast and automatic methodology for 
generation of such models.  

The method uses a hybrid mixture of spatial transformation 
and image registration. The spatial transformation is used to 
transform the standard reference model, which was created with 
an elaborate manual segmentation, into individually fit model. 
The goal of this step is to morph the reference model to obtain the 
same external shape as the individual model. The image 
registration algorithm is then used to segment brain tissues, 
which are later put inside the skull. The final model is constructed 
of skull and skin obtained from morphing, and internal structure 
from image registration algorithm used for the brain. 

I. INTRODUCTION

Numerical models in bioelectromagnetism created for the 
finite element method, need dividing the volume of the head 
into huge number of small elements, reflecting the size of the 
anatomical details. 

 The classical approach to the construction of such a 
model starts with obtaining a series of two-dimensional MRI 
scans. Each scan is then processed in order to improve the 
sharpness and the contrast between interesting tissues. Next 
step is a segmentation of images to extract boundaries between 
the different tissues. Next the voxelization follows in which the 
segmented cross-sections are combined into the 3D model. 
The 3D volume mesh is then generated by dividing each voxel 
into the relevant elements. In the final stage the reduction 
procedure decreases the number of elements and smoothes the 
model (see Fig. 1a). 

 Some phases described above cannot be fully automated. 
The classical, semi-automatic approach becomes more painful 
with demand for even more realistic, patient-specific models of 
the human body. Individually tuned simulations could help to 

design effective and possibly non-invasive configuration of 
medical devices for electromagnetic stimulation. However they 
need fast and robust procedure to create models based on 
individual features for certain patient [1]-[4]. 

 The automatic segmentation of particular region depends 
on the medical imaging technique used to obtain data. It is 
quite easy to segment the brain tissues from MRI images. The 
skull can be more effectively segmented using CT data. There 
have been attempts to combine those techniques to improve 
the quality of models. Those algorithms however require 
additional effort like scaling and alignment of the models. 

II. MORPHING APPROACHES

 The new approach which is aimed to solve the presented 
problems emerged from methodology used in computer 
animation. It has already been used for relatively simple 
organs like bones and fingers, but we have adapted it to speed 
up creation of patient specific realistic head models.  

The investigated morphing approach is based on works 
presented in [1]-[2] proposing two different methodologies but 
based on the same kind of idea. They start with fine discretized 
standard model and geometrical data of a target patient. These 
data can be based on some external measurements (see Fig.1b) 
or, preferably, on some medical imaging of the internal 
structure. Then the base model is morphed according to some 
criteria grounded in differences between the standard model 
and the target patient. The morphing can in principle be made 
on several levels–starting from the raw measurements (or 
images) up to the 3D discrete mesh. It is obvious, that 
morphing the mesh is the most difficult but as well the most 
wanted approach. 

 Several algorithms of the morphing were proposed. The 
most interesting from our point of view seems to be a 
combination of two methods: Automated Wrapping [1] and 
Volume Registration (VR) [2]. Automated wrapping was 
successfully applied to create individual model of bones. It 
needs relatively small amount of input data, but is not able to 
map the internal structure of the model. The VR method 
allows to obtain more accurate structured models, but it needs 
very fine input data. Authors of [2] have used tomography 
scans of the base patient and the target patient to obtain input 
data for the morphing criteria. Both scans were made in 
exactly the same device and same configuration. The morphing 
algorithm compared, pixel by pixel, scans of the base and 
target to calculate the morphing transformation. Obtaining 
similar input data for the head models seems to be extremely 
difficult if at all possible. 

Hybrid generation of subject specific head 
models

Jacek Starzyński, Robert Szmurło, Bartosz Sawicki, Stanisław Wincenciak 
Warsaw University of Technology, Electrical Engineering 

Koszykowa 75, 00-662, Warsaw, Poland 
jstar@iem.pw.edu.pl

  

(a) (b)

Fig.1. (a)  Head model generated from VH images [5] (b)  External scan of 
the head made with Faro Laser ScanArm.  
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III. MORPHING IMPLEMENTATION

The basic technique assumes that we have a detailed model 
of sub-domains of a head. In this technique operator with help 
of a specialized software applies a stretch-shrink vectors set 
(see Fig.2). The set is then used by the algorithm to perform 
the morphing. This procedure can of course be automated. 

Fig.2. Central point (CP) and Vectors (vi) defining the stretch-shrink 
parameters for the algorithm. 

In the proposed algorithm the domain is divided into the 
slices which are defined by a single central point (CP) and a 
set of vectors Vi. Each vector besides the direction and length 
has a location Pi. The slices are defined by the central point CP 
and two adjacent stretch-shrink vector locations Pi and Pi+1. 
Displacement of each vertex is defined by the two adjacent 
base vectors. 
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We can say that with the transformation defined by (1) and 
(2) the vertex is translated by the weighted sum of the adjacent 
base vectors Vn, Vn+1. 

 The presented transformation preserves the sub-domains 
from the base model in the morphed model. Proper definition 
of base vectors allows to adjust the external shape of the 
reference model to the current MRI image. In Fig.3 the 
reference and morphed models are presented. We can see that 
the external shape of the morphed model fits the shape of the 
subject, however the internal structure of the head differs. 
(a) (b)

Fig.3. Domains of the head before stretching-shrinking (a) and after 
execution of the algorithm (b). 

 To obtain the proper structure of the internal region we 
have removed the white matter obtained from the morphing 
(see Fig. 4b) and added the white matter from image

registration algorithm. The image registration was performed 
with simple hence robust histogram-based method. 

   

(a) (b)

(c) (d)

Fig.4. Domains of the head after stretching-shrinking (a) and with replaced 
white matter subdomain from image registration (b).

IV. CONCLUSIONS

The most crucial is the development of indicators, which 
will assess the quality (fidelity) of the derived model. This is 
due to the fact that the target model is unknown. These 
indicators should be based on measurements of the patient's 
head. The simplest indicators can be based solely on simple 
anthropometric measurements, but it can prove to be 
insufficient because of the complexity of a large numerical 
model. The morphing transformation which must be properly 
defined and needs large number of data can be automated what 
makes the method highly advantageous. Simple morphing is of 
course insufficient, because the shape of the outer surface of 
the head does not determine its internal structure. To obtain 
specific internal structure of the head the MRI scans can be 
used. The authors have used them as input data for image 
registration to get the internal structure. It was later put 
together with external domains (skin and skull) from morphing 
to obtain the complete subject specific model. In the authors 
opinion the proposed method can be fully automated. This will 
significantly reduce the time from data acquisition to patient 
specific model. 
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Modeling a “flying carpet” stable in both  
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Abstract — An original levitation device, stable in both the
positive and negative z-directions is modelled and simulated. The
device may be used either in the Earth gravity field or under
weightless conditions. The semi-analytical modelling and 
optimization suite MacMMEMS / CADES [1, 2] was used. 

I. INTRODUCTION: DIAMAGNETIC LEVITATION DEVICES 
Diamagnetic levitation of diamagnetic materials above 

permanent magnets is now being widely published [3-5]. 
Diamagnetic forces, in a variety of devices, can be used 
against gravity. However the vertical stability of such 
structures depends on the compensation between gravity and 
diamagnetic repulsion, which makes them usable in one 
orientation only and in the Earth’s gravity field.  

Fig. 1. describes a proposed +/-Z stable levitation device. 
The "flying carpet" is a 30 µm thick plate of highly oriented 
pyrolytic graphite (HOPG), coated with 20 nm of iron. The 
"base" element is a 50 µm thick permanent magnet film, 
magnetically patterned into stripes [6, 7]. 

The device is designed to be microfabricated. MEMS and 
microtechnologies are perfectly suited to the diamagnetic 
levitation [8], because diamagnetic effects improve with 
miniaturization: they become comparable to gravity around 
the sub-mm scale.  

In the "traditional" diamagnetic levitating devices [9, 10], 
the permanent magnet base has two functions: on Earth, its 
main function is to provide lift against gravity, along the 
vertical (Oz) axis. Additionally, possible configurations in the 
Ox and Oy axes are very variable, allowing translations along 
Ox or Oy or both, or rotation around Oz, or even no freedom 
at all. Here in our example, the chosen stripe-like 
magnetization pattern allows one degree of freedom: Ox 
translation along the stripes. 

II. NOVELTY: BI-DIRECTIONAL STABILITY ALONG OZ 
However, these devices do not work upside-down nor in 

zero-gravity because the forces along Oz are purely repulsive. 
Our innovation is the addition of a 20 nm thin film of soft 
ferromagnetic material which is deposited onto the HOPG 
plate, on the far side from the magnets. This ferromagnetic 
layer generates an attraction force towards the base, which can 
stabilize the carpet along Oz if properly calculated: this is the 
topic of our paper. 

 

 
Fig. 1: The array at the bottom is the permanent magnet film integrated on Si, 

magnetised in an up/down array (remanence Br). The middle layer is the 
micro-layer of HOPG (susceptibility χdia). The stripe on top is the nano-layer 

of soft magnetic material (saturation magnetization Ms). All dimensions along 
Ox-axis are much larger than those along Oy-axis. 

Magnets: b = h = 50 m, Br = 1.4 T, Graphite: hg = 30 m,  
χdia = -450.10-6; Soft film: hf = 20 nm, df = 1 m, 0Ms = 1 T 

III. MODELING AND OPTIMIZATION OF THE DEVICE 
The force acting between the array of magnets which 

generate magnetic fields and gradients, and the diamagnetic 
element of the carpet, is repulsive:  
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with flux density B = (Bx, By, Bz), and susceptibility χdia < 0. 
On the other hand, the force acting on the ferromagnetic 

nano-layer attracts the carpet towards the array of magnets; 
equation (2) shows the approximate expression for the force 
acting on a volumentary unit of an isotropic magnetic element, 
in its saturated state with the saturation magnetization 
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Here we make the assumption that the nano-layer is fully 
saturated in the fashion shown on Fig. 1. Within the vertical 
displacement range of the carpet, the magnetic field produced 
by the permanent magnet array is enough to saturate this very 
thin soft magnetic film (permalloy, for example) in-plane 
almost everywhere except very small wall regions df where the 
Y-component of the external magnetic field is near zero (for 
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the worst case df is assumed to be 1 µm, when the flying 
distance is 9 µm). The possible interaction between these 
regions and the permanent magnet base is not taken into 
consideration because their volume is much smaller compared 
to the total volume of the ferromagnetic film. These 
assumptions allow us to use the semi-analytical modelling and 
optimization tools MacMMEMS / CADES.  

As can be seen from (1) and (2) and illustrated on Fig. 2, 
the repulsive and attractive forces are functions of the partial 
derivatives of the different powers of magnetic field, therefore 
they decrease differently with the distance: this difference 
allows a compensation to happen at a fixed distance z0, which 
is extremely dependent on geometrical parameters and on the 
magnetic multipolar configuration of the base. Here, the flying 
carpet would levitate at a stable position z0 = 2.3 m above the 
base; this distance would decrease to 2.1 µm if gravity is taken 
into account, and 2.5 µm when upside-down (Fig. 3). 

 
Fig. 3. Total magnetic force vs. airgap, compared with the gravity force. 
 
This kind of devices could be used in micro-robotics, both 

on Earth and in space under low-gravity conditions, for 
transporting micro-objets and nano-particles, as well as for 
friction-less 3D micro-sensors (acceleration, rotation…) for 
example. 
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The experimental work on the flying carpet is presently in 
progress within the MINATEC facilities. 
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Abstract – The paper discusses electromagnetic
parameters of a novel arrangement of a permanent
magnet biased radial active magnetic bearing with
three poles. The control currents of the three poles
produce a heteropolar distribution of the magnetic
field whereas the permanent magnets cause a ho-
mopolar configuration of the magnetic field. Thus,
3D finite element analyses have to be used to ac-
curately obtain the parameters such as inductances
and electromagnetic forces. In order to finally using
a position-sensorless control algorithm for the hy-
brid magnetic bearing, the dependence of the elec-
tromagnetic parameters on the rotor position is of
great interest. Consequently, special attention will
be given to the modelling of various eccentric rotor
positions yielding a fast computation environment
suitable for the prototype design.

I. Design of the Radial Magnetic Bearing

Fig. 1 shows the cross section of the prototype of
the hybrid active magnetic bearing with three poles.
The three coils on the poles produce a heteropolar
configuration of the magnetic field while the perma-
nent magnets additionally inserted in the stator gen-
erate a homopolar distribution of the magnetic field
[1]–[3]. The permanent magnets will act as the source
of the bias magnetic field. Thus, the coil currents are
used only as control currents reducing the overall size
and therefore leading to a more compact design. Fur-
ther, the number of the permanent magnets can be
adopted in order to obtain a hybrid magnetic bearing
with characteristics according to various applications.

II. Finite Element Modelling

The electromagnetic parameters of an active mag-
netic bearing can be calculated by means of analytical
methods based on an assumption of designated paths
of the magnetic field [4], [5]. With centered rotor po-
sitions, these results are quite accurate to predict the
behaviour of the bearing. On the other hand, for non-
centered rotor positions only numerical analyses will
yield accurate results due to the more significant cross-
coupling of the various magnetic paths [6], [7].

Fig. 2 shows the active parts of the stator includ-
ing permanent magnets and stator coils of the finite
element model. In order to obtain a fast modelling
and solution environment for taking into account ec-
centric rotor positions, a sliding surface approach and
a domain decomposition algorithm can successfully be
applied [8]. For each concerned radial eccentric rotor

Fig. 1: Cross section of the stator of the permanent mag-

net biased radial active magnetic bearing with three

poles, arrangement with four magnets

Fig. 2: Finite element model of the stator of the permanent

magnet biased radial active magnetic bearing with

three poles, arrangement with four magnets

position, only the air-gap region between the sliding
surface and the rotor boundary has to be remeshed.
Consequently, different numerical errors with respect
to the angular rotor position are avoided.

III. Sample Analysis Results – Inductances

The three control windings in the stator are star-
connected, I1 + I2 + I3 = 0. Therefore, the two axes
approximation

�
Ix
Iy

�
=

�
2/3 −1/3 −1/3
0 1/

√
3 −1/

√
3

� 


I1

I2

I3


 (1)

yields the flux linkages according to
�
Ψx

Ψy

�
=

�
Lxx Lxy

Lyx Lyy

��
Ix
Iy

�
. (2)

Due to the symmetric arrangement of the three coil
windings, the cross-coupling inductances Lxy = Lyx
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are vanishing in the centered rotor position. But with
an eccentric rotor position, in particular in the y-
direction, the cross-coupling inductances are signifi-
cant as shown with the full paper.

Fig. 3 and Fig. 4 show the inductances Lxx and
Lxx in dependence on radial and angular position of
the rotor eccentricity for the arrangement with four
magnets. As these inductances directly depend on the
eccentric rotor position, the presented novel radial ac-
tive magnetic bearing shows a high suitability for a
position sensorless control.

Fig. 3: Inductance Lxx versus radial and angular position
of the eccentricity, arrangementwith four magnets

Fig. 4: Inductance Lyy versus radial and angular position
of the eccentricity, arrangementwith four magnets

Accordingly, Fig. 5 and Fig. 6 show the transient
current response obtained from the voltage driven
analysis and from measurements resulting from ap-
plied voltage pulses suitable for the subsequent evalu-
ation of the eccentric rotor position which is presented
in detail with the full paper.

IV. Concluding Remarks

The paper discusses 3D finite element analyses of a
prototype design of a permanent magnet biased radial
active magnetic bearing with three poles. To obtain
a fast analysis environment suitable for the initial de-
sign, the sliding surface method and a domain decom-
position algorithm are used for analyzing in particu-
lar various eccentric rotor positions. In the full paper,
the presented results are focussed on the inductances
of the coil windings carrying the control currents, the
electromagnetic forces acting on the rotor and the cur-
rent gain provided by the bearing as the most impor-
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Fig. 5: Transient current response with eccentric rotor posi-
tions ∆x=+0.4mm (solid line) and ∆x=−0.4mm
(dashed line), finite element results
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ment results

tant parameter for controlling the hybrid radial active
magnetic bearing.
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Abstract— Contact of air circuit breaker (ACB) switches on or 
off the power supply. In this paper, a new type of contact is 
presented with double breakers for the ACB with permanent 
magnet actuator (PMA). 3-D finite element method (FEM) is 
employed to compute electro-dynamic repulsion force including 
Holms force and Lorenz force acted on static and movable 
contacts. The repulsion force is obtained for different number of 
contact, which value increases step by step from the outer contact 
to inner one. The contact of double breaker is manufactured 
according to our analysis results. 

I. INTRODUCTION

Circuit breaker plays an important role in power system. In 
order to improve the circuit breaker reliability, new concept 
circuit breaker is developed with permanent magnet actuator 
(PMA) [1]-[4]. The proposed PMA offers many advantages 
such as low component counts and high reliability when 
compared with spring operated circuit breaker (SOCB) both 
vacuum circuit breaker (VCB) and air circuit breaker (ACB).  

Compared with the conventional spring circuit breaker, the 
permanent magnet circuit breaker has much more key problem 
to be solved. Contactor parameter computation is indeed 
important to determine the ACB structure parameter. The 
author has proposed a method to compute the temperature of 
the ACB with spring actuator [5]. In this paper, a new type of 
contact is proposed with double breakers for the ACB with 
permanent magnet actuator (PMA). 3-D finite element method 
(FEM) is employed to compute electro-dynamic force 
between static and movable contacts. The computed results 
show that the repulsion force increases step by step from the 
outer contact to inner contact. In addition, the repulsion force 
is also computed for the contact arranged with permanent 
magnet and will be discussed in full paper. The contact of 
double breaker is manufactured according to our analysis 
results. 

II. MATHEMATICS MODEL AND CONTACTOR ASSEMBLY

The static magnetic field method is used to compute 
electro-dynamic repulsion force. Since the eddy current has 
little effect on the electro-dynamic repulsion force, the static 
magnet field equation can be employed to solve current 
density and flux density distribution. Vector potential T is 
served to calculate the current density 

TJ ×∇=          (1) 
T satisfies the governing equation 

0
1

=⎟
⎠
⎞

⎜
⎝
⎛ ×∇×∇ T
σ

        (2) 

The current constrain condition is  

∫ =⋅
s

dl IT          (3) 

If the current density J  is obtained, vector magnetic 
potential  is employed to depict the flux density A B

AB ×∇=          (4) 
The whole area vector magnetic potential satisfies the 

following governing equation 

JA =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×∇×∇

μ
1

      (5) 

The contact force density  is calculated based on the 

relationship of current, magnetic field and electromagnetic 
force

f

∫∫ ×==
VV

dVfdVF      (6) 

where  is the contact volume. Electro-dynamic repulsion 
force of contacts uses the electrical bridge model, the Holms 
force and Lorenz force acting on the contactor can be 
computed in finite element method (FEM). 

V

Fig. 1 shows the proposed contact for the ACB with PMA. 
The mechanical system mainly consists of the PMA, a rotating 
shaft, a cam and a movable contact. 

Fig. 1. Assembly of the contact located on the ACB 

PMA

Cam

Movable contact 

Static contact

Rotating shaft 

III. FINITE ELEMENT ANALYSIS

Fig. 2 shows the parallel contact of the quarter model. The 
contact uses double breaker structure, mainly including static 
contact and movable contact. 3-D FEM is employed in 
analyzing the contacts. Fig. 2 shows the meshes of quarter 
model. The element number is 46539 and nodes are 53925, 
respectively. Fig. 3 shows the current density distribution 
including parallel and single contacts. It is noted that the 
maximum current density distribution is located on the 
contacts point. 
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Fig. 2.  Meshes of 1/4 model 

(a)

(b) 
Fig. 3. Current density distribution (a) parallel contacts (b) single contact 

Fig.4 shows the magnetic field distribution. It can be found 
that the maximum magnetic field distribution is also located 
on the contact point. 

Fig. 4. Magnetic field distribution

IV. ANALYSIS AND DISCUSSION

Fig.5 shows the computed results of electro-dynamic 
repulsion force. It can be observed that the repulsion force 
increase with the static contact number increasing from outer 
to inner. The maximum absolute increasing value reaches to 
23.3%. Such result shows that the inner repulsion force is 
higher than that of the outer repulsion force and can be 
referenced as our ACB design. Fig.6 presents the contact 
matched with the ACB. In addition, the repulsion force is also 
computed for the contact arranged with permanent magnet and 
will be discussed in full paper. 

V. CONCLUSION

3-D FEM is successfully to compute electro-dynamic force 
of double breakers contact for the ACB with PMA. The 
repulsion force is obtained for different number of contact. 

Computed results show that the repulsion force increases step 
by step from the outer contactor to inner one. The maximum 
absolute increasing value reaches to 23.3%. The contact with 
the double breaker is manufactured according to our analysis 
results. 

Fig. 5. Comparison of electro-dynamic repulsion force with different number 
of static contactor
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12. DEVICES AND APPLICATIONS

Abstract — This paper describes the 3-D finite element 
analysis of repulsion forces on current-carrying contacts of a 
relay for a hybrid electric vehicle. The mechanism of repulsion 
force generation is clarified in the analysis. Furthermore the 
model reduced repulsion forces is proposed. 

I. INTRODUCTION

Efforts are under way worldwide to develop electric 
vehicles and hybrid electric vehicles in response to energy 
conservation and atmospheric pollution concerns. The 
vehicles are equipped with a high voltage battery over 100 V 
to drive some motors, and must be equipped with relays which 
can interrupt a large dc-current. Since the battery is moreover 
considered to be of a higher voltage as one way of improving 
energy efficiency, the relays are required and must improve a 
contact capacity. Under the circumstances, it becomes quite 
important to decrease the repulsion forces on current-carrying 
contact. 

Recently, computer simulations are widely used in various 
engineering fields because of the significant improvement of 
computer performance, and can be applied to complex 
phenomena. 

In the previous papers of repulsion forces on contact have 
been reported. Holm has computed the repulsion forces by the 
magnetic filed analysis using simplified model of current-
carrying contact [1]. In the model, two cylindrical terminals 
contact with its center, and it is assumed that the current flows 
radially through the spherical micro-contact. Therefore the 
influence of complex current distribution caused by the 
change of contact position on the repulsion forces has not 
been considered. Kawase and Ito have reported the repulsion 
force calculation by analyzing the current distribution using 
the 3-D finite element model, in which the contact part 
between two cylindrical terminals is modeled as the 
cylindrical micro-contact [2]. This report has clarified the 
influence of contact position and contact separation on 
repulsion forces, however, the reduction of repulsion forces 
has not been computed. 

In this paper, we clarify the mechanism of repulsion force 
generation of relays for hybrid electric vehicles using 3-D 
finite element method (FEM), and propose the model 
improved repulsion forces. 

II. ANALYSIS METHOD

A. Current Distribution Analysis 

Since the distributions of current density vectors flowing 
in the contact are complicated, and analyzed by 3-D FEM 
using the current vector potential T as follows: 

I=∫ ⋅==
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
sTTJT d,rot,0rot1rot 0

σ
              (1) 

Where σ is the conductivity, J0 is the current density, and I
is the current. 

B. Magnetic Field Analysis 

The fundamental equations of the magnetic field can be 
written using the magnetic vector potential A and the current 
density J0 as follows: 

( ) 0rotrot JA =ν                                (2) 

Where ν is the reluctivity. 

C. Calculation of Repulsion Forces 

The magnetic force F on the current-carrying contact is 
computed as follows: 

( ) ∫∫ =×=
VV

dvdv fBJF 0
                     (3) 

Where V is the volume of current-carrying part, B is the 
magnetic flux density, and f is the magnetic force density. 

The repulsion forces between terminals can be calculated 
by the sum of z direction component of magnetic force density 
in each element. 

III. ANALYZED MODEL AND CONDITION 

Fig.1 shows the 3-D finite element mesh of relays for 
hybrid electric vehicles. This model consists of cylindrical 
stationary terminals, flat movable terminal, and cylindrical 
micro-contacts. The dc current flows through stationary 
terminals, contacts, and movable terminal while the coil is 
excited. The movable terminal is released from stationary 
terminals to interrupt the current by the restoring spring when 
the coil is not excited. The repulsion forces on contact are 
analyzed except the coil because of little influences. The 
diameter, height and conductivity of cylindrical micro-contact, 
which is thought to be the plastic deformation by the contact 
between micro-convexities of movable and stationary terminal, 
are 0.05 mm, 0.1 mm, and 6.0 x 107 S/m, respectively. 

Reduction of Repulsion Forces on Current-
Carrying Contact using 3-D FEM 

Tomohiro Ota1, Satoshi Suzuki1 and Katsuhiro Hirata2

1PCB Analysis Division, Panasonic Electric Works Analysis Center Co., Ltd., Japan 
2Department of Adaptive Machine Systems, Graduate School of Engineering, Osaka University, Japan 
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12. DEVICES AND APPLICATIONS

IV. ANALYZED RESULTS

Fig.2 shows the distribution of current density vectors and 
magnetic force density vectors, respectively. From the figure, 
the concentrations of current and magnetic force density are 
confirmed around contacts between movable and stationary 
terminals. It is considered that repulsion forces are decided by 
the flux density and the horizontal component of current near 
the contacts. Fig.3 shows the comparison of the computed 
repulsion force characteristics on current. The calculated 
results by Holm’s equation are different from those by this 
analysis, showing the effectiveness of the 3-D FEM in the 
complex terminal shape model. The measured result of 
repulsion forces is about 4.5 N when the current of 2000 A is 
applied, then agrees well with computed ones. As a result, the 
validity of this method is confirmed.  

Fig.4 shows the influence of contact position on repulsion 
forces. From this figure, the repulsion force at the center 
position is the lowest of y-direction change of contact position. 
This reason is thought that the horizontal component of 
current is increased as the contact position moves from the 
center position. The repulsion forces in x-direction change of 
contact position are decreased, as the contact is located at the 
inner side of relays. It is found that the influences of x- and y-

direction change of contact position on the repulsion forces 
are different. 

Fig. 5 shows the distributions of magnetic force density 
vectors near the contact point. From this figure, the 
distributions of magnetic force density near the contact point 
seem to be almost the same. In addition, the repulsion forces 
are analyzed in detail. The movable terminal is separated in 
steps of 0.5 mm to clarify the influence of the contact position. 
Fig. 6 shows the distributions of repulsion forces on the 
movable terminal. It is found that the repulsion forces are 
generated not only near the contact but also on the center of 
movable terminal. From these results, as the contact is located 
at the inner side of relays, the reduced effect of repulsion 
forces is effective because the repulsion forces generated on 
the movable terminal are decreased. Furthermore the 
improved model of repulsion forces will be opened in the full 
paper.    
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Magnetic core

Permanent magnet

Coil

Non-magnetic shaft

Back yoke

Magnetization
 

Fig. 1. Basic structure of an electromagnetic linear actuator 

Abstract— We have been studying an interior permanent 
magnet linear actuator for an artificial muscle. This actuator 
mainly consists of mover composed of permanent magnets, 
magnetic cores and a non-magnetic shaft, and a stator composed 
of 3-phase coils and a back yoke. In this paper, the dynamic 
analysis method under PID control is proposed employing the 3-D 
finite element method (3-D FEM) to compute the dynamic 
response and current response when the positioning control is 
active. As the results, computed results show good agreement 
with measured ones of a prototype. 

I. INTRODUCTION 
Generally, servo motors and air servo actuators have been 

used as driving sources of various parts of robots. Our 
humanlike robot (android) is composed of air servo actuators. 
These actuators have no backlash, but low response because of 
the pneumatic control. The authors therefore have been 
studying the direct drive electromagnetic linear actuator to 
solve the above problem. This actuator is expected to have 
long stroke, high response and large thrust using interior 
permanent magnets effectively, and shows higher dynamic 
performance as compared with the actuator using Halbach 
array of magnets [1], [2]. 

In this paper, we propose the dynamic analysis method for 
the actuator under PID control employing the 3-D FEM. This 
method is applied to compute the dynamic response and 
current response when the positioning control is active. The 
validity of the analysis is verified through the comparison with 
the measurement of a prototype. In addition, it is found that 
this actuator shows high response characteristics. 

II. ANALYZED MODEL AND OPERATING PRINCIPLE 
The cross-section of our linear actuator is shown in Fig. 1. 

The diameter and the length of this actuator are 20mm and 
180mm respectively. The mover is mainly composed of 
permanent magnets, magnetic cores and a non-magnetic shaft. 
The magnetization of a magnet (NdFeB, Br=1.4T) is shown in 
Fig. 1. The structure of the mover can generate the high 
magnetic flux, especially effective radial component of flux 
along the outside of the magnetic core periodically. The stator 
is composed of 3-phase coils and a back yoke. 

When these coils are excited, they are forced to move by 
Lorenz force. The mover is driven by the thrust as this reaction 
force while the stator is fixed. The mover is freely controlled 
by switching the 3-phase coil currents. 

III. ANALYZED METHOD  

A. Magnetic Field Analysis Coupled with Motion Equation 
In this method, the equations of the magnetic field and the 

electric circuit are coupled, which are given by the magnetic 
vector potential A and the exciting current I0 as follows [3]: 

MJA rot)rotrot( 00                                               (1) 

000 
dt

dRIVE                                                        (2) 

s
c

c I
S
n nJ 00 

                                                                    (3) 

where ν is the reluctivity, J0 is the exciting current density, ν0 
is the reluctivity of the vacuum, M is the magnetization of 
permanent magnet, V0 is the applied voltage, R is the effective 
resistance, Ψ is the interlinkage flux of exciting the coil. nc and 
Sc are the number of turns and the cross-sectional area of the 
coil respectively. And ns is the unit vector along with the 
direction of exciting current. 

The motion of the mover is described as follows. 

zFF
dt
dzD

dt
zdM  s2

2
                                                   (4) 

where M is the mass of the mover, z is the displacement of the 
mover and D is the viscous damping coefficient. Fz and Fs is 
the z-axial component of the electromagnetic force and the 
dynamic friction force. 

B. Consideration of Servo Controller 
Fig. 2 shows the system configuration on the servo system. 

In target trajectory generator, the trajectory from start point to 
goal point is computed from position of goal point, maximum 
velocity and acceleration according to trapezoidal velocity role. 
The PID controller computed target torque (*iq

t) from the 
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under PID Control 
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Fig. 2. System configuration of the servo system 
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Fig. 5. Measured results 
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Fig. 4. Computed results 
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Fig. 3. Flowchart for dynamic analysis under PID control 

difference (Δyt) between target position (*yt) and current 
position (yt) from encoder (frequency: 1 kHz). 

C. Consideration of Current Controller 
Measured 3-phase currents (iU

t, iV
t, iW

t) are transformed to 
field current (id

t) and torque current (iq
t). PI control is adopted 

in the difference of field current and torque current (frequency: 
20 kHz). These results are transformed inversely to next step 
voltage values (VU

t+1, VV
t+1, VW

t+1). 
Fig. 3 shows the flowchart for dynamic analysis under the 

PID control. The position control is adapted once every 20 
times. 

IV. RESULTS AND DISCUSSION 
The dynamic performances of the actuator under PID 

control are computed while the mover moves from 0 to 3.2mm. 
Fig. 4 shows the computed time variations of position and U-, 
V-, W-phase currents. Fig. 5 shows the measured results of a 
prototype. As can be seen, both results of the time variations of 
position are in good agreement and this actuator shows high 
response characteristics. And, both results of the time 

variations of U-, V-, W-phase currents are in good agreement 
qualitatively, however, the peak value of currents during rest 
and the current waveforms at the goal point are different. This 
is because the prototype has relatively large friction. In the 
final paper, the analyzed accuracy will be improved by taking 
into account of the dynamic friction in the computation. 

V. REFERENCES 

[1] K. Halbach, “Application of permanent magnets in accelerators and 
electron storage rings”, Journal of Applied Physics, vol.57, 1985, pp. 
3605-3608. 

[2] Masayuki MISHIMA, Hiroshi ISHIGURO and Katsuhiro HIRATA, 
“Development of a new linear actuator for androids”, 2008 IEEE 
International Conference on Robotics and Automation, 2008, pp. 3594-
3599. 

[3] K. Hirata, T. Yamamoto, T. Yamaguchi, Y. Kawase and Y. Hasegawa, 
“Dynamic Analysis Method of Two-Dimensional Linear Oscillatory 
Actuator Employing Finite Element Method”, IEEE Transaction on 
Magnetics, vol.43, No.4, 2007, pp. 1441-1444. 

 

665

 



Abstract – The shunt reactors are important components in the 
EHV/UHV (Eltra/Ultra High Voltage) power systems used for the 
voltage regulation issues. One of their important roles is to 
compensate the reactive power. Typically for such compensation 
the fixed shunt reactors are used. Alternative concepts introduced 
recently are the controllable reactors. Among various controllable 
reactors schemes, the orthogonal flux type controllable reactor is 
remarked for its low harmonics and fast response time. The 
controlling effect of orthogonal flux type controllable reactor is 
achieved by controlling the saturation level of the parts of the 
magnetic core (saturable reactor).In this paper we present an 
efficient approach for the simulation of such controllable reactors 
using Integral Equation Method (IEM). The key information 
when analyzing this kind of devices are the controllable 
reluctances. The paper demonstrates usage of IEM for the 
computation of the inductances as a function of the DC current 
changes depending on the saturation levels of the magnetic 
material. The results are compared with the calculation results 
based on equivalent magnetic circuit calculation model. 

I. CONTROLLABLE REACTORS

Voltage regulation using shunt reactors is one of the key 
issues in the long power transmission lines. They are 
especially important when building the long distance power 
transmission lines for the EHV/UHV application, in which the 
line voltage is higher than 500kV. When the line is energized 
but not loaded or only loaded with a small current, there is a 
voltage rise along the line (the Ferranti-effect[1]), Fig. 1. The 
overvoltage increases the stress of insulation level on the 
primary components or restriction of transfer capacity of the 
transmission lines, especially at the terminals.  

Fig. 1: Illustration of the voltage dependency at the end of the line caused by 
the line capacitances 

One solution for these problems is to employ the 
controllable reactor, which can regulate the bus voltage level 
and transmission capacity according to line’s load level.  

Till now, the references dealing with the reactor 
simulations are quite restricted and mostly limited to the FEM-
based simulation of the fixed value shunt reactors, [2-4]. The 
basic principles and the design of the controllable reactor are 
discussed in [5]. 

In this paper we present a procedure for 3D IEM-based 
simulation of the orthogonal flux type controllable reactor. The 
simulation method provides accuracy analysis results to 

accelerate the development procedure. The simulation results 
can also be used for calibration of the mathematic model. We 
discuss the main features and advantages of presented 
methodic for this type of simulations. The simulation results 
are compared with the calculation method on a simple 
geometry model. 

II. MODELING OF THE CONTROLLABLE REACTOR

A. The magnetizing curve and its ideal model 

The key problems when simulating this kind of devices are 
efficient treatment of the controllable magnetic reluctances. 
The “control” of the reluctances is achieved by the control of 
the saturation level of the “control discs” in the reactor’s 
central limb. Fig. 2(a) shows the structure of controllable 
reactor with air-gaps between the control discs and 
uncontrolled discs. By adding air-gaps, the control range can 
be adjusted and thus decrease the total cost of the controllable 
reactor. 

Reactor coil 

Control coils

Control disc 1

Control disc 2

Control disc 3 

Control disc 4

     
(a) The structure of controllable reactor             (b) the control disc 

Fig. 2: Structure of the controllable reactor with air-gaps between the discs 
The main reactor coil is excited by the AC voltage. The 

control discs are excited by the auxiliary DC coils wounded 
around each of them. The structure of the control disc is shown 
in Fig 2(b). 

B. The magnetizing curve and its ideal model 

The ideal magnetizing curve of the magnetic material can 
be expressed as:  

m 0B B Hµ= +  (1.1) 

Where Bm=1.91T. 

C. The Inductance calculation 

The inductance of the controllable reactor can be estimated 
by the magnetic circuit theory and using (1.1). 

III. SIMULATION OF THE CONTROLLABLE REACTORS

The simulation of the above phenomena is performed using 
IEM. As mentioned before, the major task is to calculate the 
changes of the inductance due to changes of the DC excitations 
around controlled discs. 

 Controllable Reactor Simulation using Integral 
Equation Method
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A. IEM Formulation 

The analysis of the non-linear problems in magnetostatic 
by IEM is performed using the improved procedure described 
initially in [6]. The magnetic field in any space point can be 
found as: 

J M= +H H H  (2.1) 
where JH is a field component produced by the excitation 
current in free space and MH is a field produced by the 
magnetic charges. The first field component can be easily 
calculated by Bio-Savarot law. For the calculation of the 
second one we use the formula: 

1 2

1 1

4 4
J

M
J J N N

S VN

dS dVσ ρ
π π

= +∫ ∫ H K K  (2.2) 

where Jσ  and Nρ are the fictitious surface and volume 

magnetic charges, and 1K  and 2K are the kernels of the 

type 3/ rr .  The surface charges are obtained by solving 
second Fredholm integral equation: 

1 22
2 2

N

JI I
I J I I I I N N

s V

G dS G dV
λ λσ σ λ ρ
π π

− = ⋅ +∫ ∫ H n  (2.3) 

where  1G  and 2G are the kernels of the type 3r⋅r n/ .  

Here it important to stress the main features of IEM when 
solving the non-linear magnetostatic problem. In spite of the 
fact that it is necessary to mesh the volume of the non-linear 
magnetic parts, the number of unknowns for the non-linear 
problem is same as the number of unknowns for the linear one. 
This is due to the fact that the non-linear contribution (second 
term on the right-hand side of (2.3) appears just as the 
correction term and is calculated throughout the iteration 
procedure from the previous iteration. More detailed 
description will be given in the full paper. 

B. Inductance calculation 

The inductance calculation is based on the calculation of 
the flux density. For example, the self-inductance of the 
reactor coil can be calculated as: 

  
1

cR S

L
I

= ∫ Bds  (2.4) 

where B  is a vector of magnetic flux density through the cross-
section plane cS positioned within the reactor coil.   

IV. EXAMPLE

The above model of the reactor shown in Fig. 2 is used for 
the simulation.  

Saturated 
control disc 

Un-saturated 
uncontrolled 
disc 

Fig. 3: Flux distribution through the central limb; model a) with air-gaps. The 
flux through the control discs is at the saturation level and is circulating 

orthogonally to the direction of the AC flux. 

The simulation is performed using BEM-based software 
package POLOPT for single- and multi-physics problems 
analysis. Fig. 3 shows the flux distribution through the central 
limb build of sequences of controlled and uncontrolled discs.  

A. The magnetizing behavior of control disc 

The AC side magnetizing curves under different DC 
magnetizing strength is obtained by POLOPT, as shown in Fig. 
4, in which the red curves are calculation results by using 
Equation(1.1), and the blue markers are simulation results 
obtained by using POLOPT. The results imply that the ideal 
model can provide enough accuracy for engineering 
application.  

0 1000 2000 3000 4000 5000 6000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

AC magnetizing field Hac (A/m)

F
lu

x 
d

ei
si

ty
 B

(T
)















Fig. 4 AC magnetic curves under different DC magnetic fields 

B. The inductance of the controllable reactor 

Fig. 5 shows the simulation results of the inductance of the 
controllable reactor, which is compared with calculation 
results.  
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Fig. 5 The inductance of controllable reactor: calculation and simulation 
results 

More detailed analysis such as of inductance vs. different 
airgaps and the impact of the distribution of DC winding on 
the inductance value will be presented in the full paper. 

V. REFERENCES 

[1] Sungook Hong: Forging Scientific Electrical Engineering: Joh 
Ambrose Fleming and the Ferranti Effect, Isis, 1995, 86, 30-51 

[2] Xiang Cui, Huiqi Li, Lin Li, Jianxin Lui: Finite element analysis of 
shunt rectors with auxiliary windings, Int. Journal of Applied 
Electromagnetics and Mechanics 20(2004), 133-140. 

[3] Liu JIanxin, Cui Xiang, Fei Zengyao, Shao Hanguang: 3D non-linear 
anisotropic magnetostatic field computation in reactor, COMPEL, Vol. 
17, No 1/2/3, 1998, p.239-243 

[4] Y. Ishihara, T. Morino, T. Taodaka: Analysis of Magnetic Field of a 
Delta Type Shunt Reactor, IEEE Tran. on Mag., vol. 25, No.4, July 
1989 

[5] Torbjörn Wass, Sven Hörnfeldt, Stefan Caldemarsson: Magnetic Circuit 
for a Controllable Reactor, IEEE Tran. on Mag, Vol. 42, No.9, Sep. 
2006 

[6] B. Krstajic, Z. Andjelic, S. Milojkovic, S. Babic, S. Salon: Nonlinear 
3D Magnetostatic Field Calculation by the Integral Equation Method 
with Surface and Volume Magnetic Charges, IEEE Tran. on Mag., 
vol.28,  No.2, March 199 

667
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Abstract — Inter-laboratory comparisons of Specific
Absorption Rate (SAR) calculations sometimes show
discrepancies between the results even for the case of simplified
phone models. A possible cause could be an incorrect positioning
of the device against the head. Two commercially available
mobile phones with different antenna configurations are selected
to evaluate the error induced by incorrect positioning. The SAM 
(Specific Anthropomorphic Mannequin) head phantom for which
the positioning of the device is clearly defined by the standards is
employed for the numerical simulations. Results show that
deviations with respect to the reference positions may induce a
few percent differences in the maximum 10°g averaged SAR
values.

I. INTRODUCTION

The SAR (Specific Absorption Rate) conformity
assessment of mobile phones is currently based on 
standardized measurement procedures such as IEEE1528 [1]
and IEC62209-1 [2]. The SAM (Specific Anthropomorphic
Mannequin) head-phantom filled with tissue equivalent liquid
is employed for the SAR measurements of four intended use
positions of the mobile phone: left/cheek, left/tilt, right/cheek 
and right/tilt. A rigorous measurement procedure is enforced –
liquid verification, system validation, accurate positioning of 
the device, etc. – to ensure that the maximum averaged 10 g
SAR value fits within less than 30 % uncertainty. The overall
SAR compliance test of a mobile phone is time-consuming
and costly. For instance, the compliance test of a dual-band
mobile phone requires a full day using standard dosimetric test
facilities.

Until recently, numerical dosimetry was approached to 
investigate power absorption in realistic head models using
rather simplified phone models such as a quarter-wavelength
monopole antenna mounted over a metallic box or a PIFA 
(Planar Inverted-F Antenna) over a PCB (Printed Circuit 
Board). The availability of fast computers at low cost and
user-friendly electromagnetic software has paved the way for
numerical simulations using more realistic phone models
which account for the different components present in
commercially available mobile phones: battery, camera,
casing, display, support, etc. Obviously, the presence of such
components – especially those having metallic elements – has 
a non-negligible impact on the SAR result. For example, the
metallic frame usually present around the LCD (liquid crystal
display) may modify the SAR distribution in the phantom.

Although the actual CAD (Computer-Aided Design) of the
mobile phone may be sometimes available, the
electromagnetic simulation is not straightforward. Indeed,
such CAD models are initially developed for mechanical
engineering purposes and most electromagnetic solvers cannot
easily handle the complexity of the models. Furthermore, the
presence of tiny elements or curvatures produces relatively 
high mesh densities which slow down the computational
times. In fact, when using the Finite Difference Time Domain
(FDTD) technique – which is nowadays commonly employed
for SAR calculations – the mesh density of the mobile phone
actually dictates the overall mesh with the SAM phantom i.e. 
the cell size may become much smaller than the typical
recommended value of a tenth of the wavelength in the tissue
equivalent liquid. To overcome this problem, it may
sometimes be desirable to numerically reconstruct the phone 
model. By taking into account the relative electromagnetic
importance of the different components of the mobile phone, 
simplifications of the model can be achieved. This
methodology was applied to reconstruct the numerical model
of a commercially available PIFA-based mobile phone which
was validated using experimental data [3].

Even when the numerical simulations are feasible, the
evaluation of the uncertainty associated to a given SAR 
calculation remains a critical issue. Usually the suitability of
the mesh density employed for the numerical modeling is
tested through a convergence analysis of the results. The 
initial high mesh density may then be relaxed to provide fast
run times for efficient SAR calculations with the SAM 
phantom. A recent international comparison on SAR 
calculations found that one of the possible causes of
discrepancy observed between the different participating
laboratories could be due to the incorrect positioning of the
handset with respect to the phantom [4]. When performing
SAR calculations using inhomogeneous head models, the
positioning error is expected to be amplified because of (i) the 
presence of irregularities along the surface of the head model
and (ii) undefined standard reference points which help
position the handset. To evaluate the uncertainty due to the
positioning of the handset with respect to the head, two
commercially available mobile phones are herein selected for 
SAR calculations. The SAM phantom for which the
positioning of the handset is clearly defined by the standards
is chosen for the numerical simulations.
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II. NUMERICAL MODELING

Electromagnetic solvers based on time domain methods
such as FDTD are usually employed for SAR calculations. 
Herein a commercial package of the TLM (Transmission Line 
Matrix) method is adopted [5]. The numerical models of the
two reconstructed commercial mobile phones placed against 
the SAM phantom for the left/cheek position are shown in
Figure 1 and 2, respectively. The first numerical phone model
is a PIFA-based commercial mobile phone. A previous
numerical study of this mobile phone showed that the results –
return loss, total radiated power and SAR – obtained with the
reconstructed model agree well with measurements [4]. The 
return loss data showed that some specific components of the
mobile phone – for example, the speaker – can induce
undesired resonances which cannot be easily accounted for by
the numerical modeling. The total radiated power data showed
that the losses of the mobile phone were consistent with the
dielectric properties employed for the different components.
The maximum averaged 10 g SAR values at 900 MHz and
1725 MHz were within the 30 % uncertainty level of the
dosimetric test facility. 

Both mobile phones are dual-bands and they can be 
operated at 900 MHz and 1725 MHz. The dielectric properties
of the tissue equivalent liquid used at these two frequencies
are provided in Table I. A first set of numerical simulations
are performed for the four intended use positions which
constitute the reference positions. Further simulations are
undertaken for small deviations of the position of the mobile
phones with respect to these four reference positions. For
comparable results, the same mesh is applied for all the
numerical simulations with a given mobile phone model.

TABLE I 
DIELECTRIC PROPERTIES OF THE TISSUE EQUIVALENT LIQUID
Frequency [ MHz ] Relative permittivity Conductivity [ S/m ] 
900 41.5 0.97
1725 40.0 1.40

III. RESULTS

Results show that for deviations of the position of the two
mobile phones such that the distance between the antenna
element and the tissue equivalent liquid is practically the same
(e.g. 1 degree rotations in a plane parallel to the sagittal
plane), the error in the SAR value is about 1 %. For other
deviations of the position (e.g. 1 degree rotations
perpendicular to the sagittal plane), the error in the SAR value
is about 5 % for the PIFA-based mobile phone and 8 % for the
mobile phone with the helicoidal antenna.

Fig. 1. PIFA-based commercial mobile phone (casing not shown) positioned 
against the SAM phantom.
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Abstract—In this paper equivalent circuits of inductive cou-
pled radio frequency identification (RFID) antenna systems are
extracted by means of the partial element equivalent circuit
(PEEC) method. Each antenna impedance is analyzed separately
regarding frequency dependent behavior including skin- and
proximity effects as well as parasitic capacitances. In contrast
to that, the inductive coupling between any two coils is computed
for an arbitrary 3D spatial arrangement by a filamentary mu-
tual inductance computation technique, allowing for fast spatial
sweeps. Both models are combined to a single equivalent circuit
that maintains the topology of mutually coupled inductances.
The described approach is tested with a conventional reader
transponder arrangement and compared with the full PEEC
models.

I. INTRODUCTION

Inductive coupled RFID systems which are typically operat-
ing at the center frequency of 13.56 MHz are well described by
equivalent circuits based on the transformer concept because
of the dominance of inductive near field coupling [1]. In order
to quantify the port impedances of the coil system for varying
spatial arrangements different approaches can be applied. The
most obvious but not necessarily most efficient approach would
be to repeatedly simulate the complete system for each varia-
tion of the geometric parameters with a 3D full wave solver.
A more flexible approach is to separate the calculation of the
mutual antenna coupling from the location independent self
impedances of the antennas. The combination of the separated
models is recovered in the circuit representation. Therefore,
it is necessary to ensure an equivalent circuit topology that
inhibits the mutually coupled inductances as shown in Fig. 1.

A numerical method that is well suited for this task is
the PEEC method [2]. The conducting regions are discretized
leading to an equivalentRLC network representation with par-
tial resistive, inductive and capacitive elements. These circuit
elements are connected according to the Kirchhoff’s laws and
can then be analyzed via circuit solvers like SPICE.

II. PEEC MODELS

In order to compute the self impedances of spiral printed
coils including skin- and proximity effects with the standard
PEEC method, the conductor’s volumes have to be subdivided
in cross section. A common starting point is to choose the
width of the outermost volume cell to be less or equal to the
skin depth at the highest frequency of interest. Increasing the
width of the volume cells towards the interior of the conductors
reduces the discretization effort and reflects the decaying
current distribution. The conductors of the tag antenna of the

Port 1

Port 2

Port 1 Port 2

Equivalent Circuit

C1 C2

L1(f) L2(f)

R1(f) R2(f)

Rp1 Rp2

M(r)

x

y
z

Geometry of Antenna 1

Geometry
of Antenna 2

Inductive
Coupling

Fig. 1. Equivalent circuit representation of two inductive coupled antennas.

model setup in Fig. 2 are subdivided into 9 segments in width
and 3 segments in thickness leading to 756 unknown currents
(Reader antenna: 132 unknown currents).

The consideration of capacitive effects requires an addi-
tional discretization of the conducting surfaces because the
free charges are limited to the surfaces. It is sufficient to
represent the thin conductors by a 2D approach [3]. Hereby,
the simulation time is reduced and dielectrics can be easily
included by adapting the Green’s function [4]. For the model
setup, the surface is discretized with 9 panels in width for the
tag (11 for the reader) resulting in 504 (88) unknown surface
charges. Using a mesh based circuit formulation [5] the port
impedances can be calculated as presented for the tag antenna
in Fig. 3.

For the calculation of the mutual coupling between multiple
coils, the discretization level is reduced to a minimum taking
only inductive effects into account. In detail, each straight
conductor is modeled by a single filament (abbr. Fils) leading
to 4N (N = number of turns) unknowns for each antenna.
The mutual inductance can then be expressed as [1]

M =
�

Fils coil i

�

Fils coil j

Lij . (1)

The partial inductances Lij are computed analytically [6].
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Direction of Reader-Tag Shift

10 cm

10 cm

4.5 cm
7.6 cm

Tag conductor width = 0.8 mm
Tag cond. thickness = 30µm
Tag cond. spacing = 0.3 mm

Reader cond. width = 1.0 mm
Reader cond. thickness = 35µm

Substrate thickness = 50µm
Substrate ǫr = 3.2

σ = 37.7 · 106 S/m
Tag turn number = 7

Substrate ǫr = 4.7

Substr. thickness = 1.5 mm
σ = 58 · 106 S/m
Reader turn number = 1

Fig. 2. Illustration of the test setup. A square reader antenna (substrate not
visualized) is coupled to a multi turn tag antenna.

TABLE I
PARAMETERS OF FIG. 1 AND (2) FOR THE TEST SETUP IN FIG. 2.

Reader Tag
R RDC=194 mΩ RDC=1.64 Ω

fR=939 kHz, AR=0.233 fR=750 kHz, AR=0.185

L Lext=406 nH, Lint=10.8 nH, Lext=5.38 µH, Lint=74.4 nH,

fL=617 kHz, AL=−0.56 fL=918 kHz, AL=−0.677

C C1=0.78 pF C2=1.55 pF

Rp Rp1→∞ Rp2→∞

III. EQUIVALENT CIRCUIT MODELS

The circuit element parameters of Fig. 1 are obtained by an-
alyzing the frequency behavior of the coil impedances. While
curve fitting techniques like vector fitting [7] are available
without any a priori knowledge of the structures, a more
physical approach for determining the equivalent network of
spiral inductors is achieved by the following strategy: First,
the partial matrix elements are calculated once. The parasitic
capacitance is extracted by solving the system with and without
capacitive effects at the frequency of interest. The difference in
admittance reveals the capacitance C and eventually a parallel
resistance Rp that is typically in the range of several MΩ. The
frequency dependent inductance and resistance are obtained
by magnetic quasistatic evaluation without the capacitive cells.
From the DC limit, the resistance RDC and the total inductance
Lext + Lint are obtained, the frequency dependent behavior is
extracted by a curve fitting technique requiring the evaluation
of a few frequency points only. Here, the frequency behavior
of the resistance and inductance is chosen as follows

R(f) = RDC

�
1 +

f2

f
2
R

AR

, L(f) = Lext + Lint

�
1 +

f2

f
2
L

AL

,

(2)
which allows to approximate the curves with a few design pa-
rameters (fR, fL, AR, AL, Lint). More details about the fitting
technique will be presented in the final version of this paper.
The computed parameters for the arrangement of Fig. 2 are
given in Table I, the impedance curve for the tag antenna is
shown in Fig. 3.

In the following, the mutual coupling is computed for both
antennas for a varying spatial separation from 0 to 10 cm as
presented in Fig. 2. For this setup the mutual port coupling is
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Fig. 3. Tag antenna impedance. The error of the equivalent circuit with the
parameters of Table I is well below 1 % for the frequencies smaller than the
resonance.
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Fig. 4. Simulation results and error of the mutual impedance computed by
the full PEEC model and the reduced circuit at 13.56 MHz. The error is again
below 1 % for all presented separations.

calculated in two different ways: The full PEEC models with
a total unknowns of 1480 and the reduced circuit model with
6 fixed self impedance elements and 32 varying filaments for
calculating the mutual inductance. Both techniques are best
compared when visualizing the transmission behavior by the
imaginary part of the mutual impedance Z21 which is shown
in Fig. 4.
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Abstract—A novel polymer-bonded magnetic materials has 

been developed. The new magnetic material is composed of 
polymer matrices and special magnetic powder. By using the new 
materials, light weight, low cost and non-brittle magnetic cores of 
flexible shapes and different sizes can be made. To fully 
investigate the magnetic performance of the EI transformer, finite 
element analysis (FEA) has been applied. Based on the 
new-developed magnetic cores, 100Watt flyback power converter 
has been developed. The design guideline of how to use the new 
materials for power conversion has been given. PCB prototype 
and experimental results are provided to validate the feasibility of 
the application of the proposed novel materials for power 
conversion.  

 
Index Terms—Polymer-bonded, Power conversion, finite 

element analysis, Flyback, Magnetic core. 

I. INTRODUCTION 
HE technology and engineering domains constantly set 
demanding requirements of magnetic materials. Materials 
such as Ferrites and Molydbenum Permalloy Powder 

(MPP) are famous for their low loss characteristics and high 
frequency operation, leading to wide applications in various 
fields. In particular, they are very popular for power conversion. 
One of the applications is the power converter which uses 
magnetic materials to construct inductors and transformers. 
The design of the magnetic device also depends on the 
permeability, loss factor and size and shape of the materials.  
Recently, polymer bonded magnetic materials have attracted a 
great deal of attention in the fields of magneto-electrics and 
magneto-optics.  These materials are composed of polymer 
matrices and magnetic powders, which may be produced using 
traditional polymer processing methods[1-7].  Polymer bonded 
magnetic materials offer significant advantages over 
conventional materials[8, 9].  For example, polymer bonded 
magnetic materials can be molded more easily, lowering the 
cost of manufacturing and of quality control.  Nonetheless, the 
polymer-bonded magnetic materials have not typically been 
applicable in power conversion. The outstanding work needed 
in the optimization and the permeability study has prevented 
developing the materials into a product.  
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a) Raw materials                         b) magnetic cores 

Figure 1: Photos of polymer-bonded magnetic materials and EI40 cores 
 

 
a) 100Hz                                     b) 5kHz 

Figure 2: B-H Curve of the new-developed polymer-bonded magnetic materials  

II. POLYMER-BONDED MAGNETIC MATERIALS FOR POWER 
CONVERSION 

A. Development of Polymer-bonded Magnetic Material  
A new polymer-bonded magnetic material has been 

developed in Hong Kong Polytechnic University. The 
new-developed material is produced by compounding from 10 
weight percent of polyethylene resins (PE), 90% weight 
percent of a magnetic powder taken from NiZn Ferrite, and 15 
weight percent (against magnetic powder) of Titanium (IV) 
Isopropoxide (C12H28O4Ti) as a coupling agent. The 
developed materials and EI40 cores are shown in Figure 1 

B-H Loop was measured by using EI40 shape cores. The 
Measured B-H loop of the material is shown in Figure 2. 

B. Finite Element Analysis  
To fully investigate the magnetic performance of the EI 

transformer, finite element analysis (FEA) has been applied. 
The purpose of FEA is to explore the magnetic flux distribution 
along the polymer and flux leakage can be calculated according 
to flux value from each finite element. Three dimensional 
model has been constructed to fully explore the magnetic 
characteristics. With current excitation of 1A from the primary 
coil, flux has been built up along the magnetic path as shown in 
Figure 3. 
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Figure 3:3D flux distribution 

 
A “3D cut” vertical to the arms of the transformer is 

performed along the finite element model. As can be seen from 
Figure 4  (a), most flux distributes along the E and I core 
respectively since the air region has a relatively large reluctance. 
For a precise numerical analysis, the flux from each element 
along the horizontal edge of one arm is selected according to its 
relative position to verify a negligible leakage flux. It can be 
seen from Figure 4 (b) that flux dominates along the polymer 
and dimishes rapidly along the air region. Similarly the flux 
plot along the vertical edge of one arm can be found in Figure 4 
(c) 

 
(a) 

   
                     (b)                                               (c) 
Figure 4: (a) 2D flux distribution and flux plot according to relative positions (b) 
horizontal and (c) vertical 

III. DESIGN AND IMPLEMENTATION OF A 100W  FLYBACK 
CONVERTER  

A. Flyback Converter 
The flyback converter is one of the simplest topology 

isolated converter.   Its basic circuit is shown in Figure 5. It only 
consists of coupled inductors, a transistor T, a rectifier diode D 
and filter capacitor C.   The primary and secondary sides are 
isolated by a coupled inductor (some time is referred as a 
transformer). When transistor T is conducting, Vin is 
developed across the primary winding causing a linear increase 
in current as energy is stored in the coupled inductor 
increases[10].   

 
Figure 5: Flyback converter 
 

Table 1: Electrical specification of the polymer-bonded flyback converter 
Description Symbol Min Typ Max Units
Input 
Voltage 
Frequency 

 
Vin 
fline 

 
85 
47 

 
110 
50/60 

 
130 
64 

 
VAC
Hz 

Output 
Output Voltage 
Output Ripple Voltage 
Output Current 
Output Power 

 
Vout 
Vripple 
Iout 
Pout 

 
 
 
0.1 

 
30 

 
 
200 
3 
100 

 
V 
mV 
A 
W 

Switching Frequency 
Efficiency 

fs 

η 
 
 

400 
70 

 
 

kHz 
% 

Ambient Temperature TAMB 0  85 ℃ 
 

Table 2: Effective Core parameters of an EI 40core 

Symbol Parameter Value Unit 
Ve effective volume 11100 mm3

Ie effective length 77.5  mm 
Ae effective area 143 mm2

  

B. Design Guideline of 100Watt Flyback Converter by 
Using New-developed Magnetic cores 
Table 1 shows the electrical specification of the 100Watt 

Flyback converter. EI40 core is selected for the development of 
the power converter, the parameter of the EI40 core is shown in  
Table 2. The maximum switching on time for the primary 
power transistor T will occur at minimum input voltage 
(85VAC) and maximum load (100Watt). For this development, 
it will be assumed that the maximum switching on time is 45% 
(Duty Ratio, D) of a total period of operation. The switching 
frequency is selected to be 400 kHz. So the period of the 
switching cycle is  

     
6

6 10*5.2
10*400

11 −==
s

s f
=T

                     (1) 
The switching “on” time is:  

610*125.1 −=son DT=t                           (2) 
The absolute calculation of this voltage in practical 

application is difficult[11], as it depends on a number of factors 
which are not well defined. For this application, a fair 
approximation of the working value of Vs at full load will be 
given by using a factor of 1.3 times the RMS input voltage. So, 
at a line input of 85V RMS, the DC voltage Vs will be 
approximately 

             V=Vs 5.1103.1*85 =                         (3) 
The effective area of the center leg of EI40 is 143mm2. The 

saturation flux density is 36mT shown in Figure 2(b), with 
operating frequency of 400 kHz, the maximum peak-to-peak ac  
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Figure 6: Transformer specification of the polymer flyback converter 

 
 

 
              (a)                                        (b) 

(a) AC input: 85VAC, Upper: VDRAIN, 100V/div, 1us/div; Lower: IDRAIN, 
1A/div, Operating Frequency 400 kHz, Power at 100W 
(b) PCB prototype 
Figure 7: Measured waveforms and PCB prototype of Polymer-bonded flyback 
converter 
 
flux density Bac is chosen at 26mT to provide a good working 
margin.  

mT=Bac 26Δ                                       (4) 
The primary turns can be calculated by:  

43.33
*

=
Δ eac

ons
p AB

tV=N                       (5) 

The required output voltage for the main controlled line is 30V. 
Allowing for a voltage drop of 0.7V in the rectifier diode and 
0.6V in interconnecting tracks and the transformer secondary, 
The voltage at the secondary of the transformer should be, say, 
31.3V. Hence, the secondary turns would be 

39.9
110

33*)6.07.030(
=

++
=

s

pout
s V

NV
=N

       (6) 
In this application, the turns of primary side is 33 and the 
secondary turns is 10. The transformer specification is shown 
in Figure 6 .The measured experimental waveform and the PCB 
prototype  are shown in Figure 7.  

IV. CONCLUSION 
Polymer-bonded magnetic materials are composed of 

polymer processing methods. Hence, it offers significant 
advantages over the conventional Ferrite. It is boned with 
polymer and hence, there is an evenly distributed air-gap that is 
what we needed for high frequency power electronics. To fully 
investigate the magnetic performance of the EI transformer, 
finite element analysis (FEA) is applied. The purpose of FEA is 
to explore the magnetic flux distribution along the polymer and 
flux leakage can be calculated according to flux value from 
each finite element. Three dimensional model is constructed to 
fully explore the magnetic characteristics. With current 
excitation of 1 A from the primary coil, flux is built up along 
the magnetic path. By using the new-developed materials based 
magnetic core, a real application of 100Watt Flyback converter 
has been fully implemented. The design guideline of the 

development for the flyback converter using the proposed 
materials has been illustrated. Experimental results show that 
the polymer-bonded magnetic cores can substitute the 
traditional ferrite in the application s for power conversion.   
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8. COUPLED PROBLEMS 

Abstract — The terminal current in voltage driven systems is 
an essential role for characterizing the pattern of electric 
discharge such as corona, breakdown, etc. Until now, to evaluate 
this terminal current, the Sato’s equation has been widely used in 
the areas of high voltage and plasma discharge. Basically this 
Sato’s equation was derived by using the energy balance equation 
and its final form described some physical meanings explicitly. 
To give more general abilities in Sato’s equation, we, here, 
present a generalized approach by directly using the Poynting’s 
theorem incorporating the Finite Element Method (FEM). When 
the magnetic field effect or the time-dependent voltage source 
should be considered, this generalized energy method can be 
easily applicable to those problems with any dielectric media 
such as gas, fluid, and solid. As an alternative approach, the 
integral Ohm’s law resulting in small numerical distortions has 
an ability to be applied to multi-port systems. To test the 
generalized energy method and the integral Ohm’s law, the 
results from two proposed methods were compared to those from 
the Sato’s approach and an analytic solution. 

I. INTRODUCTION 
Calculation of the current flowing between any two 

electrodes during discharge simulation is important because 
the terminal current is often one of the only parameters that 
can be measured during actual breakdown testing. In high 
voltage discharge and plasma analysis, the Sato’s equation has 
been widely used for calculating a terminal current [1]. The 
original Sato’s equation was derived with an assumption that 
the applied voltage is constant in a gap. For many applications, 
however, it is necessary to calculate the terminal current 
considering time-varying applied voltages such as lightning 
impulse, rf, or pulsed input sources. To overcome this 
weakness, the original equation was expanded into a new 
version with including a time-dependent applied voltage [2]. 
This final form can be successfully applied to most of 
discharge problems. As in the arc simulation, however, when 
the magnetic field effect is significant, the calculating method 
for terminal current should be modified and generalized.  

With the energy balance equation, here, we present a 
generalized method to calculate a terminal current by directly 
adopting the Poynting’s theorem incorporating the Finite 
Element Method (FEM) which has been successfully applied 
to discharge analysis. In this approach, the global quantities 
such as energy and Ohmic dissipation were directly employed 
in the expression of Poynting’s theorem with terminal 
quantities, current and voltage. This generalized energy 
method naturally covers the time-varying voltage sources, 

magnetic field effect, and any dielectric media. In addition to 
this, the FEM gives more accurate global quantities such as 
energy and total power dissipation because the procedure of 
FEM follows the global energy minimization condition. This 
generalized energy method, therefore, is harmony well with 
the FEM.  

As an alternative method, we also tested the integral 
Ohm’s law, which can be applied to multi-port systems. The 
Sato’s equation and the generalized energy method, however, 
can be applied to only a two-terminal electromagnetic system 
because it is difficult to separate the energy contributions for 
each port. Even though the integral Ohm’s law has an ability 
to calculate a terminal current at each port, the result has some 
numerical distortions when we took a conductor surface as an 
integrating surface. To test two proposed methods, the results 
were compared to those from the Sato’s equation and an 
analytic solution [3]. 

II. GOVERNING EQUATIONS AND FINAL SATO’S EQUATION 
The general expression of governing equations for space 

charge propagation can be analyzed by using the 
hydrodynamic diffusion-drift model for the electron (Ne), 
positive ions (Np), and negative ions (Nn) as [2] 

 

( ) | | | |e
e e e e e e e e e p ep

N N D N S N N N N
t

  
       


V V V      (1) 

1 2( ) | |p
p p p p e e e p n p

N
N D N S N N N N N

t
  


       


V V     (2) 

2( ) | |n
n n n n e e n p

N N D N N N N
t

 
     


V V                           (3) 

 
where t denotes the time, Ve, Vp, and Vn the electron, positive 
and negative ion drift velocities, De, Dp, and Dn the electron, 
positive and negative ion diffusion coefficients, and α, η, and β 
the ionization, attachment, and recombination coefficients, 
respectively. S denotes the source term due to photoionization, 
and here its effect was neglected. To take the electric field 
effect, those continuity equations should be solved with the 
Poisson’s equation simultaneously as  
 

( ) ( )p e nV e N N N                     (4) 
 
where ε is the dielectric permittivity, e the electron charge, and 
V the electric scalar potential.  
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8. COUPLED PROBLEMS 

The expanded Sato’s equation considering three carriers 
and a time-dependent applied voltage was expressed as [2] 

 
01 L

c L L
a a

I dv dv
V V t


 


   

 
EJ E E                                      (5) 

with
( )c p p e e n n p p e e n ne N N N D N D N D N        J V V V  

 
where I is the external circuit current, Va the applied voltage, 

cJ  the conduction current, EL the solution of Laplace’s 

equation, εo the dielectric permittivity in air, and dv
  a 

volume integral over the discharge space.  

III. INTEGRAL OHM’S LAW AND GENERALIZED ENERGY 
METHOD FOR CALCULATING A DISCHARGE CURRENT 

In general the terminal current is due to conduction current 
in a dielectric medium as well as displacement current due to 
the time rate of change of the surface charge on the electrodes 
as  

 

cS
I d

t
      

EJ a                     (6) 

 
where E  is the total electric field intensity due to the applied 
voltage and space charge distributions, and (6) is known as the 
integral’s Ohm’s law.  

By considering any general field within a volume, one 
realizes that the energy contained by that field must be 
distributed throughout space with a local energy density W at 
every point in the volume. Similarly, power dissipation can 
occur at every point within the volume at a rate Pd. The power 
flows with a density S, the Poynting vector, so that the power 
crossing a surface Sa is given by 

aS
d S a . With these field 

generalizations and quasi-static approximations, the power 
flowing into a volume Ω, enclosed by the surface Sa, can be 
expressed as 

 

1

n

i i dv
i

dV I Wdv P dv
dt 



                    (7) 

with (1/ 2) (1/ 2)W     E E H H  and d cP  E J  
 
where Vi is an applied voltage at a terminal, Ii the 
corresponding current at that terminal, μ the magnetic 
permeability, and H the magnetic field intensity.  

It is important point out that it is only possible to use (5) 
and (7) to establish the current flowing into a volume when 
n=1, i.e., when the volume only has two terminals. On the 
contrary, the integral Ohm’s law can be applied to a multi-port 
system when n>1. 

IV. TERMINAL CURRENT IN PARALLEL PLANE ELECTRODES 

To verify our numerical setup and compare with each other, 
first, we simplified our governing equations to one carrier 

system in plane-plane 2-D XY geometry as shown in Fig. 1. 
The governing equations are the Poisson’s equation and the 
charge conservation equations as 

 

( ) 0N N
t


  


V                      (8) 

( )V eN                         (9) 
 

As we can see the Fig. 2, the energy approaches, the Sato’s 
equation and generalized energy method, produced almost the 
same results as analytic solutions [3]. Even though the integral 
Ohm’s law has an ability of measuring the terminal current on 
each electrode, it contained some numerical distortions where 
the value of space charge was high. In extended paper, tip-
plane electrodes with the field emission condition, Fowler-
Nordheim charge injection condition, will be presented and 
discussed in detail.  

 

C1

C2

V0

0 V



=AE :uniform source of ions

E

X=0

X=d

 
Fig. 1. The lower electrode at x=0 is a source of injected positive charge with 
mobility μ in the medium of permittivity ε. Here, ρ denotes charge density and 
A the linear injection coefficient. 

 
Fig. 2. Terminal current profiles from the various methods. The analytic 
solution was evaluated by Zahn’s approach in [3]. Here, the direct approach 
represents the integral Ohm’s law. 
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9. NUMERICAL TECHNIQUES 

Abstract —The paper offers a comparative study of numerical 
methods of analysis of electromagnetic fields. The focus is on the 
Finite Element Method (FEM) and Finite Integration Technique 
(FIT), but with the cell and equivalent network approaches also 
considered. It is shown how the approximate integrals describing 
coefficients of the FEM need to be derived for a mesh with 
parallelepiped elements to achieve consistency with FIT 
equations. The equivalence of FEM and FIT formulations for a 
triangular mesh in 2D is highlighted. The TEAM Workshops 
Problem No. 7 is used as an example for numerical comparisons. 
Edge values of magnetic vector potential A and nodal values of 
electric scalar potential V are used throughout. 

I. INTRODUCTION 
The finite element method (FEM) has established itself as 

the prime numerical technique for electromagnetic field 
computations, but some researchers prefer and promote the use 
of the finite integration technique (FIT) [1], the cell method 
(CM) [2] or the equivalent electric and magnetic networks 
(ENM) [3]. The similarities between CM, FIT and FEM were 
observed in [4, 5] and explored thoroughly in [6]. The main 
differences between the different approaches are related to the 
way in which space is discretised and equation coefficients set 
up, in particular the so-called ‘mass matrices’ of the FEM 
theory. [4]. The CM, FIT and ENM formulations rely on a 
discretisation which is equivalent to hexahedral FEM elements 
of 8 nodes and 12 edges (or curved rectangular parallelepipeds 
under cylindrical symmetry). The FEM mass matrices are non-
diagonal, unlike the ones arising in CM, FIT and ENM. The 
purpose of this paper is to extend and enhance the previous 
comparative analysis of the methods. It is demonstrated that 
the CM, FIT and ENM equations may be considered a special 
case of the FEM formulation. The derived approximate 
integration formulae yield the equations equivalent (identical). 

II. EQUATIONS OF FEM AND FIT 
Both nodal elements using scalar potentials Ω, V and edge 

elements in terms of vector potentials A, T are considered. The 
FEM equations for scalar potentials correspond to the nodal 
equations of the edge network with branches coinciding with 
element edges (Fig. 1a) [6]. The permeances, conductances 
and capacitances forming the mass matrix may be found from 

∫ µ=Λ
eV

qepjei
qp

ji vd,,
),(

, ww , ∫ ε+σ=+
eV

qepjei
qp

ji
qp

ji vCG d)p(p ,,
),(

,
),(

, ww , (1a,b) 

where wei,j, wep,q are interpolation functions of an edge element 
for the edges PiPj and PpPq respectively, p=d/dt, and eV  is the 
volume of the element. The FEM equations for vector 
potentials, on the other hand, represent loop equations of the 

facet network, the branches of which cross the element facets. 
A portion of a network of a parallelepiped element is shown in 
Fig. 1b. The reluctances and impedances of the element model 
relate to the mass matrix elements and are described by 

∫ −
µ µ=

eV
fqfiqi vR d, ww 1 , ∫ −ε+σ=

eV
fqfiqi vZ d)p(, ww 1 ,     (2a,b) 

where wfi, wfq are interpolation functions of a facet element for 
the facets Si, Sq.[6]. 

The FEM mass matrices are non-diagonal; consequently so 
are the matrices of the equivalent network models. In the 
models of Fig. 1, the branches which are not perpendicular to 
each other will have a mutual coupling. Such couplings will 
also occur within the triangular 2D elements of Fig. 2. A 
model with mutual reluctances may be established using a 
facet model of a five sided prism [7].  

Equations arising from the CM, FIT and ENM formulations 
may appear to be similar to those obtained from the FEM, but 
there is an important difference that they do not contain mutual 
couplings and thus the mass matrices are diagonal, for example 

)/(,, yxz hhhRR µ== µµ 26655 , )/(),(
, zyx
ii
ii hhh 44

4 µ=Λ +
+  (i=1,2,3,4), (3a,b) 

where hy, hx, hz are dimensions as in Fig. 1.b. In the reluctance 
model of a triangle Rµi,i=hi/(µsi), with hi and si shown in Fig. 2. 
 

 

 
P2 P4 

P7

P6 

P5

P3

P8

P1 

(a)
u2,6 

u1,5 

u4,8 

u3,7 

u6,8 

φ4,8 or i4,8 

φ3,7 or i3,7 

φ1,5 or i1,5

φ2,6 or i2,6 

Mutual permeance
Λ(3,7)  or  capaci-
tance C(3,7)  and 

conductance G(3,7)

4,8 
4,8

4,8 

ui,j is electric
or magnetic 
voltage

 
(b) P2 P4 

P8

P7

P6 

P5

P3 

S6 
S3 

S1 

S4

S2 Q1
P1 

Loop around 
edge P3P4

u6

u5 
φ5 or i5 

S5 

φ6 or i6

Mutual reluctance Rµ5,6
or impedance Z5,6 

ui is electric
or magnetic 
voltage

hz 

hy 

hx 
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Fig. 2 Reluctance (facet) model of triangle 

III. DERIVING FEM EQUIVALENT TO FIT 
From circuit theory it is well known that a three branch star 

with mutual couplings may be converted into an equivalent 
one without any couplings, as demonstrated by Fig. 2. This 
may be achieved by exploiting the condition Σφi=0. It is 
therefore possible to start with different mass matrices for 
FEM and FIT and yet achieve identical matrix coefficients for 
both formulations. The above transposition, regrettably, does 
not apply to 3D systems. Notwithstanding, it is still possible to 
derive a FEM formulation which is equivalent to FIT by 
calculating the integrals (1) and (2) – required for setting up 
the mass matrix – using a simplified formula 

∑∫
=

=
8

1
8

i
ie

V
PfVvf

e

)(/d ,                              (4) 

which results in models free of mutual couplings, thus with 
coefficients the same as if obtained from FIT. Unfortunately, 
the procedure described by (4) is only successful – in terms of 
making the matrix diagonal – in the case of parallelepiped 
elements (it also works for curved rectangular parallelepipeds). 
The mass matrices of tetrahedral and five sided prism elements 
may be made diagonal only if complemented by additional 
assumptions regarding fluxes or currents; for example by 
imposing (or assuming) one of the facet flux or current 
densities in a tetrahedra to be negligibly small. 

IV. EXAMPLE 

The TEAM Workshops Problem No. 7 (Fig. 3) has been 
selected to illustrate the theoretical investigations [8]. The 
magnetic field and eddy current distributions have been 
calculated for a conducting plate with a hole, with the 
excitation provided by a multi-turn coil. An A-V formulation 
has been adopted with edge elements for the vector potential A 
and nodal elements for the scalar potential V. The bounded 
space has been subdivided into about 150 thousand elements, 
some 16 thousand of which were placed in the conducting 
region. The resultant system of equations corresponds to a 
reluctance-conductance network consisting of about half a 
million loop equations related to the magnetic network and 20 
thousand nodal equations of the electric network. The relevant 
parameters for the FEM model were derived using (1) and (2), 
thus creating mutual conductances and reluctances. A block 
relaxation method, combined with incomplete Cholesky 
decomposition, has been used to solve the final system of 
equations. Table I shows example values of the flux and cur-
rent densities at selected points P1 and P2 as marked in  Fig. 3.  

coil 

hole 
aluminium plate

measurement 
point (P1)  

measurement
point (P2)  

x 
y 

z 

 
Fig. 3 TEAM Workshops Problem No.7 

TABLE I 
COMPARISON BETWEEN FIT AND FEM RESULTS 

Method 
Quantity FIT FEM 

Flux density in  point P1 
Bx [T] -0.010689 -0.010747 
By [T] 0.003581 0.003583 
Bz [T] 0.008145 0.008165 

Current density in point P2 
Jx [A/m2] 83275.85 83196.15 
Jy [A/m2] 1713894.52 1710454.18 
Jz [A/m2] -39703.18 -39469.81 

The values are given for an instant of time when the coil current 
was at its maximum (a 50Hz supply has been assumed). 

For all points considered, the differences between the FIT and 
FEM results do not exceed 0.6% for flux density and 0.7% for 
current density, respectively. It appears therefore reasonable to 
conclude that the proposed approximation (4) – which leads to 
equations equivalent to the FIT method with a diagonal mass 
matrix – is perfectly acceptable without noticeable loss of 
accuracy. Moreover, the diagonal matrix is easy to invert, thus 
seeking edge values of A, representing loop fluxes in the model 
of Fig. 1b, may be conveniently replaced by an easier task of 
finding nodal potentials associated with element centres (nodes 
Qi). In the case of diffusion problems the additional advantage of 
making the mass matrix diagonal is a possibility of applying 
explicit numerical schemes [4]. 
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Abstract —A fast algorithm for transient analysis of grounding 
grids or above ground conductors is presented. The algorithm is 
based on the modified image theory and the Fast Multipole 
Method (FMM). Validation of the algorithm is achieved by 
comparison with other algorithm. The results show the flexibility, 
efficiency and accuracy of this algorithm.  

I. INTRODUCTION

It is important to study the transient performance of 
grounding systems of substation for lightning surges in order 
to ensure the safety of personnel and prevent damage of 
installations. Three different analytical approaches have been 
used, which are based on circuit theory [1], transmission line 
theory [2] and electromagnetic field theory [3], respectively. 
Though the last approach is rigorist in theory, the presence of 
the lossy ground implies the computation of the slowly 
converging Sommerfeld integrals. The FMM [4] reduces the 

computational complexity from )( 2NO  to )( 5.1NO , but it 

can’t be used to evaluate electromagnetic fields if the 
Sommerfeld integrals are evaluated directly. The developed 
algorithm used the modified images to establish the EFIE and 
FMM to solve it. The remarkable efficiency and flexibility 
makes it possible to evaluate the lightning electromagnetic 
fields for grounding grid or overhead transmission lines. 

II. FORMULATION

A. Modified Image Theory 

Fig. 1. A grounding grid of substation 

In Fig.1, a transient current is assumed to flow throw the 
grounding grid, and every small segment of the grid can be 
expressed as a line current source. The influence of the 
interface is taken into account approximately by the modified 
images [5]. The electric field can be evaluated by means of the 
current sources and their images:  

II
jj

jj
I A'

0

0 =
++
−+

=
ωεσωε
ωεσωε

                       (1) 

B. Electric Field Integral Equation 

The EFIE for a lossless conductor is: 

0)( 21 =++⋅ ssi EEEt                            (2) 

where iE is the incident electric field, s
1E  and s

2E  are the 

scattered electric fields related with the current source and its 

image, respectively. The subscript 1 indicates the variable or 
the parameter relative to the current sources and subscript 2 
indicates that relative to the images. The scattered electric 
field can be evaluated by means of the Green function: 
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C. Method of Moment 

The Galerkin method is employed to solve the EFIE (2) in 
the frequency domain. The longitudinal current is expanded as: 

∑
=

=
N

n
nnl FII

0

                                  (4) 

where nI  denotes the unknown coefficients to be determined, 

nF  is an expansion function which is expressed as: 

l
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γ

γ
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, lll n Δ<−                 (5) 

where nnnn lllll −=−=Δ +− 11 . The rigorous expression for the 

electric field of a sinusoidal dipole with unit amplitude is in a 
local cylindrical coordinate system illustrated in Fig.2:  
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Fig.2. Local coordinate system 

The linear algebraic equations can be attained as follows: 

11 ××× = NNNN UIZ                                  (8) 

where the elements in 1×NU  are the mutual impedances 

between the dipoles and the incident monopoles, the element 

mnz  in NNZ ×  is the mutual impedance between the dipoles m

and n: 

dlAFz
nl

nnmmn ∫ +•= )( 21 EEt                      (8a) 
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D. Fast Multiple Method 

Dividing the wire segments into M homogeneous groups, 

jo and 'jo  are the centers of groups jm and jn , respectively. 

Appling FMM, (8) can be rewritten as follows: 

11)( ××× =+ NNNN
farnear UIZZ                     (9) 

The matrix element nearZ  represents the interaction from 
nearby regions, evaluated by MoM, used the expression (8a), 

and farZ  represents the interactions from non-nearby regions. 
For the non-nearby regions, by applying the addition theory, 
the Green’s function is rewritten as: 
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where
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where ∫ k̂2d  is the integral over the unit sphere, and jj Xd < .

D is the maximum group size.  
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where njm VTV ,,  represents the matrix of aggregation, 

translation, disaggregation respectively. Because the 
conductors are divided symmetrically, jT has a translational 

invariance and for the elements in different groups, when 

jjomr and mV  are the same, nV also has the same nature. 

Furthermore, nm VV ,  are unchanged for the current sources 

and their images, and these properties reduce the 
computational complexity and the computer memory 
significantly. 

In the case of lossy conductors, the boundary condition (2) 
needs to be modified as follows: 
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where sZ  is the surface internal impedance, sss μεσ ,,  are the 

conductivity, permittivity and permeability of the conductor, 

respectively, )]()([2

ω
σεμ

ω
σ

εμωλ
jj

s
sss +−+≈  , a  is the radius 

of the conductor segment, 10 , JJ  are the first kind of zero and 

one order Bessel functions, respectively.  

Once the current distribution along the conductors has 
been evaluated, the electric field can be calculated at any point 
by summing the contributions due to the currents in each 
segment. 

III. NUMERICAL RESULTS

In order to examine the validity of the developed algorithm, 
we computed the longitudinal current along a wire placed 
horizontally in a lossy ground. It is assumed that the wire is 
excited by a sinusoidal current with unit amplitude of 
frequency f=6.741MHz. Fig.3 shows the current distribution 
along the wire calculated by the developed algorithm and by 
MOM directly, and the operation time for a different number 
of unknowns is given in Fig.4. It is can be found the flexibility, 
efficiency and accuracy of this algorithm. The detailed results 
(including those calculated and measured) and analysis about 
grounding grids of the substation will be described in the 
extended paper. 
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Fig.3. Current distribution along the wire. 
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IV. CONCLUSIONS

A fast algorithm is presented to compute electromagnetic 
field of a grounding grid. The method used the modified 
images to replace the ground effect, and utilized the FMM for 
solving the EFIE. The method can be used in analyzing 
lightning electromagnetic field problems of substation 
grounding systems or overhead transmission lines. 
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Abstract — The overlapping method is usually employed to 
connect two surfaces or subdomains meshed separately. This 
method has been developed in 2D and in 3D for plane surfaces. 
The paper extends the overlapping method to arbitrary non-
planar surfaces; this is accomplished by introducing new shape 
functions. The proposed method is compared with the classical 
overlapping method.  

I. INTRODUCTION 
The finite element method is a useful and reliable tool to 

study electromagnetic devices. 2D problems can be solved in 
seconds on today’s personal computers. However, accounting 
for real 3D geometries involves complex mesh generators and 
solvers and can be very time consuming. Mesh generation can 
be simplified by relaxing the constraints on the mesh and 
connecting non-conforming surface meshes. This approach 
has many advantages. First, mesh propagation of a dense mesh 
into adjacent areas can be avoided. Second, for moving 
surfaces no re-meshing is required and the motion step is 
completely free. Finally, the decoupling of different 
sudomains can be taken advantage to parallelize the 
calculations.  

Various methods have been proposed to connect two 
meshed surfaces. If the surfaces are in contact, interpolation, 
Lagrange Multipliers or the Mortar methods [1] are used. If 
the surfaces are separated by a constant gap, the overlapping 
method [2] can be applied and is very attractive because it 
leads to a sparse linear system of equations. However, if the 
surfaces to be connected are irregular (e.g. have ripples or 
bulges), the overlapping elements developed previously 
cannot be directly used. To overcome this problem, an 
extension of the overlapping method is proposed in this paper. 
First, the approach developed earlier is presented. The 
problems encountered for irregular surfaces are discussed. 
Modified shape functions are proposed in the overlapping 
element area. Finally, a test example for the new overlapping 
method is presented.    

II. THE OVERLAPPING ELEMENTS DEVELOPED PREVIOUSLY 
The overlapping method was originally introduced in [2] 

and afterwards independently in [3] for taking into account 
rotation of electrical machines in 2D. Then, it has been 
adapted in 3D for hexahedral meshes  [4] and extended to 
tetrahedral elements and prisms [5]. We first review the 
construction of overlapping elements using the scalar potential 
formulation in magnetostatics as an example. If we denote the 
source field with Hs, and the scalar potential with Ω, the 
magnetic field H can be expressed by (1). 

ΩgradHH s −=           (1) 

On the computational domain D, the equation to solve is: 

0))div =Ω−μ grad(H( s         (2) 

Where μ is the magnetic permeability. To solve (2), the 
scalar potential is approximated using nodal shape functions 
wi (i∈N with N the set of nodes) and Hs using edge shape 
functions wi (i∈ E with E the set of edges). Applying the 
Galerkin method leads to a linear system M Ω = N Hs with M 
an N x N matrix and N is a N x E matrix with the following 
coefficients:  

 ∫ ∈∀τμ=
D

jij,i j,idw.wM Ngradgrad        (3) 

∫ ∈∈∀τμ=
D

jkj,k jandkdw.N N Εgradw       (4) 

Here Ω and Hs the vectors of nodal values of Ω and of 
circulations of Hs along the edges, respectively. In the 
overlapping method, one considers an area D0 between the 
two surfaces S1 that bounds a region D1, and S2 that bounds 
D2, as shown in Fig. 1.a. D1 and D2 are two meshed 
subdomains of the domain D (D=D0∪D1∪D2). Next, the 
nodes of each surface are projected on the other one. The 
projections create virtual nodes represented by asterisks in Fig 
1.b and also virtual elements in the area D0. Two meshes M1 
and M2 that overlap and are made of prisms are thus defined. 

               
                          (a)                                                  (b) 

Fig. 1. Projection of the nodes in the non-meshed area . 

The virtual nodes do not introduce new degrees of 
freedom; they are only used to define the shape functions 
associated with the nodal unknowns (see Fig 2.a). The 
problem is then to calculate the terms (3) on “overlapping 
elements” in D0. In [5], a methodology based on a common 
submesh of both meshes M1 and M2 is developed to retrieve 
the integration areas where numerical quadratures are applied 
to approximate the integral (3). 
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                             (a)                                                      (b) 

 Fig. 2. Shape function associated to the node N1 in the case of the standard 
overlapping method (a) and with the extended overlapping method (b). 

III. NEW OF APPROXIMATION FUNCTIONS 

When the meshed surfaces being connected are not planes 
(Fig.2.b), the elements are not prisms anymore. Consequently, 
the shape functions have to be modified. These functions must 
remain piecewise-differentiable and capable of approximating 
the solution of the problem accurately in D0.  

To define a shape function associated with a node N1 
located on the surface S1 (see Fig.3.a), let us consider the 
prism P obtained by extrusion of the facet f with vertices N1, 
N2 and N3. Let p be a point p(x,y,z) in P. Let the projections of 
the nodes on the other surface S2 be N11, N22 and N33. A 
volume V is then defined by the nodes N1, N2, N3, N11, N22 
and N33. To calculate the nodal shape function at the point p, 
two projections of this point are required (e0 on the surface S1 
and e00 on the surface S2). Thus two distances, x0 and x00 
between p and e0 and e00 can be defined respectively.  

          
                             (a)                                                      (b) 

Fig. 3. Definitions of the nodes N11,N22, N33 and the distances x0 and x00(a) 
and one example of integration area in D0 for the case of Fig.2 (b) 

The value of the nodal shape function associated with 
node N1 at the point p is then given by the expression (5).  

3N2N1N000

00
1N S

A
xx

x
w

+
=              (5) 

The variable A and SN1N2N3 are the areas of the triangles 
(e0; N2; N3) and (N1; N2; N3).  If p is located on S1, x0 is equal 
to zero, wN1 is equal to the ratio of A and SN1N2N3. The 
function wN1 is so continuous through the surface S1.  Now, if 
p is located on the surface S2, one can easily check that the 
value of the shape function is equal to zero. The prolongation 
of the nodal shape function wN1 in D0 insures the continuity of 
the function at the interfaces between D0 and D1 and D0 and 
D2 and so on the whole domain D. Once all the shape 
functions are defined, the calculation of the integral in (3) is 
carried out in the same way as in [5].  

IV. APPLICATION 

The case studied involves a coil inside a mobile air box, 
see Fig.4. The coil is placed above a metal plate with a 
corrugated surface (sinusoidal shape). We aim at calculating 
the variation of the flux linkage through the coil as a function 
of position. In order to implement the standard and the 
extended overlapping methods, the gap between the mover 
and the metal is divided into two regions. Region 1 is between 
two plane surfaces. The remaining part defines region 2. If 
region 1 is not meshed, the standard overlapping method can 
be used. The new extended version is employed with the two 
areas 1 and 2 unmeshed. In fig. 5, we show the field 
distribution in the overlapping area. The flux linkages 
calculated with the classical and extended overlapping 
methods are close and equal to 1.4 μWb and 1.44 μWb, 
respectively. Details of the simulation will be provided in the 
extended paper at the conference. 

    
Fig. 4. Case study, moving coil above a non plane metal plate.   

 
Fig. 5. Field distribution in the overlapping area   
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Abstract—A method for implementing divergence constraints
in the finite element method is given. This method yields a
linearly independent, sparse set of constraints for a mesh of
brick elements. The solutions for the resonant frequencies of a
cubic cavity are in good agreement with the exact values, and
there are no spurious modes.

I. INTRODUCTION

A vector field, such as the electric or magnetic field, can be
uniquely determined from its curl, divergence and appropriate
boundary conditions [1]. In light of this, several methods have
been developed for implementing divergence constraints in the
finite element method [2]–[5]. Konrad [2] specifies divergence
constraints for a single curvilinear brick, while Kobelansky
and Webb [3] provide a method for deriving global basis
functions that are divergence free. Both of these methods
reduce the size of the curl matrices and preclude the existence
of spurious modes, but neither method can, in general, preserve
the sparsity of the curl matrices that is necessary for solving
large problems. Cendes and Wong [4], [5] construct a mesh
that allows for smooth interpolation of random data. This mesh
enables the divergence constraints to be implemented inside of
the mesh elements and across their boundaries.

The earliest paper on edge elements is due to Nedelec
[6]. This method does not constrain the divergence of the
field, but rather ensures that the null space of the curl op-
erator is modeled accurately. Tangential continuity conditions
at tetrahedra boundaries are explicitly enforced but normal
continuity conditions are not. This method does not eliminate
spurious modes, but instead guarantees that they are static and
thus can be characterized by their frequency. Advantages and
disadvantages of edge elements are discussed further by other
authors [7]–[9].

The method introduced in the present paper enables di-
vergence constraints to be imposed within brick elements
and across their interfaces. This is accomplished using a
mixture of cubic Hermite splines and second order Lagrange
interpolation polynomials. This method models the divergence
of the field with second order accuracy on the interior of the
brick elements and enables the divergence to be a continuous
function across element boundaries. Spurious modes in eigen-
value problems are eliminated when the divergence constraints
are imposed.

II. BASIS FUNCTIONS

In many cases the divergence of the field is a continuous
function, including the specific case where the divergence
is zero everywhere. One way to guarantee that the finite
element approximation of the divergence will be a continuous
function is to require that ∂Ex/∂x, ∂Ey/∂y and ∂Ez/∂z are
each continuous functions. For a mesh comprised of brick
elements, this can be accomplished by using a mixture of cubic
Hermite splines, Hi, and second order Lagrange interpolation
polynomials, Li, within each brick.

Ex(x, y, z) =
3

i=0

2

j=0

2

k=0

αijkHi(x)Lj(y)Lk(z) (1)

Ey(x, y, z) =
3

i=0

2

j=0

2

k=0

βijkHi(y)Lj(x)Lk(z) (2)

Ez(x, y, z) =
3

i=0

2

j=0

2

k=0

γijkHi(z)Lj(x)Lk(y) (3)

In the expansion above, x, y, and z are local coordinates
for a given brick, which means that they are translated and
scaled so that they are each between 0 and 1. In what follows,
the single index of the Lagrange polynomials corresponds
to the nodes L0(0) = 1, L1( 12 ) = 1, and L2(1) = 1 and
the single index of the Hermite splines correspond to nodal
values H0(0) = 1, H 

1(0) = 1, H2(1) = 1, and H 
3(1) = 1,

where primes denote derivatives. Different field components
have nodes that are located in different positions, as shown in
fig 1. Each node in the figure corresponds to a value of the
field component and a value of its derivative.

To illustrate that ∂Ex/∂x is continuous using these basis
functions, consider its continuity across each face of a brick.
For points that are on the surfaces x = 0 and x = 1,

∂Ex

∂x
(0, y, z) =

2

j=0

2

k=0

α1jkLj(y)Lk(z) (4)

and
∂Ex

∂x
(1, y, z) =

2

j=0

2

k=0

α3jkLj(y)Lk(z), (5)

respectively. Thus, continuity of ∂Ex/∂x can be enforced
explicitly by equating α1jk and α3jk from adjacent bricks.
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Fig. 1. Field component nodes

On each of the other four faces, ∂/∂x is a derivative that
is tangential to each face and so continuity of ∂Ex/∂x is
automatically satisfied if Ex is continuous everywhere on each
face. This does not depend on using Hermite splines and
it is also true using the standard nodal basis functions for
tetrahedra [10]. Similar arguments hold for establishing the
continuity of ∂Ey/∂y and ∂Ez/∂z. Note that using the basis
functions above, ∂Ex/∂y, for example, is not guaranteed to
be continuous across the face y = 0.

III. DIVERGENCE CONSTRAINTS

The derivatives of cubic Hermite splines can be expressed
as a linear combination of second order Lagrange polynomials.
Thus it is possible to expand the divergence of the field within
a given brick using only polynomials of the latter type.

∇ ·E(x, y, z) =
2
i=0

2
j=0

2
k=0

dijkLi(x)Lj(y)Lk(z) (6)

The divergence equation yields 27 linearly independent con-
straints per brick. A relatively simple set of equations is
obtained if (6) is evaluated at the nodes of the Lagrange
polynomials. In this case, the constraint at a given corner,
for example, involves only coefficients corresponding to nodes
at that corner. Furthermore, the constraints at a given corner
due to different bricks are identical. These results would
not be obtained if third order Lagrange polynomials were
used in place of cubic Hermite splines. Similar results hold
for the constraints at the midpoint of each edge and at the
center of each face. Consequently, a linearly independent set
of constraints over the entire mesh may be obtained using
constraints from each corner, edge and face in the mesh,
as well as constraints from the center of each brick. These
constraints are implemented by eliminating coefficients in the
curl matrices, resulting in modified curl matrices of reduced
dimension. As a result of using the set of constraints described
above, the number of non-zero elements in the modified curl
matrices is less than the number of non-zero elements in the
original curl matrices. A detailed explanation is omitted due
to lack of space.

IV. CAVITY PROBLEM

Consider an empty cubic cavity with sides of unit length.
The cavity modes are obtained by minimizing the functional

F(E) =


V


1
µ

(∇×E)2 − ω2E2


dx dy dz (7)

TABLE I
EIGENVALUES, ω2 , OF CUBIC CAVITY. MULTIPLICITY IN PARENTHESES.

Exact FEM

19.7392(3) 19.7399(3)

29.6088(1) 29.6095, 29.6099

49.3480(6) 49.3686(6)

59.2176(3) 59.2318(2), 59.2342, 59.2382, 59.2385(2)

78.9568(3) 78.9973(3)

88.8264(3) 88.8473, 88.8509, 88.8510, 88.8652(3)

98.6960(6) 98.9183(6)

subject to the constraint ∇·E = 0 and the boundary condition
n̂ × E = 0. The eigenvalues obtained with an 8 × 8 × 8
mesh are shown in table I along with the exact values obtained
analytically. There are no spurious modes.

V. CONCLUSION

A method for implementing divergence constraints in the
finite element method has been discussed. The divergence con-
straints are linearly independent and sparse. In the description
given above, a uniform mesh, similar to that used in the finite
difference time domain method [11], is required. This work has
already been extended for refined meshes with non-uniform
brick size and for inhomogeneous objects. The divergence is
modeled to second order accuracy and does not necessarily
have to be zero or continuous. The divergence constraints
can be implemented in a wide variety of problems, not just
eigenvalue problems. The method is being extended to include
non-brick elements.
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Agglomeration-based algebraic multigrid for linear
systems coming from edge-element discretizations
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Abstract—An algebraic multigrid algorithm based on element
agglomeration is proposed for linear systems coming from edge-
element discretizations. The edge prolongation operator satisfies
commutativity and energy-minimization properties. Robustness
is illustrated on 2D numerical examples.

Multigrid methods are beyond the most performing linear
system solvers and these solvers are a key point in finite
element method libraries. Here, we focus on the discretization
on a triangular mesh with the lowest order edge element of

curl δ curlU + γU = f on Ω ⊂ R
2, (1)

which gives rise to a linear system Ax = f . As solver
we propose an Algebraic MultiGrid (AMG) algorithm which
keeps a good efficiency with non-smooth functions δ and γ
and with unstructured triangulations. The coarsening process
is based on element agglomeration. A low-energy edge pro-
longator satisfying a commutativity property [1] is obtained
from the solution of local linear systems. Numerical examples
demonstrate the robustness of our method.

I. COMPONENTS OF THE ALGORITHM

A. Levels

Starting from an initial fine grid partitioned into trian-
gles, we build a hierarchy of generalized meshes τh =
(Dh,Ah,Sh). Dh =

�
Dh

i

�
i∈IDh

is a family of open polygons
we call elements. On the finest mesh they are the original trian-
gles. Ah =

�
Ah

i

�
i∈IAh

is a family of open one-dimensional
manifolds we call edges. Sh =

�
Sh

i

�
i∈ISh

is a family of
single points we call vertices. The coarsening procedure which
builds a generalized mesh τH = (DH ,AH ,SH) from a
generalized mesh τh = (Dh,Ah,Sh) must satisfy constraints
defined in [2], [3]. Moreover, any edge in family AH is a
connected path of edges belonging to Ah and has two different
endpoints which are vertices in SH (Fig. 1). From the family

coarse vertices

coarse edges

fine edges

Fig. 1. Example of a coarse mesh τH builds from the finest mesh τh.

of generalized mesh τh = (Dh,Ah,Sh), we define a family
of oriented simple graphs. For each vertex Sh

p of Ah a node
p is created and 2 separate nodes p, q are connected by an
arc each time an edge of Ah has Sh

p and Sh
q as endpoints.

An arc starts from a node p to a node q if p < q. The arc-
node incidence matrices denoted Gh can be viewed as discrete
gradient operators on the meshes.

B. Prolongation operator properties

For each couple of generalized meshes (τh, τH), τH being
obtained from τh by a coarsening procedure, we give us a
nodal prolongator P nod with a prescribed non-zero pattern
and with all row sums equal to 1. We build then an edge
prolongator P edg with a prescribed non-zero pattern and with
low-energy columns (P edg)e, e ∈ IAh . It must also satisfy a
node-edge commutativity property [1]: P edgGH = GhP nod.
The energy function on a mesh τh is defined by

g (xe, e ∈ IAh) =
�

e∈IAh

�xe�2
Kh =

�
e∈IAh

(xe)tKhxe (2)

where Kh is a sparse symmetric definite positive matrix. For
its non-zero pattern we require that Kh

i,i� = 0 if both edges
Ah

i and Ah
i� do not belong to the interior of the closure of the

same element. Such a property is satisfied on the finest mesh
by the finite element matrix A.

To define the non-zero pattern of the nodal prolongator
P nod and the edge prolongator P edg we mimic the situation
in geometric multigrid on nested meshes:

• If Sh
p belongs to the interior of the closure of an element

of DH , P nod
p,n = 0 if SH

n does not belong to its boundary.
• If Sh

p is an endpoint of an edge of Ah included in edge
AH

e of AH with endpoints SH
nk

, k = 1, 2; if Sh
p =

SH
nk

, P nod
p,n = 0, ∀n �= nk, else P nod

p,n = 0, ∀n �= n1, n2.
• If edge Ah

i of Ah is included in edge AH
e of AH , P edg

ee� =
0,∀e� �= e (Fig. 2(a)).

• If edge Ah
i of Ah is included in the interior of the closure

of an element of AH , P edg
i,e = 0 if AH

e is not included in
its boundary (Fig. 2(b)).

C. Solution of the constrained minimization problem

An element DH
a of DH being fixed, we denote by�

Ah
i

�
i∈Iint

(resp.
�
Ah

i

�
i∈Ibound

) the family of edges of Ah

included in the interior of its closure DH
a (resp. included in
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e1

e2

e3

n1

n2

n3

Ah
i0

(a) Ah
i0

⊂ AH
e3

.

e1

e2

e3

n1

n2

n3

Ah
i1

(b) Ah
i1

∈ interior of DH
a .

Fig. 2. A coarse element DH
a . Coarse edges are in wide lines (m = 3).

Coarse vertices are large bullets. Arrows indicate prolongation.

its boundary), AH
e1
, AH

e2
, . . . , AH

em
the path of the edges of AH

included in its boundary. This path defines on the coarse graph
an elementary cycle of nodes denoted n1, n2, . . . , nm, n1.

Let Ah
i of Ah with starting point p and ending point q. Two

different cases have to be considered :
1) If i ∈ Ibound, then Ah

i is included in an edge AH
e of

AH (Fig. 2(a)). The non-zero entries of row i of P edg

are settled by the commutativity property since it writes

P edg
i,e = P ∗

i,e with P ∗
i,e = P nod

p,n − P nod
q,n (3)

and SH
n the starting endpoint of AH

e .
2) If i ∈ Iint (Fig. 2(b)) the commutativity property writes

�nk
(ek−1)P

edg
i,ek−1

+ �nk
(ek)P edg

i,ek

= P nod
p,nk

− P nod
q,nk

, ∀k ∈ �2;m�,
(4)

where �nk
(e) denotes 1 (resp. −1) if nk is the starting

point (resp. ending point) of the arc e.
We deduce that the non-zero entries of row i of P edg

are defined up to a real constant θi as follows :

P edg
i,ek

= �nk
(ek)P ∗

i,ek
+ θi�nk

(ek)

with P ∗
i,ek

=

�
k�

l=2

P nod
p,nl

−
k�

l=2

P nod
q,nl

�
.

(5)

It can be proved that the prolongator with the lowest
energy is obtained with the values θi, i ∈ Iint solution
to a local linear system :

KDH
a θ = KDH

a b,

where KDH
a (resp. KDH

a ) is the matrix obtained from
the matrix Kh by keeping the entries Kh

i,j , i, j ∈ Iint

(resp. Kh
i,j , i ∈ Iint, j ∈ Iint ∪ Ibound). b is given by:

bi = − 1
m

m�
k=1

�nk
(ek)P ∗

i,ek
, i ∈ Iint ∪ Ibound.

II. NUMERICAL RESULTS

The robustness of the method with parameters δ and γ is
illustrated using examples of [4]. The domain is simply a unit
square and Dirichlet boundary conditions are enforced.

In our strategy (Aggl. in the tables), coarse elements are
obtained by double-pairwise agglomeration of elements. The
results obtained by our method are compared with the Reit-
zinger and Schöberl (RS in the tables) strategy [1]. The

comparison is based on the convergence rate σest in energy
norm: σest = (ert

kAerk/ert
0Aer0)

1/(2kf ) with erk the error
at the k-th iteration and kf the iteration where the stopping
criterion is reached. The smoother is a symmetric version of
this proposed in [5] in a geometric multigrid context ((pre-,
post-) smoothing steps in the tables).

For the homogeneous case in Table I, the two-grid con-
vergence rate is quasi-independent of the size of the problem
for both methods but the convergence rate of our method is
better than for RS method and should lead to an optimal
multigrid strategy. Moreover, increasing the number of pre-
and post-smoothing steps significantly improves the conver-
gence rate for the agglomeration. This behavior is confirmed
in Table II and Table III for oscillating and discontinuous δ
coefficients and two-grid and multigrid solver respectively. For
this example, f = C(2 + sin(40πx))2(2 + cos(40πy))2 with
C = 10 in ]0, 0.5[×]0, 0.5[, 104 in ]0.5, 1[×]0, 0.5[, 10−1 in
]0, 0.5[×]0.5, 1[ and 102 in ]0.5, 1[×]0.5, 1[.

TABLE I
RESULTS OBTAINED WITH A TWO-GRID SOLVER AND δ = γ = 1.

d.o.f. fine grid 736 3008 12160 48896

Aggl.

d.o.f. coarse grid 232 976 4000 16192
(1, 1), σest 0.22 0.22 0.22 0.22
(2, 2), σest 0.08 0.07 0.07 0.12
(3, 3), σest 0.04 0.04 0.04 0.04

RS d.o.f. coarse grid 184 751 3040 12224
(1, 1), σest 0.62 0.68 0.70 0.71
(3, 3), σest 0.52 0.64 0.69 0.70

TABLE II
RESULTS OBTAINED WITH A TWO-GRID SOLVER AND δ = f(x, y) AND

γ = f(y, x).

d.o.f. fine grid 736 3008 12160 48896

Aggl. d.o.f. coarse grid 232 976 4000 16192
(1, 1), σest 0.39 0.41 0.32 0.21

RS d.o.f. coarse grid 187 788 3087 12404
(1, 1), σest 0.61 0.72 0.87 0.68

TABLE III
RESULTS OBTAINED WITH A W-CYCLE SOLVER AND δ = f(x, y) AND

f(y, x) ON THE GRID WITH 48896 DOFS.

# grids 3 4 5 6 7

Aggl. d.o.f. coarsest grid 4000 976 232 52 10
(1, 1), σest 0.37 0.37 0.37 0.37 0.37

RS d.o.f. coarsest grid 3279 844 216 55 11
(1, 1), σest 0.83 0.89 0.93 0.95 0.97

The method is robust in 2D. The main difficulty for 3D
problems is to find a fast and reliable agglomeration algorithm.
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Abstract — A robust numerical method based on 2-D mixed 

finite elements - finite volumes (FE-FV) allows the solution of 

diffusion problems in superconducting (SC) materials. The 

proposed approach handles the strong nonlinearity of the E(J) 

constitutive power law of high temperature superconductors 

(HTS). The method is tested in the case of a SC cylinder under a 

sinusoidal transport current. The current density distributions as 

well as the AC losses are computed. Comparisons to a FE analysis 

that uses the magnetic field as state variable show the validity of 

the proposed approach. It can be seen that the proposed method is 

very stable even for large n-values for which the FE method 

doesn’t converge. 

I. INTRODUCTION 

The constitutive power law is widely used to characterize 

high temperature superconductors. It is written as: 

 

( ) n/1

cc E/EJJ =              (1) 

 

where J is the current density, E the electric field, Ec the 

critical electric field, Jc the critical current density and n the 

power law exponent. n=1 corresponds to a normal conductor 

and n=∞ represents the critical state model suggested by Bean. 

Finite element methods are widely used to compute the 

magnetic field distribution in superconductors using different 

formulations [1, 2]. Unfortunately, the use of (1) leads to 

numerical oscillations and convergence problems for high n-

values (typically for n>50). 

 

We propose a mixed FE-FV discretization of the electric 

field diffusion in HTS materials. This approach is shown to be 

robust for n values up to 200. It has been successfully used in 

solving nonlinear diffusion-convection-reaction equations in 

porous media [3]. 

II. PRINCIPLE OF THE METHOD 

We set u=E/Ec, (u)=J/Jc, and c=µ0.Jc/Ec. 

 

The superconductor has a vacuum magnetic permeability µ0. 

In 2D Cartesian problems, J and E are scalar quantities having 

only one component in the z direction. The SC domain is 

noted Ω and its boundary Γ. 

 

Using Maxwell equations and the constitutive law (1), the 

problem to solve is: 








Γ=ν∇

Ω=∆−
∂

β∂

on         )t(C.u

in   0u
t

)u(
c

b


            (2) 

 

The boundary condition on Γ results from the variation of 

the magnetic field according to Faraday’s law: 

 

ν∂∂−∂∂=
− 

).t/B , t/B(E)t(C xy

1

cb       (3) 

 

Bx, By are respectively the x, y components of the flux 

density and ν


 is the outward normal vector on Γ. 

The method exposed here exploits the duality of the FE and 

FV meshes as well as the footbridge operators. It is applied to 

the weak formulation of (2) in the time interval [tp tp+1]: 
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dud
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Γ

+

Ω

+

Ω
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     (4) 

Where ϕ are a set of FE base functions and u
p
 is the solution 

at instant tp and tp the time step. 

A. FV mesh construction 

From a triangulation of Ω, the FV partition is obtained as 

shown in Fig.1.  

 
      (a)            (b) 

Fig. 1. Association of each node of the FE mesh to the cells of the FV 

mesh: we link the centers of gravity of two contiguous triangles through the 

vertex of their common edge. 

(a)The nodes Ni correspond to the middle of the edges 

(b) The nodes Ni correspond to the center of the cells Di 

B. Footbridge operators 

Let u
FE

 and u
FV

 be the respective solutions of the FE and FV 

approaches. The footbridges operators πEV (πEV(u
FV

)= u
FE

) and 

πVE (πVE(u
FE

)= u
FV

) between the FE and the FV approximation 

spaces are well described in [4]. They are defined as: 

A 2D robust FE-FV mixed method to handle 

strong nonlinearities in superconductors  
A. Kameni 

1
, S. Mezani 

1
, F. Sirois 

2
, D. Netter 

1
, J. Lévêque 

1
, B. Douine 

1 

1 
GREEN-UHP, Faculté des Sciences, BP. 239, 54506, Vandoeuvre-lès-Nancy, France 

2 
Ecole Polytechnique de Montréal, Montréal, QC H3C 3A7, Canada 

Email: smail.mezani@green.uhp-nancy.fr 

 

687

PC4.6



9. Numerical techniques 

 


Ω

∈
Ω

Ω−=Ω−π duwmindu)u(
2

FEw

2

EV      (5) 


ΩΩ

Ωϕ=Ωϕπ dud)u(VE            (6) 

 

The basis functions of the FV approximation space are 

obtained from the indicatrix functions of each cell of the FV 

mesh. 

 The first order FE base functions ϕi are constructed on the 

nodes Ni of the FE triangulation. Each of them can be 

prolonged to the corresponding FV cell. In so doing, we obtain 

another FE space approximation. Using the footbridge 

operators (5) and (6), we prove that u
FE

 = u
FV

 [4]. 

C. Numerical scheme 

The numerical discretization of the Laplacian operator is 

well established using the FE method whereas it is not adapted 

to the strong nonlinearity of the  term. Instead, we use the FV 

method to deal with this nonlinear term: 

 

D
t

dD 
t

)u()u(

p

p1p

D p

p1p

∆

β−β
=

∆

β−β
++

      (7) 

 

Where D is the surface of a FV cell and p
 is the mean value 

of (up
). 

 

Hence, using the footbridge operators, we combine FE-FV 

methods to take advantage of both of them in the same 

numerical scheme. 

In the FV method, the flux Φi,j between two adjacent cells i 

and j  must be continuous. The mixed numerical scheme is 

justified if the diffusion on a FE node is equal to the 

convection in the FV cell. This leads to: 

 





 



FE

i

FV

D

i d.udD)u(div

i


Ω

Ωϕ∇∇=∇          (8) 

To ensure the equality in (8), the Φi,j are constructed from 

the mass matrix coefficient Si,j of the FE discretization as 

follows: 

 

 −=Φ∩
≠ j

jj,i

ij

j,iji uSDD        (9) 

 

If we define 
≠

−=
ij

j,ii,i SS , the local conservation property 

of the FV formulation is ensured. 

 

For the internal FV cells, the discrete problem is written as: 

 

 +
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=
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and for the boundary cells, we write: 

 

1p

bi

j

1p

jj,ii

p

p
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i CuSD
t

c
++

+

Γ+=
∆

β−β         (11) 

The obtained nonlinear system of algebraic equations is solved 

using a Newton-Raphson method. 

III. APPLICATION EXAMPLE 

We consider a SC cylinder having a radius of 1.5 mm. The 

SC material is characterized by n=25, Jc=14.15 A/mm² and 

Ec=10
-4

 V/m. 

 

The cylinder is submitted to a sinusoidal transport current 

i(t)=Imax.sin(2πft) (f = 0.5 Hz and Imax = 40.8 A). Bx, By used 

in the boundary condition (3) are obtained by Ampere’s 

theorem. 

 

 We have compared in Fig.2, the instantaneous self field 

losses obtained by the FE-FV method and these issued from a 

pure FE method based on H-formulation [2]. The agreement is 

good. 

However, for n=200 the FE method didn’t converge.  In this 

case, the average AC losses obtained by our method are 

0.024W/mm. The Bean formula gave 0.028 W/mm which 

seems to validate the FE-FV method in the case of strong 

nonlinearity. 
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Fig. 2. Comparison of self field losses 
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Abstract — Several methods of a posteriori error estimation 
and adaptive refinement controlling in finite element analysis of 
3D steady state eddy current field is researched in this paper. An 
improved Z-Z method is proposed. The numerical models of 
TEAM Problem 7 and 21A are used to verify the validity of the 
method presented. 

I. INTRODUCTION

The finite element (FE) analysis of 3D steady state eddy 
current fields plays an important role in performance 
evaluation of electrical devices and non-destructive testing 
with eddy current detection. The complicated configuration 
and very small skin depth of the metal parts in the calculated 
region make the effective FE analysis rather difficult.   The a 
posteriori error estimation and adaptive mesh generation 
provide an efficient approach for dealing with the problem. 
Some researches have been done regarding these subjects. A 
comparison between complementary algorithm and energy 
method applied to eddy current detection was presented in [1]. 
The residual method used in a posteriori error estimation of 
eddy current field analysis [2] was described by [3] and [4]. 
Ref. [5] employed Z-Z method [6] in the eddy current analysis 
of moving conductors. In this paper, a posteriori error 
estimation and adaptive mesh refinement using the Z-Z 
method are described and improved for the 3D eddy current 
field analysis using the pair of magnetic vector potential A and 
electric scalar  potential φ .

II. GOVERNING EQUATIONS IN COMPLEX DOMAIN

According to [7], a 3D steady state eddy current field 
boundary value problem can be expressed as  

( )⎩
⎨
⎧

=∇−−⋅∇
=∇++⋅∇∇−×∇×∇

Ω
0

:in 1 φσωσ
φσωσνν

A

0AAA

j

j
      (1) 

s2 :in JAA =⋅∇∇−×∇×∇Ω νν                                   (2) 

with certain boundary conditions under the sinusoidal 
excitation, where 1Ω and 2Ω denote the eddy current region 

and non-eddy current region respectively. Based on the theory 
of electromagnetic field the magnetic flux density and electric 
field intensity are given by  

AB ×∇=                                                         (3) 

and 

φω ∇−−= AE j                                                (4) 

III. A POSTERIORI ERROR ESTIMATION FOR NODE-FINITE

ELEMENT ANALYSIS OF EDDY CURRENT FIELD WITH 

POTENTIAL PAIR OF A-φ

The Z-Z method was proposed aiming at the second order 
elliptic equations, and it is proved that the method is also 
efficient for the a posteriori error estimation of FE Analysis 
for non-elliptic problems. However, there are not many papers 
applying this method to the eddy current field analysis. 
Considering the principle of Z-Z [6] and the property of eddy 
current field boundary value problems, the a posteriori error 
estimation is given by 

hhe cc EEBB −+−= *
2

*
1η                                (5) 

where hB and hE express the calculated value, *B and *E for 

the recovery value of the flux density and electric field in an 
element respectively, 1c  and 2c denote the constants related to 

the size of the element, and • expresses the energy norm. In 

some paper only the first term in (5) is used when carrying out 
the a posteriori error estimation using the Z-Z method. It is not 
complete for analyzing of the eddy current case. Based on the 
numerical experiments by the authors, if the second term of 
(5), which is closely related to the electric current density, is 
neglected in the eddy current region, the computational 
precision of eddy current losses can not be ensured easily, 
especially for the case of skin depth less than 1 mm.  

Furthermore, equation (5) provides the a posteriori 
estimation of the discretization error in the whole solved 
region, but does not directly give the evaluation of the 
computational precision for the eddy current losses, in which 
the engineers are interested. Therefore, when determining the 
criterion for the end of adaptive iterations, the eddy current 
losses should be used directly.  

*B and *E are obtained through the Least Square Fitting 
(LST) in the patch of elements based on the Z-Z method [6]. 
In our case, the LST is used only at the boundary and the 
interface of different materials, with the Inverse Distance 
Weighting (IDW) method applied to the recovery calculation 

of *B and *E in the patch of elements. This method proposed 
is called Combined IDW with Least square fitting (CIL) in the 
following text. It is obvious that the computation effort of the 
CIL method is much less than the original Z-Z method. 
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IV. COMPUTATION RESULTS AND ANALYSIS

To verify the method presented in this paper, the TEAM 
Workshop problem 7 and Problem 21A are used as the 
examples. Fig. 1 shows the comparison of the error estimation 
versus the node number using the Z-Z method, CIL approach 
and uniformed refinement for the adaptive FE analysis of 
Problem 7. The x- and y-axis are both in logarithmic scale. Fig. 
2 and Fig. 3 are the initial mesh and the mesh of fifth adaptive 
refinement respectively. It can be seen from Fig. 1 that the Z-
Z method and CIL approach have the similar convergent 
property. Compared with the uniformed refinement, Z-Z and 
CIL methods are of higher computational efficiency.  Taking 
the mesh refinement of Fig. 2 and Fig. 3 into account, it is 
concluded that the Z-Z and CIL methods can be used as the 
error indicator for the adaptive FE analysis of 3D eddy current 
fields. 

The eddy current losses versus the node number of the 
TEAM Workshop Problem 21A with the adaptive mesh 
refinement controlling of Z-Z, CIL and CIL* method 
respectively are shown in Fig. 4, where CIL* expresses the 
method of CIL including only the first term of (5). In view of 
the complex governing equations, the relative permeability of 
the steel plate in Problem 21A is assigned approximately as a 
constant of 1000. According to the measured value of 9.28W 
[8] and comparing the loss curves with the three methods in 
Fig. 4, it is seen that for the problem with small skin depth, 
like Problem 21A, using (5) to fulfill error estimation is 
appropriate, while the computation without the second term of 
(5) will result in relatively large computational deviation of 
the eddy current loss.  

Fig. 1 A posteriori error versus the node number of TEAM Problem 7 

V. CONCLUSIONS

The Z-Z method used in the FE analysis of 3D steady state 
eddy current field is described, and a more efficient method of 
CIL is proposed in this paper. The issues how to apply the Z-Z 
and CIL method to conduct the mesh refinement are 
researched.  The numerical models verify the validity of the 
method proposed.  
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Fig. 2 Initial meshes on the surface of coil and plate of Problem 7 

 
Fig. 3 The fifth meshes on the surface of coil and plate of Problem 7 

Fig. 4 Eddy current loss versus the node number of TEAM Problem 21A 
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Auto adaptive interface treatment for the EFGM in
electromagnetic problems

Carlos A. S. J. Gulo∗, José Márcio Machado§, Gleber Nelson Marques∗

Abstract—The interpolating Element Free Galerkin Method
(EFGM) combined with the domain truncation technique has
been shown to be an easy and efficient technique for treating
physical discontinuities in the Poisson’s equation. A good accu-
racy for this approach is achieved when the material interfaces
lines are properly refined. This work describes an auto adaptive
algorithm for handling the refinement process of such interfaces.

Index Terms—Galerkin method, interface treatment, auto
adaptive algorithm.

I. INTRODUCTION

THE EFGM [1] is an attractive meshfree method for solv-
ing partial differential equations (pde) whose applications

have been reported in the specialized literature of many fields
of science and engineering, e.g. computational mechanics [1]
and electromagnetism [2], magnetohidrodynamic (mhd) [3],
quantum physics [4] and recently plasma simulations [5].

The EFGM theoretical foundations rely on the idea of
constructing a functional basis composed by the so called
(EFGM) shape functions. These shape functions are con-
structed from a local Moving Least Square (MLS) approx-
imation performed on the discretization points, and provide
the required functional basis for the well-known Galerkin
discretization procedure for solving pde’s. Different from the
Finite Element Method (FEM), the standard approach of the
EFGM [1] does not provide interpolating EFGM approxima-
tions. In this case, additional techniques must be used for
enforcing the prescribed boundary conditions as well as the
material interface conditions for a correct physical description
of the phenomenon and for avoiding spurious oscillations.[6]

Naturally the requirement of such techniques is undesirable
due to: 1) the increasing of the total number of unknowns
caused by most used techniques, e.g. Lagrange Multipliers
and Penalty methods, and 2) the loss of the positive define
character of the stiffness matrix in the final linear system
[7], [6]. The interpolating EFGM-domain truncation approach
proposed in [8] completely avoids the use of these additional
techniques at the cost of carefully take care about the boundary
lines, specially the material interface ones. Depending on the
complexity of the device geometry, an interative procedure
of inspecting approximations near the material interfaces of
the domain may take place and become a boring and time-
consuming task.

§ José Márcio Machado is with São Paulo State University, São José do Rio
Preto, São Paulo (email: jmarcio@ibilce.unesp.br). ∗ Carlos A. S. J. Gulo and
Gleber Nelson Marques are with Mato Grosso State University, Alto Araguaia,
Mato Grosso (email: sander@unemat.br and gleber.nmarques@gmail.com).
†The authors thank FAPEMAT for the project financial support (Grant n.

002.229/2007).

This paper describes an auto adaptive algorithm for treating
material interface conditions by using the interpolating EFGM
together the modified domain truncation technique [6].

A. The interpolating EFGM approach

Suppose we are interested in solving the Poisson’s equation
for the unknown function u(x) in a domain containing material
interfaces. Consider a set of discretization points at which
the approximation uh(x) will be performed. To each node is
associated a weight function wl(x) whose support defines the
nodal influence domains. Starting from a local MLS approxi-
mation whose coefficients are determined by the minimization
of a weighted L2 norm of the error between the local MLS
approximation and the nodal variables ul, one can obtain the
EFGM shape functions φl(x):

φl(x) =
m�

j

pj(x)
�
A−1(x)B(x)

�

jl
, (1)

often found in the following expansion:

uh(x) =
�

l

φl(x).ul. (2)

The matrices A and B are defined as usual [1], [6], [2].
Our code implements the consistency approach for avoiding
the inversion of matrix A.[9]

The interpolating character of the EFGM approximation can
be obtained by defining singular weight functions w̃i(x) :

w̃i(x) = wi(x)/(1 − wi(x) + ε), (3)

where the parameter ε is a prescribed precision for the
singularity, and the truncated Schwarz function was chosen as
wi(x) [6]. Since the interpolating condition is satisfied only
punctually at the nodes, a more refined discretization along
the boundaries and interfaces can provide a correct global and
local description of the phenomenon.[6]

B. Treatment of the interface conditions

The presence of material interfaces in electromagnetic
problems leads to field discontinuities. Since the proposed
approximation inherits the continuity of the Schwarz func-
tion, the state variable approximation and its derivatives will
be continuous and differentiable functions. Thus, additional
techniques must be used for obtaining a correct description of
the physical field discontinuity.

We use the modified domain truncation technique for inter-
polating EFGM formulation [6], where the influence domains
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4.ELECTROMAGNETIC 2

of the nodes localized at a specified material are truncated
across material interfaces. This means that nodes localized in
a specified material sub-domain S1 will only participate in the
approximation of evaluation points belonging the same mate-
rial, S1. The discontinuous approximations of each material
sub-domain are connected by the nodes distributed along the
material interfaces which participate in the approximation of
points belonging to both materials. No Lagrange multipliers
are required due to the interpolating character of the approx-
imation. It can be mentioned that the error for computing
the field near the interface is an increasing function of the
magnitude of the physical discontinuity and decrease for more
refined discretizations. [6]

C. Auto adaptive algorithm for treating interface conditions

We take as a reference problem the computation of a
stationary electric field involving different conductor materi-
als, however, the procedures here developed can be applied
for computing stationary fields associated to the Poisson’s
equation in inhomogeneous media. From theory the physical
discontinuity of the normal component of the electric field
crossing the material interface of two conductors, is given by

σ1E1n = σ2E2n, (4)

from which we can estimate a mean local error near the
interface for a set of arbitrary test points distributed parallel
and very close, δ, the interface line as show in Fig.1
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L δ << L

Fig. 1. Distribution pattern of interface test-points

Lets xS1
t1 , . . . , x

S1
tk

be the interface test-points belonging
material S1 and, correspondingly xS2

t1 , . . . , x
S2
tk

be the ones
belonging to material S2. Similarly, let ES1

t1 , . . . , E
S1
tk and

ES2
t1 , . . . , E

S2
tk

be the computed normal field component at
the interface test-points. If ÊS2

t1 , . . . , Ê
S2

tk
are the theoretically

expected values at the test points xS2
t1 , . . . , x

S2
tk

algebraically
obtained from (4), then the mean relative local error in the
approximation of the normal field component at the specified
interface test-points can be defined as:

EI =

tk�
ti=t1

�����
ES2

ti
− ÊS2

ti

k · ÊS2

ti

����� =

tk�
ti=t1

�����
ES2

ti
− (

σS1

σS2

ES1

ti
)

k · ÊS2

ti

�����. (5)

By using the above defined interface error we propose an
auto adaptive algorithm as follows:

1) After the preprocessing stage of the simulation, e.g., the
device design and physical specifications, generate the
sets of test-points for each material interface of interest;

2) Compute the approximation at the given discretization
nodes;

3) Compute the component of the electric field normal to
the material interface line for all the interface test-points;

4) Compute the mean relative errors EI (5) for each set of
interface test-points;

5) For each interface, compare its EI (5) with a prescribed
interface precision εI , and, if (EI ≤ εI) :
a) then, the prescribed precision has been achieved for

this interface, consider next interface;
b) else (EI > εI ) , refine the discretization nodes along

this interface and consider next interface;
6) If the number of discretization nodes has changed (this

means that step 5.b was executed) then return to step 2.
The fast h-convergence of the EFGM has already been

demonstrated in previous works for stationary electric [6],
magnetic fields [8] as well as in scattering problems [2], which
have encouraged a software engineering for including new
object-oriented classes of such auto adaptive algorithms in our
EFGM code.

II. FINAL DISCUSSION AND FURTHER DEVELOPMENTS

The auto adaptive algorithm proposed in this work is based
on the error estimative obtained from the physical interface
conditions theoretically expected. It automates an iterative
process of inspecting the approximation errors near physical
discontinuities. This work has being developed in the con-
text of the LExVE (Laboratory for Virtual Experiences in
Engineering) research project associated with the LEVSOFT
system [10]. A rigorous analysis of the performance and
robustness of the proposed algorithm, is been carried out and
will be further reported.
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Abstract — This paper deals with the volume integral 
formulation of the eddy current problem in terms of the electric 
vector potential. Its aim is to present a simple topological 
algorithm for finding the additional degrees of freedom required 
in the discretization of a multiply connected region when using 
edge elements. The algorithm is completely automated and it is 
based, as other previous approaches, on the application of the 
spanning tree technique on the edge element based topological 
graph defined on the boundary surface of the conducting domain. 

I. INTRODUCTION

In several numerical formulation of the eddy current 
problem, the field in the vacuum region is conveniently 
expressed in terms of the magnetic scalar potential. However 
this potential may become multi-valued when the source 
region is multiply connected. For this case, it is necessary to 
introduce suitable cuts for making the domain simply 
connected or, more rigorously, loop-free. This topic has draw 
considerable attention [1-4] and several automatic algorithms 
for finding cuts have been already proposed. 

In this respect, our problem is different because it involves 
the topological treatment on the surface corresponding to the 
boundary of the eddy current region. The integral formulation 
we deal with is written in terms of the eddy current density 
vector whose solenoidality is assured by expressing it as the 
curl of the electric vector potential T. The uniqueness of T is 
imposed on the discrete by adopting edge elements shape 
functions and by imposing the tree-cotree gauge condition [5-
6]. When the conducting region is multiply connected, a set of 
boundary edges may not be the boundary of a simply 
connected patch lying on the boundary of the conductor. For 
this reason the boundary condition assuring that the current 
density does not flow outside the domain cannot be imposed 
by zeroing the tangential component of T on the boundary. As 
a matter of fact the circulation of T on a closed line lying on 
the boundary may be related to current loops inside the 
domain. The main ideas behind the proposed approach have 
been already discussed in previous papers [6-8]. In these cases 
the nonlocal additional degrees of freedom were automatically 
obtained in an algebraic way as the columns spanning the null 
space of the incidence matrix relating fluxes across elementary 
boundary faces and edges lying on the boundary. In this paper, 
we present a much simpler approach that exploits the spanning 
tree technique applied to the topological graph made of 
boundary facets (nodes) and edges for automatically finding 
these nonlocal DOFs. The underlying idea of nonlocal basis 
functions was also discussed by Kettunen in [9]. In that frame, 
he pointed out that “these nonlocal functions can be rather 

easily found once the representative Σ and γ of the 

equivalence classes are known. (In many cases – although not 
always – it is easy to say what the Σ and γ  cuts are. The 

difficulty is to detect them automatically)”. 

II. THE INTEGRAL FORMULATION

The reference geometry which we deal with is made by a 
multiply connected domain, with several feeding electrodes on 
its boundary. We solve the eddy current problem using the 
integral formulation described in [5-6]. Expressing the electric 
field as 

φ∇−
∂
∂−=

t

A
E                 (1) 

and using the Biot-Savart law for calculating the magnetic 
vector potential A, the Ohm’s law, imposed in the weak form 
gives: 

find Q∈J  such that 

QdV
t

dSdVdV
t

dV
eS

∈∫ ∂
∂⋅−

∫ =⋅+∫ ∫ −∂
∂⋅+∫ ⋅

Ω

Ω ΩΩ

wAw

nw
rr

rJ
rwJw

,

ˆ'
'
)'(

)(

0

φη
  (2) 

where { }eSonQ \0ˆ,0 Ω∂=⋅=⋅∇= nqqq  and Se is the 

surface of all the electrodes. In order to guarantee that Q∈J , 

we impose TJ ×∇= in Ω, where the uniqueness of T is 
assured by a two component gauge condition [5] 

III. THE NUMERICAL FORMULATION 

The conducting domain is discretized in a number of finite 
elements, such that each electrode is approximated by a set of 
boundary mesh facets. The vector potential T is expressed in 
terms of edge element shape functions Nk as ∑= k kkI NT , so 

that ∑ ×∇= k kkI NJ . The gauge condition is directly 

imposed on the shape functions by giving a tree-cotree 
decomposition of the mesh and retaining only the degrees of 
freedom associated with the edges of the cotree. The internal 
edges of the co-tree are retained with no additional 
manipulation. On the other hand, a special treatment is 
required for the nc active edges belonging to the boundary ∂Ω
of the conducting domain Ω, in order to force 0ˆ =⋅nJ over 
∂Ω [6-8]. 

In a simply connected region without electrodes, boundary 
condition 0ˆ =⋅nJ  can be easily imposed, by forming the tree 
firstly connecting boundary nodes with boundary edges and 
then zeroing the cotree edges belonging to the boundary. As a 
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matter of fact in this case any line integral on a closed line 
made by edges lying on the boundary represents a current flux 
crossing a surface which lies on the boundary. 

IV. MULTIPLY CONNECTED REGIONS 

With reference to a multiply connected region, we firstly 
discuss the case in the simpler hypothesis that the boundary of 
the conducting domain is without electrode facets. We propose 
the following procedure to find the nonlocal additional DoFs 
required. The procedure is repeated for each separate piece. 

We firstly supply few definitions: 
- Dual vertex: facet 
- Dual edge: edge 
- Dual graph: the graph made by considering the facets 

as vertices and the edges as edges. Notice that, by 
definition, any edge connects two vertices (facets in 
this case) 

- Degree: the degree of a vertex is the number of edges 
connected to that vertex 

- Leaf: a leaf is a vertex of degree 1 

Procedure 

1. Form a tree by firstly connecting boundary nodes 
with boundary edges; 

2. Select the cotree edges on the boundary ∂Ω; 
3. Form the facets-edges dual graph for all the edges of 

cotree on ∂Ω; 
4. recursively remove all the leaves. In this way, the 

closed loops left are made by sets of edges that are 
candidates to represent the nonlocal additional DoFs; 

5. form the tree-cotree decomposition of the dual graph 
obtained at points 3-4; 

6. any cotree edge of this dual cotree close a loop that 
represents an additional DoF. 

As a matter of fact, the edges of any additional DoF produce 
zero flux across the boundary facets (on the primary graph) 
and assure the possibility of having a flux different from zero, 
associated to proper closed paths on the boundary having one 
edge of this DoF as the only active edge. 

In the presence of the electrodes the procedure should be 
modified as follows: 

1. Form the tree by connecting first boundary nodes 
with boundary edges for every electrode surface; then 
continue as in the step 1 of the previous procedure; 

2. by construction any contour of any surface of the 
electrodes presents a unique edge belonging to the co-
tree; identify the facet of the electrode associated to 
this edge; 

3. when building the dual graph (point 3 of the previous 
procedure), connect all the facets previously 
identified (point 2) to a common fictitious dual 
vertex. 

4. execute points 3-6 of the previous procedure.  
However, as already remarked in previous papers, only a 

part of these nonlocal basis functions are related to net current 
fluxes circulating inside the conducting region, whereas others 
would be related to current fluxes across surfaces external to 

the conductor. The last ones are redundant because inside the 
conducting region they are linear combinations of the other 
degrees of freedom. On this basis, their selection can be 
obtained with the same algorithm already described in [8]. 

V. AN EXAMPLE 

The procedure is here illustrated with reference to the torus 
shown in fig. 1a. The cotree edges are drawn as red arrows in 
the same figure. In fig. 1b the dual graph is shown with the 
leaves sequentially removed marked in green. The remaining 
facet marked in blue are also shown in fig. 1.c. Finally in fig. 
1.d, the two nonlocal DoFs are drawn in blue and red, 
respectively. Only the DoF marked in red is associated to a 
current flux circulating inside the conducting region. 
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Fig. 1. a:the conducting domain and the co-tree edges on ∂Ω; b:the dual graph 
with in green the removed leaves; c: the dual graph after remouving the 
leaves. d: the non local additional Dof s; Only the DoF marked in red is 

associated to a current flux circulating inside the conducting region. 
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Abstract— This paper presents finite element analysis of time-
harmonic eddy current problems using the complex adjoint
variable method (C-AVM). In the sensitivity analysis as well
as optimization based on FE analysis of time-harmonic eddy
current fields, response and objective functions are often real-
valued functions, while unknown variables for the FE analysis
are complex. When the AVM is applied to such problems,
the real-valued functions must be differentiated in terms of
the complex variables. However, such differentiation cannot be
defined because the Cauchy-Riemann equation does not hold. In
this paper, the C-AVM is introduced to overcome this difficulty,
and is applied to sensitivity analysis and optimization.

I. INTRODUCTION

The adjoint variable method (AVM) has widely been ap-
plied to various problems in computational electromagnetism
to compute sensitivity of response functions, and derivative
of objective functions in optimization problems and inverse
problems. It is the advantage of AVM that computational cost
for computation of derivatives of the response (or objective)
function in terms of parameters little grows as the number of
the parameters increases.

In AVM, the adjoint equation must be solved before the
computation of the derivative. The right-hand-side vector in
the adjoint equation is the derivative of the response function
in terms of the unknown variable of the field analysis. When
time-harmonic eddy current fields are analyzed using finite
element method (FEM), the unknown variables are complex.
On the other hand, the response functions are often chosen
as real valued functions which represent, e.g., energy, loss
and magnitude of magnetic induction. In such cases, the
derivative cannot be defined because the Cauchy-Riemann
equation cannot hold in general. The similar situation can also
be found in other cases such as microwave problems including
complex permittivity or permeability, magnetic field analysis
based on the effective permeability, and so on.

In this paper, the complex AVM, referred here C-AVM, will
be introduced by adequate modification of the conventional
AVM and be applied to sensitivity analysis of time-harmonic
eddy current fields.

II. COMPLEX ADJOINT VARIABLE METHOD

Let us consider a quasi-static electromagnetic field governed
by

rot rot (1)

where and are vector potential and current density, ,
and are the reciprocal of magnetic permeability, angular
frequency and conductivity. The edge-based finite element
method applied to (1) yields a system of linear equations

(2)

where , , and denotes the
number of edges in the finite element mesh. The entities of

and are given by

rot rot

(3)

where denotes the vector basis function for the edge-based
element.

Now let assume that the electromagnetic field depends
on design parameters , which are, for
example, shape and material parameters. In this situation, we
can write . Moreover, let us consider the numerical
evaluation of sensitivity , for a real
valued function against parameter changes. In real
situations, the function would express quantities such
as electromagnetic energy, loss, and magnitude of magnetic
induction. In order to evaluate the sensitivity, we employ the
AVM where the adjoint equation to (2),

(4)

must be solved to obtain the adjoint variable . However, the
right-hand-side of (2), which is the differentiation of the real-
valued function in terms of the complex variable, cannot be
defined because it is not guaranteed the function satisfies
the Cauchy-Riemann differential equation

(5)

which is equivalent to

(6)

where and the suffixes and denote real
and imaginary parts.
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To overcome this difficulty, we consider the modified adjoint
equation

(7)

in stead of (4). Note here that the right-hand-side of (7) only
contains the differentiation of in terms of real variables.
The equation (7) is further modified to

(8)

where the first and second equations of (8) correspond to the
real and imaginary parts of (7). For simplicity, we define the
variables

(9)

then (8) becomes

(10)

We write the matrix in the left-hand-side of (10) as , which
is symmetric.

Moreover, we divide (2) into real and imaginary parts to
obtain

(11)

Rewriting (11) using and , we have

(12)

where . By differentiating (12) in terms of the
parameter , we have

(13)

Multiplying to both sides of (13) and taking its transpose,
we obtain

(14)

Substitution of (12) into (14) yields

(15)

which gives the sensitivity. Moreover it can be shown that

(16)

Hence, it is concluded that (15) can be expressed as

(17)

which will be used in our sensitivity analysis. The similar sen-
sitivity expression as (17) has been obtained for the microwave
circuit problem [1].

III. NUMERICAL RESULTS

The present method is applied to the sensitivity analysis of
a system of non-destructive testing, shown in Fig.1. In this
model, the alternative current of 100 [AT] flows along the
coil at 10 [kHz]. The aluminum plate, whose conductivity
is set to [S/m], contains a rectangular flaw. The
sensitivity in the magnetic induction measured at
point p against the thickness of the flaw is computed using
the present C-AVM and numerical differentiation .
The thickness is set to [mm]. The whole system including
the air region is subdivided into 102,580 tetrahedral elements
with 123,555 unknowns. The derivative in (17) is
computed using finite difference. The numerical results are
summarized in TABLE I. It is clear that the finite difference

approaches computed by C-AVM as
decreases.

TABLE I
COMPARISON OF RESULTANT SENSITIVITY

method C-AVM finite difference
[mm] - 0.02 0.01 0.005

0.01297 0.01209 0.01214 0.01279

IV. CONCLUSIONS

In this paper, C-AVM has been presented and applied to
sensitivity analysis. The sensitivity obtained by C-AVM is
shown to be accurate. In the long version, sensitivity analysis
containing more parameters will be presented. Moreover,
identification of flaws based on C-AVM will be discussed.

(a) Schematic view

2.52.5

10

25

2.5
h

2
2

p

[mm]

(b) Cross-sectional view
Fig.1 Coil and aluminum plate containing a flaw

REFERENCES

[1] N.K. Nikolova J.W. Bandler, M.H. Bakr, “Adjoint Techniques for sen-
sitivity analysis in high-frequency structure CAD,” IEEE Transactions
on Microwave Theory and Tech., vol. 52, no. 1, pp. 403-419, 2004.

696

 



9. Mathematical Methods 

Abstract —A new image reconstruction method of 
magnetoacoustic tomography with magnetic induction (MAT-
MI) is described. It breaks through some illogical supposes 
that the existing methods applied and can improve the spatial 
resolution of the image availably. Besides it can avoid rotating 
the static magnetic field which is very difficult to come true in 
application, therefore the development of MAT-MI technique 
can be promoted greatly. To test the validity of the new 
method, a test model is analyzed, and the availability of the 
method is demonstrated.  

I. INTRODUCTION

Magnetoacoustic tomography with magnetic induction 
(MAT-MI) is bring forward by B He etc. in 2003. It is the 
combination of Electromagnetic tomography (EMT) and 
ultrasonic tomography, so it combines the good contrast of 
EMT with the good spatial resolution of ultrasonic 
tomography[1]. Compared with other electromagnetic 
tomography techniques, MAT-MI has several unique 
features. Firstly, it has no shielding effect,  that is it will not 
be affected by the low-conductivity layer of the tissue 
at/near the surface of the human body. Secondly, for the 
eddy current which produces the Lorentz force distributes 
throughout the imaging body, so the ultrasonic waves 
which take valid information of magnetic parameter 
character are abundant accordingly, and this is the main 
reason why the spatial resolution of MAT-MI is good[2].

Image reconstruction algorithm is the key problem of 
MAT-MI, but the existing algorithms are not perfect. They 
either need to adopt some illogical approximate hypothesis 
which will decrease the quality of the reconstructed image 
greatly, such as looking the time varying impulse as a step 
one and supposing the distribution of object is piecewise, or 
need to rotate the static magnetic field which is very 
difficult to come true in application, and these baffle the 
improvement of MAT-MI greatly. Therefore new image 
reconstruction algorithms of MAT-MI technique are 
needed especially.  

Refer to the reconstruction method of magnetic 
resonance electrical impedance tomography (MREIT) 
which apply the single component of magnetic induction 
intensity to reconstruct the distribution of electromagnetic 
parameters[3], the author bring forwards a new image 
reconstruction method of MAT-MI technique. Through 
substituting the single component of the divergence of 
Lorentz force density, the new method can not only break 
through the illogical supposes, but also can avoid rotating 
the static magnetic field and solve the choke point of MAT-
MI. Besides, the method applies the transient field analysis 
method to take into account the electromagnetic effect 
produced by the time-varying excitation. Therefore, it can 

improve the trueness of the image, and can also promote 
the development of MAT-MI effectively. 

II. FORMULATIONS 

For MAT-MI, the object is in a static magnetic field 
and a time-varying magnetic field. The time-varying 
magnetic field induces an eddy current in the object. 
Consequently, the object will emit ultrasonic waves through 
the Lorentz force produced by the combination of the eddy 
current and the static magnetic field. The ultrasonic waves 
are then collected by the detectors located around the object. 
Then, through the image reconstruction the image which 
can reflect the tissue’s electromagnetic parameters can be 
reconstructed. 

The process of image reconstruction is very important, 
and this process can be divided into two steps. In the first 
step, the divergence of Lorentz force’s density distribution 
will be reconstructed from sound pressure through the 
analysis of sound field reverse problem. In the second step, 
the distribution of electromagnetic parameters will be 
reconstructed from the divergence of Lorentz force density 
through the analysis of electromagnetic field reverse 
problems. The first step can be accomplished with the back-
projection algorithm, and it is mature comparatively. The 
second step is more challenging. To avoid rotating the static 
magnetic field, in the new method we apply the method of 
substituting the single component of the divergence of 
Lorentz force density. Beside, to improve the trueness of 
the image reconstruction, we apply the transient field 
analysis method to take into account the effect of the time-
varying excitation.  

Because the reverse problem of electromagnetic field 
is based on the forward one, so at first the formulations of 
forward problem will be introduced. 

A . Forward problem of electromagnetic field  

The field equation system with AA ,φ−  formulations 

with the Coulomb gauge can be given as: 
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⎪
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                       (1) 

Where, A  is the magnetic vector potential with or without 
φ , the electric scalar potential, μ and σ are the magnetic 

reluctivity and conductivity respectively. 
    In the forward problem of electromagnetic field, the 

known quality is the distribution of σ , and the calculating 
target is the divergence of Lorentz force density ( )BJ

rr
×⋅∇ .
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     To ensure the symmetrical characteristics of equation 

coefficient matrix, ϕ  is introduced, where
t∂

∂
=

ϕφ , and the 

matrix form of the transient field equation can be given as 

[ ]{ } [ ] { } { }FA
t

DAK =
∂
∂

+                        (2) 

Where, DK , are coefficient matrices of the field equation, 
and F is the known quantity matrices of source. 

Formulation (2) can be solved by Runge-Kutta 
methods, and according to the corresponding relation, 
B and J can be calculated, and then the divergence of 
Lorentz force density ( )BJ

rr
×⋅∇ at each time step can be 

obtained accordingly. 

B .  Inverse problem of electromagnetic field 
In the inverse problem of electromagnetic field, the 

known quality is the divergence of Lorentz force 
density ( )BJ

rr
×⋅∇  , and the calculating target is the 

distribution ofσ .
Through calculating we find that comparing with the 

static magnetic field the time-varying magnetic field and 
the magnetic field produced by the eddy current is small 
enough to be neglected, so the divergence of Lorentz force 
density can be regarded as ( )0BJ

rr
×⋅∇ .

                   ( ) ( )
z

JBJBBJ
rrrrrr

×∇=×∇⋅=×⋅∇ 000
      (3) 

For 0B  is a constant we known, so 
z

J×∇ can be obtained. 

Besides formulation (1), σ and A also satisfy the 
following equation, 
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×∇ σφσσ    (4) 

  Through iterative calculating between formulation (1) 
and (4), the distribution of σ  can be reconstructed. 

III. APPLICATION

To verify the availability of the new method, a test model 
is analyzed. There are two coils and a conductive object 
which composed by 16 blocks with different conductivity 
in the model. The subdivision of the model is shown in 
Fig.1. When an impulse current which the max value is 
98.71A and the actuation duration is 5.2us is added to the 
coils, a transient changed magnetic field will be induced 
accordingly, and in the conductive object area the magnetic 
field is homogeneous spatially. Magnetic induction 
intensity B together with the eddy current J  and Lorentz 
force density BJ ×  are calculated. The curves of the 
calculated results of 3 sample points are shown in Fig.2-4, 
and the image of σ distribution is shown in Fig.5.

                 

Fig.1 Subdivision of the model                 Fig.5 Distribution of σ
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Fig.2 Curve of magnetic induction intensity results
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Fig.4 Curve of Lorentz force density results 

IV. CONCLUSION

A new image reconstruction algorithm of MAT-MI is 
presented in this paper. Through substituting the single 
component of the divergence of Lorentz force density, the 
problem of rotating static magnetic field can be solved 
availably, therefore the application of MAT-MI technique 
will be promoted. Besides, the transient magnetic field 
analysis is used to take into account the effect of the time-
varying excitation, and accordingly the quality of image 
can be improved effectively. A test model is analyzed to 
test the availability of the new method. The detailed 
comparison of the numerical results with the measured ones 
will be described in the full paper.  
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Abstract— The performance of a magnetic brake is calculated
by a cross-sectional model where stator and air-gap are dis-
cretized by finite elements whereas the nonlinear ferromagnetic
rotor is discretized by spectral elements in order to guarantee a
sufficient resolution of the thin eddy-current layers.

I. INTRODUCTION

Magnetic brakes and solid-rotor induction machines gener-
ate eddy currents in their rotors, which on their turn cause
an accelerating or braking torque. Many devices have a rotor
which is uniform in the direction of motion. Then, an Eule-
rian formulation may be more convenient than a Lagrangian
formulation [1]. Eulerian formulations, however, suffer from
spurious oscillations of numerical nature when high velocities
are applied. These can be suppressed by upwinding, possibly
in combination with adaptive mesh refinement. Nevertheless,
FEs are cumbersome for resolving the thin eddy-current layers
arising at high speeds, especially when a higher accuracy
is required, e.g., when high saturation levels are attained in
the eddy-current layer. In this paper, the rotating rotor is
discretized by spectral elements (SEs), which is embedded in
an overall FE model.

II. EULERIAN FORMULATION AND FE DISCRETIZATION

Here, the motional eddy currents are simulation by a time-
harmonic, Eulerian magnetoquasistatic formulation in terms of
the magnetic vector potential A:

∇× (ν∇× A) − σv ×∇× A + jωσA = Js (1)

with ν the reluctivity, σ the conductivity, ω the angular
frequency, v the velocity and Js the applied current density.
In the standard 2D FE discretization

(Kfe + Lfe + jωMfe)� �� �
Afe

ufe = ffe , (2)

Kfe, Lfe and Mfe are the discrete counterparts of the operators
in (1), ffe are the discretized applied currents and u fe is a
vector of the degrees of freedom (DOFs) for the z-component
Az of A. The solution of (2) may turn out to be inaccurate
when the FE mesh does not resolve the motional skin depth
δm = ν/(σ|v|) [1]. Then, the solution may exhibit spurious
oscillations which, on their turn, hamper the error-estimation
and adaptive-mesh-refinement procedure [2]. Typically, an
upwinding technique is applied to overcome this problem [3].
The simplest scheme consists of adding artificial diffusion, i.e.,
increasing ν such that locally the expected motional skin depth
exceeds the mesh size. The slightly better streamline diffusion
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Fig. 1. Convergence of a FE model with uniform mesh refinement, a FE
model with error-controlled adaptive mesh refinement and a combined FE-SE
model with uniform mesh refinement.

technique adds an anisotropic diffusion term only along the
direction of motion. The streamline-upwind Petrov-Galerkin
(SUPG) technique does not change the model but applies
modified test functions for discretization [4]. The convergence
of discretization error for a FE-SUPG model with several
error-controlled refinement strategies is shown in Fig. 1.

III. SE DISCRETIZATION

The moving part of the model is a hollow cylinder with
inner radius r1 and outer radius r2. For such a regular domain,
a superior convergence of the discretization error is expected
when orthogonal functions are used for discretizing A z [5]–
[7]. The (r, θ)-domain [r1, r2] × [0, 2π[ is mapped onto the
(s, θ)-domain [−1, 1] × [0, 2π[ by s = 1

em

ln r
rm

with rm =√
r1r2 the mean radius and em = ln

�
r2/r1 a form factor.

The corresponding mapping of (1) reads

1
e2
m

∂

∂s

�
ν
∂Az

∂s

�
+

∂

∂θ

�
ν
∂Az

∂θ

�
− σωmr2 ∂Az

∂θ
= 0 (3)

with ωm the angular velocity. The z-component of the mag-
netic vector potential is discretized by Chebyshev polynomials
Tq(s) in s-direction and harmonic functions e−jλθ in θ-
direction, i.e.,

Az(s, θ) =
�

q∈Q

�

λ∈Λ

αq,λTq(s)e−jλθ (4)

where αq,λ are the DOFs and Q and Λ denote the set of orders
of the Chebyshev polynomials and the harmonic functions,
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FE mesh

interface �

SE grid

Fig. 2. FE mesh (stator and air gap) and SE grid (rotor) discretizing a
four-pole magnetic brake.

respectively. In practice, a tensor-product grid combining
the Chebyshev-point distribution along s with an equidistant
distribution along θ is constructed (Fig. 2). The values for A z

at the grid points serve as DOFs use in the formulation. The
collocation of the residual of (3) at the grid points leads to the
matrix formulation

�
LsMνLs + LθMνLθ − σωmR2Lθ

�
� �� �

Ase

use = 0 ; (5)

Lr =
1
em

Ds ⊗ I|Λ| ; Lθ = I|Q| ⊗ Dθ , (6)

The matrix factors in (5) and (6) mimic the operators in
(3). The Kronecker products in (6) resemble the tensor-
product grid structure. Ds and Dθ are fully populated first-
order differentiation matrices along the s- and θ-direction
respectively [8]. R and Mν are diagonal matrices with the
radii and reluctivities at the collocation points. The exponential
convergence behavior of this SE formulation has been shown
in [7]. The Newton linearization of (5) will be documented in
the full paper.

IV. COUPLING

Both formulations are coupled at the circular rotor-air-gap
interface Γ (Fig. 2). A partial FE model is built by omitting
the rotor part and imposing homogeneous Neumann boundary
conditions at Γ. The DOFs allocated at nodes of Γ are selected
by the operators Qfe and Qse respectively. The coupled system
of equations reads

⎡

⎣
Afe 0 QT

fe

0 Ase −QT
se

Qfe −Qse 0

⎤

⎦

⎡

⎣
ufe

use

vlg

⎤

⎦ =

⎡

⎣
ffe
0

0

⎤

⎦ (7)

where vlg contains nΓ Lagrange multipliers corresponding
to the nΓ nodes at Γ. The third row of (7) imposes the
continuity of Az , which is equivalent to the normal continuity
of the magnetic flux density. The terms QT

fevlg and −QT
sevlg

can be interpreted as surface currents at Γ, which cancel out
each other and, hence, ensure the tangential continuity of the
magnetic field strength. It would be possible to eliminate the
DOFs at one side of Γ at the expense of a fill-in in Afe or
Ase. Here, however, the saddle-point system (7) is kept in
order to preserve the different structure of both matrices. The
coupled system of equations is solved by the Bi-Conjugate

(a) (b)

Fig. 3. Magnetic flux lines for the results of (a) the linear comparative
simulation and (b) the nonlinear simulation at a velocity of 100 rad/s.

Gradient Stabilized (BiCGStab) method [9] and precondi-
tioned by incomplete LU-factorization. The convergence of the
discretization error for the coupled method is demonstrated
in Fig. 1. The convergence order is determined by the FE
discretization of the stator and rotor domains and is, therefore,
the same as for the full FE case. The convergence factor is
substantially lower because of the better resolution of the SE
discretization.

V. EXAMPLE

The coupled method is applied to a magnetic brake (Fig. 2).
This model is used to illustrate the convergence of the different
discretizations for a velocity of 100 rad/s in Fig. 1. The
magnetic flux lines are shown in Fig. 3. The linear calculation
is technically irrelevant and serves only for comparison. The
ferromagnetic saturation prohibits high magnetic fluxes at the
surface of the cylinder. Hence, the flux is distributed more to
the inside of the cylinder, causing a larger effective motional
skin depth. This fact motivates the use of a SE scheme offering
a high resolution.

VI. CONCLUSIONS

A SE model for a ferromagnetic rotor at high speed cir-
cumvents upwinding and alleviates the poor accuracy which
is typical for a FE discretization of an Eulerian formulation.
The SE model part is embedded in an overall FE model dealing
with the remaining parts of a magnetic brake.
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Abstract—The modified base functions of element-free
Galerkin method generated by weight function control of Mov-
ing Least-Squares interpolants are investigated. Moreover, the
modified base functions are applied to the numerical code for
analyzing shielding current density in high temperature super-
conductor. The results of computations show that the proposed
base functions leads essential phenomena.

I. INTRODUCTION

The critical current density of high temperature supercon-
ductor (HTS) is one of the most important parameters of HTSs,
and it is necessary to take hold on the critical current density in
order to understand the characteristics of the HTS. Therefore,
methods for measuring the critical current density of HTS have
been desired.
Ohshima et al. have proposed the permanent magnet (PM)

method for measuring critical current densities [1]. Bringing
a permanent magnet closer to an HTS thin film caused
the electromagnetic repulsive force acting on the film and
the maximum force was approximately proportional to the
critical current density. They observed that the critical current
density can be determined by measuring the electromagnetic
interaction between the magnet and the HTS film. However,
the position of point whose current density was measured
is uncertain because the permanent magnets have a width.
Moreover, critical current densities were measured at only
center of HTSs by the system of permanent magnet method.
The shielding current density in axisymmetric HTS can be

determined by solving a system of time-dependent integro-
differential equation. The system is discretized by using
element-free Galerkin (EFG) method [2] and completely im-
plicit method in (r, θ, z) plane by taking the symmetry axis as
z-direction and a nonlinear system is obtained. However, the
values of the shielding current density on r = 0 are non zero
though it should be zero essentially. The reason for the non
zero values of the shielding current density will be attributable
to the selected functional space of the base functions of EFG
[2].
The purpose of the present study is to develop the numerical

code for analyzing shielding current density in axisymmetric
HTSs and to propose the modified base functions of EFG
generated by weight function control of Moving Least-Squares

z

r

θ

D
ε

Permanent Magnet

r
m

h
m

O

R

L

Fig. 1. The schematic view of the Permanent Magnet method for measuring
the critical current density in HTS thin film.

(MLS) interpolants. By using the numerical code, the perma-
nent magnet method is also simulated numerically.

II. AXISYMMETRIC SHIELDING CURRENT ANALYSIS

In this study, the target HTS to measure its critical current
density is disk-shaped film; its radius is R and its thickness is
D = 2ε, and the area of its circular cross-section is constant
along the thickness direction. The schematic view of PM
method is shown in Fig. 1. The cylindrical permanent magnet
is located above the film whose radius is rm and whose height
is hm. The film is exposed to the magnetic flux density B
generated by the magnet. The PM method is carried out as
follows. The permanent magnet is brought closer to the film
at a constant speed then it is raised at the same speed. That
is to say, the distance L between the permanent magnet and
the surface of the film changed from Lmax to Lmin and then
Lmin to Lmax. Let τ0 denote the moving time of the magnet
from Lmax to Lmin.
The problem can be treated as axisymmetric. We assume

that the shielding current density does not flow along c−axis
because thickness is very thin compared with the radius of
HTS (i.e., R � ε). Throughout this paper, let us use the
cylindrical coordinate (r, θ, z) by taking the symmetry axis
of HTS as z-direction.
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Under these assumptions, there exists a scalar function
S(r, t) such that the shielding current density j satisfies
following equation.

j =
1
ε
∇S × ez. (1)

Here ez denotes the unit vector in the z-direction. Using the
scalar function S(r, t), the behavior of the shielding current
density in HTS can be expressed by the following time-
dependent integro-differential equation.

µ0
∂

∂t

(∫ R

0

Q(r, r�)S(r�, t)r�dr� +
S

ε

)

= −∂(B0 · ez)
∂t

− (∇× E) · ez, (2)

where µ0 denotes the magnetic permeability of vacuum. The
function Q(r, r�) uses the same function as the Ref. [3].
Let us scatter N nodes 0 = r1 < r2 < · · · < rN = R on the

analytic domain and the boundary for a discretization. As is
well known that the base functions of meshless approaches are
obtained on an each node by MLS interpolants. In addition,
shapes of the base functions are different depending on the
selecting weight function of MLS interpolants.
In the present study, we especially select the weight func-

tions that contain r1 and r2 in the support R of the functions
as following equation so that the delta function property might
satisfies at r = 0.

w1(r) =
{

1; r ≤ r2,
0; r > r2,

w2(r) =

{
1; r ≤ r2,

f(r,R); r > r2,

wi(r) =

{
f(r, |ri − r2|); r ≤ ri, |ri − r2| ≤ R,

f(r,R); r > ri, |ri − r2| ≤ R.

Here, function f(r, r̃) is denoted by following equation.

f(r, r̃) =




e−r2 − e−r̃2

1 − e−r̃2 ; ri ≤ r̃,

0; ri > r̃.

(3)

In order to vanish the value of the derivative of the base
functions at r = 0, the components of which constitute base
functions of polynomial are defined as follows.

p =

{
[1, r2]T ; r < r2,

[1, r]T ; other wise.
(4)

Following the standard manner of MLS interpolants, we can
obtain modified base functions of EFG method. In Fig.2, we
show the base functions of EFG. The inset indicate the weight
functions for these base functions. This figure indicates that
gradients of the base functions become zero at r = 0. That is
to say, the derivative of the base functions at r = 0 satisfies
dφ/dr = 0.
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Fig. 2. The base functions of EFG. The inset denotes the modified weight
functions of MLS interpolants.

Fig. 3. The spatial distributions of the shielding current density of θ
component in case of jc = 1.0 MA/cm2, rm = 2.5 mm. Here jc denotes
the critical current density. A: t/τ0 = 1/5, B: t/τ0 = 2/5, C: t/τ0 = 3/5,
D: t/τ0 = 4/5.

III. SHIELDING CURRENT ANALYSIS

The governing equation (2) and its associated conditions can
be discretized by using EFG with modified base functions and
the numerical code has been developed. The shielding current
density in HTS thin film can be determined at any time step
by the numerical code.
The spatial distributions of the shielding current density of

θ component jθ in the HTS are also obtained by the code
and are shown in Fig. 3. We can see from this figure that the
shielding current density rapidly flows to the vicinity of the
center of HTS as the magnet approaches HTS. Note that the
shielding current density at r = 0 becomes zero in both cases
because of proposed base functions.
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Interior Penalty Discontinuous Galerkin Method 
for the Time-Domain Maxwell's Equations 

Stylianos Dosopoulos and Jin-Fa Lee 
dosopoulos.1@osu.edu 

Abstract — Discontinuous Galerkin(DG) methods support 
elements of various types, non-matching grid and varying 
polynomial order in each element. In DG methods continuity at 
element interfaces is weakly enforced with the addition of proper 
penalty terms on the variational formulation commonly referred 
to as numerical fluxes. An interior penalty DG method for 
solving the two first order Maxwell's equations in the time 
domain is presented. The proposed method is explicit and 
conditionally stable. In addition, a local time-stepping strategy is 
applied to increase efficiency and reduce the computational time.  

I.INTRODUCTION

Discontinuous Galerkin(DG) finite element methods offer 
an alternative to FDTD for time-domain simulations and were 
recently applied for the solution of Maxwell's equations[1]. 
Moreover, they provide great flexibility since they allow for 
various shapes of elements, non-conformal meshes, non-
uniform degrees of approximation. Furthermore, the resulting 
mass matrix is a block diagonal matrix with the block size 
equal to the degrees of freedom in the element. Therefore, the 
method can lead into a fully explicit and conditionally stable 
time-marching scheme. In addition, information exchange is 
required only between neighboring elements which is suitable 
for parallelization. In addition, a local time-stepping strategy 
[3] is necessary to reduce the computational time in multi-
scale problems. Moreover, in this work we present a memory 
efficient implementation. Finally, validation of the method is 
presented through numerical examples. 

II.FORMULATION

A. Original Boundary Value Problem(BVP) 

We consider the time-dependent Maxwell's equations in 
three dimensions. 

in
t

in
t

μ ∂
∇× = − Ω

∂
∂

∇× = Ω
∂

H
E

E
H

 (1) 

On the boundary  of the domain  we apply metallic or 
absorbing boundary conditions. 

∂Ω Ω

B. DGTD Formulation-Spatial Discretization 

Let  be the computational domain of interest and  the 

discretization of Ω  into tetrahedra 

Ω hT

K . Denote by hF  the set 

of all faces. Assuming that the material properties are constant 
within each element we can then proceed to define the 
following finite-dimensional discrete trial space 

( ) ( ) }{ 32, : |k k
h KV L P⎡ ⎤ ⎡ ⎤= ∇× ∈ Ω ∈⎣ ⎦ ⎣ ⎦v v v

3
K . The interior 

penalty discontinuous Galerkin method can be written as: 

( )

{ }{ } { }{ }

,

0.

hh

hh

k k
h h

FF

FF

Find V V such that

d d
t t

dS dS

e dS f dS

μ ε

Ω Ω

∈ ×

∂ ∂⎛ ⎞ ⎛ ⎞⋅ ∇× + Ω − ⋅ ∇× − Ω⎜ ⎟ ⎜∂ ∂⎝ ⎠ ⎝

+ ⋅ − ⋅

− ⋅ − ⋅ =

∫ ∫

∫ ∫

∫ ∫

w v

w v
w v v w

v w w v

v v w w

⎟
⎠

 (2) 

where ( )i i i (τγ = ×u n u , )i i i iτπ = × ×u n u n and { }{ }i =u

( ) ( )( ) / 2i jτ τπ π+u u , ( ) ( )i iτ τγ γ= +u u u j .

Finally,
1

2
e

ZΓ

= and
1

2
f

ZΓ

= with
1

2
ji

i j

Z
μμ

ε εΓ

⎛ ⎞
⎜ ⎟= +
⎜ ⎟
⎝ ⎠

and

1

2
ji

i j

Y
εε

μ μΓ

⎛ ⎞
⎜ ⎟= +
⎜ ⎟
⎝ ⎠

.

C.DGTD Formulation-Time Discretization 

Within each element the electric and magnetic fields are 
expanded in terms of trial functions in . Thus, the 

following semi-discrete system of coupled differential 
equations is obtained: 

k
hV

e e e

h h h

e
t

f
t

ε

μ

∂
= − −

∂
∂

= − + +
∂

e
M S h F h P e

h
M S e F e P h

 (3) 

where e   and h  are the time dependent coefficient vectors for 
the electric and magnetic field respectively. The above system 
is discretized in time with a leap-frog scheme. The electric 
field unknowns are evaluated at nt n tδ=  and the magnetic 

field unknowns are evaluated at ( )1 2 1 2nt n tδ+ = + . The first 

derivatives are approximated using central differences. The 
fully discretized update equation then becomes 

1 1

3 2 1/ 2 1

n n n

n n

+ + / 2

n+ +

= +

= +

e Be Ch

h Eh Fe +
 (4) 

III.LOCAL TIME STEPPING

The resulting update scheme a mentioned above is explicit 
and conditionally stable. The stability condition is [2]: 
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4
2 max i i

i i ik
k k

V
c t

P

μ ε
δ α β

μ ε

⎡ ⎤⎛ ⎞
+ +⎢ ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

i

i

<⎥  where  is the 

volume of element

iV

iK , , (  is surface of face i ),i j
j

P S= ∑ iS

1i i i
c ε μ=  and iα , ikβ  are dimensionless constants that 

depend on the order of the basis functions.  Note that for 
higher order basis or locally refined meshes the stability 
condition provides a very small tδ  and thus greater CPU 
time. To reduce the computational time a local time-stepping 
strategy is applied [3]. The set of elements is partitioned into 
N classes before the time-marching simulation. The partition 
is based on the stability condition. For the class

. We choose  so that each class has a 

time step three times larger than the previous class. To 
illustrate the method assume two classes (class 0 class 1) with 

thi

( ) min2 1
i

it m tδ = + δ

in

1m =

0 mt tδ δ=  and 1 3t tminδ δ= . The update scheme is 

summarized below: 

1 1/ 2 3 2 5 / 6
1 1 1 1

4 / 6 2 / 6 3/ 6 7 6 5 / 6 1
0 0 0 0

5 / 6 3 / 6 4 / 6 8 / 6 1 7 / 6
0 0 0 0

1 4 / 6 5 / 6 3 2 7 / 6
0 0 0

n n n n n n

n n n n n

n n n n n n

n n n n n

E Update H Update
+ + + +

+ + + + +

+ + + + + +

+ + + + +

− −

= + = +

= + = +

= + = +

= + = +

e B e C h h E h F e

e B e C h h E h F e

h E h F e e B e C h

e B e C h h E h F 8 / 6
0

n+e

1

n

+

+

IV.NUMERICAL EXAMPLES

A. Coated Sphere 

In this example we calculate the RCS of a coated sphere. 
The inner radius of the sphere is a = 1m, the outer radius is b 
= 1.2 m and the coating has 4.0rε = . The absorbing boundary 

condition is set oneλ  at 300 MHz from the coating. The 
coated sphere is illuminated by a Gaussian pulse 

( )
2 2

0 0
ˆ /

0

t t cinc e
τ⎡ ⎤− − − ⋅ −⎣ ⎦=

k r r
E E with 0 xE=E , zk=k , 0 5t ns=  and 

0.6 nsτ = . From the Fourier transform of the time-dependent 

electric and magnetic currents on the sphere's surface we can 
evaluate the RCS at multiple frequencies. Fig.1 illustrates the 
computed RCS at the frequency of 300 MHz. A good 
agreement is observed between the numerical solution and the 
analytical solution. 

Figure 1. E- and H-plane RCS(dB) at 300 MHz (blue-DGTD, pink-Mie 
series).

B. Scattering from a F-16 aircraft 

In this example we calculate the RCS of a F-16 aircraft 
illuminated by a Gaussian pulse with 0 xE=E , zk=k ,

0 5t ns=  and 0.6 nsτ = . The generated mesh in this case is 

an unstructured locally refined mesh with strong element-size 
disparities. In this case min 4.35 13t eδ = −  and  

max 7.98 11t eδ = − which leads into 5 classes and the local time 

stepping provides a CPU gain of approximately 5 compared to 
the standard leap-frog scheme. Finally a matrix free 
implementation was applied to provide better memory 
efficiency. In this approach there is no assembly and storage 
of global matrices. The matrix-vector multiplications that are 
necessary for the update equation are performed in element 
level using the BLAS library for better performance. 

Figure 2.  Snapshot of the magnitude of the  E field distribution of the 
Gaussian pulse propagating on the F-f16 surface. 

TABLE I 
CLASS PARTIONING

Class
1 2 3 4 5
36 2552 129318 240890 81400
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Abstract— A finite element method is proposed for an 
investigation of the bipolar bundled conductor ionized field. A 
computation program for the corona ionized field analysis was 
developed in which Deutsch's assumption was waived. The 
subconductors were considered as separate parts where the 
mutual impact was included. Each electric field line was initiated 
from the subconductor surface. The electric field was calculated 
by adopting the third order interpolating method. Furthermore, 
a method of estimating the initial space charge density of flux-
tubes was introduced and then calculated by using the fourth 
order Runge-Kutta method. Finally, the computation program 
was verified and the corona current and related field properties 
of a ±800kV HVDC transmission line were investigated. 

I. INTRODUCTION 
Many numerical attempts have been made to evaluate the 

ionized field associated with single and bundled conductors 
for monopolar transmission lines [1]-[3].  

Some attempts have also been made to solve the bipolar 
ionized field equations. Sarma developed a method of 
calculating the electric field for bipolar lines based on 
Deutsch’s assumption first [4]. Later, though Deutsch’s 
assumption is waived, the bipolar ionized field equations were 
only solved in single conductor-to-plane configurations [5]-
[6]. In [7] an integral form of the current continuity equation 
was used (instead of Poisson’s equation) to compute the space 
potential with a bipolar bundled conductor line in a double 
circuit. 

Al-Hamouz has done much more on the ionized field 
analysis. The main idea was solving Poisson’s equation by 
using the FEM and calculating the charge density along the 
flux-tubes divided by field lines in the ionized field. His 
investigating range varied from monopolar to bipolar, from 
single conductor to bundled conductor, and to extending the 
limited boundary to infinity [1, 3, 6, 8]. However, the bipolar 
and bundled configuration aspects have not been taken into 
account simultaneously. 

In this paper, an iterative FEM based numerical method is 
developed to solve Poisson’s equation for the bipolar bundled 
conductor. Firstly, the computation process is explained in 
detail and then it is verified. Finally, the program is used to 
analyze the corona ionized field of a ±800kV transmission 
line.  

II. DESCRIPTION OF THE BIPOLAR IONIZED FIELD 
The bipolar ionized field can be described by a group of 

equations: 

0( ) /E ρ ρ ε+ −∇ ⋅ = −
r

                                            (1) 

EkJ
vv

±±± = ρ                                                             (2) 

/iJ R eρ ρ± + −∇ ⋅ =
v

m                                              (3) 

−+ += JJJ
vvv

                                                            (4) 

0J∇⋅ =
v

                                                                  (5) 
where (1) is Poisson’s equation; (2) is the equation of the 
positive and negative current density vectors J±; (3) is the 
equation for J± continuity; (4) is the equation of the total 
current density vector J; and (5) is the equation for J 
continuity. E is the electric field, k+ and k- are the mobilities of 
positive and negative ions, ρ+ and ρ- are the modulus of the 
positive and negative space charge density values, Ri is the ion 
recombination coefficient in air, and e is the electron charge.  

Using the FEM based numerical approach, with associated 
boundary and constraint conditions, the above partial 
differential equations can be solved.  

III. PROPOSED ANALYSIS METHOD OF A BIPOLAR BUNDLED 
CONDUCTOR IONIZED FIELD 

A general configuration of a bipolar HVDC transmission 
line is illustrated in Figure 1. A ±800kV HVDC transmission 
line is used as an example. The triangular finite element grid is 
generated from quadrangles produced by the intersection of 
field lines with equipotential contours. In either the bipolar or 
monopolar component, the FEM is applied to obtain an 
evaluation of the nodal potential. The third order interpolating 
method is then adopted to calculate the electric field. 

 
Fig. 1. Configuration of a ±800kV HVDC transmission line 
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For the monopolar component, the initial estimation of the 
space charge density of each field line is: 

 

, cos(( ) / 2), 1, 2,j k ej k subd k ndρ ρ π α= − = L  (6) 

cos(( ) / 2), 1, 2ej e j j nρ ρ π θ= − = L  
where ρdj,k is the space charge density in the monopolar 
component, ndsub is the number of electric field lines in the 
monopolar component, ρe j is the value of ρdj,k at αk=±π, n is 
the number of conductor bundles, ρe is the value of ρej at θj=±π 
and can be calculated from an existing formula, and αk and θj 
are shown in Figure 1. 

In addition, the initial space charge density values in the 
bipolar component are assumed as [8] 

 

, ,0.02( ), 1, 2,j k j k subs d k nsρ ρ= = L         (7) 
 
where ρsj,k is the space charge density in the bipolar 
component, and nssub is the number of electric field lines in the 
bipolar component. 

The fourth order Runge-Kutta method is then used to 
evaluate the space charge density of all nodes. The process is 
repeated until the errors of potential and space charge density 
calculated in two successive iterations are satisfied with the 
required accuracy. The errors of potential and space charge 
density are δ1 and δ2 respectively. 

Figure 2 shows a block diagram of the solution procedure, 
where the corona current can be obtained. 

 

  
Fig. 2. The solution procedure 

IV. VERIFICATION OF REAL ±500KV BIPOLAR LINES 

In order to verify the proposed numerical program, a 
±500kV transmission line model with experimental results 
was used to evaluate the corona ionized field as shown in 
Figure 3. The computation result (the solid line) was 
consistent with the experiment result (the star line). Thus, the 
computation program can be used to validate the ionized field 
of a bipolar bundled conductor.  

 
Fig. 3. ±500kV line ground-plane electric field, the solid line is the calculated 
result and the star line is the experimental result. 

V. RESULTS AND DISCUSSION ON ±800KV HVDC 
TRANSMISSION LINE IONIZED FIELDS 

The proposed program is adopted to analyze the corona 
ionized field of a ±800kV HVDC transmission line. The 
configuration is shown in Figure 1. The algorithm converges 
in three mesh generations, each with 13 iterations for the 
HVDC models. The errors of δ1 and δ2 are less than 0.5%. The 
corona current, ground electric field and ground current 
density are calculated for a ±800kV HVDC transmission line. 

VI. CONCLUSION 
(1) The proposed FEM based numerical method is effective 

for calculating the ionized field of a bipolar bundled 
conductor. 

(2) An increase in the number of bundles decreases corona 
current, while an increase in bundle spacing increases corona 
current. If the monopolar component is not included, the 
corona current will be overestimated. The ground electric field 
and ground current density of the present ±800kV HVDC 
transmission line is less than 30kV/m and 100nA/m2 
respectively. 

(3) The computation program can be used as an effective 
numerical tool for evaluating the electromagnetic environment 
around the HVDC transmission line. 
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Abstract —Chip based multi-core processors (CMP) raise the 
possibility of significant improvement in the performance of 
electromagnetic simulation tools. They can impact the mesh 
generation, solution and result evaluation phases. This paper 
investigates the parallelization and scalability of Gauss-Seidel on 
CMP by using a new cache blocking technique to overcome the 
small cache problem while using a thread synchronization 
technique for better cache sharing and to maximize thread cycle 
utilization. 

I. INTRODUCTION

The computer-based simulation of an electromagnetic field 
problem using a differential technique such as finite 
differences or elements consists of several phases which are 
computationally intensive and have complexities which can be 
beyond linear. These include mesh generation, equation 
solution and result evaluation. The introduction of chip-based 
multi-core processors (CMP), both within the main CPU and 
as part of high performance graphics systems, provides the 
possibility of significant speedups over the existing single core 
systems. Each phase of the simulation system presents its own 
challenges to parallelization. This paper is targeted at the 
equation solution phase. 

In a differential method, the equation sets produced are 
both large and sparse and their solution has been the subject of 
considerable research over the last four decades and, for many 
problems, the algorithm of choice at present is the Incomplete 
Choleski-Congugate Gradient approach which has a 
complexity of approximately O(N1.5). This is, however, a 
predominantly sequential algorithm optimized for a single 
processor machine. It is not obvious that this is an ideal 
algorithm for the new generation of processors and thus it is 
worth revisiting a range of solver algorithms and to re-
examine their performance on the new architectures. 

II. PROCESSOR ARCHITECTURE AND SOLVERS

One of the key issues in considering an algorithm for a 
multi-core system is the architecture of the processor. This 
must be considered as the given environment and the goal is to 
find an efficient algorithm for this architecture, not develop an 
effective architecture for a particular parallel algorithm. Most 
multi-core machines have been designed to handle several 
relatively small tasks in parallel – not to divide one large task 
amongst the processors which is the case for multiprocessor 
based computers. Although CMP has the advantage of low 
inter-thread communication and synchronization due to cache 
sharing, the cache memory is small relative to the 

computational power of the cores and the amount of cache 
available for each core is limited. In addition, the memory 
bandwidth between the cores and the main system memory is 
relatively small. Consequently, the ideal algorithm for this 
architecture is one which can allow for the equation set to be 
broken up between the cores and to maximize the utilization 
of the equation set present in the cache. 

In recent years, the high performance computing 
community has been revisiting both currently and long 
abandoned numerical methods to gain performance in solving 
large system of linear equations. In this paper, we investigate 
the speedup of a parallel Gauss-Seidel algorithm on a CMP. 
As a preliminary test of the algorithm, it is applied to the 
structured linear system of equations resulting from the finite 
difference solution of a parallel plate capacitor. 

 Iterative methods, such as Jacobi and Gauss-Seidel, have 
been investigated on parallel systems. The main concern was 
to reduce the synchronization points between processors 
leading to schemes known as chaotic or relaxation schemes [1] 
which are not suitable for implementation on a CMP. 

The performance of parallel Gauss-Seidel as a multi-grid 
smoother on CMP has also been investigated in [2], where 
cache blocking [3], a technique to reuse data in cache, was 
used to decrease cache misses, hence increasing performance. 
It was used in conjunction with red-black and natural 
reordering techniques of the problem - techniques used on 
parallel systems where synchronization is expensive. 
However, a strong order of execution was imposed on threads, 
leading to lower thread execution time relative to thread 
waiting time.  

It appears that, for larger problems, the gap between the 
slow data access due to a small cache relative to the high 
number of flops available is higher on CMP than other 
hardware architectures. For this reason, we used a more 
execution time hungry threading approach together with a 
cache blocking technique to solve the system of linear 
equations. Synchronized pipelined threading techniques, i.e. a 
producer-consumer model, [4], are used to provide better 
communication and synchronization between threads and to 
provide fair cache sharing and partitions between cores of the 
CMP.

III. METHODOLOGY

Gauss-Seidel is an iterative method used to solve a large 
sparse linear system of equations . The method is 
expressed in (1) for  matrix.   

The Solution of Electromagnetic Field Problems 
using a Sliding Window Gauss-Seidel Algorithm on 

a Multi-Core Processor 
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The matrix ���� is divided into �� blocks that are queued 
into Q as shown in Fig.1. At every new iteration Γ , a sub 
block  ����� is passed from Q to the first thread and 
subsequently each thread passes its last sub block ����� to the 
next thread or back to Q. Threads communicate through 
buffers to avoid resource locking and contention. Each thread 
applies Gauss-Seidel on its correspondent element in �� , 
updates its local solution �� and has a read only access to the 
global solution Χ�. Since threads have the same data size at 
each iteration, they will reach the synchronization point almost 
simultaneously before proceeding to the next iteration leading 
to a minimal thread waiting time. 

Fig. 1. Synchronized Producer-Consumer model  

IV. SIMULATIONS AND RESULTS

We ran our algorithm on a 10000x10000 sparse system of 
equations, using different combinations of block, W, and sub-
block, S, sizes. We calculated thread cycle utilization as the 
ratio of thread execution time to thread waiting time. The 
results were compared to a single thread execution of the 
algorithm (W=10000 and S=10000). As can be seen in Fig.2, 
the speedup when using smaller W and S was super linear for 
4 threads and less on a Quad-Core CMP machine with 2*2MB 
cache. Another observation is that there was a relatively high 
speedup, slightly sub linear, even when the number of threads 
exceeded the number of cores of the CMP. To further illustrate 
those results, Fig.3 shows the effect of increasing thread 

numbers on speedup, thread utilization, and convergence rate 
when W=500, S=100. We notice that convergence rate is 
essential to speedup and thread utilization greatly impacts the 
speedup (between 6 and 8 threads) for this particular problem.  

V. CONCLUSION AND EXTENDED WORK

We conclude that speedup can be achieved even when using 
more threads than the number of cores. Cache blocking affects 
convergence; however, maximizing thread utilization is 
important. In the full paper, the performance of the algorithm 
on an unstructured mesh produced by an FEM code will be 
examined. In addition, the use of a GPU(Graphics Processing 
Unit) to accelerate the calculation at each iteration on each 
block will be investigated.  

Fig.2 Speedup for different block W and sub-block S sizes 

Fig.3 Comparing the effect of increasing thread numbers from 2 on speedup, 
thread utilization and convergence rate when W=500, S=100  
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Abstract—In finite-element analysis, high-quality
meshes are necessary to provide good conditioning of
the system. It minimizes errors and avoid singularities
that might arise. However, most triangle meshes can
hardly be called satisfactory without any kind of post-
processing to improve their intrinsic qualities. This
work presents an effective and efficient algorithm to
improve the quality of surface meshes representing
models generated by the application of the Boolean
and assembly operations to predefined primitives, like
spheres and blocks; and also models obtained from
surface reconstruction.

I. Introduction

Many researchers are investigating ways to automate the
finite-element method (FEM), thus allowing improved pro-
ductivity, more accurate solutions, and use by less trained
personnel. Often the most time consuming and experience
requiring task faced by an analyst is the discretization of
the general geometric definition of a problem into a valid
and well conditioned finite-element mesh. For complex
geometries, the time spent on geometry description and
mesh generation are the pacing items in the computational
simulation cycle.
Automatic generation of consistent, reproducible, high
quality meshes without user intervention makes the power
of the finite element analysis accessible to those not ex-
perts in the mesh generation area. Therefore, tools for
an automated and efficient mesh generation are important
prerequisites for the complete integration of the FEM with
design processes in CAD, CAE, and CAM systems.
Most of the research on development of fully automatic
unstructured mesh generators has been concentrated on
various triangulation schemes. The advantage of them lies
in the fact that simplicial elements (triangles and tetrahe-
dra) are most suitable to discretize domains of arbitrary
complexity, particularly when locally graded meshes are
needed. While the meshing schemes for the discretization
of 2D problems matured into very robust and efficient
algorithms, there are still many open issues in 3D, includ-
ing not only theoretical guarantee of convergence, quality
bounds but also implementation aspects as robustness and
versatility.
The long-term goal for developers of meshing tools is
the generation of high quality meshes directly from CAD
models, without user intervention.

The main contribution of this paper is to speed up the
generation process of high quality finite-element mesh from
poor quality initial surface mesh, which can be obtained
using a solid modeler [1]; or a surface reconstruction
algorithm [2]. Here, the remeshing process driven by a
smooth approximation of the mesh vertices is modified to
take advantage of the multicore platforms.

II. Model Generation

Usually, automatic mesh generators can produce sur-
face meshes with a specified quality degree for simple
predefined primitives, like spheres, cylinders or prisms.
However, to generate models with high complexity two
options frequently can be chosen: the application of the
Boolean (union, intersection or subtraction) and assem-
bly operations over predefined primitives [1]; or the re-
construction of surfaces by an acquisition process, such
as medical imagery, laser range scanners, contact probe
digitizers, radar and seismic surveys [2]. Unfortunately,
both methods produce surface meshes with a large number
of badly shaped elements. For the Boolean and assembly
operations, the elements in the intersection areas are
usually split into degenerate ones, decreasing drastically
the elements quality, as Figure 1 illustrates. The surface
meshes with this level of quality cannot be used as input
for finite element volumetric mesh generators.

Figure 1. Surface mesh generated by the application of Boolean
operations over predefined primitives

Badly shaped triangles also raises in meshes generated
by an acquisition process. During the reconstruction pro-
cess, the algorithm guarantees good approximation for the
geometry and topology, but it does not guarantee the
triangle shape quality. In many cases, the generated mesh
possess a large amount of triangles and many of them are
badly shaped, which sometimes makes impracticable the
volumetric mesh generation. Figure 2 shows an example
of reconstructed mesh.
As consequence, the surface meshes of models gener-
ated by: the application of the Boolean and assembly
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(a) (b)

Figure 2. a) Reconstructed surface from a points cloud, b) Zoom In

applications over simple models; or from an acquisition
process, should be improved, before being used as input
to electromagnetic simulation by FEM.

III. Strategy to Improve the Surface Mesh
Quality

Generally, tetrahedral mesh generators can add new
vertices and edges to a surface mesh, when necessary,
to try to generate a volumetric mesh with good quality.
Nevertheless, vertices, edges, faces, slits and holes from the
input geometric description are constraints that cannot be
removed by them. Remeshing is very important to reduce
the number of sharp angles, as well as improving the
node distribution and their interconnections. Applying a
series of local mesh modification operators that can enrich,
simplify or locally improve the mesh is a good approach for
improving the quality. This approach is known as a mesh
adaptation process and works directly on the surface mesh.
To avoid losing model geometric characteristics during
the process, it is necessary to know the model surface
geometry.
Unfortunately, after the surface is reconstructed, only
the vertices and their interconnections are known. To
overcome the lack of geometric information, an approxi-
mation of the model surface geometry is necessary. The
surface approximation can control the movements of the
vertices and ensure that they stay located on the original
model surface during the application of the local mesh
modifications. Since our set of points P was sampled from
a smooth surface S, approximating them by a smooth
surface is straightforward. B-Spline surfaces can give good
approximations for a large variety of models, as has been
proposed by Nunes et al. in [1]. Each mesh face is approx-
imated by a B-Spline surface patch using the least squares
formulation. To evaluate a patch, the vertices of the face
we want to approximate and the vertices that surround
it are used. The problem then consists of looking for an
approximating B-Spline surface patch s, which minimizes:

F =
µ

τ=0

s(uτ , vτ )− pτ2 =
µ

τ=0


ν

ω=0

Mω(uτ , vτ )cω − pτ

2

(1)
where, cω are the control points, Mω are the blending
functions and pτ are the vertices around a given face. The
model surface approximation is then a collection of over-
lapping B-Spline patches. Differently of Eck and Hoppe

work [3], this approach avoids the global parametrization.
The overlapping set of patches gives a good approxima-
tion of the model and provides the necessary geometric
information to the local mesh modification operators.
The surface mesh is modified iteratively by the operators
(edge-swapping, edge-collapsing, edge-splitting and vertex
relocation) in order to improve the quality of the mesh
elements.
The remeshing algorithm proposed in Nunes et al. in [1]
is effective to produce high-quality finite-element meshes,
but it is inefficient in time. Its computational cost is
proportional to the number of mesh vertices.
We propose two main modifications on the Nunes et al.
remeshing process. First, optimize the choice of the next
element for the application of a local mesh modification
operator, instead of scanning, in sequence, all edges of the
model. These is done by having a priority queue, where
the first element has the worst quality factor.
Second, applying parallel computational techniques to
the remeshing algorithm. With the development of multi-
core machines, parallelization of processes becomes very
attractive to reduce the processing time of high compu-
tational cost tasks. The step of generating the B-Spline
patches that represents the smooth approximation of the
model geometry can easily be converted. The necessary
information to produce each patch does not change during
this step, then it is only necessary to coordenate the
patches generation, sending to each core what they need to
know. The adaptation process can also be parallelizated.
The mesh elements should be divided by sectors and each
sector can be avaliated by different cores, but it is very
important to avaliate carefully the intersection areas to
guarantee consistency.

IV. Conclusion

An important goal of mesh generation is that the finite-
element mesh should be formed by relatively well shaped
elements. Elements with small angles may degrade the
quality of the numerical solution, because they can make
the system of algebraic equations ill-conditioned and this
compromises the solution accuracy.
The modified remeshing algorithm obtain significant
improvements in the surface mesh quality, without loosing
the models original features, in a fair amount of time.
Optimization and parallel computational techniques are
applied to speed up the generation of high-quality finite-
element meshes.
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Extended Boundary-Node Method:         
Application to Potential Problem 

Here, z1, z2, , zN are boundary nodes on ∂Ω whereas zN+1, 
zN+2, , zN+K are nodes in Ω. Moreover, R and αl’s are all 
constants. For the function f(r), we adopt a compactly 
supported radial basis function f(r) = H(1−r) (1−r)3 (3r+1), 
where H(x) denotes Heaviside’s step function. 
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Abstract — The dual-reciprocal boundary-node method has 
been reformulated without using integration cells. In the 
proposed method, boundary integrals are directly calculated by 
use of the vector equation of the boundary. The performance of 
the proposed method has been compared with the dual-
reciprocal boundary-element method (DRM). The results of 
computations show that the accuracy of the proposed method is 
superior to that of the DRM. In addition, when the number of 
boundary nodes exceeds a certain limit, the speed of the proposed 
method becomes almost equal to that of the DRM. 

I. INTRODUCTION 
Since the boundary-node method (BNM) [1] is one of the 

meshless methods, the preparation of data is considerably 
simplified. However, a boundary must be divided into a set of 
cells to evaluate boundary integrals. In other words, a concept 
of elements partly remains in the BNM. 

On the other hand, the method has been proposed for 
depicting a three-dimensional object by use of an implicit 
function [2], [3]. In the method, an implicit-function surface 

 is determined from nodes and unit normals on an 
object surface. Subsequently, the object surface is 
reconstructed by drawing the surface g(x) = 0. If boundary 
integrals are evaluated by use of g(x), the demerit of the BNM 
can be eliminated completely. 

( ) 0g =x

The purpose of the present study is to formulate the 
boundary-node method by using the implicit function g(x) and 
to compare the performance of the resulting method with that 
of the dual-reciprocal boundary-element method (DRM). 

II. DUAL-RECIPROCAL BOUNDARY-NODE METHOD 
As a potential problem, we consider a two-dimensional 

Poisson problem: 
 in ,u ρ−Δ = Ω  (1) 
 on ,u u= ∂Ω  (2) 
where Ω denotes a region bounded by a simple closed curve 
∂Ω. In addition, ρ and u  are known functions in Ω and on 
∂Ω, respectively. 

Although (1) can be transformed to an equivalent boundary 
integral equation, the equation contains not only boundary 
integrals but also a domain integral. In order to approximate 
the domain integral as the sum of boundary integrals, we 
employ the idea of the DRM. In other words, we assume that 
ρ(x) is written as 

 (
1

( ) .
N K

l l
l

Substituting (3) into the boundary integral equation, we get 
 

[ ]

[ ]

}

*
*

*
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*
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+
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∂Ω

∂
− −

∂
⎧ ∂

= −⎨
∂⎩

−

∫ ∫

∑ ∫

∫

x y x y x y x

x y x y

x y x

s

  (4) 
where *( , ) log 2 .w π≡− −x y x y  In addition,  is a particular 

solution of 

ˆlu

( )ˆl lu f R−Δ = −x z  and  denotes its normal 

derivative. Furthermore, s indicates an arclength along ∂Ω.  

ˆlq

From the standard manner of the BNM, (4) and its 
associated boundary condition can be discretized to a linear 
system. By solving the system, we can determine the 
distributions of u and q on ∂Ω. 

III. EXTENDED BOUNDARY-NODE METHOD 

A. Vector Equation of Boundary 
In the conventional BNM, the boundary ∂Ω must be 

divided into a set of cells to evaluate boundary integrals. In 
this sense, a concept of elements has not been completely 
removed from the BNM. In the present study, the integrals are 
directly calculated by use of the vector equation of ∂Ω. In 
III.A, let us briefly explain the method for determining the 
vector equation. 

First, the implicit-function representation ( ) 0g =x  is 
determined for the curve that passes through all boundary 
nodes, z1, z2, , zN, on ∂Ω. Subsequently, we numerically 
solve the following ordinary differential equation: 

 ,
2

d
ds g

π ∇⎛ ⎞= ⋅⎜ ⎟ ∇⎝ ⎠

x R g  (5) 

)f Rρ α
+

=

= −∑x x z  (3) 

where R(θ) denotes a tensor representing a rotation through an 
angle θ. Apparently, the analytic solution of (5) gives the 
vector equation x = x(s) of the curve g(x) = 0. However, even 
if the higher-order Runge-Kutta method is applied to (5), the 
numerical solution x(n) does not always satisfy g(x(n)) = 0. This 
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is mainly due to the discretization error. In order to diminish 
the error, we use the novel algorithm in which x(n+1) is 
calculated from x(n) by use of the following three steps. 
(i) An approximate solution of x* at the (n+1)th step is 

determined by means of the forward Euler scheme: 

 
( )

( )* .
2 n

n g s
g

π δ
⎡ ⎤∇⎛ ⎞= + ⋅ ⎢ ⎥⎜ ⎟ ∇⎝ ⎠ ⎢ ⎥⎣ ⎦ x

x x R  

(ii) For the purpose of determining an intersection of the 
straight line ( ) *

* gλ= + ∇
x

x x  and the curve g(x) = 0, 

the nonlinear equation  is 
solved for λ by using the Newton method. 

( ) *
( * ) 0g gλ+ ∇ =

x
x

(iii) The numerical solution ( 1)n+x  is calculated as 
(  )( 1)

*
* .n gλ+ = + ∇

x
x x

Finally, P data points, x(1), x(2), , x(P), are interpolated by 
using the cubic spline and, as a result, the vector equation   
x = x(s) can be numerically determined. By means of the 
vector equation, boundary integrals can be easily evaluated 
without any integration cells. 

B. Periodic shape functions 
If the circumference of ∂Ω is denoted by L, x(s) is a 

periodic function with a period L. Thus, the integrands of 
boundary integrals become periodic only when the shape 
functions Φi(s)’s have the same periodicity. 

By means of the MLS approximation, the periodic shape 
functions Φi(s)’s are easily determined as  
 1( ) ( ) ( ) ( ),T

i is s A s sΦ −= p c  (6) 

Throughout the present study, the value of R is fixed as R = 1 
and K is determined so as to satisfy 2K N∝ . 

 
 

Fig. 1.  Dependence of the relative error ε on the number N of the boundary 
nodes. Here, the symbols,  indicate the values for the linear and◆,△ ▼,

DRM, the X-BNM (m = 1) and the X-BNM (m = 2), respectively. 
 

 
 

Fig. 2.  Dependence of the ratio τX/τD on the number N of the boundary nodes. 

where A (s) and ci(s) are given by 

 
1

( ) ( ( , )) ( ) ( ) ,
N

T
i i i

i
A s w d s s s s

=

=∑ p p  (7) 

 ( ) ( ( , )) ( ).i i is w d s s s=c p  (8) 

Moreover,  is the distance between x(s) and *( , )d s s *( )sx  
along ∂Ω, and w(r) denotes a weight function. For the  
m-dimensional vector p(s), we assume the following type: 

   

  (9) ( ) ( )(
1

( )
cos 2 / , sin 2 / ; 2.

T m
s

s L s L mπ π
=⎧⎪=⎨ =⎪⎩

p )
; 1,

Let us first investigate the accuracy of the X-BNM and the 
DRM. The relative errors are calculated as a function of N and 
are depicted in Fig. 1. We see from this figure that, for both 
methods, the relative errors are almost proportional to N−β and 
that the power indices β’s satisfy 1.1,β ≈ 2.2β ≈  and 

2.1β ≈  for the linear DRM, the X-BNM (m = 1) and the   

X-BNM (m = 2), respectively. The above results indicate that 
the accuracy of the X-BNM is much higher than that of the 
DRM. 

The above two techniques are incorporated into the method 
explained in II. Throughout the present study, the resulting 
method is called the eXtended Boundary-Node Method      
(X-BNM). 

 

Next, we compare the speed of the X-BNM with that of the 
DRM. The ratio τX/τD of CPU times is calculated as a function 
of N and is depicted in Fig. 2. Here, τX and τD denote the CPU 
times for the X-BNM (  and that for the DNM, 
respectively. This figure indicates that τX/τD decreases 
monotonously with an increase in N until 

1m = )

1X D/τ τ ≈  is satisfied 

for . This tendency shows that, for , the speed 
of the X-BNM is almost equal to that of the DRM. 

210N > 210N >IV. PERFORMANCE OF X-BNM 

In this section, we compare the performance of the X-BNM 
with that of the DRM. To this end, both two methods are 
applied to a simple Poisson problem. The boundary ∂Ω is 
assumed as 

From the above results, we might conclude that the X-BNM 
can be a powerful method for solving a potential problem.   

 ( ){ }22 2( ) / 2 1 0 .g x y∂Ω= ∈ ≡ + − =x R x  (10) V. REFERENCES 

[1] Y.X. Mukherjee and S. Mukherjee, “The boundary node method for 
potential problems,” Int. J. Numer. Methods Eng., 44: 797-815, 1997. In addition, ρ and u  are chosen so that the analytic solution 

of (1) and (2) may be given by 

 ( )2 2

3 cosh sin cos sinh .x yu e x y x y− +
= − +  (11) 

[2] G. Turk and J.F. O’Brien, “Shape transformation using variation implicit 
function,” Proc. ACM SIGGRAPH 99, 335-342, 1999. 

[3] Y. Ohtake, A. Belyaev, M. Alexa, G. Turk and H.P. Seidel, “Multi-level 
partition of unity implicits,” ACM Trans. Graphics, 463-470, 2003. 
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   Abstract-- It is known, that the eddy current losses of conduc- 
tors  of circular or rectangular cross section can be reduced by 
cutting them into sectors. This paper presents an analytical-
numerical mixed solution of this problem as reference for 
numerical methods like FEM. 

 
I.   INTRODUCTION 

   Due to the necessary energy saving multiple efforts are made 
to reduce losses in  electric circuits, networks etc. Recently 
shape and distance of   bar conductors for high current systems 
have been optimised and hereby demonstrating reduction of 
power losses [1]. Another thesis [2] minimised the losses by 
optimising the conductors´shape, applying the Evolution 
Strategy and Finite Element Method (FEM). In [3] it was 
shown how the eddy current losses in circular and rectangular 
conductors can be reduced by dividing them into semi- and 
quarter-circular or –rectangular ones (Fig.1). Although in 
principle known and applied for high frequency twisted 
conductors since long time   this effect should be exploited 
also in electrical energy saving. 
   This paper deals particularly with the semi- and quarter-
circular conductors, approaching each other (Fig.2) perfectly.      
For these cases an analytical-numerical method will be 
derived. 

 

 
Fig.1. Cross-sections of different conductors with cuts 

 
II.  ANALYTICAL-NUMERICAL MODELING 

 
   The time harmonic field problem to be solved for the cut 
conductors, see fig.2, is governed by the complex 
inhomogeneous Helmholtz equation inside ( ) and the 
Laplace equation outside ( ) the conductors: 

ar �
ar �
 

CAjA ����� ����       r a�                      (1) 
 
                                                                          (2) 0��A ar �
 
  A is the complex vector potential, ��, � angular frequency, 

conductivity, permeability, a the conductor radius and C a so 
far undetermined constant, also known as impressed electric 
force. 
 

 
Fig.2.  Semicircular (left) and quartercircular (right) conductor  with  related 

constants C.  I: given current. 
 

C(� ) as shown in fig.2 is expanded in a Fourier series, and 
the homogeneous solution ),( �rAh and particular 
solution  of  (1), composing the total solution ),( �rAp

),(),(),( ��� rArArA ph
i ��                     (3) 

have to be found. 
  
   A.  The semicircular conductor 
 
   is found by separation of variables  and its radial 
dependence is typically given by Bessel functions . 
Instead of these for the particular solution  a sum of power  
series is chosen, which after applying several recurrence 
relations leads to the following total solution: 

hA

12 �kJ

� �)()()12cos(),( 1212
0

prMcprJakrA kkkk
k

i
��

�

�

���� ��   (4)  

containing  the particular solution 
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             (5) 

the graph of which will be shown in the full paper. So far 
unknown coefficients are , and are the coefficients of 
the Fourier series expansion of the piecewise constant C , and 

ka kc

���jp ��2 . Interestingly the derived functions 
are, apart from the sign, identical with a subclass of    )(12 zM k�
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Lommel functions  for )(, zs �� 1��  and �=2k+1, as we 
found in the literature [4]. 
 

B.  The quartercircular conductor 
 
   Unfortunately in this case and also in higher divided 
conductors ( e.g. circle divided by 6,8…) the setup of a sum of 
power series as particular solution was leading to 
contradictions in the recurrence relations. Finally the 
following way was successful: the angle of 90 degrees of the 
conductors was replaced  by  90/1+� with � « 1, power series 
applied and then taking the limit ��0 let us discover a new 
term 

 
� � � �prJpr k )12(2ln ��                               (6) 

the bahaviour  of which was so far missing in the particular 
solution. The whole solution will be shown in the full paper, 
and it cannot be expressed by known closed form functions 
like those of Lommel or Struve. 
 

III.  CURRENT DENSITY,LOSSES AND INDUCTIVITY 
 

   Finally the boundary conditions at ar �  enable to define 
the coefficients . The current density is related to the vector 
potential by 

ka

 
� � � � CrAjrG ��� ���� ,,                         (7) 

and the integration of the current density over the conductors´ 
cross section , equalling the given total current I, delivers the 
constant . Losses and inductivity are related to this constant 
by a simple formula [5].  

C

 
IV.  NUMERICAL RESULTS 

 
    Fig.3 shows, that the current density distribution  in the case 
of the quartercircular conductor is more uniform than with the 
semicircular one, indicating already higher eddy current losses 
in the latter one. This is quantitatively proven  and shown 
together with the inductivity in fig.4. 
 
 
 

 
 
Fig.3. Lines of constant current density (amount) for the normalized frequency 

:,5 FF �� ���� cross section area of go and return conductor.  

Left: semicircular conductor. Right: quartercircular conductor 
 

    The results, documented in fig.3 and fig.4, were calculated 
by the analytical-numerical method. The curves fit the results 
calculated by FEM. 
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Fig.4.  Power losses P and inductivity L in dependence on normalized 
frequency � .    are reference values for DC oo LP , � �0��  and 

semicircular conductor 
 

V.  CONCLUSIONS 
 

   The contribution shows quantitatively, how conductors, cut 
into sectors, can reduce power losses in the example of semi- 
and quarter-circular conductors. The latter example turned out 
to be much more difficult to find an analytical-numerical 
solution of the inhomogeneous Helmholtz equation than the 
first one, where the solution is related to Lommel functions. 
The two solutions found by this contribution can now serve as 
reference for numerical methods like FEM. 
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Abstract—A new boundary formulation for the computation
of the current and electromagnetic fields on a printed circuit
antenna is presented. The state variables are the surface current
density j on the metal, the tangential electrical field on the
dielectric boundary and the tangential magnetic field on the
whole boundary. We obtain good results. We give comparisons
between numerical results and experimental measurements.

I. INTRODUCTION

We are interested by modelling printed circuit antennas
made of thin metallic layers on a dielectric substrate. It is
then necessary to use an integral fields representation but, as
the metal is not a perfect conductor, we have to satisfy Ohm
law. This one imposes that the current and the electric field
are expanded with the same basis functions. This implies a
real problem as e and h being naturally expanded with edges
elements, the surface current density j has to be expanded
with edge elements rotated by π

2 . A few years ago, in [1], we
proposed a formulation where the unknowns were the surface
currents on the metallic layer and the electrical and magnetic
fields on the whole boundary of the system. But the Ohm law
was only weakly satisfied. This formulation permitted to treat
the case of a substrate widely covered by a thin metallic layer
but the simulation of a printed-circuit antenna was not efficient
enough for all frequencies and geometries. We here propose
a different method where the unknown quantities are j on the
metal, n× e on the dielectric boundary and n×h on the total
boundary. The current j and the field e never appear together
at the same place and the Ohm law is strongly verified.

II. PHYSICAL PROBLEM

Let Ω be a dielectric substrate of permittivity �d; its bound-
ary is Γ. A part of Γ is covered by a metallic layer (with slit)
of small thickness d and conductivity σ; it is called Γm and
the other part of Γ is called Γd; the boundary line between
Γm and Γd is called γ0. −→n is the outward normal to Ω on Γ
and

−→
N is the outward normal to γ0 tangent to Γ. A source

field (hs, es) is applied at angular pulsation ω; skin-depth δ in
the metal is such that δ � d. On Γm, Ohm law gives:

j = σ d e

where j is a surface current density.
Across Γm:

•n × e is constant upon d as δ � d,

Fig. 1. The system

•n×(ha−hd) = j, ha being the magnetic field on the external
face of Γ in the air and hd on the internal face in the dielectric.

Across Γd:
•n× e and n × h are continuous.

III. INTEGRAL REPRESENTATIONS OF THE FIELDS

By using Stratton-Chu formulae [2], we obtain an integral
representation of the tangential electric field on the external
face of Γ :

n × e

2
(x) = n(x) × es(x)

+iωμ0 n(x) ×

�

Γ

Ga(x, y)(n × ha)y

−
1

iω�0
n(x) × grad

�

Γ

Ga(x, y) divΓ(n × ha)y

+n(x) ×

�

Γ

gradxGa(x, y) × (n × e)y. (1)

where Ga and Gd are the Green functions in the air and in
the dielectric for the Helmholtz equation.

By noting that Stratton-Chu formulae inside Ω do not
contain the source field, we have on the inside face of Γ:

−
n × e

2
(x) = iωμ0 n(x) ×

�

Γ

Gd(x, y)(n × hd)y

−
1

iω�d
n(x) × grad

�

Γ

Gd(x, y) divΓ(n × hd)y

+n(x) ×

�

Γ

gradxGd(x, y) × (n × e)y. (2)
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Fig. 2. The antenna (metallic layers only)

We shall take as variable for the magnetic field:

h = hd, and we have : n × ha = n × h + j (3)

As j is the jump of the tangential magnetic field accross Γ, it
has to be defined in the same functional space than n×h and
n×e. But as j = σ de, j must be defined in the same functional
space than e and would to be discretized with the same basis
functions. Clearly, there is an incompatibility, because it would
necessitate to have the same discretization for j and n × j.
The only way to avoid this problem is to never have both the
unknowns j and e in the same place. So, we adopt j as state
variable on Γm and e on Γd.

By making the difference between equations (1) and (2),
replacing e by j/σd, multiplying by a test current j� and
integrating on Γm we obtain a first variational equation. By
multiplying by a test field e� and integrating on Γd, we obtain
a second one. Finally, by taking the sum between equations
(1) and (2), multiplying by h� and integrating on Γ we obtain
the third variational equation.

IV. RESULTS

We take a dielectric discus with radius equal to 8 cm and
height equal to 1.6 mm; it is covered with two metallic layers,
one on the upper face and the second one on the lower face.
We see the layers and their meshing on fig. 2.

We computed the numerical resonance frequency (f0= 44
Mhz) and numerical quality factor Q (Q0= 44) from numerical
(NF) curve of resonance (fig. 3). The error percentage is 8
% in comparaison with experimental measurement (fexp =
48, Qexp = 48).

Fig. 3. The resonance curve

Fig. 4. Second antenna

We next take a dielectric discus with radius equal to 10 cm
and height equal to 0.788 mm; it is covered with two metallic
layers, one on the upper face and the second one on the lower
face, 2 slits in each layers like in fig. 4.

Fig. 5. The resonance curve

We computed the numerical resonance frequency f0= 62.3
Mhz and numerical quality factor Q0= 432 from numerical
(NF) curve of resonance of the second antenna (fig. 5). The
error percentage is 8 % in comparaison with experimental
measurement (fexp = 67.9, Qexp = 400).

V. CONCLUSION

This method uses an integral representation formula of
the tangential fields on the boundary, such that the Ohm
law is strongly verified. The comparison with experimental
measurements was interesting and we can use this method for
several types of antennas.
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Abstract — In this paper we present a technique to solve 
magnetodynamic FEM cases where the assembling, storing and 
solving the matrix system  Ax = b is performed in a different way 
compared with the classical techniques. The application of this 
technique for static cases was already presented. Using the T-Ω
formulation, we consider here eddy currents in the conductive 
parts of the domain using time stepping discretization. As main 
result, the implementation is much simpler than traditional 
techniques widely used in virtually all the FEM codes. The final 
results match the ones obtained by the classical methods with 
very good accuracy. 

I. INTRODUCTION

In a previous work we presented this method for static cases 
[1]. Here, we consider the time stepping dynamic cases, where 
eddy currents exist in the conductive parts of the domain. The 
T-Ω  formulation is here employed. It means that the 
unknown variables are the scalar potential Ω  on the nodes 
and the circulation T of vector electrical potential T on the 
edges of the conductive elements [2][3].  

The FEM requires the calculation of the elemental 
contribution matrices, whose evaluation is normally 
performed element by element and assembled in the global 
matrix system commonly designated Ax = b. Boundary 
conditions are inserted and the system is solved by a direct 
method (as Gauss Elimination) or by an iterative one (as 
ICCG). With the proposed technique, we operate mainly by 
nodes (it was called N Scheme in the previous paper). Now we 
must consider also the T potentials on the edges of the 3D, 
first order tetrahedron elements and time discretization.  

The resulting implementation is much simpler compared to 
the regular way of classical FEM codes because it is not 
necessary to assemble, store and solve an Ax = b system as 
normally done. These steps are performed in only a single 
procedure. The only drawback is the computation time which 
is somewhat higher than traditional implementations. In spite 
of this drawback, the new scheme is effective and provides 
reliable results.  

II. THE PROPOSED TECHNIQUE – N SCHEME

For didactical purposes, we replicate here the description of 
the method, already presented in [1]. For the same reason, a 
very simple 2D mesh is here considered, even though the T-
Ω  formulation is applied in 3D cases. The N scheme requires 
working node by node using element “cells” around the nodes.  

In Fig. 1, the nodes are indicated by numbers while the 
elements by letters. Suppose that the nodes 3, 5, 7 and 11 are 

unknowns and the others (1, 2, 4, 6, 8, 9, 10, 12, 13 and 14) 
have imposed boundary condition values. 

                                   Fig. 1 – 2D mesh 

Firstly, let us consider the node 3. The corresponding 
elements are: a, b, c, g, h, t and u and this cell is indicated in 
thick lines (the cell of the node 7 is indicated with dashed 
lines). When calculating the elemental matrix for this element 
(a typical rigidity matrix for a linear 2D triangular element), 
we obtain an a(3,3) matrix; for the source we have a s(3) 
vector.  Suppose that the potential unknown is called v and 
that the element a is the only one acting for the node 3. If the 
nodes numbering created by the mesher has the sequence 14, 
3 and 1, the elemental matrix system given by this sole 
element is: 

                    
1,1 1,2 1,3 14 1

2,1 2,2 2,3 3 2

313,1 3,2 3,3

a a a v s

a a a v s

sva a a

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

                  (1) 

Supposing that the values of 1v  and 14v  are known (as 

Dirichlet boundary conditions, for instance) we can write, for 

the potential 3v :

                          
2,2 3 2 2,1 14 2,3 1a v s a v a v= − −                           (2) 

The above expression must interact with other elements 
surrounding the node 3. Similar equations are calculated for 
all the elements of this cell. Using the notations of [1], we 
proceed with the sum of all the diagonal terms related to the 
node n=3 as:  

        
n,n n,n n,n n,n n,n n,n n,n_ a b c g h u tdiag sum a a a a a a a= + + + + + +

The sum of the right hand side of (2) is also calculated for all 
the elements as  
          

j,l j,l j,l j,l j,l j,l j,l_ a b c g h t uright sum r r r r r r r= + + + + + +
The node 3 has interaction with the unknown nodes 5, 7 

and 11 through the common elements c, g, h and u.  Since the 
procedure is iterative, the potential of these nodes will be 
placed on the right hand side with their current values (exactly 
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as the boundary condition nodes). Once diag_sum and 

right_sum are calculated, the value of 3v  is given by:                                                          

                     
3 ( _ ) /( _ )v right sum diag sum=                   (3) 

Similar operations are performed for the 5v , 7v , 11v
unknowns. Once it is done, we have a first approximation for 
these unknowns. Then the second iteration starts, with 
unknown values somewhat closer to the solution. As the 
iterative procedure progresses, the convergence is reached. 
This procedure is strictly equivalent to the application of the 
Gauss-Seidel iterative method with a relaxation technique 
[4][5]. 

In this work we must take into account the potential 
circulation T on the edges of the conductive elements. For 
doing so, we apply a similar procedure: for each edge having 
an unknown T, it is necessary to consider the elements 
“surrounding” the edge and the same technique is applied. 
However, there is a coupling between the potentials Ω  and T,
but it does not imply in any particular difficulty. In fact, the 
resulting matrix system can be written, as:  

i

T i

P Q T

Q A

⎡ ⎤⎡ ⎤
=⎢ ⎥⎢ ⎥

Ω⎣ ⎦ ⎣ ⎦

1

1

0

0 0

i

i

R Q T

U

−

−

⎡ ⎤⎡ ⎤ ⎡ ⎤
+⎢ ⎥⎢ ⎥ ⎢ ⎥Ω⎣ ⎦ ⎣ ⎦⎣ ⎦

         (4) 

whose values are indicated in [2][3]. 1iT −  and 1i−Ω  are 
known from the previous time step. Therefore, applying the 

same principle as for the static case above, for generic iT  and 
iΩ  unknown we have their values given by: 

      * 1 1( ) / _i i i i i iT P T Q RT Q sum diagT− −= − − Ω + + Ω         (5) 

             *( ) / _i T i i iQ T A U sum diagΩ = − − Ω + Ω                  (6) 

In the matrices *P and *A  the diagonal terms are not 
considered. They are present on the diagonal sums. 

III. IMPLEMENTATION

As similar to [1], it is necessary to set an array furnishing 
the elements “around” the unknown nodes and here another 
one with the elements “around” the edges T. Then the N
scheme for this formulation is: 

Loop of iterations:

    Loop for the N unknowns i
nΩ

        Calculate the diagonal sum; 
        Calculate the right hand side sum;

        Calculate the new value of i
nΩ  by (6); 

    End of the Nodes loop;

     Loop for the M unknowns i
mT

        Calculate the diagonal sum; 
        Calculate the right hand side sum;

        Calculate the new value of i
mT  by (5);  

    End of the T edges loop;   
End of the iterations loop (until convergence). 

IV. EXAMPLE

As example, we have the magnetic circuit of the Fig. 2a. 
The conductive part is at the right of the U-type magnetic 
piece which is surrounding a coil. A pulse of current is 
imposed on the coil, generating the eddy currents on the 
massive part. In Fig. 2a the magnetic induction is indicated by 
the arrows. The larger ones in the figure are located in the 
conductive part since its cross section is relatively thin. In Fig. 
2b the induced current density distribution is shown. 

         
                Fig. 2a – Flux distribution                  Fig. 2b – Eddy currents  

The number of elements is 16410. There are 3400 
(unknown) nodes and 4000 T unknown edges (only in the 
conductive piece). The computation time with the traditional 
technique is 33 seconds and, with the proposed method, 61 
seconds. As in [1], the calculation is longer with this method. 
The relative errors are 1.1%, 0.2% and 1.4% on the maximal 
B values, magnetic energy and eddy current losses, 
respectively. It is an accurate result for two different methods. 

V. FINAL CONSIDERATIONS

The main focus of this work is to show that the N scheme
proposed in [1] could be used on time stepping, eddy currents 
cases as well. We can also inform that, in a parallel work, it 
has been successfully employed on vector potential edge 
elements cases [6]. Our goal from now is to concentrate 
efforts on the convergence procedure in order to diminish the 
computational time. If this investigation yields good results, it 
will be possible to propose a technique as fast as the 
traditional one providing implementation advantages. 
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Abstract— A common structure of several physical laws
emerges naturally from the Tonti diagrams of different physical
theories so that topological operators can be built only once and
used to assemble resolving matrices of the various problems. This
process is known in algebraic topology as coboundary process
and is briefly presented as the theoretical background for solving
multiphysics problems.

I. INTRODUCTION

One of the most important ideas in the work of Tonti and his
algebraic formulation of physical theories [1], is the rigorous
classification of physical variables and their link to geometrical
entities. This classification is not specifically related to one
particular physical phenomenon but, as a fundamental issue,
highlights the common space-time structure underlying many
physical thories. For this reason Tonti’s work is a natural
environment for developing a multiphysics analysis based on
a numerical technique, which will be hereinafter called Cell
Method (CM). Many aspects of the CM are common with
the Finite Integration Theory [2] and similar ideas have been
explored extensively by many researchers, e.g. [3].

II. PRIMAL AND DUAL CELL COMPLEX

In the algebraic formulation of physical theories, variables
are associated with oriented space-time geometrical entities.
Two discretizations are defined over the problem domain:
the usual discretization adopted by many numerical methods
forms a complex of space elements called primal complex
but another cell complex is also defined, which is intertwined
with the primal one by duality relations. Thus dual volumes
are one-to-one associated to primal nodes, dual faces are
dual geometrical entities of primal lines, dual lines of primal
faces and dual points of primal volumes. Depending on
their nature, global variables are associated to the primal or
dual complex [1]. Equations that link a quantity defined on
the primal complex and another on the dual complex are
called constitutive equations and can be represented by square
matrices due to the duality of the complexes. When global
variables are used, physical equations can be written in a
discrete form. The discrete operators that are representative
of gradient, curl and divergence operators are the incidence
matrices G (edge-to-node), C (face-to-edge), D (volume-to-
face). Since the same spatial entities are present in the dual
complex, similar incidence matrices can be defined for the
dual complex. They are represented by a tilde sign: G̃, C̃, D̃.
At least for topologically trivial complexes of cells, duality

relations impose that:

D̃ = −GT; C̃ = CT; G̃ = DT. (1)

Topological laws link variables defined on the same cell com-
plex by making use of these discrete operators. Topological
equations are of three possible kinds:

1) balance equations, in particular conservation laws: in
a differential setting they are expressed by the div
operator; in algebraic methods they make use of D̃;

2) circulation equations: in a differential setting they are
expressed by the curl operator, while in a discrete
setting by a C̃ matrix

3) difference equations: in a differential setting they are
expressed by the grad operator or by G in discrete
formulation.

Different phenomena sharing the same topological equation on
the same space discretization (for instance thermal flow and
electric flow balance) keep the same matrix equation structure
and differ only by their constitutive matrices.

III. COBOUNDARY PROCESS

In order to define the coboundary process it is necessary
to introduce some algebraic topology concepts. The reader
can refer to [4] for a thorough introduction to this subject.
Given a global physical quantity associated with a generic p-
cell of a cell complex (where p is the spatial dimension), the
knoweledge of the amount of a physical variable associated
with a set of p-cells is called p-cochain. As an example, in
heat conduction problems, the assignment of the temperature
to every node (0-cell) gives rise to a 0-cochain. In current
flow problems, the assignement of voltage to every edge (1-
cell) gives rise to a 1-cochain. The (p + 1)-cells that share a
generic common p-cell are called cofaces.

The coboundary process is a procedure that starting from a
p-cochain gives rise to a (p+1)-cochain by a two-step process:

1) for every p-cell the value of the physical variable asso-
ciated with it is transferred to all cofaces of the p-cell,
with the correct incidence number;

2) for every (p+1)-cell all these values are added together.
In this way we obtain a new physical variable, with the
same physical dimensions, associated with every (p+1)-
cell. In this way a new (p + 1)-cochain is obtained.

The coboundary process is the theoretical background of all
topological laws based on discrete gradient, curl and diver-
gence. Since these operators are built as a coboundary process,
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Fig. 1. Tonti diagrams.

it is easy to understand that they are incidence matrices. The
most important consequence is that the coboundary process is
a purely topological operation, it is not related to a specific
physical theory but it is common to different problems. When
studying a multiphysics problem, if the different fields share
the same discretization, discrete operators that are representa-
tive of gradient, curl and divergence still remain the same for
all problems.

IV. ELECTRO-THERMO-MECHANICAL PROBLEM

In this section the aforementioned coboundary process is
applied to the multiphysics study of a microresistor beam
involving electrical, thermal and mechanical effects. The ex-
ample is taken from a library of test cases provided by the
COMSOL Multiphysics finite element program [5] which
is used as reference. In this particular application electric
current generates heat, and the temperature increase leads to
displacement through thermal expansion.

A. Stationary current field

The global variables used in stationary current problems
are electric scalar potential ϕ, voltage u and electric current
i. Their placement in Tonti diagram is reported in Fig. 1(a).
Ohm’s discrete constitutive matrix Mσ for tetrahedra can
be built by making use of Whitney edge-elements [6]. By
following the primal cycle, i.e. starting from the electric scalar
potential on the primal complex in order to obtain given
sources on the dual complex, it is easy to obtain the equation:

GTMσGϕ = 0. (2)
B. Transient thermal conduction field

In Fig. 1(b) the Tonti diagram for transient thermal conduc-
tion is shown: by assembling the topological and constitutive
equations presented, following equation is obtained

Mc+ τ
2G

TMλG

θk =


Mc− τ

2G
TMλG


θk−1

+ 1
2 (Wk +Wk−1)

(3)
where: M is the mass matrix of dual volumes, c is the thermal
capacity, τ the amplitude of primal time interval, Mλ the
discrete matrix of thermal conductivity. Since Mλ links tem-
perature difference and heat flux, which are defined on primal
edges and dual faces, respectively, this constitutive matrix is
built in the same way as the discrete electrical conductivity
matrix. The coupling terms with the stationary current field
are the thermal dependence of electrical conductivity and joule
losses as thermal sources. Equation (3) proposes the Crank-
Nicholson time integration scheme, but it is possible to derive
other integration schemes by a suitable definition of duality in
time discretization [7].

(a) Electric scalar po-
tential

(b) Temperature (c) Von Mises equiva-
lent stresses

Fig. 2. Results of coupled electro-thermo-mechanical analysis (steady state).

TABLE I
COMPARISON BETWEEN COMSOL AND DUALLAB

Total current, A max T, K max ∆z, m
COMSOL 0.773 1017.4 8.18E-8
DualLab 0.775 1017.1 8.28E-8

C. Elastostatics

Tonti diagram for elastostatics is depicted in Fig. 1(c).
By following the same rationale of other physical theories,
with the only difference in the constitutive equation ME and
neglecting details for the sake of conciseness, the equation of
elastostatics is:

GT
3MEG3u = Fv (4)

G3 is a tri-block diagonal matrix, where each block is made
by the G matrix that appears in (2) and (3).

D. Results

The aforementioned formulation, implemented in the Du-
alLab code, has been applied to the described benchmark
problem, and maps of electric scalar potential, temperature and
Von Mises stresses are shown in Fig. 2. A comparison with
results obtained with COMSOL is shown in Table I (note that
high temperature values are due to a voltage of 1 V applied
between the electrodes).

V. CONCLUSIONS

The described approach, based on Tonti diagrams, has
been shown to deliver an elegant approach for the efficient
implementation of multiphysics problem formulations. More
complicated multiphysics applications will be presented in
the full paper together with CPU time and memory usage
comparisons with leading finite element codes.
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Abstract—The aim of the paper is to present a three–
dimensional geometric time–domain eddy–current A formulation
for hexahedral grids. The resulting singular differential algebraic
linear system of equations (DAE) is solved by means of a
Singly–Diagonally Implicit Runge–Kutta (SDIRK) variable step–
size solver. The formulation is validated by comparing the results
from a benchmark problem with respect to a Finite Elements
commercial software.

Index Terms—Cell Method (CM), Finite Integration Technique
(FIT), Discrete Geometric Approach (DGA), eddy–currents,
time–domain.

I. INTRODUCTION

The so-called “Discrete Geometric Approach” (DGA) [1],
similarly to the Finite Integration Technique (FIT) [2] or the
Cell Method [3], allows to solve directly Maxwell’s equations
in an alternative way with respect to the classical Galerkin
method in Finite Elements.

In this paper, a three–dimensional geometric time–domain
eddy–current formulation suitable for hexahedral grids based
on the circulation A of a magnetic vector potential A is
described.

The domain of interest D of the eddy–current problem
has been partitioned into a passive conductive region Dc,
a source region Ds and a non–conductive region Da. The
domain D is covered by a finite element mesh of hexahedra;
The corresponding cell complex [3] is denoted as K. From
K, the barycentric dual complex B is also introduced [3]. The
incidence matrix between edges e and nodes n is denoted
by G, the incidence matrix between faces f and edges e is
denoted by C and the incidence matrix between hexahedra v
and faces f is denoted byD. The matrices G̃ = DT , C̃ = CT

and D̃ = −GT describe the mutual interconnections of the
dual barycentric complex [3].

Next, we consider the integrals of the field quantities
with respect to the oriented geometric elements of the mesh,
yielding the Degrees of Freedom (DoF) arrays:

• Φ is the array of magnetic fluxes associated with faces
f ∈ D; F is the array of m.m.f.s associated with dual
edges ẽ ∈ D; I is the array of currents associated with
dual faces f̃ ∈ Dc. In Ds we introduce the array Is of
impressed currents; U is the array of e.m.f.s on primal
edges e ∈ Dc.

• A is the array of circulations of the magnetic vector
potential A along the primal edges e ∈ D.

Maxwell’s laws can be written exactly as topological balance
equations between DoFs arrays, as

(CTF)e = 0, e ∈ Da

(CTF)e = (Is)e, e ∈ Ds

(CTF)e − (I)e = 0, e ∈ Dc

(1)

(Φ)f = (CA)f , f ∈ D (2)

where (1) is the Ampère’s Law, (2) involves the array A in
such a way that Gauss’ Law DΦ = 0 is satisfied identically
(since DC = 0). The discrete counterpart of the constitutive
laws can be written as

F = νΦ, in D (a) I = σU, in Dc (b) (3)

where the matrices ν and σ are square symmetric positive–
definite and consistent matrices which can be efficiently con-
structed in a pure geometric way for an hexahedral primal
grid, as described in [4].

Combining the discrete Faraday’s law (CU)f = − d
dt (Φ)f ,

f ∈ Dc, with (2) yields

(U)e =

−dA

dt



e

, e ∈ Dc. (4)

II. TIME–DOMAIN EDDY–CURRENT A FORMULATION

The symmetric algebraic system of equations, having A(t)
as unknown, can be obtained by combining (3a), (3b), (2) and
(4) into (1)

(CTνCA(t))e = 0, e ∈ Da

(CTνCA(t))e = Is(t), e ∈ Ds

(CTνCA(t))e + (σ d
dtAc(t))e = 0, e ∈ Dc

(5)

whereAc contains the entries ofA relative to the edges of Dc.
The source currents vector Is(t) can be expressed as Is(t) =
Is · s(t), where Is can be computed as described in [5] for a
unit current and s(t) is a function of time that describes the
time evolution of the source current.
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III. INTEGRAL SOURCES

When modeling stranded coils, it is useful to introduce
integral sources, which do not require the coils to be meshed.
With this aim, we express the array A as A = As+Ar, where
As contains the contribution produced by the source currents
in Ds and Ar due to the eddy–currents in Dc. Equation (5)
can be rewritten as

(CTνCAr(t))e = 0, e ∈ Da

(CTνCAr(t))e + (σ d
dtAr(t))e = −(v(t))e, e ∈ Dc

(6)
where (v(t))e =


σAs

ds(t)
dt


e
. Each entry (As)e of the array

As can be pre-computed as (As)e =

e
As · dl, where e is

a primal edge in Dc and As is the magnetic vector potential
due to a unit source current in Ds.

IV. NUMERICAL RESULTS

The time–domain A geometric eddy–current formulation,
with both meshed and integral sources, is implemented in the
GAME code [6].

It should be noted that the matrices in (5) and (6) are
singular and to solve (5) or (6) we rely on a in–house
developed Singly–Diagonally Implicit Runge–Kutta (SDIRK)
DAE solver with a variable step–size [7].

A fully three–dimensional geometry consisting of a circular
coil placed above a conducting plate (σc = 4 · 107 S/m) is
considered as a benchmark problem, see Fig. 1. The source is
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Fig. 1. The geometry of the benchmark problem is shown.

enforced by a stranded circular coil Ds with s(t) = 400 · (1−
e−t/τ ), where τ = 1 ms.

To compare the results obtained with the A geometric
formulation, the ANSYS commercial Finite Elements software
is used. Since the problem is axisymmetric, a first solution is
computed with ANSYS using a two–dimensional quadrilateral
mesh consisting of about 50, 000 elements of second order
(time step of 0.01 ms). Then, the full three–dimensional sim-
ulations, using the same mesh consisting of 19, 136 hexahedra
(59, 330 DoFs), are run with ANSYS and the GAME code
(fixed time–step of 0.05 ms for both ANSYS and GAME).

The amplitude of the current density along a number of
points evenly distributed along a sampling line shown in Fig.
1 for t = 1 ms is represented in Fig. 2. In Fig. 3, the time
behavior of the module of the current density in the point P
(situated on the sampling line, at a distance of 7.5 mm from
the axis) is shown. The results obtained by the DGF are in
very good agreement with ANSYS. The CPU time will be
described in detail in the full paper.
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Fig. 2. Amplitude of the current densities along a sampling line.
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V. CONCLUSIONS

A three–dimensional geometric time–domain eddy–current
A formulation suitable with hexahedral meshes has been
presented. The formulation has been successfully validated
using a Finite Elements commercial software.
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9I   NUMERICAL TECHNIQUES: NOVEL METHODOLOGIES 

Abstract —In bioelectromagnetics and other domains, the 
structures in which the electromagnetic field is to be computed 
are sometimes defined by a fine Cartesian grid of voxels (3D 
cells), in each of which the material properties are specified. A 
novel finite element method is proposed for such cases. A simple, 
regular mesh of cube elements is constructed, each containing the 
same, integer number of voxels. There may be several different 
materials present within an element, but this is accommodated by 
computing element basis functions that approximately respect 
the interface conditions between different materials. Results are 
presented for a test model consisting of nested conducting cubes, 
driven by a current dipole, which is a crude version of the 
electroencephalography forward problem. The static potential 
computed with the new method agrees well with that of a 
conventional finite element code.  

I. INTRODUCTION 
Tomographic techniques such as magnetic resonance 

imaging (MRI) provide information on the size, shape and 
material properties of a slice through a complex 3D structure, 
and an assembly of such slices allows us to construct the 
geometry of the entire structure as a Cartesian grid of voxels. 
This can be used as the starting point for a finite element (FE) 
analysis of the electromagnetic fields. The conventional 
approach is to construct a solid model from the voxel data and 
to subdivide that into finite elements [1]. The process is time-
consuming and prone to error. An alternative strategy was 
proposed in 2D in [2] and is here extended to 3D. A simple, 
regular mesh of cube elements is superimposed directly on the 
voxel grid. In general, each cube will contain several different 
materials, possibly with large differences in their 
electromagnetic properties. This is not possible with 
conventional finite elements, but the usual basis functions of 
the cube element are replaced by computed basis functions 
that take into account the different materials.  

II. THE METHOD OF COMPUTED BASIS FUNCTIONS IN 3D 
The computational domain Ω consists of nxnxn voxels. 

Each voxel has a known electromagnetic material property, 
e.g. conductivity σ. There may be material discontinuities in 
this model, represented by neighboring voxels of different 
materials. This type of voxelization is used to approximate 
smooth geometric objects with abrupt boundaries in 
tomographic techniques.  

Consider the following partial differential equation in Ω: 
 

gLu =              (1) 

where u is an unknown scalar function, L is a partial 
differential operator depending on the material property, and g
is a known excitation applied in Ω. We subdivide domain Ω 
into a set of cube elements, and each element consists of 
pxpxp voxels. Each element may contain several different 
materials. One such element is shown in Fig. 1. Color shading 
indicates different materials.  

 
Fig 1. A pxpxp cube finite element containing two different materials. Here p
= 4. 

 
The conventional FE method does not allow different 

materials within one element. The element basis function 
therefore does not depend on materials but only on the 
geometry. In our method, we use computed basis functions to 
allow for this material difference within one element. The 
computed basis function satisfies the following equation  

 
0=Lu            (2) 

 
approximately within each element. In this way, the computed 
basis function tends to respect the internal discontinuities and 
therefore serves as a reasonable local approximation even with 
non-uniform filling material.  

The computed basis function also needs to satisfy the 
continuity condition between adjacent elements. This 
continuity is obtained by imposing the same computed 
functions for all the edges and faces shared by neighboring 
elements. First we compute the functions for edges. Take the 
edge from ( )ph,0  to ( )phph,  in Fig. 2 as an example. This 
edge is shared by four neighboring cube elements. The edge 
function ( )xe  for node ( )phph,  is the solution to: 

 
( )

( ) ( ) 100..
0

==
=

pheets

xLe
     (3) 
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The equation is solved by the finite difference method. The 
material property for each point on this edge is obtained by 
taking the average material property of the four voxels sharing 
the point.  

These edge functions are next used as boundary conditions 
in solving for the face functions, ( )yxf , . Suppose we are 

solving for the face function for node ( )phph,  in Fig. 2. The 
boundary conditions are as follows: 

 
( ) ( ) ( ) ( )
( ) ( ) 0,000,

,,
==
==

yfxf

yeyphfxephxf
    (4) 

 
where ( )xe  and ( )ye  are edge functions for node ( )phph, . 

 
Fig 2. An element face, which is shared by two elements. p=4.

After we obtain all the face functions, we use them to compute 
the element basis function. This is done by solving the 
differential equation (2) throughout the volume of the cube 
element. The boundary condition on each face of the cube is 
defined by a face function.  
 When all the element basis functions are obtained, they are 
used in a conventional FE variational formulation to find the 
scalar u throughout Ω.  

III. TEST CASE 
In electroencephalography (EEG), the forward problem can 

be defined as: given the position and moment of current 
dipoles in the brain, find the electric potential distribution over 
the scalp. The head model obtained by MRI consists of voxels 
representing anatomical tissue of the head and this can be used 
in the forward problem computation. 

A case similar to the EEG forward problem is analyzed by 
the new method and the results compared with those from a 
conventional FE method. A rectilinear geometry is chosen, so 
that the voxelized version matches exactly the geometric 
model treated by the conventional FE method; this would not 
be the case if, for example, a spherical geometry were used, 
because of the staircase approximation to the spherical 
surfaces that is unavoidable in voxelized data such as that 
obtained by tomography. In this way, the intrinsic accuracy of 
the new method can be established, without the added 
geometric uncertainty caused by the voxelization. We apply 
our method to a four layer cube model consisting of 

128x128x128 voxels. The sides of the concentric “scalp”, 
“skull” and “brain” cubes have lengths 104, 96 and 88 voxels 
respectively. The conductivities are 1 Sm-1, 0.0125 Sm-1, and 
1 Sm-1 for brain, skull and scalp, respectively. A current dipole 
is placed symmetrically. Fig. 3 is the middle slice of the model 
on a coronal plane. 

 
Fig 3. A cube model consisting of 128x128x128 voxels  

 
An element size of 4x4x4 voxels is used and the potential is 
sampled along a line one voxel away from the scalp. The 
sample line is shown as dashed in Fig. 3. The result is 
compared with those obtained by ElecNet [3] which uses a 
fine mesh of conventional, 3rd-order, tetrahedral elements. 
Then we perturb the problem by increasing the size of each 
nested cube (except the outermost one) by 2 voxels. 
Comparisons for both cases are plotted in Fig.4. Both results 
show good agreement, which indicates the competence of the 
new method in dealing with elements containing strong 
material discontinuities. 
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Fig 4. Comparison of the new method with conventional FE method 

IV. REFERENCES 
[1] Y C Zhang, S A Zhu and Bin He, “A second-order finite element 

algorithm for solving the three-dimensional EEG forward problem,” 
Phys. Med. Biol. 49, pp. 2975-2987, 2004. 

[2] H. Gu, J. Gotman, and J. P. Webb, “Finite-element simulation in 
bioelectromagnetics without the need for modeling and meshing,” 
Magnetics, IEEE Transactions on, vol. 45, pp. 1678-1681, 2009. 

[3] ElecNet 6.17, 2007, Infolytica Corporation, Montreal, Canada, 
http://www.infolytica.com/ 

724



7. MATERIAL MODELLING

Abstract — The giant magnetostrictive material Terfenol-D 
show superior properties that combine both a broad bandwidth, 
high force and small or moderate displacements. As a kind of 
active material, it can be used in ultrasonic power transducer. 
Hysteresis losses are the main source for heating the Terfenol-D 
ultrasonic power transducer. A new method of calculation for 
hysteresis losses, which based on Jiles-Atherton hysteresis model 
and electro-magnetic field finite element analysis, is proposed in 
this paper.  The hysteresis losses obtained by this method can be 
used as thermal sources in electro-thermal finite element analysis. 

I. INTRODUCTION

The giant magnetostrictive material Terfenol-D show 
superior properties that combine both a broad bandwidth, high 
force and small or moderate displacements. Furthermore, the 
advent of magnetostrictive equipment including new magnetic 
materials and design concepts have made it possible to 
manufacture high-frequency, high-power transducers for 
ultrasonic applications3. Transducers capable of delivering up 
to 6 kW mechanical power have recently been commercially 
available and a 25 kW is under development3. This transducer 
will continuously operate at its rated maximum power, which 
should be about one order of magnitude higher than 
competing technologies such as PZT transducers. One of the 
big disadvantages with PZT in ultrasonic transducers is the 
very low heat conductivity. This limits the power rating to 
about 4.5 kW. A high frequency, high-power transducer 
would significantly increase the commercial use of ultrasonic 
transducers in sono-chemistry, e.g. applied to petroleum 
production and processing, accelerated chemical reaction 
studies and in the diaryindustry. 

The eddy current losses and hysteresis losses are the main 
source for heating the magnetostrictive material in Terfenol-D 
ultrasonic magnetostrictive transducer. The eddy current 
losses can be reduced significantly by laminating the 
magnetostrictive material. However, the hysteresis losses are 
the main source for heating the ultrasonic magnetostrictive 
power transducer. The hysteresis losses can be used as thermal 
sources in electro-thermal finite element analysis. The 
calculation of hysteresis losses is very important for 
designation of Terfenol-D ultrasonic magnetostrictive 
transducer. 

In this paper, a method combined of Jiles-Atherton 
hysteresis model [1][2] and time-step electromagnetic field 
finite element analysis for hysteresis losses’ calculation of 
magnetostrictive ultrasonic power transducer is used. By this 

method, the hysteresis losses of Terfenol-D transducer are 
calculated accurately. 

II. INVERSE JILES-AHTERTON HYSTERESIS MODEL

A. Original Jiles-Atherton Hysteresis Model 

In original Jiles-Atherton hysteresis model, the 
magnetization M can be defined as addition of the reversible 
component revM and irreversible component irrM .

revirr MMM +=                                    (1) 

Considered the magnetization process of the material, the 

relationship of the revM , irrM and anM  is given by 

follow equation. 

)( irranrev MMcM −=                                    (2) 

  The remained equations of the Jiles-Atherton hysteresis 
model is given as equation (3-6). 

δk
MM

H

M an irr

e

irr

d
d −

=                                    (3) 

⎥⎦
⎤

⎢⎣
⎡ −= ))coth(

He

a

a

He
MsMan                        (4) 

MHHe α+=                                                (5) 

)(0 MHB += μ                                             (6) 

In above equations, Ms is the saturate magnetization of the 
material which can be obtained from manufacture. c , k ,
α and a  are the parameters can be extracted from 
experimental data [3]. δ is a directional parameter and takes 
the value 1 for 0/ >dtdH and -1 for 0/ <dtdH . anM is

the anhysteretic magnetization. 

B. Inverse Jiles-Atherton Hysteresis Model 

With the proposed inverse Jiles–Atherton model [4], 
H will be calculated from the magnetic induction B ,
integrating a differential equation in terms of  dBdM / .
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III. FILED EQUATION OF TIME-STEP FINITE ELEMENT 

ANALYSIS 

This way to include hysteresis in field calculation is to 
introduce a differential reluctivity dν defined as  

)()(

)()(

tHttB

tHttH

B

H

dB

dH
d −Δ+

−Δ+
=Δ

Δ
≅=ν                                 (9) 

From (4), the magnetic field )( ttH Δ+ at time )( tt Δ+ is

)()( tHBttH d +Δ=Δ+ ν                                                  (10) 

Applying (5) in Ampère’s law and using the magnetic vector 
A potential gives the final equation for this formulation 

)(rot)(rotrot

)()(rotrot

tHtA

ttJttA

d

d

−+
Δ+=Δ+

ν
ν

        (11) 

In equation (6), dν is calculated in each time step tt Δ+ . )(tA
and )(tH  is known in previous time step.  

The hysteresis is included in magnetic field analysis by 
(11). The hysteresis losses are obtained by integral B with H 
[5]. 
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IV. RESULT

In this paper, A magnetostrictive ultrasonic power 
transducer with a moderate driving current of 10A and the 
frequency of 21kHz is used to analysis the hysteresis  loss. Its 
magnetic field distribution in the time of 1/4 current period is 
shown as Fig.1. In the Fig.1, the area with green color is the 
air, the grey area is the silicon sheet, the pink area is the 
Terfenol-D and the yellow area is the copper and the dark red 
area is the steel. 

Fig. 1. Magnetic field in the time of 1/4 current period 

V. CONCLUSION 

Hysteresis losses are the main source for heating the 
Terfenol-D ultrasonic power transducer. A new method 
combined of Jiles-Atherton hysteresis model and time-step 
electromagnetic field finite element analysis for hysteresis 
losses calculation is proposed in this paper. By this method, 
the hysteresis losses of Terfenol-D transducer are calculated 
accurately. In the near future, the calculation of eddy current 
and anomalous losses will be undertaken. 
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7. MATERIAL MODELING  

Abstract — This paper presents an efficient method to 
implement an advanced eddy-current model with bidirectional 
flux feeding and investigates the techniques required for its 
incorporation in the 2D FE analysis of electrical machines. The 
results show that the implementation and the incorporation of 
the advanced model in FE analysis are feasible. Furthermore the 
proposed implementation produces results close to the ones 
observed in measurements.  

I. INTRODUCTION 
Accurate power loss computation is needed for the design 

of electrical machines. In addition to the losses in the 
windings, the losses in the iron core are of great interest. The 
core losses are usually separated into hysteresis, eddy 
currents, and excess losses, the accurate computation of which 
requires advanced vector-hysteresis models [1]. When the iron 
core is modeled with a single-valued non-linear BH-curve, the 
only part of the core losses that can be accurately modeled is 
the eddy currents part. In this work, the so-called 1D eddy-
current model [2] is used for this purpose. 

This paper presents an efficient method to implement the 
advanced model and investigates the techniques required for 
its incorporation in the 2D FE analysis of electrical machines. 
The latter task is carried out using a 2D-like procedure. 
Results of application in FE simulation are presented in [3]. 

II. THE ADVANCED MODEL AND ITS IMPLEMENTATION 
The adequate modeling of eddy currents is intrinsically a 

3D problem. However if the behavior of the eddy currents at 
their loop edges is ignored, the problem reduces to two 
coupled 1D equations [2]. This assumption is reasonable since 
the dimensions of the lamination in the x-y direction are larger 
than its thickness. Ifσ is the material conductivity,h  the 
magnetic field strength,b the magnetic flux density and z the 
coordinate in the depth of the lamination, the equations are 

 

( ) ( )

( ) ( )

2

2

2

2
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h z t b z t
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∂ ∂
=

∂∂

∂ ∂
=

∂∂

 (1) 

Eq. (1) can be solved in terms ofh andb but it requires 
boundary values ofh , which are not known a priori. We 
propose the use of a two-component vector potential to 
reformulate (1) as in (2) and solve it with FEM. 

With ( ) ( ), ,x x y ya z t a z t= +a e e  and ( ) ( ), ,x x y yj z t j z t= +j e e , 
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whereν is the reluctivity, which is given as a spline function 
of 2b . After discretization in the lamination depth, one obtains 
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and the boundary values 
( ) ( ) ( )
( ) ( ) ( )

, . ; 0, 0
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a d t d b t a t

a d t d b t a t

= =

= − =
 (4) 

with d half of the depth and the origin of the z-axis is at the 
middle of the lamination. The solution of (3) presents 
difficulties originating from the non-linearity of the reluctivity 
and its dependency on both components of the magnetic 
vector potential or magnetic flux density. This step requires 
some attention, as we only know how ν depends on 2b . We 
suggest the use of the same value of ν in both directions to 
keep the material isotropic i.e. ( ) ( )2, ( , )x y x ya a a aν ν= b . 

Applying the Newton-Raphson method, one obtains 
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The residuals ( ,x yR R ) are computed in a conventional FE 
manner. The inclusion of xyP in the jacobian matrix allows for 
a fastest convergence (quadratic convergence is achieved). 

Fig. 1 shows the computed flux density distribution in the 
z-axis at a given time for the case of alternating flux in a 
direction 45oθ = . Fig 2. shows the same result for the case of 
rotating flux (circular). Both results are at 500 Hz and 1.5 T. 

III. INCORPORATION OF THE ADVANCED MODEL IN 2D FE  

The implemented advanced eddy-current model can be 
coupled with the FE simulation of the electrical machines. An 
intrinsic coupling quantity is the reluctivity. This approach has 
been used in the time-harmonic simulation of electrical 
machines [4].  
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Fig. 1. Computed flux density distribution in the depth of the sheet when the 
model is fed by alternating flux at 500 Hz, 1.5 T at 45°. The dark line at x=0, 
y=0 represents the 1D model and the other straight lines the magnetic flux 
density vector at the center of each 1D element (only half the depth is shown). 
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Fig. 2. Computed flux density distribution in the depth of the sheet when the 
model is fed by circular flux at 500 Hz, 1.5 T. 
 
However, the same approach in not possible in time stepping; 
the reluctivity is negative at certain times. We propose the use 
of the magnetic field strength to incorporate the advanced 
model in the 2D FE simulation. The magnetic field 
strength 1DH seen by the 2D model is calculated as the product 
of the magnetic flux density at the surface of sheet and the 
reluctivity at that point. The BH-curves obtained with this 
approach are shown in Fig. 3 for the case of an elliptic flux 
and Fig.4. for the case of alternating flux (non coupled case).  

1DH is assumed to be the sum of the magnetic field strength 
in the 2D simulation 2DH and a component ecH due to the eddy 
currents. The governing equation of the 2D problem 

1D∇× =H J  is reformulated as 2D ec∇× = −∇×H J H . 
The 2D FE equations are then derived in a conventional 
manner except that ec−∇×H is added to the right-hand side. 

To test the coupling methodology, we use a 2D-like 
model, which is fed by a predefined magnetic field strength 
H . The iterations are carried out in a sequential manner with 
an over-relaxation for the 2D-like model until convergence. 

The results of the 2D-like model are affected when it is 
coupled with the advanced model. This is seen from Fig. 4. 
where the BH-loops from coupled computations and non 
coupled are shown for an alternating magnetic field strength at 
200 Hz, 1000 A/m increased by the 5th harmonic at 200 A/m. 

IV. DISCUSSION AND ANALYSIS 

The advanced model implemented in this work has been 
previously used in conjunction with hysteresis models [2], [5]. 
The merits of this paper reside in the extension of the model to 
be used in conjunction with the single-valued bidirectional 
problems. The statement that the same reluctivity is to be used 
in both directions guarantees isotropy and the use of the 
derived coupling terms in the jacobian matrix of the advanced 
model achieves fast convergence. 
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Fig.3. Computed dynamic BH-loop when the model is fed by elliptic flux at 
500 Hz with bx =1.8 T and by=1.5 T. The single-valued BH-curve is also 
shown. 
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Fig. 4. Computed BH-loops when the advanced model is incorporated in the 
simple H-fed model (coupled) and without (non coupled). The simple model is 
fed from an alternating magnetic field strength with a fundamental at 200 Hz, 
1000 A/m with the 5th harmonic at 1000 Hz, 200 A/m.  
 

The purpose of the test runs is two-folds. The feasibility of 
the incorporation is demonstrated and some phenomena 
caused by the eddy currents in the lamination are raised. The 
eddy currents damp the flux, resulting in narrow BH-loop and 
lower computed losses (loop areas in Fig. 4). The eddy 
currents also distorted the components of the BH-loops in the 
case of elliptic field as can be seen from Fig. 3. 

V. CONCLUSIONS 

The investigations carried out in this work show that the 
advanced eddy-current model can be efficiently implemented 
when it is fed from a bidirectional flux too. It is also shown 
that the incorporation of the advanced model in a 2D FE 
program is possible and that this incorporation results in better 
computation of the eddy-current losses in the lamination. A 
better accuracy is expected in the computation of other 
quantities such as line currents and torque since they depend 
directly on the field solution.  
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7. MATERIAL MODELING 

Abstract —Thanks to the unique magnetic properties, soft 
magnetic composite (SMC) materials and their application in 
electromagnetic devices have achieved significant development. 
The typical example of SMC application is the electrical machine 
with complex structure, in which the magnetic flux is basically 
rotating. To design and analyze such devices, vector magnetic 
properties of the core material should be properly determined, 
modeled and applied. This paper presents the modeling of vector 
magnetic hysteresis of SMC based on a Stoner-Wohlfarh (S-W) 
elemental operator. A phenomenological mean-field 
approximation is used to consider the interaction between 
particles. With the presented model, the magnetization processes 
of SMC under both alternating and rotating fluxes are 
numerically simulated. The simulations have been verified by 
experimental measurements.  

I. INTRODUCTION 
Thanks to their many unique properties such as 3-D 

magnetic isotropy, very low eddy current loss, design 
flexibility and low production process for electromagnetic 
devices, SMC (soft magnetic composite) materials and SMC 
electrical machines have undergone significant development 
in the past decade [1]. Typical applications include claw pole 
and transverse flux machines in which the flux flows 
substantially in 3-D space [2]. The conventional laminated 
electrical steel is not suitable for constructing the core of such 
machines because the flux component perpendicular to the 
steel plane may cause excessive eddy current loss. The SMC 
material seems to be an ideal substitute. 

The relationship between the magnetic flux density (B) 
and the magnetic field strength (H) is among the basic 
properties of magnetic materials. When B and H are restrained 
in the same direction, their relation is reduced to the well-
known scalar B-H loop. However, in the 3-D flux machines, B 
and H are not aligned. Furthermore, both B and H are rotating 
and B lags H by an angle. In other word, both the magnitudes 
and directions of the B and H may vary, as well as the 
directional angle difference between the two vectors [2]. 
Therefore, the vector magnetic properties, such as the vector 
B-H relation and core loss, under different vector 
magnetizations, should also be investigated. Owing to the very 
complex mechanism of the magnetic hysteresis, particularly 
the vector hysteresis, which is not yet fully understood so far, 
the development of mathematical models of magnetization 
process has not been successful, in particular for the 
engineering practice. 

A huge amount of work has been conducted by various 
researchers for modeling the vector magnetic hysteresis. 

Among the noticeable work are: (a) the Stoner and Wohlfarth 
(S-W) model that was postulated based on the rotation of 
magnetic moments of single domain particles with respect to 
their easy axes [3]; (b) the vector Presaich model constructed 
by the superposition of scalar Presaich models [4]; and (c) the 
combined model that incorporates the vector elemental 
operator of the S-W model into the Preisach diagram such that 
the new model has the vector nature of the S-W model while 
retaining the efficiency of the Preisach model [5]. However, 
the phenomenological modeling of vector hysteresis has long 
been centered on the classical S-W model [6]-[7] because of 
the vector nature of the model. 

This paper presents the modeling of vector magnetic 
hysteresis of SMC based on a Stoner-Wohlfarh (S-W) 
elemental operator [6]. A phenomenological mean-field 
approximation is used to consider the interaction between 
particles [7]. With the presented model, the magnetization 
processes of SMC under both alternating and rotating fluxes 
are numerically simulated. The simulations have been verified 
by experimental measurements. 

II. MODELING OF VECTOR HYSTERESIS 
Under a magnetic field H, the magnetic moment ms of an 

S-W particle rotates to the orientation which results in a 
minimum energy. The position of ms changes with respect to 
H, and the domain rotation can be reversible or irreversible. 
The equilibrium orientation of ms can be evaluated by the 
asteroidal rule in the plane containing H and the easy axis as 
shown in Fig. 1, where He and Hp are the H components along 
the easy axis and the perpendicular direction respectively, 
Hk=2K/(μ0ms), and K is the domain crystal anisotropy 
constant. 
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7. MATERIAL MODELING 

Fig. 1.  Asteroid vector elemental hysteresis operator 
A mean field term is added to account for the macroscopic 

effect of interaction between S-W particles [7], Heff=H+kM, 
where k is a constant feedback coefficient and can be 
theoretically determined from experimental data [8]. The 
contribution of an S-W particle can be expressed by 
M=S(Heff), where S() stands for the S-W model. 
The bulk material can be considered as a collection of many 
S-W single domain particles and the total magnetization is the 
vector sum of contributions of all these constitute domains. In 
numerical implementation, the magnetization is computed by 
the vector sum of ms of a group of magnetic particles. 

III. NUMERICAL IMPLEMENTATION 

The magnetization processes of SMC with isotropic 
magnetic properties under both alternating and rotating 
magnetic fields have been simulated numerically. The results 
(Fig. 2 and Fig. 3) show that in an isotropic magnetic material 
M and H vector are collinear for an alternating magnetic field 
excitation, while for a rotating magnetic field excitation of 
constant magnitude M vector lags the H vector for a certain 
angle.  

Multiparticle Pn=1800

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1.5 -1 -0.5 0 0.5 1 1.5

H/Hk

Msh/M

α=0
α=0.05
α=0.1
α=0.2

 
Fig. 2.  Hysteresis loops under alternating magnetic field excitation 
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Fig. 3.  Loci of (a) rotating magnetic field H, and (b) magnetization M

IV. EXPERIMENTAL RESULTS 

The B-H relationships of SMC samples under various 
alternating and 2-D and 3-D rotating magnetic excitations 
have been measured by the authors [9], validating the 
numerical simulations by using the presented model. 

The detailed implementation process and more simulation 
results will be presented in the full paper. The simulation and 
experimental results will be compared and analyzed in detail. 
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Abstract — A method using multi-direction Si-Fe sheet sample 
magnetic properties measured by the Epstein frame for finite 
element analysis is presented in this paper to consider the 2D 
magnetic anisotropy of the sheet. The validity of the method is 
verified by the comparison between the computational results 
and measured ones of a model of three phase transformer. 

I. INTRODUCTION

Although the method of measuring magnetic 
characteristics of Si-Fe sheet by 1D single sheet tester has 
been included in the IEC standard for years, and an advanced 
2D measuring method to consider the vector magnetic 
properties was proposed [1], the method of Epstein frame are 
still used by many electrical sheet manufacturers and 
industrial users according to the international standard [2]. 
The deficiencies of the measurement with the Epstein frame 
were indicated by authors of  [3]-[4], etc. However, in view of 
its widely use, if we can do something with the Epstein test, 
and try to improve its traditional measuring method, this work 
is also of significance. A method using multi-direction Si-Fe 
sheet sample magnetic properties measured by the Epstein 
frame for finite element analysis is presented in this paper to 
involve the 2D magnetic anisotropy of the sheet.  

II. METHOD DESCRIPTION 

There are many researches have been done with the 
measuring and modeling of 2D magnetic properties of the 
silicon steel sheet. K. Fujiwara et al proposed an anisotropic 
reluctivity tensor, given as [5] 
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where Hθ and Bθ denote for the angle to x-axis  of H and B

respectively. With a 2D Single Sheet Tester (SST) [1], a 
rotational magnetic field is excited and H and B with different 
direction in a Si-Fe sheet can be measured while the sheet 
sample is fixed in space. Taking the hint of  2D SST, we can 
set the magnetic field fixed in space and let the sheet samples 
which consist of the Epstein frame have different angles to the 
rolling direction, as if the sheets “rotate”. However, the 
difference between the Epstein frame and 2D SST is that the 
measurement with the former is one dimensional.  Therefore, 
the following method is used to deal with the problem.  

A. B-H curves of multi-direction Si-Fe sheet samples 
measured by Epstein frame 

Fig1. B-H curves of multi-directions (30ZH120 Si-Fe sheet) 

Fig. 2 Angle from the rolling direction to the measurement direction: θ  and 

θ−090

In multi-direction sampling, the angle from the rolling 
direction to the measurement direction is set in advance, such 
as 0°, 10°, 20°, 30°, 40°, 50°, 55°, 60°, 70°, 80° and 90°. For 
this kind of multi-direction samples, according to the report of 
[6] we know that when using narrow sample (25mm×300mm) 
B and H remained in a direction parallel to the length of the 
sample for both low and high level of magnetization. This is 
the case close to the Epstein test. After the Epstein testing at 
different measurement directions, the every corresponding B-
H curve is yielded as shown in Fig.1. One can found the 
relationships of those curves measured at different specified 
measurement directions. For example, the curves at 20° and 
70° represent the magnetic properties from two orthogonal 
measurement directions, see Fig.2. This is easy to understand 
as long as we notice that here 20°+90°=110°, and along this 
direction the magnetic property is the same as 70° according 
to the symmetry of the sample. By using these curves, the 2-D 
magnetic properties can be obtained.  
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B. Formulation in finite element analysis of magnetic fields
The governing equation under a global coordinates 

including 2D magnetic properties is given by 
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Eq. (2) is solved with FE analysis and the Newton-Raphson 
iteration.  

To use the multi-direction B-H curves, a local coordinate 
system '' yx − is set in each element, and another iterative 

process of local reluctivities is needed. The corresponding 
reluctivity of an element is given by 
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where the superscripts denote the iteration number, and 
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in (4) 1−kθ  is the angle from the direction of 1−kB to the rolling 
direction. Based on a coordinate transformation, the relation 
of the global  and local reluctivities can be deduced, which is 
given as 
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where α is the angle between the local and global coordinates.  

C. Numerical Model 

Fig. 3 A model of transformer without secondary coils  

A model of three-phase transformer without the secondary 
coils is taken as a numerical example. Three windings of 106 
turns are placed on each limb of the iron core which is made 
of laminated grain-oriented silicon steel sheets of 30ZH120, 
shown in Fig. 3. The computation steps are as follows. 

Step 1: Set the iteration number k = 0, input the initial 

reluctivities 0
'xν and 0

'yν for each element. 

Step 2: Solve (2) with FEM, then calculate 0
xB , 0

yB , and 
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θ for each element. 

Step 3:  k = k+1, determine the B-H curves of element 

according to (4) with an interpolation, calculate k
x 'ν and k

y 'ν ,

then solve (2) with Newton-Raphson iteration, and calculate 
k
xB , k

yB .

Step 4: ,1−−=Δ k
x

k
x

k
x BBB ,1−−=Δ k

y
k
y

k
y BBB If the total 

iterative error 1
22 ε≤Δ+Δ∑ yx BB , then stop; or else 

continue, where 1ε is a tolerance specified in advance. 

Step 5: modify kθ according to a relaxation rule, then go to 
Step 3. 

III. RESULTS 

Fig. 4 Comparison of measured and calculated B

Fig. 5 Comparison of measured and calculated angle of B to x-axis 

Fig. 4 and Fig. 5 show the comparisons of measured and 
calculated flux density B at the position of test coil C3 and C4 
for the maximum electric current of 2.6A. More results and 
discussions will be proposed in the extended paper. 
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Abstract — In this paper, the nature of iron losses in electrical 
steel during alternating field excitation is investigated more 
closely. A more exact definition of the ac iron losses is proposed 
by accurately measuring the losses for conditions of both 
sinusoidal H and sinusoidal B. In addition, inverse hysteresis 
model considering eddy current loss is developed to analyze the 
iron loss when the input is voltage source. With this model, 
inrush current in inductor or transformer as well as the iron loss 
can be calculated. The results of this new approach to iron loss 
calculations in electrical steel are compared to experimentally-
measured losses. 

I. INTRODUCTION 

For a precise design and analysis of electric machine, iron 
loss analysis becomes very important and essential part [1]. 
For measuring hysteresis loss, the input can be sinusoidal 
magnetic field intensity or the sinusoidal flux density. The 
iron losses in these two cases are not same, but this fact has 
received almost no attention to date. If harmonics are present 
in the excitation, the iron loss calculation becomes even more 
complex. One approach [2] for including harmonics in the 
iron loss analysis uses Discrete Fourier Transform to 
decompose the flux density into its harmonic components. The 
iron losses at each element are then calculated using iron loss 
data sheet and the total loss is obtained by summation of the 
iron losses at all of the elements. However, the results of this 
approach can be too large in comparison to the actual iron 
losses. The purpose of this research is to investigate more 
closely the nature of iron losses in electrical steel during 
alternating field excitation. In this work, a more exact 
definition of the ac iron losses is proposed by accurately 
measuring the losses for conditions of both sinusoidal H and 
sinusoidal B. In addition, inverse magnetization-dependent 
hysteresis model considering eddy current loss is developed to 
analyze the iron loss when the input is voltage source. With 
this model, inrush current in inductor or transformer as well as 
the iron loss can be calculated. The results of this new 
approach to iron loss calculations in electrical steel are 
compared to experimentally-measured losses.  

II.IRON LOSS FOR ALTERNATING MAGNETIC FIELD 

A) Hysteresis loss  
 Hysteresis loss is the B-H loop area not including the 
eddy current loss by applying the lowest frequency. Fig. 1 
shows the two kinds of B-H loops of the bulk ring, whose 
areas represent iron losses for the input of 0.2[Hz]. The 
dotted line shows the loop whose input is magnetic field 
intensity and the output becomes magnetic flux density. 

Let’s call this as sinH condition loop and it means the 
input H is sinusoidal. The solid line is sinB loop and the 
sinusoidal flux density B  becomes input. To accomplish 
these experiments, a apparatus shown in Fig. 2 is 
developed and the shapes of H  or B  can be controlled. 
As can be seen in Fig. 1, the loop areas under sinH and 
sinB are different. Under sinH condition, the flux density 
waveform is no more sinusoidal and it becomes to have 
harmonics which cause harmonic eddy current losses. As a 
result, the hysteresis loss needs to be measured under the 
sinusoidal flux density condition. 

Fig. 1. Measured B-H loops for sinB and sinH conditions 

 

Fig. 2. Measurement system. 

B) Iron Losses including harmonics

The current of exciting coil and flux density can be 
measured with the measurement system in Fig. 2. Fig. 3 shows 
the measured B-H loop(solid line) under sinH condition and 
separated loops according to their frequencies by FFT. As can 
be seen, the fundamental frequency loop(dotted line, 1st B) is 
larger than the original loop(all B). This means the iron loss 
cannot be calculated by the summation of the each frequency 
component and it must be calculated by measuring the loop 
area. If the B-H data are known or measured, the loss can be 
calculated by integrating the magnetic field intensity for the 
flux density [3]. Table 1 shows the measured and FFT results 
for Fig. 3. 
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Fig. 3. Original and harmonic loops 

Table 1. Measured and FFT loops results for Fig. 4. 

  Freq. 
Phase
(degree) 

Bm[T] 
Loss/
1peroid

Total
Loss

Original B 1Hz   0.993149 0.186105 0.186105
FFT 1st 1Hz 0 1.196438 0.232240 0.494115
  3rd 3Hz 11.60586 0.289885 0.049908  
  5th 5Hz 8.67891 0.114318 0.014979  
  7th 7Hz -3.53840 0.049945 0.004099  
  9th 9Hz 5.09336 0.020309 0.000801  
  11th 11Hz -18.28070 0.006875 0.000123  

 
Fig. 4 shows the waveforms measured by the developed 

system in Fig. 2. In the figure, the magnetic field intensity, 
magnetic flux density, minor loops and initial magnetization 
curves are shown. These experiments are under sinB condition. 
As can be seen in the figures, the measured results are 
different according to the input conditions. When the input is 
sinH, the flux density becomes like square waves, so they 
include lots of harmonics and increase iron loss because the 
eddy current loss increases.  

 
Fig. 4. Experiment results under sinB. 

III. INVERSE HYSTERESIS ALGORITHM

In many cases, the input becomes not current but voltage, 
and then the input element for iron loss calculation needs to be 
also not magnetic field intensity but magnetic flux density. 
Therefore the inverse algorithm )(1 BfH  is required. If 
the flux density )(HB changes, by changing the magnetic 
field intensity with H , )(HB  can be determined using 
Preisach algorithm. To reduce the calculation efforts and error, 

interpolation method is used. For example, if )( ptB >
)( 1ptB  and exact value )( ptB  is between the two calculated 

flux densities where p  is a time step, )( ptH  can be 
calculated by (1) and any iteration process is not needed. 
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When the load is R-L circuits, the voltage equation can be 
transformed to discrete equation as (2). By solving this 
equation for flux  , flux densty, iron loss, inrush current etc. 
can be calculated. 
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        (2) 

Where k  is time step, n is number of turn or ring core and 
is the phase angle of voltage. The eddy current loss can be 
considered with (3) where   is the thickness of the steel, w
is the width, and   is the electrical resistivity. Eddy current 

ei can be calculated because eP  can be calculated with (3) and 
the applied voltage is known. The total current is calculated by 
adding ei  to i  in (2). 
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IV. CONCLUSION

In this paper, exact definition of hysteresis loss is proposed. 
That is, it needs to be measured under the sinusoidal flux 
density condition. In addition, the iron loss including 
harmonics is defined by the experimental results. The iron loss 
cannot be calculated by the summation of the each frequency 
component and it must be calculated by the real loop area 
through integrating the magnetic field intensity for the flux 
density. To simulate this phenomenon, inverse algorithm is 
proposed and inrush current in an inductor is experimented 
and simulated. They are compared and it shows good 
agreement. 
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7. MATERIAL MODELLING

Abstract — This paper presents an improved magnetic reluc-
tivity model for vector magnetic properties of anisotropic electri-
cal steel sheet under distorted magnetic flux density condition. In 
the modeling, the non-sinusoidal magnetic flux density (B) wave-
form is expanded into fundamental and higher harmonic compo-
nents using Fourier series expansion. For the fundamental com-
ponent, the relationship between B and H (magnetic field inten-
sity) is expressed by an improved reluctivity model with higher 
accuracy. For the higher harmonic components, their eddy cur-
rent effects are estimated into the vector relationship based on a 
lot of experimental tests. The accuracy of the proposed model is 
verified by comparing its results with experimentally measured 
B- and H-waveforms with 30PG110 silicon steel sheet. 

I. INTRODUCTION

An effective expression of two-dimensional (2-D) mag-
netic properties of electrical steel sheet is necessary to analyze 
field performance and loss characteristics of electromagnetic 
devices accurately. There have been foregoing researches, 
therefore, to develop some permeability (or reluctivity) mod-
els to express the 2-D magnetic properties under sinusoidal 
magnetic flux density (B) condition, that is under pure alter-
nating or rotating magnetic flux conditions [1]–[3]. In the re-
searches, the magnetic reluctivity parameters are obtained by 
using Fourier series expansion of the waveforms of magnetic 
field intensity (H) using direct description of the relationship 
between B and H. However, the accuracy of the permeability 
model is greatly affected by the order of harmonic compo-
nents considered in the Fourier series expansion. For example, 
the reluctivity model considering only the first and third har-
monic components is proven not accurate enough to describe 
the vector magnetic properties as soon as the material is satu-
rated [4].  

On the other hand, the B-waveform in electric machines 
and transformers is often distorted from sinusoidal one. For a 
precise field analysis, hence, a magnetic permeability model 
under distorted B-waveform is also necessary. However, ex-
perimental measurements under distorted B-waveform condi-
tion are very difficult because of the nonlinearity of the mate-
rial properties and lack of the criterion for measurement. Very 
recently, Enokizono proposed a reluctivity model by estimat-
ing the H-waveforms generated by the eddy currents induced 
by the higher harmonic components of the magnetic flux den-
sity [5]. But, the modeling of 2-D properties of silicon steels 
under distorted B-waveform is still in its infancy, and requires 
more experimental verifications.  

In this paper, an improved 2-D magnetic reluctivity model 
under distorted B-waveform is developed taking account of 
both the modeling accuracy and computational cost when 
combined with finite element analysis (FEA). The magnetic 
field intensity affected by the eddy currents induced by the 
higher harmonic components of B-waveform is numerically 
modeled based on measured data. 

II. MAGNETIC RELUCTIVITY MODEL FOR SINUSOIDAL 

MAGNETIC FLUX DENSITY  

The distorted B-waveform can be expressed using the Fou-
rier series expansion as follows: 
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where only x-directional equations are shown and the y-
directional ones can be obtained by substituting ‘y’ instead of 
‘x’. The first term in (1) is the fundamental component of 
which frequency is 50Hz or 60Hz, and others are higher har-
monic terms, as shown in Fig.1.  

Under a purely rotational magnetic flux condition, a mag-
netic reluctivity model for 2-D magnetic property of grain-
oriented silicon steel is proposed in [1], and can be defined as 
follows: 
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where H1x is the magnetic field intensity obtained when the 
specimen is excited by 50Hz sinusoidal B-waveform. The 
magnetic reluctivity coefficients νxr and νxi can be expressed as 
in (3) considering only the first and third harmonic compo-
nents of the measured H-waveforms using the 2-D single 
sheet tester under sinusoidal B-waveform condition.    
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In this paper, it is revealed that the hysteresis model in (3) 
considering only the first and third harmonic components of 
H-waveform is not accurate enough to describe the vector 
magnetic property especially when the material is magneti-
cally saturated, as shown in Fig.2. Thus, improved reluctivity 
models for νxr and νxi considering both the higher harmonic 
components up to 7 and computational cost are proposed in 
this paper as follows: 
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7. MATERIAL MODELLING
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Fig. 3 shows a comparison of H-waveforms computed from (4) 
and (3) and experimentally measured for 30PG110 Grain-
oriented silicon steel. It can be seen that the improved reluc-
tivity models in (4) give better agreement with the measured 
ones. In the version of full paper, detailed derivations and 
more discussions will be given. 

III. IMPROVED RELUCTIVITY MODEL CONSIDERING HIGHER 

HARMONIC COMPONENTS OF B-WAVEFORM 

For the higher harmonic components of B, it is hard to 
give an effective vector relationship between B and H directly 
because measurements under distorted B-waveform are diffi-
cult due to nonlinearity of the material properties and lack of 
criterion for the measurement. In order to consider the effects 
of eddy current induced from the higher harmonic components 
of B, the reluctivity model proposed in [4] was based on the 
skin depth of the eddy current and effective thickness deff was 
employed instead of the thickness d of the steel sheet. With 
the assumption that eddy current decreases linearly instead of 
exponentially toward the center from the surface, the follow-
ing relation can be obtained 
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where z denotes the position in thickness-direction. The eddy 
current loss We generated by Jey is given by 
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where ρ is the material density. On the other hand, the power 
loss due to the eddy current is defined by the following equa-
tion 
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The magnetic field intensity due to higher harmonic compo-
nents of B-waveform, thus, can be written as follows 
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By considering the (1), (2) and (8), the magnetic field inten-
sity corresponding to a distorted B-waveform can be written 
as follows 
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In this paper, to make clear the behavior of distorted flux 
density and the magnetic field intensity, we have verified the 
estimation modeling method expressed in (9) based on suffi-
cient measurement data under distorted flux conditions using a 
2-D single sheet tester shown in Fig. 4.  

The experimental verification and more discussions in-
cluding FEA application will be given in the version of full 
paper. 
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Fig. 3 Comparison of the measured and calculated H-waveforms. 
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Fig. 1 Distorted magnetic flux density. (a) B-waveform; (b) fundamen-
tal component; (c) higher harmonic components. 
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7. Material Modelling 

Abstract — In this paper we compare different approaches for 
the lamination stack homogenization with a short-circuit due to 
an electrical fault between several sheets. The presented 
techniques are based on the determination of a complex 
equivalent magnetic permeability for the homogenized domain. 
The eddy current losses are calculated in the homogenized 
lamination stack and in the fault. These losses are compared with 
those obtained from a reference system where the lamination is 
modeled with its real geometry. 

I. INTRODUCTION

Stator laminations of large generators are coated with 
insulating varnishes to avoid electrical contact that leads to 
additional Joule losses. In some situations due, for example to 
manufacturing faults or local overheating, the insulation can be 
damaged and electrical contacts appears between the 
laminations. It may generate electrical currents, which can be 
significant during electrical faults. Such a situation may be 
very dangerous for the machine integrity [1]. 

To investigate the effect of eddy currents on the global 
behaviour of the system, it is necessary to use a technique that 
takes into account the magneto-dynamic effects in the 
lamination stack without modelling the real geometry of the 
laminations. Homogenization techniques can be very useful in 
such a case. Nevertheless, adding a fault between several 
sheets in the laminations modifies the assumptions made for 
the homogenizing model. 

The purpose of this work is to evaluate the accuracy of a 
homogenized lamination stack considering an electrical fault. 
The Joule losses are calculated in both parts of the system, i.e. 
the homogenized and the fault parts. Several approaches [2, 3], 
based on the low and high frequency assumptions, are 
investigated for the lamination stack homogenization, and their 
behaviour when a fault is inserted in the homogenized region. 
A comparison is made with a reference system which models 
the real sheet geometry of the lamination. 

II. MATHEMATICAL MODEL

We consider a domain Ω whose boundary is denoted Γ. 
Two sub-domains are introduced in Ω : an electrically 
conducting domain Ωc with boundary Γc and a homogenized 
domain Ωh that simulates the equivalent magnetic behaviour of 
a lamination stack (Fig. 1). 

In time harmonic magnetodynamics, the Maxwell’s 
equations can be written as, 

0    and   jω- == B divBE curl
0  )(   and   indsinds =++= JJdivJJHcurl

(1) 

(2) 

with H the magnetic field, B the magnetic flux density, E the 
electric field, Js the current density supposed to be known in 
stranded inductors, Jind the eddy current density and ω the 
pulsation. To ensure the uniqueness of the solution, 
homogeneous boundary conditions are applied on the fields 
(Γ=ΓB∪ΓH and Γc=ΓE∪ΓJind). The electric and magnetic 
behaviour laws are given by, 

 EJ ,   BH cindh in  σ-in  ==ν

hin  ~   BH ν=

(3) 

(4) 

with ν the magnetic reluctivity, σ the electric conductivity and 
ν~  a complex reluctivity tensor. Each component of ν~  can 

be expressed such as ''
ij

'
ijji ν~jων~ν~ += . To solve this problem, 

the electric formulation can be used. From (1.a) and (1.b), two 
potentials are introduced: the magnetic vector potential A in 
the whole domain Ω and the electric scalar potential ϕ in Ωc. 
Then, the magnetic flux density and the electric field can be 
rewritten such that, 

ϕgradAEA curlB -jω-    and    == (5) 

By using (2), (3) and (4), the weak formulation to solve can 
be obtained such that, 

0)',()',(σ)',jω(σ

)',~ ()',(υ

scc

hl

DD



=−++

+−

AJAgradAA

AcurlAcurlAcurlAcurl

sϕ
ν (6) 

with A’ a test function defined in the same space as A. To 
discretize the fields and the potentials, Whitney’s elements are 
used. 
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Fig. 1.  Studied domain  

For the homogenization of the lamination stack magnetic 
behaviour, different approaches have been considered. The 
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7. Material Modelling 

first one [2], based on a static approach (S-Model), represents 
the anisotropy of the stack by using the components

ij'ν~

(
ij''ν~ are fixed to zero). If the steel sheets are on the xy plane, 

11'~ν  and 22'~ν  are the tangential components and 33'~ν  is the 

normal component. A wide-frequency-band model (W-F 
Model) is proposed [3], considering δ = (πfσµ)-1/2 the skin 
depth and d the lamination thickness. Thus, we have, 

( ) ( )( )
( ) ( )( )ij

2
ijijij

ijijij 2/dj1sinh

/dj1sinh

8

j1d
"~j'~~

δ+
δ++ωδσ

=νω+ν=ν .  (7) 

Here both components '~ν  and "~ν  are complex. For lower 
frequencies, a simplified model (L-F model) can be obtained 
from equation (7), 

( )12²dj1"~j'~~
ijijijijij σω+µ=νω+ν=ν .     (8) 

With these techniques eddy currents can be considered. 
Moreover, combining the static approach for the lamination 
stack anisotropy and eddy currents effects (model [2] + [3]), it 
is possible to introduce the permeability tensor in (7). The skin 
depth δ is calculated according to this tensor. 

III.  APPLICATION

A simple geometry representing a lamination stack was 
chosen, considering only the linear case. For the reference 
system, the lamination stack dimensions are 30 mm x 30 mm 
with 6 sheets whose thickness is 500 µm. Two successive 
sheets are separated by a 10 µm insulating layer. 

The mesh has about 60000 prismatic elements. The 
magnetic flux is imposed on the way that the average magnetic 
induction is 1.5 Tesla. To have good accuracy for the eddy 
currents in the reference system, each lamination is meshed 
with four elements in its thickness dimension. In case of 
homogenization, the same mesh is used but without the 
lamination and insulation separation. 

To test the robustness of the homogenization techniques in 
case of a fault between several sheets, a short circuit 
represented by a cylindrical volume is placed in the middle of 
the lamination stack. This volume remains with the same 
physical properties in the reference and homogenized models. 

The iron parts have been considered with an isotropic 
conductivity σ=2x106 S/m and a magnetic permeability 
µ=1000µo, where µo=4π10-7 H/m. The insulation has σ=0 and 
µ=µo. The electrical cylinder fault, when considered, has the 
same characteristics as the iron. The eddy current losses (PEC) 
are calculated as follows, 

∫=
V

ind
*

EC dvJEP .        (9) 

The magnetic energy of the system is calculated as,

∫ ∗=
V

mag dvHB
2
1

W        (10) 

Solving the system with the A-φ formulation considering 
the electrical fault, the magnetic energy of the entire system is 
given in Tab.1 and the eddy current losses in the electrical 
fault are given in Tab. 2. 

Magnetic energy in the entire 
system 

(J) 
Frequency 50 Hz 1000 Hz 
Reference 0.121 0.126 
S-Model 0.120 0.124 
L-F Model 0.118 0.121 
W-F Model 0.118 0.123 
S-Model + W-F 0.129 0.133 

Tab.1  Magnetic energy in the entire system, A-φ formulation 

Eddy current losses in the fault 
(W/kg) 

Frequency 25 Hz 50 Hz 100 Hz 
Reference 9.00 23.17 39.29 
S-Model 9.63 28.44 58.06 
L-F Model 9.42 27.59 55.66 
W-F Model  9.41 27.59 55.66 
S-Model + W-F  9.61 28.38 57.41 

Tab.2  Eddy current losses in the electrical fault, A-φ formulation 

From results in Tab.1, we can see that the global magnetic 
energy obtained with the different homogenization approaches 
remains close with the one of the reference system, even for 
the frequency 1 kHz. Nevertheless, if we focus on the eddy 
current losses in the electrical fault given in Tab.2, the 
homogenization approaches give satisfactory results up to 50 
Hz in the case of the studied system. At the frequency 100 Hz, 
the error becomes much larger. Such results are predictable as 
the electrical fault introduces a non-homogeneity in the 
supposed homogenized lamination stack. 

IV. CONCLUSION

Different homogenization methods for lamination stacks 
were presented and compared. The results show that all the 
models are valid including the case when an electrical fault is 
inserted in the homogenized volume, especially for lower 
frequencies. 

In the extended version we intend to explore more in detail 
the obtained results, showing also the results using the T-
formulation. We will also present a study in which the number 
of short-circuited sheets varies, and we will evaluate its 
influence on the results. All these calculations will be 
performed in the industrial frequency range. 
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7. MATERIAL MODELLING

Abstract — This paper presents a 2D finite element model 
to analyze the iron losses in a three-phase transformer. In this 
model, the effects of non-linear core behavior is taken into 
account by means of a vector hysteresis model incorporated in 
the finite element formulation by using a magnetic differential 
reluctivity tensor. The reluctivity tensor emerges naturally 
from the vectorized Jiles-Atherton model. The complete model 
includes eddy current losses and the anomalous losses. The 
magnetization currents are calculated and compared with the 
measured ones. Calculations of hysteresis loops at spotted 
points of the transformer are also performed. The 
comparisons between the iron losses measured and calculated 
with vectorial hysteresis are performed. 

I. INTRODUCTION

The core of magnetic devices can experiment two 
different types of magnetic fluxes. The alternating flux 
occurs when the flux changes its magnitude but not its 
spatial direction. The rotational flux is present when the 
magnetic flux rotates in the plane of the lamination. The 
losses due to the rotational flux are higher than the one due 
to the alternating flux. 

In a three-phase transformer, rotational flux is observed 
in the corner joints (T-joints). In T-joints the magnetic 
behaviour is very complex, differently from the central 
limb. That is the reason why, under rotational flux 
conditions, the vector relationship between magnetic field 
and induction must be considered. The rotational losses, 
which can be more important than alternating ones, 
contribute to a significant part of the global losses [1]. 

In this paper, a vector hysteresis model is incorporated 
in a 2D finite element (FE) code, with magnetic vector 
potential formulation, using the magnetic differential 
reluctivity tensor. This model emerges naturally from the 
vectorized Jiles-Atherton model. The complete model 
includes eddy current losses and the anomalous losses. 

The FE model is used for the analysis of a non loaded 
three-phase transformer. The magnetization currents are 
calculated and compared with the measured ones. 
Calculations of hysteresis loops at spotted points of the 
transformer are also performed. The comparisons between 
the iron losses measured and calculated with vectorial 
hysteresis will be performed and the results will be 
presented on the extended paper. 

II. MAGNETODYNAMIC FORMULATION

A bounded domain Ω of the two or three-dimensional 
Euclidean space is considered. Its boundary is denoted Γ.
The equations characterising the magnetodynamic problem 
in Ω are [2]: 

JH =curl ,   BE tcurl ∂−= ,   0div =B , (1a-b-c) 

HB μ= , EJ σ= , (2a-b) 

where H is the magnetic field, B is the magnetic flux 
density, E is the electric field, J is the electric current 
density, including source currents Js in Ωs and eddy 
currents in Ωc (both Ωs and Ωc are included in Ω), μ is the 
magnetic permeability and σ is the electric conductivity. 

The boundary conditions are defined on complementary 
parts Γh and Γe, which can be non-connected, of  Γ,

0
h
=× ΓHn ,   0.

e
=ΓBn , 0

e
=× ΓEn , (3a-b-c) 

where n is the unit normal vector exterior to Ω.
Furthermore, global conditions on voltages or currents in 
inductors can be considered [2]. 

A. Inclusion of the differential reluctivity tensor 

The relationship between dH and dB is given by [1] 

BH dd dν= , (4) 

where dν  is called as magnetic reluctivity tensor. 

Using Euler’s scheme to represent the derivatives, (4) 
becomes 

BH Δν=Δ d , (5) 

where ΔH = H(t+Δt) − H(t), ΔB = B(t+Δt) − B(t), and (5) 
can be written as 

)()( ttt d HBH +Δν=Δ+ , (6) 

with (6) one can write Ampere’s law (1a) for time (t+Δt), as 

)()]([ tttcurl d Δ+=+Δν JHB , (7) 

using B(t+Δt) = curl A(t+Δt) and B(t) = curl A, where A is 
the magnetic vector potential, (7) becomes [1] 

)()]([

)()]([

tcurltcurlcurl

ttttcurlcurl

d

d

HA

JA

−ν

+Δ+=Δ+ν
. (8) 

B. Voltage fed and magnetic vector potential A-
formulation 

The A-formulation, with a magnetic vector potential A
and an electric scalar potential V, is obtained from the weak 
form of the Ampère equation (1a) and (2a-b) [2], i.e. 

),(',0)',(

)',()',()',)((

)',)(()',)((

Ω∈∀=−

+σ+∂σ+

+ν−Δ+ν

Ω

ΩΩΩ

ΩΩ

as

cct

dd

F

grad Vcurlt

curltcurlcurlttcurl

s
AAJ

AAAAH

AAAA

 (9) 
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7. MATERIAL MODELLING

where Fa(Ω) denotes the function space defined on Ω
which contains the basis and test functions for both vector 
potentials A(t+Δt), A(t) and A'. The block (. , .)Ω denotes a 
volume integral in Ω of scalar or vector fields products. 

The circuit relation associated with a stranded inductor j
∈ Ωs, relating its current Ij to its voltage Vj, has been 
established for the A-formulation as follows [2]. 

jjt VIR
s

−=+∂ Ω),( wA ,  (10) 

where R is the resistance of the inductor and w is called the 
wire density vector. 

C. Inclusion of the eddy current losses and the 
anomalous losses in the finite element modelling 

The A-formulation considering the inclusion of the 
eddy current losses and the anomalous losses in the FE 
modelling is given by [3] 

).(',0)',(

)',()',()',)((

)',)(()',)((

Ω∈∀=−

+σ+∂σ+
+κ−Δ+κ

Ω

ΩΩΩ

ΩΩ

as

cct

F

grad Vcurlt

curltcurlcurlttcurl

s
AAJ

AAAAH

AAAA

 (11) 

The term κ is given by [3] 
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5.05.0

2 1
12 Bt

SVG
t

d
od , (12) 

where d is the magnetic sheet thickness, S is the cross 
section of the magnetic sheet, G is the magnetic object 
(MO) friction coefficient, Vo is the relation between the 
number of MO taking place in the magnetization process 
and the excess magnetic field [3]. 

III. APPLICATION 

The experimental device used for the validation of the 
proposed approach is a three phase transformer of 2 kVA. 
The magnetic core is made of FeSi electrical steel 
laminations which thickness is 0.5 mm. Fig. 1 shows the 
studied domain (left) and the 2D mesh of the calculation 
domain (right) (the air regions are not shown). 

Fig. 1. The studied domain (left) and the 2D mesh (the air regions are not 
shown) of the calculation domain (right).

The magnetic flux distribution and the magnetic flux 
density in the calculation domain are shown in Fig. 2 (left)
and Fig. 2 (right), respectively. 

The BH loops in the points P1 and P2 (see Fig. 1(left)) 
are shown in Fig. 3. 

Fig. 2. The magnetic flux distribution (left) and the magnetic flux density 
(right) in the calculation domain. 

Fig. 3a. The BH loop in the point P2 (central limb). 

Fig. 3b. The BH loops in the point P1. The rotational flux in the T-joint 
increases the magnetic losses. 

From the figures above, one can observe that the vector 
hysteresis model naturally reduces itself to a scalar model if 
in presence of an alternating flux (central limb) and it is 
able to represent the vector relationship in the transformer 
T-joint. 

The results on the iron losses measured and calculated 
with vectorial hysteresis will be compared and presented on 
the extended paper. 
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11 ELECTRIC MACHINES AND DRIVES 

Abstract — Two calculation methods for iron-loss estimation of 
rotating machines are investigated. One is based on the 
conventional three-term expression. In this case, the losses are 
calculated from the time variation in the flux density obtained by 
the finite element analysis, which approximates the stator and the 
rotor cores as the solid magnetic material without the 
conductivity.  The other is based on the 3-D eddy current analysis 
in the electrical steel sheet. In this case, the excess loss is 
calculated with a simple approximation. It is clarified that both 
methods can estimate the no-load iron loss in the similar 
accuracy and that the method based on the eddy current analysis 
is suitable for the estimation of high-order harmonic iron losses. 

I. INTRODUCTION 
Owing to environmental problems, the estimation of iron 

loss in rotating machines became more important subject in 
recent years. Many papers reported the iron-loss estimation 
using the 2-D or 3-D finite element methods. 

The iron loss can be classified into three components, 
which are the hysteresis loss, eddy-current loss and excess 
loss [1]. In this case, appropriate coefficients of each loss are 
determined by experiments of the electrical steel sheets. The 
losses are usually calculated from the time variation in the flux 
density obtained by the finite element analysis, which 
approximates the stator and the rotor cores as the solid 
magnetic material without the conductivity. This method is 
widely applied and developed by many researchers [2]-[4].  

On the other hand, when the frequency of the magnetic 
field is high, the flux and eddy currents must concentrate at 
the surface of the electrical steel sheets due to the skin effect 
[5] because the sizes of the domains in non-oriented steels 
employed for the rotating machines are usually much smaller 
than the thickness of the sheets [6]. This phenomenon cannot 
be taken into account by the conventional modeling. 
Therefore, we proposed an iron-loss model based on the 3-D 
eddy current analysis in the electrical steel sheet [7]. In this 
case, the excess loss is estimated with a simple approximation. 

It can be stated that the above-mentioned methods are 
based on the different approximations. As a consequence, they 
must have the strong and weak points, respectively. In this 
paper, both methods are applied to several kinds of rotating 
machines and the results are compared. The experimental 
validations are also carried out. It is clarified that both 
methods can estimate the no-load iron loss of machines in the 
similar accuracy and that the proposed method is suitable for 
the estimation of the high-order harmonic iron losses. 

II. IRON LOSS MODELING 

The conventional three-term iron-loss model [1]-[4] is: 
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where We, Wh, Wex are the eddy-current loss, hysteresis loss, 
and excess loss in the core, σ is the conductivity, h is the 
thickness of the electrical steel sheets, D is the density, T is 
the time period, Kh, α, and β is the hysteresis coefficients, f is 
the fundamental frequency, Bm is the maximum flux density 
during the time period, ∆Bi is the local amplitude of the flux 
density that cause minor hysteresis loss, Kex is the excess loss 
coefficient. The flux density B is estimated by the finite-
element method that neglects the eddy currents in the steel 
sheets.  
      On the other hand, in the proposed model, the iron loss is 
expressed by two terms as follows: 
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where We’ is the eddy-current loss including excess loss, Wh’ 
is the hysteresis loss, κ is the modified coefficient of the 
excess loss, and E is the electric field. The electric and 
magnetic fields are calculated by the 3-D nonlinear time-
stepping eddy-current analysis in the electrical steel sheet. By 
using this model, both the eddy-current loss and the hysteresis 
loss are calculated by taking into account the concentration of 
the electric and magnetic fields near the surface of the steel 
sheets. 

By applying several assumptions, the coefficients in (1) 
and (2) can be determined from the iron-loss characteristics of 
the electrical steel sheets obtained by the Epstein-frame test. 
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11 ELECTRIC MACHINES AND DRIVES 

III. APPLICATIONS 

First, the methods are applied to the calculation of no-load 
iron loss in a permanent magnet motor. Fig. 1 shows the 3-D 
finite element mesh in half the thickness of the electrical steel 
sheet. The applied steel sheet is 20RMHF1200, whose 
thickness is 0.2 mm. the skin effect can be considered as small. 
On the other hand, the excess loss is relatively large [8]. Fig. 2 
shows the calculated eddy current distribution. 

Fig. 3 shows the experimental and calculated no-load iron 
losses. The difference in the total losses obtained by the 
conventional and proposed method is slight. 

Next, the methods are applied to the calculation of 
harmonic iron losses in an induction motor driven by a PWM 
inverter. Fig. 4 shows the 3-D finite element mesh. The 
applied steel sheet is 50A1300, whose thickness is 0.5mm. 
The excess loss is negligible [8]. On the other hand, the skin 
effect is large. Fig. 4 shows the flux density waveform at a 
tooth. It can be observed that the harmonic ripples concentrate 
at the surface of the sheet.  

To confirm the accuracy in the high-order harmonic iron 
losses, the loss caused by the inverter-carrier harmonics 
Wcarrier is separated not only by the calculation but also by the 
experiment as follows: 

sininvcarrier WWW −=                           (3) 

where Winv and Wsin are the total losses when the motor is 
driven by the inverter and a sinusoidal power supply, 

respectively. Wcarrier mainly consists of the losses in the cores. 
Fig. 6 shows the experimental and calculated Wcarrer. The 

accuracy is much improved by the proposed method. It is 
clarified that the proposed method is especially suitable for the 
estimation of the high-order harmonic iron losses.  
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Fig. 1. 3-D finite element mesh for PM (1,186,127 tetrahedron elements). 
 

 

Fig.2. Eddy current distribution near top of stator tooth. 
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Fig. 5. Calculated flux density waveform at tooth (f1=50Hz, 180V). 
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Fig. 6. Experimental and calculated carrier loss of motor (f1=50Hz, 180V).
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8.Coupled Problems

Abstract — In order to improve the induction heating system 
for an object of magnetic material, it is necessary to clarify the 
heating property  due to eddy current loss by using  a magneto-
thermal coupled analysis taking  account of the temperature 
dependence of magnetic properties of magnetic material to be 
heated. In this paper, the effect of temperature dependence of 
magnetic properties on heating characteristics of  a billet heater 
is analyzed considering the heat emission, heat conduction and 
temperature dependence of magnetic characteristics of the billet. 
It is shown that the consideration of temperature dependence of 
magnetic properties is indispensable for the accurate analysis of 
the phenomena. The heat emission should also be taken into 
account for the  precise analysis.  The skin depth is increased 
because the resistivity of the billet is increased and the 
permeability is decreased at high temperature. As a result, the 
flux in the billet is reduced, and then the power (eddy current 
loss) in the billet is decreased. 

I. INTRODUCTION

In order to control the billet heater accurately so that the 
input and output of heat is well controlled, and to avoid billets 
which were not heated at a desired temperature, it is necessary 
to clarify the heating properties of billets by the magneto-
thermal coupled analysis [1]. Although the heating 
characteristics of the billet made of magnetic material is 
affected by the temperature dependence of magnetic 
properties, the report of precise discussion  is few. 

In this paper, the detailed behavior of the eddy current loss 
and the temperature distribution in billets are analyzed by the 
magneto-thermal coupled method considering the heat 
emission, the heat conduction and the temperature dependence 
of magnetic characteristics of the billet. The effect of the 
temperature dependence of magnetic properties on heating 
characteristics is discussed in detail.  

II. MODEL AND METHOD OF ANALYSIS 

Fig. 1 shows the examined billet heater. The material of the 
billet is S45C (carbon steel). The insulating material is rolled 
out of the fire-resistant material. The Curie temperature of the 
billet is 760°C. We assumed that the model is isotropic. 

3-D FEM using edge elements is used for the magnetic field 
analysis, and 3-D FEM using nodal elements is used for the 
thermal field analysis. Although coils are divided into parts in 
an actual billet heater, it is assumed that they are not divided 

into parts in the analysis in order to make the analysis simple. 
Fig. 1 shows the cross section of the examined model. We 
considered the division of coils by feeding the current at the 
instant when the analyzed region corresponds to the cross 
section with the coil or by feeding no current at the instant 
when it corresponds to that without the coil.  The boundaries 
of analyzed region in Fig. 1 are assumed as the adiabatic 
boundaries. 

The B-H curves are changed with the temperature. Fig.3 shows B-
H curves as a reference. 

III. EFFECT OF TEMPERATURE DEPENDENCE OF MAGNETIC 

PROPERTIES 

Effect of Temperature Dependence of Magnetic Properties 
on Heating Characteristics of Induction Heater 

Norio Takahashi1, Hiroyuki Kagimoto1, Hiroaki Kurose1, Daisuke Miyagi1, Naoki Uchida2 and Keiji 
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8.Coupled Problems

Fig.3 shows an example of the calculated result of the 
change of temperature. The figure denotes that the behavior of 
temperature is completely different, if the temperature 
dependence of conductivity and B-H curve is neglected. Fig. 4 
shows the comparison  of calculated temperature with the 
measured one. The temperature is measured using thermo-
couples.  As the measured B-H curves are used in the analysis, 
the calculated results are considerably in good agreement with 
the measured ones. 

    Fig. 5 shows the temperature distribution at t=105 sec. The 
figure denotes that the heat emission should be taken into 
account, because the temperature distribution is considerably 
affected by the heat emission at high temperature. 

Fig. 6 shows the distribution of power (eddy current loss) 
and temperature in the billet. The power invades inside the 
billet with the increase of temperature, and its value is 
reduced. The reason is as follows: The skin depth is increased 
due to the decreased of the conductivity and permeability, and 
the flux is also decreased due to the decrease of the 
permeability at such high temperature. As a result, the 
generated eddy current loss (power) is decreased. 

IV. CONCLUSION

The effect of the temperature dependence of magnetic 
properties on heating characteristics is discussed in detail. The 
effect of  the temperature dependence of magnetic properties 
on the distortion of the voltage waveform of the coil, etc. will 
be discussed in the full paper. 

REFERENCE
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7. Material Modeling

Abstract — The inspection of volume fraction of retained 
austenite in the high chromium cast iron is important in keeping 
the quality of hot-rolling etc. The permeability and the 
conductivity of the cast iron are decreased when the volume 
fraction of retained austenite is increased. Therefore, the 
inspection of volume fraction of retained austenite is possible by 
detecting the difference of the electromagnetic characteristic. 
However, the inspection is not easy, because the permeability of 
the cast iron is usually non-uniform. As a result, the signal of the 
electromagnetic inspection has a magnetic noise. 

In this paper, the inspection technique for reducing the effect 
of the non-uniformity of the permeability on the large magnetic 
noise, and that for measuring the retained austenite is examined 
using 3-D edge-based hexahedral nonlinear FEM. In addition, 
the experimental verification is also carried out. 

I. INTRODUCTION 
High chromium cast iron is used as abrasion proof 

components of such as, a steel of hot-rolling, a ball and a 
liner of mill for mineral pulverization. The hardness is 
reduced by the appearance of  the retained austenite in the 
cast iron [1,2]. Therefore, the evaluation of volume fraction 
of retained austenite (γ) in the cast iron is important in 
keeping the quality of steel of hot-rolling etc. The 
permeability of the cast iron decreases when γ  is increased, 
because the austenite is a nonmagnetic material. Therefore, 
the evaluation of the amount of γ in the cast iron is possible 
by detecting the change of the magnetic characteristic using 
the electromagnetic inspection. However, the inspection is 
not easy, because the permeability of the cast iron is usually 
non-uniform. As a result, the signal of the electromagnetic 
inspection has a magnetic noise [3]. 

In this paper, the inspection technique for reducing the 
effect of the non-uniformity of the permeability on the large 
magnetic noise, and that for measuring γ is examined using 3-
D edge-based hexahedral FEM, and the experimental 
verification is also shown.  

II. MEASUREMENT OF INITIAL MAGNETIZATION CURVE, 
NON-UNIFORMITY OF PERMEABILITY AND CONDUCTIVITY 

Fig.1 shows the initial magnetization curves for various γ  in 

the cast iron. In addition, Fig. 2 shows the conductivities for 
various γ. These figures denote that the permeability and 
conductivity of the cast iron are decreased with the increase 
of the retained austenite. Fig.3 shows the maximum 
dispersion rate εµ of non-uniformity of permeability with 
different amount of γ in the high chromium cast iron. The 
figure denotes that the non-uniformity (εµ) of permeability is 
increased when γ is increased. When the magnetic field is 
increased in the high chromium cast iron, εµ is decreased, 
because the direction of each magnetic moment becomes 
nearly the same. 

III. ELECTROMAGNETIC INSPECTION OF RETAINED AUSTENITE 
IN HIGH CHROMIUM CAST IRON 

A. Effect of Non-uniformity of Permeability in High 
Chromium Cast Iron 
Fig.4 shows the 1/2 domain of the proposed inspection 

model for evaluation of γ in the high chromium cast iron. The 
 
 
 
 
 
 
 
 
 

Fig.1. Initial magnetization curves of the high chromium cast iron with 
different γ (Cr=17%). 

 
 
 
 
 
 
 
 
Fig.2. Conductivity of high chromium cast iron with different γ (Cr=17%). 
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7. Material Modeling

 
 
 
 
 
 
 
 
 

 
Fig.3. Dispersion rate εµ of permeability of high chromium  

cast iron (Cr=17%).   
 
non-uniformity of flux density in a search coil is estimated by 
calculation. Many kinds of B-H curves with the dispersion 
within εµ are generated for various average flux density Bave 
in the specified region in the cast iron, and they are 
distributed in random in each element in the cast iron. The 
movement of magnetic yoke is simulated by shifting the 
permeability and conductivity inside the high chromium cast 
iron region in the x-direction by 1mm step. The B-H curves 
of the high chromium cast iron (γ=45%) with the largest non-
uniformity of initial permeability are used for investigation. 
The exciting frequency is 500Hz. Fig.5 shows the calculated 
results of flux density in a search coil when the magnetic 
yoke is moved. The figure denotes that εB is reduced when 
the flux density BE inside the exciting coil is increased. In this 
magnetic yoke, the heat generation of the exciting coil is 
large when the exciting flux density BE is more than 0.08T. 
But, εB is remained about • •0.07%, even if BE is larger than 
0.08T. Therefore, the exciting flux density BE in this model 
was set as 0.08T. 

   
 
 
 
 
 
 
 
 
 
                (a) x-z plane                                          (b) x-y plane 

Fig.4. Electromagnetic inspection model for high chromium cast iron with  
different γ (1/2 domain). 

 
 
 
 
 
 
 
 
 
 
Fig.5. Effect of non-uniformity of permeability in high chromium cast iron 

(calculated, 500Hz, • •=45%, Cr=17%). 
 

 
 
 
 
 
 
 
 
 
 
 

Fig.6. Effect of • • in high chromium cast iron on change of flux density in a 
search coil (500Hz, BE =0.08T, Cr=17%). 

B. Inspection of Retained Austenite 
Fig.6 shows the effect of γ on the change η of flux density 

|B| of a search coil. 14 pieces of the high chromium cast irons 
with various volume fractions γ of retained austenite were 
measured. The frequency and exciting flux density BE are 
500Hz and 0.08T, respectively. The measured values are in 
agreement with the calculated ones. In the full paper, the 
optimal magnetization condition for the inspection is 
examined using the 3-D edge-based hexahedral FEM. In 
addition, the experimental verification is also carried out. 

IV. CONCLUSIONS  
The results obtained are summarized as follows:  

(1) When the volume fraction of retained austenite in high 
chromium cast iron is increased, the permeability and 
conductivity are decreased and the non-uniformity of 
permeability is increased. However, when the magnetic 
field is increased, the non-uniformity of permeability is 
decreased, because the direction of each magnetic moment 
becomes nearly the same. 

(2) The flux density in a search coil of the proposed 
electromagnetic inspection method is decreased when the 
volume fraction of retained austenite in high chromium 
cast iron is increased, because the permeability and the 
conductivity are decreased. Therefore, if the exciting flux 
density that reduces the non-uniformity of the permeability 
in high chromium cast iron is applied, the non-destructive 
inspection of the volume fraction in the cast iron of 
retained austenite is possible by the proposed inspection 
method. 
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7. Material Modelling 

Abstract — In order to investigate the noise reduction of a 
reactor under inverter power supply, coupled magnetic and 
mechanical analyses should be carried out taking account of 
magnetostriction or electromagnetic force in the iron core. In this 
paper, a method of modeling the magnetostriction 3-dimensionlly 
with equivalent nodal forces is proposed to enable the mechanical 
analysis taking account of the magnetostriction. Then, the spatial 
distributions of displacements in the core of a single phase of 
reactor due to magnetostriction and electromagnetic force are 
calculated to determine the dominant cause of noise. It is shown 
that both causes should be taken into account for a reactor.  

I. INTRODUCTION

Recently, inverter power supplies have been widely used for 
electrical machines. However, because of the harmonics, 
noises from electrical machines are loud. Generally, the major 
cause of noise for non-rotating machines such as transformers 
is considered to be magnetostriction [1]. And for rotating 
machines it is considered to be electromagnetic force in the 
gaps between the rotor and stator [2]. Moreover, for reactors, 
both mechanisms are considered to be responsible for the 
noise because it is non-rotating machines with large gaps in 
the core. To investigate the noise reduction for such various 
machines, 3-dimensional (3D) coupled magnetic and 
mechanical analyses should be carried out. In the mechanical 
analysis, the local force distribution in the iron core is 
required. The 3D local forces due to electromagnetism can be 
calculated by the nodal force method [3]. However, for 
magnetostriction, only 2D modelling has been reported 
[1],[2]. 

In this paper, the method of modeling the magnetostriction 
3-dimensionlly with equivalent nodal forces is proposed to 
enable the 3D mechanical analysis taking account of the 
magnetostriction. In this modeling, the nodal forces in the core 
due to magnetostriction are calculated by using the flux 
distribution obtained from the magnetic field analysis. In order 
to show the effectiveness of the proposed method, the spatial 
3D distributions of displacements in the iron cores of a single 
phase of reactor due to magnetostriction and electromagnetic 
force are calculated by the static structure analysis using the 
nodal forces obtained from the proposed method and the nodal 
force method, respectively, and are compared with each other.  

II. 3D MODELLING OF MAGNETOSTRICTION

The magnetostriction in the iron core is modeled with 
equivalent nodal forces. The material of the core is assumed to 
be isotropic in this paper. The nodal forces fms

(ip) due to 

magnetostriction at each node ip of each element ie when 
subject to flux density B(ie) are obtained by using the following 
method. First, when the magnetic material is subject to flux 
density B, the magnetostriction εp and εv in the directions 
parallel and vertical to B respectively are assumed to be 

2Bp αε =                                                              (1) 

pv vεε −= ,                                                             (2)  

where α and ν are constants obtained from experiment. ν
corresponds to the Poisson’s ratio. The shape change of a 
cylinder with length L and radius R due to magnetostriction 
subject to flux density in the parallel direction to the axis of 
the cylinder is illustrated in Fig. 1. In the element ie with 
center of gravity O on the cylinder axis as shown in Fig. 1, the 
displacement u(ip) on node ip can be represented by 

vvpp
ip rl iiu εε +=)( ,                                                  (3) 

where l and r are the lengths of the axial and radial 
components of the line O–ip respectively, as shown in Fig. 2. 
ip and iv are unit vectors in the axial and radial directions 
respectively. The equivalent nodal force fms on each node of 
element ie are obtained by using the displacement u at each 
node and the stiffness matrix K [4] defined by the finite 
element method as following 

uf Kms = .                                                  (4) 
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Fig. 1. Change in the shape of a cylinder due to magnetostriction. 
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7. Material Modelling 

In order to investigate the validity of the proposed method, 
the nodal forces fms for a cubic element with edges of 2 m, 
Young's modulus E of 200 GPa, ν of 0.3, and α of 7.8 × 10–6

subject to flux densities (0, 0, 1 T) and (0.577 T, 0.577 T, 
0.577 T) are calculated. The distributions of the flux densities 
B, displacements u, and nodal forces fms are shown in Fig. 3. 
This figure shows the validity of the proposed method because 
the element extends in the direction parallel to the flux density 
and contracts in the direction vertical to the flux density.  

The nodal forces in the core can be obtained by adding up 
the nodal forces fms in each element. 

(a)  B (b)  u (c)  fms

:1T :13.5μm :2.70×106N

:1.56×106N:8.47μm:1T

(i) B=(0, 0, 1T)

(ii) B=(0.577T, 0.577T, 0.577T)

(a)  B (b)  u (c)  fms

:1T :13.5μm :2.70×106N

:1.56×106N:8.47μm:1T

(i) B=(0, 0, 1T)

(ii) B=(0.577T, 0.577T, 0.577T)

Fig. 3. Distributions of (a) Flux densities B, (b) displacements u, and (c) nodal 
forces fms when subject to flux densities (i) B=(0, 0, 1T), (ii) B=(0.577T, 

0.577T, 0.577T).

III. APPLICATION

To investigate the effectiveness of the proposed method, the 
spatial distributions of displacements in the iron core of a 
single phase of reactor, described in Ref. [5], due to 
magnetostriction and electromagnetic force are calculated and 
compared with each other. 

For calculating the magnetic field distribution, 3D nonlinear 
eddy current finite element analysis using the A–φ method 
(where A and φ are the magnetic vector and electric scalar 
potentials, respectively) is carried out. The laminated core of 
reactor is modeled as an anisotropic solid core considering the 
gaps between the steel plates and eddy currents in the steel 
plates [5].  

The flux distribution and the nodal force distributions for 
magnetostriction and electromagnetism in the middle plane of 
the core and at the instant when the flux is the maximum are 
shown in Fig. 4. The nodal forces due to magnetostriction are 
larger near the gaps and holes where the flux densities change 
suddenly. The nodal forces due to magnetostriction are about 
six times as those due to electromagnetism. The nodal forces 
due to electromagnetism are attractive forces generated 
between cores. The nodal forces due to electromagnetism are 
obtained by using the nodal force method and the Maxwell 
stress tensor of the Chu model [3]. 

The spatial distributions of displacements obtained from the 
static structure analysis using the nodal forces due to the 
magnetostriction and electromagnetism in the same plane at 
the same instant are shown in Fig. 5. The displacements due to 
magnetostriction in the yoke are larger than those in the leg. 
This is because the yoke is longer than the leg. The 
displacements due to electromagnetism in the yoke are large 
whereas those in the leg are very small. This is because the 
yoke is only acted upon by forces pulling from the leg, 
whereas the leg is acted upon by nodal forces in opposite 
directions which can cancel with each other. Both 
displacements are of the same order. Therefore, both causes 
should be taken into account in the noise reduction. 
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12 a Devices and Applications: high magnetic field devices 

Abstract — Due to manufacturing and assembly variations, 

there are tolerances associated with the nominal dimensions of 

complex electromagnetic devices. A possible approach to take 

into account such tolerances in the early design phases is the 

“worst case tolerance analysis”, whose goal is to determine the 

effect of the smallest and largest assembly dimensions on the 

product performance. On the other hand, when many tolerances 

must be considered, locating the worst case with combinatorial 

effects could get very time consuming, since performance 

assessment of such devices may require numerical field analysis. 

In the paper, a fast approach based on the performance 

sensitivity with respect to design parameters is presented, and 

applied to the tolerance analysis of nuclear magnetic resonance 

magnets. 

I. INTRODUCTION 

The main requirement in the design of superconducting 

(SC) magnets for Nuclear Magnetic Resonance (NMR) is the 

high uniformity of the magnetic field that must be guaranteed 

within a very tight limit inside a suitable Volume Of Interest 

(VOI). The uniformity is usually evaluated as the maximum 

discrepancy of the magnetic field amplitude with respect to 

the nominal value on the boundary of the VOI. In order to 

guarantee the right resolution, such uniformity must be 

within few parts per million (ppm). Unfortunately, in 

practical realisations, due to construction and assembling 

tolerances, the actual magnets differ from the nominal ones 

[1, 2]. Then, suitable sets of shimming coils are included able 

to counteract the error field. However, before starting 

construction, especially for such expensive devices, an 

assessment of the impact of tolerances is required, to verify if 

design performance are guaranteed also for real magnets, 

and, in addition, to evaluate the actual requirements of 

shimming systems. 

On the other hand, the treatment of the tolerances in the 

design phase implies a relevant impact on the computational 

cost, since the relationship among design parameters and 

device performance indexes is usually a complex non-linear 

function, possibly involving numerical magnetic field 

computations. In the paper, a fast approach to tolerance 

analysis, based on the worst case approach and on the use of 

performance index sensitivity, will be presented, and applied 

to the performance assessment of NMR magnets. 

II. TOLERANCE ANALYSIS 

Tolerancing plays a key role in design and manufacturing 

of industrial products. In the following, according to [3], 

tolerances are defined as the maximum deviations from a 

nominal specification within which the part is acceptable for 

its intended purpose. Tolerances are usually expressed as 

lower and upper deviations from the nominal value.  

Basically, tolerancing implies two different aspects: 
 

• Tolerance analysis, involving identification of related 

tolerances in a design, and calculation of the stackup 

of these related tolerances. If design requirements are 

not met, tolerance values are adjusted and the stackup 

recalculated.  

• Tolerance synthesis, the process of distributing 

tolerance values among dimensions in order to 

guarantee functionality or assemblability. 
 

In general, tolerance analysis involves building linear or 

nonlinear models of the problem at hand, depending upon the 

design complexity. 

A tolerancing problem can be solved either using a worst-

case approach or a statistical approach. In the first case, the 

extreme values of tolerances are considered, while in the 

second case, tolerance calculation are performed based on the 

fact that actual dimensions are randomly distributed around 

their nominal values. 

Statistical tolerancing, as it allows to reduce the average 

cost by accepting to include in the overall production also a 

(possibly small) number of unacceptable elements, is well-

suited for mass production. Some of the popular methods for 

statistical tolerance analysis are search-space smoothing 

using Monte Carlo yield estimation, statistical model-based 

methods, and six-sigma tolerance analysis tools [3, 4]. 

The worst-case approach is better suited for single piece 

or small-lot productions for critical applications; of course the 

design of high field magnets falls in the second class. The 

typical approach uses nominal values for all variables except 

for one, which is once simulated with the upper and once 

with the lower boundary. Then, the next variable is chosen. It 

is missing the effect of the combination of several tolerances 

that might together cross the performance acceptance 

threshold. In principle also the cross effects of the tolerances 

could be considered. However this implies to calculate each 

possible combination of tolerance term boundaries, leading to 

a strong growth of computing time which is exponential in 

the number of tolerance sources. The interval arithmetic 

approach also suffers from the curse of dimensionality 

described above. 

The topic of tolerance analysis has received a great deal of 

attention from researchers in the field of mechanics [3-6], and 

also relevant contributions are available in the field of 

electronic circuits design (a few, non exhaustive examples are 

[7], [8]). On the other hand, the complexity of 

electromagnetic devices performance assessment limited the 
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investigation in the field until sufficient computational power 

was made available. 

Aim of the paper is to propose an approach to reduce the 

computational cost for worst case localization, based on the 

availability of the sensitivity of device performance index 

with respect to the design and constructive parameters. As a 

matter of fact, the array of sensitivities can be related to the 

gradient of the performance index in the parameters space, 

and the worst case is likely to be identified by following the 

gradient direction.  

On the other hand, constraints are usually present among 

different parameters, limiting the actual values that each 

parameter can take inside the tolerance range. In addition, in 

some cases the gradient could become very small, and higher 

order derivatives must be considered in the search for the 

worst case.  

In the full paper, an approach able to systematically take 

into account the above cited issues will be proposed. For 

exemplification purposes, in the following section the 

tolerance assessment of field homogeneity for a MRI magnet 

will tackled, either using worst case analysis taking advantage 

of sensitivities, and using Monte Carlo method, to compare 

drawbacks and advantages of both approaches. 

III. ASSESSMENT OF MRI DESIGN 

The possibility of locating worst case using performance 

index sensitivity in the design of demanding electromagnetic 

devices has been evaluated with reference to a SC magnet for 

NMR spectroscopy, described in Fig. 1 and Table I.  

TABLE I 

PARAMETERS OF NMR MAGNET 

Parameter Value 

Number of Coils 6 NbTi coils 

Central Field 2.5 T 

Field Uniformity 3.2 ppm on 5 cm sphere 

Minimum inner radius 210 mm 

Overall length 640 mm 

Tolerances 

+/- 1 µm for all dimensions, except radial and 

longitudinal coord. of barycentre for Coil 1, for 

which a tolerance of +/- 1 mm is assumed 

 

 
Fig. 1 – Sketch of the magnet for NMR spectroscopy considered in the paper. 

 

In order to get meaningful results from stochastic analysis 

within a reasonable computation time, the tolerances on all 

geometrical dimensions have been assumed very small (1µm) 

except for radial and longitudinal coordinates of coil 1 

baricentre, for which tolerances of +/-1 1mm have been 

assumed. No constrains among design variables are 

considered. In this way convergence of statistical analysis was 

achieved after 20000 cases for Monte Carlo method, and 

provided a worst case uniformity of 316 ppm. Worst case 

analysis using sensitivities (in this case, simply multiplying 

the sensitivity with respect to each parameter times the 

related tolerance, and summing absolute values for all 

dimensions) provided a worst case uniformity of 319 ppm. 

Cumulative distribution function (CFD) of performance, 

average performance and worst case are reported in Fig. 2. 

 
 

Fig. 2 – CDF, average and worst performance for NMR magnet. 

IV. OUTLOOK 

A possible fast approach for worst case tolerance analysis, 

based on the use of sensitivity information, has been 

introduced and its effectiveness has been checked in the case 

of tolerancing of NMR magnets. The comparison with usual 

statistical analysis showed that worst case performance is 

practically the same, yet requiring in the latter case a much 

higher computational effort. In the full paper, a complete 

description of the method will be presented, including the 

treatment of constraints and of possible vanishing gradient 

components. 
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homogenization in electromagnetism: a thermodynamic insight
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Abstract— Homogenization procedure is investigated from spatial aver-
aging techniques and variational principles. The mean-field approxima-
tion requested by the procedure is clearly given and dispersive behavior
laws are derived at the macroscopic scale. The technique is used to discuss
the problem of dynamic hysteresis and extra-losses in soft magnetic
materials. A validation is proposed by assessing losses on a 2D-Pry and
Bean iron sheet. Discussion also includes a confrontation with Bertotti’s
experiments.

Index Terms— homogenization, multi-scale approach, magnetic mate-
rials, eddy currents, transient formulations, anomalous losses.

I. INTRODUCTION

Homogenization techniques consist in replacing an original prob-
lem described from deep within material by an equivalent one where
the rapidly space-varying lengths at the design scale are discarded.
From that viewpoint, macroscopic electromagnetism is already an
homogeneized theory, but further homogeneizations could be carried
out to take advantage of the spatial regularity occuring in various
media. The benefits of homogenization are obvious: While taking into
account the fine structure would be a huge or impossible task, the
equivalent problem may be solved more cheaply, with a reasonable
mesh size and a better conditioning. However a challenging task of
any homogeneization procedure consists in deriving unconventional
behavior laws from a basic resolution at a “unit cell” scale in order
to restore properly the dissipative phenomena occuring therein.

Some previous works paid attention to the conservation of local
averages involved in the Maxwell equation set, e.g. [1]. Conversely,
we adopt here a thermodynamic viewpoint where the conservation
of global energy quantities, such as Gibbs’ free energy or electrical
power, comes first; whereas the structure of Maxwell equations
is automatically kept as far as the variational principles are en-
forced. Hence, the mean field approximation requested to successfully
achieve the homogeneization is rigorously highlighted thanks to a
spectral analysis.

A validation of the procedure is proposed by assessing anomalous
losses on a 2D-Pry and Bean iron sheet [2]. Whereas numerical results
are successfully faced with experiments, the domain of validity of the
prior models is also emphasized.

II. VARIATIONAL PRINCIPLES IN ELECTROMAGNETISM

The magnetodynamic behavior of any electrical system may be
derived from the variational principle [3]:

Pmech (Ω)−
dG

dt
(Ω) + Pelec (Ω) =

min
h,e C

σ−1 (curlh)2 d3x+
d

dt Ω

(b (h) · h+ d (e) · e) d3x
(1)

where the functional in the RHS exhibits:
• the magnetic field h related to free and displacement currents

according to the Maxwell-Ampere equation. The quasi-static
approximation enforces d ≡ 0 in conductors;

• the Joule losses PJoule monitored in conductors C ⊂ Ω. This
term is even to respect invariance of losses with inversion of
current j = curlh (σ−1 is the resistivity);

J
jw

µdiff,σ

∼L

I

δ

3

1

wn

l FT

k

j
~

L
π2

32 wnπ l
π2

Ωw

Fig. 1. Spectral decomposition of the current density: While the low-
frequency peak involves scales given by the classical skin effect, the medium-
frequency peak (resp. high-frequency) is associated to “unit cell” periodicity
(resp. eddy currents pattern occuring in one unit cell). The splitting of this
results from diluted enough unit cells to allow a mean field approximation.

• the variation with time of the electromagnetic energy coupling
the field with the generator I and the mass V0;

• the magnetic b (h) and electrostatic d (e) behavior laws derived
from thermostatic equilibrium of the contribution of Ω to the
Gibbs’ potential:

G (T, I,V0,Ω) =

Ω

h

0

(−b (h)) · δh+
d

0

(−d (e)) · δe d3x (2)

Extending the electric field in the conductor according to Ohm’s law
e = σ−1j − v × b, Faraday’s law curl e = −∂tb may be viewed
as acting locally to check globally a tendency towards reversibility.
This striking property provides a thermodynamic-oriented insight of
the variational theory of electromagnetism [4]. Hence, the minimum
in (1) matches the LHS including the variations with time of the co-
energy −G(Ω), the mechanical power Pmech (Ω) acting on Ω, and
the electrical power Pelec (Ω) = − ∂Ω

(e× h) d2x supplied to Ω.
Taking advantage of their quadratic properties, thermodynamic

functionals (1) and (2) support spatial filtering operations to pro-
vide a fully multi-scale framework: It is the key to derive robust
homogeneized models.

III. MACROSCOPIC FORMULATION

As matter of fact, the basis of the free current density j in regular
conducting structures involves a superposition of compact distribu-
tions of microscopic currents jw located within each “unit cell” Ωw at
position xw, with a density nw (x); and a possible macroscopic free
current density J. This description leads to the spectral decomposition
given at the figure 1 where the splitting in several peaks means diluted
unit cells and allows a mean-field hypothesis [5] which consists in
performing independant minimizations for k ≷ klp. Whereas the
low-pass filtering process (k < klp) is equivalent to a smoothing
procedure on the various fields [6], the high frequencies restore the
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deepest magnetodynamic mechanisms. Hence, the restriction to C of
the minimization in the RHS of (1) becomes:

min
hhi(t) C

σ−1 (curl hhi)2 + ∂t (hbi · hhi) d3x (3a)

+
w∈C

min
hµ(t) Ωw

σ−1 (curlhµ)
2 + ∂t (bµ · hµ) d3x (3b)

where hhi (resp. hbi) denotes the averaged magnetic field (resp.
averaged flux density) and is obtained through a convolution by the
low-pass filter ρlp hhi (x) = h (x0) ρlp (x− x0) d3x0. Similarly,
hµ (resp. bµ) stands for the rapidly space-varying part of the
magnetic field (resp. flux density) and is obtained thanks to a
convolution by a high-pass filter. Hence, the consistency between
low- and high-spatial frequencies is enforced by:

• the conservation of the magnetic flux density after the smoothing
procedure, i.e. B = hbi;

• the modification of the Maxwell-Ampere equation according to
the dynamic behavior of independent unit cells given by the
minimization (3b). After the smoothing procedure on the mi-
croscopic eddy currents at the first order, the averaged magnetic
field hhi is shifted by the microscopic dynamic eddy currents
to check a modified Maxwell-Ampere equation:

curl hhi+ σΛ2∂tB = J (4)

where Λ denotes a length parameter lumping locally all the
complexity due to spatial dependence of jw [7].

Some additional assumptions on the magnetization mechanisms oc-
curing in the media are necessary to resume the homogeneization.

1) Local media: The knowledge of the local field h in x prescribes
entirely the local flux density b herein. Each unit cell may be viewed
as large enough to achieve a thermodynamic equilibrium described
by the Gibbs’ free energy density. Its hessian provides locally the
differential permeability as a positive tensor and the macroscopic
behavior law is nothing but the average of the local behavior law.
Introducing the macroscopic magnetic field H = hhi + σΛ2∂tB
according to (4), the homogenization results in the delayed diffusion
model [8]:

δB = µdiff (H) · δ H− σΛ2∂tB (5)

and Ohm’s law is possibly kept at the macroscopic scale.
2) Non-local media: The thermodynamic equilibrium depends on

a large neighborhood of x. It is obviously the case for ferromagnetic
materials because the domain pattern depends of the shape of the
material. However, quasi-static approximation assumes that each time
step checks a magnetostatic equilibrium described by the Gibbs’ free
energy G. Its density, at the macroscopic scale, is a function of the
macroscopic magnetic field H = hhi + σΛ2∂tB and its hessian
provides the differential permeability µdiff as a positive tensor. Thus,
small variations of the flux density follow the magnetic law:

δB = µdiff (H) · δH (6)

Hence, stationary variations of (3a) with respect of hhi, yields,
at the first order time-derivative, the macroscopic Maxwell-Faraday
equation curl σ−1curl hhi = −∂tB so that the macroscopic
electric field E appears, in the rest frame of the conductor, through
a deviated Ohm’s law:

E = σ−1J− curl Λ2∂tB (7)

In the following, the delayed diffusion model (5) and the deviated
Ohm’s law model (6)-(7) are adapted to the Pry and Bean geometry
of domains occuring in an iron sheet [2].

Fig. 2. Loss assessment provided for an iron sheet (thickness d = 0.21mm;
µdiff = 10, 000µ0; Λ = 125µm). While solid line denotes the Bertotti’s
model derived from experimental data, the dashed lines (resp. dotted) are
provided from the deviated Ohm’s law (resp. delayed diffusion) model.

IV. RESULTS AND CONCLUSION

Both models provide domain wall motion-induced extra losses.
But the latter follows Bertotti’s experimental results [9] whereas the
former does not restore the frequency dependence of excess losses
on a large enough band, and actually underestimate them (Fig.2).
These preliminary results argue for a diluted pattern of domain
walls, the equilibrium of which being obtained at the macroscopic
scale. Conversely, the delayed diffusion model seems more suitable
to homogenize a stack of laminations from the behavior of one sheet.

In our knowledge, it is the first report of calculations able to
reproduce the loss sketch observed in an iron lamination sheet
by exhibiting the experimental dependence of anomalous losses on
the frequency. Hence, implementing homogeneized behavior laws
suitable for Finite Element Analysis is very critical to achieve
energy efficiency or reliability of power electrical devices [10]. Such
developments are currently under progress in order to take into
account transient regime, non-linear media involving several magnetic
states, and massive magnetic cores.
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8. COUPLED PROBLEMS 

 
Abstract —This paper presents a full finite element analysis for 

plasma discharge in etching process of semiconductor circuit. 
The charge transport equations of hydrodynamic diffusion-drift 
models and the electric field equation are numerically solved in a 
fully coupled system by using a standard finite element 
procedure for transient analysis. The proposed method is applied 
to a real plasma reactor in order to characterize the plasma 
sheath that is closely related to the yield of the etching process. 
The base electrode of the reactor is modified to improve the edge 
effect for the uniformity. The experiment and numerical results 
are examined along with SEM data of etching quality. The 
feasibility and usefulness of the proposed method is shown by 
both numerical and experimental results. 

I. INTRODUCTION 
Plasma etching and deposition is currently in widespread 

use in the manufacturing process of semiconductor circuit. 
However, despite of the importance of plasma processing, gas 
glow discharge is not well understood. This comes from the 
non-equilibrium nature of the plasma, and the complex 
interaction among potential field, transport phenomena, 
plasma chemistry, and surface reaction kinetics. So design of 
plasma reactor is still based largely on empirical approaches. 
Main requirements of plasma etching include high etching rate, 
uniformity, anisotropy, and selectivity. However, it is very 
difficult to satisfy all of the above requirements 
simultaneously. In addition, as the wafer size continues to 
increase, it becomes more difficult to satisfy uniformity and 
anistropy.  

Recently, there has been increasing interest in developing 
mathematical models and numerical analysis of the plasma 
process in an effort to better understand the process and to 
improve the design of plasma reactors. The most frequently 
used algorithms are method of characteristics, flux-corrected-
transport(FCT) method and particle-in-cell(PIC) method. The 
above algorithms are so complex for numerical 
implementation that extra delicate techniques are required. In 
addition, they cost long computation time and sometimes 
cause numerical instability [1]-[4]. 

In this paper, we propose a full finite element approach 
where the charge transport equations of hydrodynamic 
diffusion-drift models and the electric field equation are 
numerically solved in a fully coupled system by using a 
standard finite element procedure for transient analysis. The 
proposed method is applied to a real plasma reactor in order to 
characterize the plasma sheath just above a targeted silicon 
wafer. The plasma sheath is closely related to the yield of the 

etching process since it accelerates the bombing ions, whose 
motional properties determine the etching quality such as 
uniformity and anisotropy. Also, in this work the base 
electrode of the initial reactor is modified to improve the edge 
effect deteriorating the uniformity, and its experiment results 
of etching quality are compared with ones of the initial one by 
examining data of SEM(scanning electron microscope). That 
is, the feasibility and usefulness of the proposed method is 
shown by both numerical and experimental results. 

II. ANALYSIS MODEL OF DRY ETCHING CHAMBER 
Fig. 1 shows a cross-sectional diagram of the chamber for 

dry etching process. A wafer is placed between two electrodes. 
The upper electrode is connected to a voltage source and the 
lower one is set as ground. The electrodes supply external 
energy into the chamber for generating and sustaining the 
plasma. The electric field between the electrodes is downward 
and drives charge carries. The plasma sheath is formed just 
above the wafer and it accelerates heavy irons that bomb the 
wafer surface for etching. But the electric field above the 
wafer is not uniform in intensity and direction because of the 
fringing effect on the edge side. In this work, the uniformity 
of electric field is improved by substituting an existing quartz 
ring, which is located below the wafer, with an aluminum ring. 

 

 

III. HYDRODYNAMIC DIFFUSION-DRIFT MODELS OF 
DISCHARGE  

To analyze the phenomena of plasma discharge, 
hydrodynamic diffusion-drift models are employed. Three 
governing equations coupled with Poisson’s equation are 
solved simultaneously for the concentration of the 
electron(

eN ), positive(
pN ) and neutral (

nN ) with respect to 

time [5], [6]. The equations are as follow,  
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Fig. 1. Axis-symmetric geometry of dry etching chamber and design 
variables. 
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where, 

eV , 
pV  and 

nV  denotes the electron, positive and 

neutral ion drift velocities and � and �  denotes the ionization 
and recombination coefficients, �  denotes the concentration 
of new supplied gas. S  denotes the source term. 

The electric field is calculated using Poisson’s equation with 
the net charge of electron and ion.  

)()( ep NNeV ����� �  (2) 

where, �  is electric permittivity, e  is the quantity of electric 
charge and V  is the electric scalar potential. 

IV. NUMERICAL AND EXPERIMENTAL RESULTS 
The discharge phenomena in chamber are modeled with 

the three transport equations coupled with Poisson’s equation 
and they are calculated using the axisymmetric 3D finite 
element analysis. In Fig. 2(a) the electric potential along a z-
direction is almost constant in the middle of two electrodes, 
meaning that plasma is neutral.  A sheath region above the 
wafer is shown in Fig. 2(b). 

 

From the field analysis of plasma chamber, the uniformity 
of electric field near wafer edge is improved as shown Fig. 
3(b). It means that an incidence angle of ion to the wafer 
etching target is more perpendicular compared with Fig. 3(a). 

 

 
Fig. 4(a) shows the SEM image of the cross section near 

the wafer edge after dry etching is performed. The trench near 
the edge is not perpendicular to wafer surface because of the 
fringing effect of electric field near the wafer edge. By 
substituting the quartz block with a aluminum one, the tilt 
angle of trench is improved as shown in Fig. 4(b). 
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 (a) 

 

 
(b) 

Fig. 2. Variation of (a) electric potential and (b) electron/ion density along the 
z-direction 

 

  
                               (a)                                                        (b) 
 
Fig. 4. SEM images of wafer trench in (a) the existing quartz block and (b) 
the improved aluminum block.  

 

                 (a)                                               (b)  
 
Fig. 3. Comparison of electric field distributions when the Q1 block is (a) 
quartz and (b) aluminum ring  
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11. ELECTRIC MACHINES AND DRIVES

Abstract — The steady-state and transient performance of a 
surface-inset permanent-magnet synchronous generator (PMSG) 
feeding an isolated load is studied using a couple-circuit, time-
stepping, two-dimensional finite-element analysis. Nonlinearities 
in the field and electric circuit are taken into consideration and 
both passive ac load bridge rectifier dc load are analyzed. The  
computed results have been verified by experiments on a 2.5 kVA 
generator.  

I. INTRODUCTION

Permanent magnet synchronous generators (PMSGs) are 
increasingly used for distributed generation and many stand-
alone applications. For these applications the PMSG may 
supply a passive R-L load or a dc load via a diode bridge 
rectifier connected across the armature terminals [1]. The 
nonlinear electric and field systems pose considerable 
difficulties in analysis. In this paper, a time-stepping, coupled 
field-circuit finite element method [2], [3] is used for 
performance analysis of a surface-inset PMSG feeding an 
isolated load. Besides the field characteristics, the coupled 
field-circuit solution also yields other useful generator 
information, taking in consideration the armature current 
effect, magnetic saturation, and circuit nonlinearities. The 
analysis result helps in improving the generator design 
aspects. The computed results have been verified by 
experiments on a 2.5 kVA generator.  

II. ANALYSIS

The electric circuit of a star-connected PMSG that supplies 
a three-wire R-L load comprises has six circuit variables, 
namely the resultant generated phase EMFs eA, eB, and eC and 
the phase currents iA, iB and iC. The external circuit comprises 
the armature resistance R, armature end-winding leakage 
inductance Le, and the load impedance. In the case of a bridge 
rectifier load, additional circuit components include the six 
diodes D1 to D6, the load resistance RL, and the load 
inductance LL. In the present FEA study the field circuit 
coupling is accomplished via the phase EMFs eA, eB, and eC.

Maxwell’s equations, applied to PMSG domains, will give 
rise to the diffusion equations 

( ) 0,v A∇× ∇× =                           in iron and air gap  

( ) ,si
sv A∇× ∇× =                          in armature windings (1) 

( ) ( ),PM PM rv A v B∇× ∇× = ∇×  in permanent magnets 

where A, ν, is, S, Br and νPM are magnetic vector potential, 
reluctivity, armature phase current, total cross-sectional area 

of one turn, remanent flux density of the PM and equivalent 
reluctivity, respectively. 

The time-stepping, coupled field-circuit, 2-D FEA was 
performed in order to study the steady-state and transient 
performance the experimental PMSG with surface-inset rotor 
[3]. Constant speed operation is assumed and the PMSG 
supplies an isolated load. Fig. 1 shows the cross-section of the 
machine and the field plot obtained. 

Fig. 1 Cross-section of PMSG with surface-inset rotor and the  
flux plot obtained from FEA.

III. GENERATOR PERFORMANCE

A. PMSG Supplying Isolated Load 

Fig. 2 shows the computed and experimental waveforms of 
the PMSG on no load and Fig. 3 shows the computed and 
experimental waveforms of phase voltage and phase current 
when the PMSG is supplying a load resistance of 9.1 Ω per 
phase. The increased harmonic distortion in phase voltage is 
due to increase in the triplen harmonics. Since a three-wire 
load is being supplied, the current waveform is practically 
sinusoidal since triplen harmonics are suppressed across the 
lines. 
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B. Load Switching Transients 

The time-stepping coupled field-circuit method was next 
used to study the transient performance of the PMSG. The 
PMSG was operating on no-load at rated speed when a balanced 
resistive load of 12.45 Ω per phase was connected across the 
generator terminals. As shown in Fig. 3, a brief transient period 
follows the application of load at time t = 1.018 s, and a notch is 
produced in the voltage waveform. Agreement between the 
computed and experimental waveforms is good in general, but 
the deviation in frequency becomes more pronounced due to the 
speed drop in the experimental machine set, a fact which was 
not accounted for in the FEA. 
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Fig. 3 Waveforms of phase voltage and phase current when a load resistance 
of 12.45 Ω per phase is switched across the generator terminals. 

C. Short-Circuit Transients 

The time-stepping coupled field-circuit method was also 
used for studying the short-circuit performance of the PMSG 
and the computed results are shown in Fig. 4. The PMSG is 
assumed to be running on open circuit when a three-phase short 
circuit occurs at the terminals. Since triplen harmonic currents 
cannot flow, the triplen harmonic voltage components remain in 
each phase during the short circuit (Fig. 4a). The steady-state 
short-circuit current, however, is quite sinusoidal as observed 
from Fig. 4b. The peak short-circuit current reaches 131 A, 
while the steady-state short-circuit current is 107 A (peak), or 76 
A (rms), which is almost six times the rated current. 

Fig. 5 shows the distribution of the normal flux density at 
the mean air gap of the PMSG computed at the instant when  
maximum short-circuit current (131 A) is flowing. Due to the 
inset rotor construction, the flux density is large in the interpolar 
regions (I) where the soft iron rotor pole pieces are located. 
Over the surfaces of magnets (II), however, the flux density is 
smaller due to the demagnetizing effect of the armature currents. 
There are also places with flux reversal, implying that partial 
demagnetization in the adjacent magnet regions is likely to 
occur in the event of a terminal short circuit. 
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Fig. 4 Three-phase short-circuit transients of PMSG: (a) Phase voltage 

waveforms; (b) phase current waveforms. 

Fig. 5 Computed air gap flux density distribution of PMSG when Phase A  
is carrying maximum instantaneous short-circuit current  

(I: interpolar regions; II: surfaces of magnets).

D. Rectifier Load 

Figs. 6a and 6b show the computed and experimental 
waveforms of the PMSG-rectifier-load system when Rdc = 9.2 
Ω. Compared with the waveforms for passive loads (Fig. 2), 
the harmonic distortion the phase voltages and phase currents 
is more severe due to the nonlinear load. During commutation 
overlap, the phase voltage is approximately constant at 50 V 
while the phase current increases (or decreases) approximately 
linearly, giving rise to quasi-trapezoidal current pulses in the 
positive and negative half cycles (Fig. 6-+b).  
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Fig. 6. Computed and experimental waveforms of phase current when the 
PMSG is supplying a rectifier load (Rdc = 9.2 Ω).
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Abstract — This paper introduces design and analysis of two 
different flux reversal linear synchronous motor(FRLSM) by 2D 
finite element method(FEM). The analysis models are optimized 
by response surface methodology(RSM) for a realistic 
comparison. Analysis results show that the proposed FRLSM 
with multiple auxiliary salient poles effectively increases thrust. 
A prototype of the proposed configuration is made and 
experimental results validate  the design and analysis. 

I. INTRODUCTION 
Conventional flux reversal machine (FRM) consists of a 

passive rotor and multiple pole PMs of alternating polarity on 
each stator salient tooth. FRM can exhibit servo quality 
characteristics when driven by 3-phase sinusoidal vector 
control [1]. Most of previous research works related to FRM 
concentrated mainly on rotary machine except flux reversal 
linear oscillomachine for short stroke application [2]. Recent 
research works on FRLSM showed feasibility for long stroke 
linear motion systems [3], [4].  

The proposed model in this paper introduces auxiliary 
salient poles between adjacent PMs. This unique magnetic 
circuit reduces flux leakage and also increases reluctance force, 
and thus thrust. This paper also analyzes a pole-PM type 
FRLSM which is linearized based on the conventional FRM 
for force comparison. For a realistic comparison between the 
analysis models, this paper performs optimization to maximize 
average thrust at rated MMF(magneto-motive force) using 
RSM which has been considered as an effective approach for 
electric machine optimization [6]. However, RSM 
optimization requires a large number of computations 
Therefore, to reduce the number of computations, this paper 
adopts co-energy variation method to evaluate the average 
thrust by one phase since resultant thrust is a sum of thrust 
generated by each phase. Maxwell stress method is also 
applied for the performance comparison of the optimized 
models. The analysis reveals that the proposed configuration 
generates higher thrust than the conventional one. The 
proposed configuration is finally made based on the 
optimization results to validate the design and analysis. 

II. ANALYSIS MODELS 
Fig. 1 shows half model of each configuration and both 

models have the same external dimensions. Fig. 1(a) is a 5-PM 
FRLSM, which is linearized and modified based on a pole-PM 
FRM with odd number of PMs on a stator tooth [1], [3]. Fig. 1 
(b) is the proposed FRLSM with multiple auxiliary salient 
poles. Major specifications of the models are listed in Table I. 

  
(a) 5-PM FRLSM(5PMs on a stator tooth). 

  
(b) Proposed FRLSM(3PMs and 2auxiliary salient poles on a stator tooth). 

Fig. 1.Configurations of analysis models. 

III. COMPUTATION METHODS 
For magneto-static analysis, 2D FEM is performed using 

the commercial software ANSYS/Emag. To calculate average 
thrust, this paper adopts two different methods, maxwell stress 
method(MST) and co-energy variation method(CEV). It is 
computationally more efficient to apply CEV(2) than MST(1) 
since CEV needs only two computations(at 0 and p) for the 
average thrust. Therefore, CEV is used for the optimization 
and MST is also used for steady-state comparison of the 
optimized models since MST provides thrust, normal force, 
and force ripple characteristics altogether.  

 
TABLE I 

SPECIFICATIONS OF ANALYSIS MODELS 
Symbol Item Value Unit 

p Pole-pitch 6.0 mm 
WPM PM width To be optimized mm 
hm PM thickness To be optimized mm 
g Mechanical airgap 0.7 mm 
hs Stack length 100.0 mm 
Ws Tooth width To be optimized mm 
Wt Salient pole width =WPM mm 
N Number of turns/coil 50 - 

L5PM Mover effective length 118 mm 
Lproposed 118 mm 

MMFrated Rated MMF 400 AT 
PM Br =1.3T, r=1.05 - - 

- Mover/stator core material S23 - 
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whereFx, Fy, 0 Bx, By, Fx_avg., Wc and J denote thrust, normal 
force, air permeability, x and y component of airgap flux 
density, average thrust, co-energy, and current density, 
respectively. 

IV. OPTIMIZATION BY RSM 
This paper adopts central composite design(CCD) for 

appropriate response models [5], [6]. Three important design 
parameters, WPM, hm and Ws, which are closely related to 
average thrust, are chosen in optimization. After statistical 
evaluations, the polynomial models of the responses are given 
as (3) and (4).  The results obtained by each response model at 
optimal values and rated MMF are compared with those by 
MST and CEV in Table II. The average thrust values obtained 
by the three different methods show good agreement with each 
other with about 3% difference. 

For steady-state operation of the optimized models, three-
phase sinusoidal current is assumed to be applied in phase 
with each no load phase back-EMF. More detailed comparison 
by MST is numerically summarized in Table III. On average, 
the proposed FRLSM generates 22% higher thrust density 
than the 5-PM FRLSM. For the comparison of thrust ripples, 
this paper applies a multi-slices 2D model to consider skewing 
effects on the thrust ripples [7]. It can be seen in Table III that 
all models show extremely low force ripples after 2/3p 
skewing [3],[4]. 
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V. PROTOTYPE EXPERIMENTS 
A prototype of the proposed configuration is made after  

slight modifications from the optimized model. Fig. 2 and 3 
show the prototype FRSLM unit and the mover core with PMs, 
respectively. 

To validate the analysis, static thrust is measured by a force 
sensor at different positions and MMFs under DC current 
excitation between Ph. U and Ph. V since the motor is WYE 
connected and neutral point is not connectable. Fig. 3 
compares analyses and experiments and shows quite good 
agreement. 

 
TABLE II 

RESULTS COMPARISON AT OPTIMAL VALUES AND RATED MMF 
Design  

Parameters 
[mm] 

5-PM FRLSM Proposed FRLMS 
Optimal  

value 
MST 
[N] 

CEV  
[N] 

RSM 
[N] 

Optimal  
value 

MST 
[N] 

CEV  
[N] 

RSM 
[N] 

WPM 6.0 
55.4 56.0 57.6 

6.0 
79.6 80.6 82.1 hm 2.0 3.6 

Ws 3.0 3.5 

TABLE III 
DETAILED COMPARISON BETWEEN 5-PM FRLSM AND PROPOSED FRLSM 

MMF Thrust density [kN/m2] Thrust Ripple [%] 
5-PM Proposed Proposed/5-PM 5-PM Proposed 

200 7.9  10.3  131% 1.0  1.1  
400 15.8  20.0  127% 0.6  0.7  
600 23.7  28.3  120% 0.5  0.6  
800 31.3  34.9  111% 0.5  0.6  
Avg.   122% 0.7 0.7 

- Force generating area=Mover effective length×stack length 
 

 
Fig. 2 Prototype FRLSM 
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Fig. 3 Mover core with PMs.             Fig. 4 Analyses and experiments. 

VI. CONCLUSION 
This paper proposes and analyzes FRLSM with multiple 

auxiliary salient poles. The comparison results of the 
optimized models by RSM verify that the proposed 
configuration effectively increases thrust. The experiments 
also confirms validity of the design and analysis. Dynamic 
characteristics will be extensively investigated in the future. 
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Abstract —This paper presents a cogging torque reduction 
technique in axial-flux PM generators for small wind turbines. 
The compactness, large diameter and high power density make 
them suitable for wind turbines. The inherent cogging torque can 
cause problems during turbine cut-in. Here, a turbine is 
characterized via wind tunnel measurements to determine 
generator design specification. A “hybrid skew” method is 
proposed for cogging torque reduction. 3-D FEA is applied to 
evaluate the method and an 88 % reduction of peak cogging 
torque is obtained. This significantly improves the turbine 
performance by achieving low start-up speed. This method avoids 
confusion in N/S pole placement for manufacturing cost reduction. 

I. INTRODUCTION

Axial-flux slotted PM machines have high power/torque 
density and simple construction; hence, they are suitable for 
wind turbine applications (particularly the two-sided 
configuration which balances the axial forces) [1]. Studies 
have been carried out to reduce cogging torque in axial flux 
machines (AFM) [2-4]. Some of these techniques require 
complex magnet shapes that increase manufacture cost or 
reduce magnet area that may reduce flux linkage and overall 
torque. There has been research on AFMs applied to wind 
turbines [5-6]; very few discuss reduction of cogging torque, 
which may cause potential start-up problems, noise and 
vibration. Past studies often used coreless designs [5-6] to 
avoid cogging torque; this may result in low power density [1].  

In this paper, a double-rotor slotted AFM is investigated 
(for high flux linkage, low copper loss) for use in a direct-
coupled wind turbine, with a solution put forward for cogging 
torque reduction. The proposed “hybrid skew” technique 
combines stator slot displacement to reduce cogging torque. In 
this technique, which is different from common methods, the 
North Poles have different shapes from the South Poles (Fig. 
1(a)), where a complex shape is not required. The advantages 
are: (a) simple magnet shape to reduce manufacturing cost, (b) 
clarity of N/S pole orientation and placement, (c) little loss in 
magnet volume to maintain performance. For verification, 3-D 
FEA is applied. A performance comparison is made between 
the proposed hybrid skew approach and a machine which has 
no skew and exhibits cogging torque. 

N

N N

S S

S S

θθθθ

Ri

Ro

θθθθ

Pole Pitch

(a)                                     (b)                              (c)
Fig. 1.  (a) Hybrid skew in magnet, (b) symmetric arrangement and (c) 
asymmetric arrangement for the investigated axial flux machine

II. TURBINE CHARACTERIZATION AND GENERATOR DESIGN

The generator specifications can be determined by 
characterizing the turbine. This is critical since the turbine and 
generator should match each other on speed, torque and power 
for high efficiency energy conversion. The turbine (1.36 m in 
diameter) was installed in a wind tunnel with a dynamometer 
to measure the output torque and speed. The turbine output 
power measured under various wind speeds (Va) is normalized 
to determine the power conversion coefficient (Cp) curve (Fig. 
2(a)), where the peak conversion rate was found to be 32 % at 
a tip speed ratio (TSR) of 4.6. The TSR and Cp can be defined:  

t aTSR R Vω=                 (1) 
30.5p aC T AVω ρ=                (2) 

where Rt is the turbine radius, ω  the turbine angular speed in 
rad/s, ρ  the air density, A the turbine area facing the wind, 
and T the turbine shaft torque. In actual application, the rated 
wind speed is set at 11 m/s, where the turbine shaft output to 
the generator is 400 W (Fig. 2(b), which is expanded from Fig. 
2(a)). At the rated point, the turbine speed and torque are 660 
rpm and 5.79 N-m, which are used to determine the 
specifications of the generator, as shown in Table I. 

TABLE I  
GENERATOR SPECIFICATIONS

Rated voltage (V) 48 Rated speed (RPM) 660 
Rated power (W) 580 Rated torque (N-m) 5.79 
Number of pole 12 Number of slots 18 
Magnet (NdFeB) Br=1.24 T, Hcb=943kA/m kOe, Hcj=1585 kA/m

The designed generator has a rated output voltage of 48 V at 
11 m/s wind; this matches the input of a battery charger. The 
machine has double outer rotors with NdFeB magnets and a 
center inner stator (Fig. 3(a), with major dimensions). The 
detailed design process is not shown but it follows the 
procedure described in [7]. The air-gap is 0.67 mm and the 
magnet length is 3 mm. It should be noted that the 12-pole 18-
slot configuration has a very high cogging torque and is used 
to emphasize the effectiveness of the proposed technique.

III. COGGING TORQUE ANALYSIS

The cogging torque can be expressed as [3]: 

21

2cog
dR

T
d

φ
θ

= −                (3)  

where φ  is the air-gap flux, R is the air-gap reluctance and θ
is the angular position in electrical degrees.  

For the dual-rotor generator, two parameters are defined 
for cogging torque analysis: one is the known stator slot 
displacement factor (Kd - stator slot displacement divided by 
slot pitch) [3] and the other is the “hybrid skew” angle θ  (Fig. 
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1) proposed here. The proposed hybrid skew method when 
combined with an appropriate selection of Kd will give a 
significant reduction in cogging torque. This will be 
investigated using FEA. 
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Fig. 2.  Turbine characteristics: (a) measured Cp, (b) power-speed curves

(a)                                                      (b) 
Fig. 3.  (a) The designed generator with main dimensions, (b) FE model 

Two rotor arrangements are considered: symmetry and
asymmetry, as shown in Figs. 1(b) and (c). For asymmetry, the 
skew in the magnet of one rotor is opposite to that in the other 
while it is the same for the symmetrical case. From a 
manufacturing point of view, the symmetrical case is 
preferable since all N Pole magnets have a different shape 
from all S Pole magnets. Although magnet skew is a popular 
method [3-4], it may result in torque ripple or overall torque 
reduction. The proposed method aims to avoid this problem. 

IV. SIMULATION RESULTS

The 3-D FE model is shown in Fig. 3(b). The individual 
action of slot displacement [3] and hybrid skew is first 
investigated, and the results are shown in Figs. 4(a) and (b). At 
Kd = 0.1875, the generator has the least cogging torque. The 
peak cogging torque for varying skew angles at Kd = 0 is the 
smallest at θ  = 2.5 deg. for the asymmetric case, as shown in 
Fig. 4(b) and Fig. 5. It is found that the proposed hybrid skew 
on its own reduces the cogging torque by 57 %. 

The simulation results for the proposed technique combined 
with slot displacement [3] are presented in Fig. 6(a) 
(symmetric case). The best reduction in peak cogging torque is 
88 % compared to the non-skewed magnet case, which verifies 
the effectiveness of the developed method. Another 
comparison is shown in Fig. 6(b), where the average air-gap 
flux density for the hybrid-skew machine is similar to the 
original arrangement without skew. The torque comparison 
and complete results will be shown in the final paper. This 
confirms that the proposed method does not affect the machine 
performance. The comparisons with other pole-slot 
combinations will also be provided in the final manuscript. 

The target turbine has a start-up speed of 3.16 m/s with an 
output torque of 0.6 N-m. The peak cogging torque obtained 
using the proposed technique is very small and should not 
affect turbine power output and overall performance. In 
contrast, a non-skewed machine will have difficulty in starting 
when matched with the turbine. 

V. CONCLUSION

A “hybrid skew” technique has been developed to reduce 
cogging torque in an axial-flux PM generator for a small wind 
turbine. A challenging 12-pole 18-slot axial flux machine with 
high cogging torque has been investigated. 3-D finite element 
analysis was used to carry out the simulation. It was found that 
the proposed method can achieve an excellent 88 % reduction 
in peak cogging torque when combined with the slot 
displacement method. Consequently, start-up problem of the 
wind turbine will be solved and the overall performance will 
not be affected. There will also be a reduction in 
manufacturing complexity and cost.  
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Abstract — This paper presents a comparison of magnetic 
characteristics according to stator core composition in transverse 
flux rotary machine (TFRM) in order to have high power density 
and reduce core losses. For one rotor, three types of stators are 
constructed depending on composition of soft magnetic composite 
core and silicon steel lamination core. The flux linkage, electro-
motive force, torque, and core losses of the three analysis models 
for the three stators, are calculated by 3- dimensional finite 
element analysis. 

I. INTRODUCTION

Soft magnetic composite (SMC) has recently been 
developed as an alternative magnetic material, which can be 
utilized to reduce the iron losses in electric machine. 
Moreover SMC give a lot of degree of freedom for design of 
electric machines where the magnetic flux has to flow in the 
3- dimension in the magnetic parts. However, SMC has less 
attractive magnetic properties than silicon steels. Because 
SMC is made from a mixture of ferromagnetic material and 
electrically insulating material, they have low saturation flux 
densities and permeability due to fact that there are air gaps 
between the iron particles. Moreover the shaping process for 
SMC’s induces strain and stress in the particles. These can 
only be partially removed by a stress annealing process, since 
the electrically insulating material cannot withstand the 
temperatures needed for complete annealing. That limitation 
increase hysteresis losses considerably [1]-[2]. 

With silicon steel, magnetic circuits are established by 
stacking magnetic sheet. In these magnetic circuits, the 
magnetic flux has to flow in directions parallel to sheet steel’s 
surface. This kind of material has very good magnetic 
proprieties but the anisotropy of laminated electrical steel and 
constraints due to their manufacturing impose limits on the 
geometries of the magnetic circuits possible [2]. 

This paper attempts to find a good composition with these 
two representative materials, SMC and silicon steel, in order 
to have high power density and reduce core losses in the 
design process of transverse flux rotary machine (TFRM) with 
3- dimensional magnetic flux paths. Three analysis models are 
considered depending on the composition. In the analysis 
models, rotor is identical and stator has three types which are 
made by only SMC, by only silicon steel, and by both SMC 
and silicon steel. The conditions of the three analysis models 
are the same except of stator core materials, and the 
electromagnetic parameters for each model are computed by 
3-dimensional finite element analysis (FEA). 

Flux linkage, electromotive force (EMF), and torque are 
obtained by computation results of the time-domain magnetic 
fields in 3-dimension. And the core losses are calculated with 
both the magnetic computation results and core loss sample 
data instead of experimental equations [3]. In the case of the 
silicon steel, if the material class is fixed core thickness is the 
only variable of core samples’ configuration. In the case of 
SMC core, however, the three dimensions, which are width 
(thickness), height, and area of the cross section, can be the 
variables of core samples’ configuration. Therefore core 
losses of lots of samples are measured, which are made 
depending on variation of dimensions of cross section area.  

The theoretical results are compared with experiments on a 
prototype machine with SMC stator core. This comparison 
gives reliance of analysis results and a comparison of 
magnetic characteristics in the three analysis models. 

II. ANALYSIS MODELS

Fig. 1 shows a conceptual configuration of one phase in 
prototype permanent magnet (PM) excited TFRM and the 
magnetic flux path by current excitation. A brief specification 
of the prototype including magnetic material information is 
listed in Table 1. 

(a)                                                      (b) 
Fig.1. Conceptual drawing of one phase in a TFRM; (a) 

configuration of a TFRM, and (b) flux path on the cross section of A 

Table 1. Specifications of a prototype TFRM 

Stator

Material Somaloy 550 (SMC core) 

No. of Phase 2 phases  
No. of turns  135 turn /phase 

Rated current 4.6 Arms/phase 

Rotor 
Material Somaloy 550  + Ferrite PM (Br=0.4T)

No. of pole  PM=64, SMC core=64 (per phase) 
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The rotor consists of PMs and SMC cores, which are 
arranged in circumferential direction and the PMs are 
magnetized as shown in Fig. 1 (a) to concentrate the magnetic 
flux to the rotor core. The one phase stator consists of a coil 
and three pieces of cores which are a pair of outer core and 
one inner core - the inner and outer sections are a yoke and 
teeth, respectively. The outer teeth core is divided into upper 
and lower parts, and the lower teeth are shifted by a half pole-
pitch with respected to upper teeth to reduce torque ripple and 
make high power density.  

According to make the inner and outer cores with what 
kind of materials, the number of analysis models become three 
as shown in Fig. 2. The models are named as SM and LM as 
shown in Fig. 2 (a) and (b) if the materials of stator cores are 
SMC and silicon steel, respectively. If the material of inner 
and outer cores are SMC and silicon steel respectively, the 
model are named as SLM as shown in Fig. 2 (c).  

For construction, model SM does not need to consider the 
3-dimensional flux path as shown in Fig. 1 (b); however the 
model LM and SLM should be considered the stacking 
direction. In the analysis model, the lamination direction is 
considered. 

III. MAGNETIC CHARACTERISTICS 

3-dimensional magnetic field FEA is conducted to 
calculate the electromagnetic parameters and core losses of the 
three models.  

The b-h curves of core materials and core loss sample data 
are shown in Fig. 3. Fig. 3 (b) is SMC core losses according to 
variation of frequency and peak magnetic flux density by the 
Epstein test method, and these data are an example among 
measured data of 13 kinds of samples depending on cross 
section area dimensions.  

Flux linkage, EMF, torque, and core losses of the three 
analysis models are obtained by computation results of the 
time-domain magnetic fields at rated current. The experiments 
are performed for prototype, SM model. Analytical and 
experimental EMF and torque are compared as shown in Fig. 
4 to show reliability of analysis results and a comparison of 
magnetic characteristics in the three analysis models. 

 The analysis results and comparisons of magnetic 
characteristics between three models will be presented in 
extended paper.  

IV. REFERENCES 

[1] Gene Shane Liew, Nesimi.Etrugrul, Wen Liang Soong, and John Gayler, 
“An Investigation of Advanced Magnetic Materials for Axial Field 
Brushless Permanent Magnet Motor Drives for Automotive 
Applications,” IEEE Power Electronics Specialists Conference, pp.1-7, 
June, 2006 

[2] Patrick Lemieux, O.Jude Delma, Maxime R.Dubois, and Roderick 
Guthrie, “Soft Magnetic Composite with Lamellar Particles Application 
to the Clawpole Transverse Flux Machine with Hybrid Stator,” 
Proceeding of the 2008 International Conference on Electrical 
Machines, Paper ID 909, 2008 

[3] Ji-Young Lee, Ji-Won Kim, Seung-Ryul Moon, Jung-Hwan Chang, Shi-
Uk Chung, Do-Hyun Kang, and Jung-Pyo Hong, “Dynamic 
Characteristic Analysis Considering Core Losses in Transverse Flux 
Linear Machine with Solid Cores,” IEEE Trans. on Magnetics, Vol. 45, 
No. 3, pp. 1776-1779, March 2009 

       
(a) SM (prototype)                                   (b) LM 

(c) SLM 
Fig.2. Conceptual drawing for one phase stator of three analysis models 

(a) B-H curves 

(b) core losses of SMC core sample (6.7X6.7mm2)

Fig.3. Magnetic characteristics of core materials 

Fig.4. Comparison of calculated and measured EMF in model 
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Abstract — This paper presents the optimal design method of 
cage-bars in a single-phase line-start permanent magnet 
synchronous motor (LSPMSM) considering the starting torque 
and magnetic saturation. This method consists of two procedures. 
First, the basic design of cage-bars is made by analytic method of 
an induction motor. In this case, the equivalent magnetic circuit 
method is used but this method cannot consider nonlinear 
characteristic as magnetic saturation and leakage flux. Second, 
for considering the nonlinear characteristics, the optimal design 
of cage-bars is performed by the FEM and the response surface 
method (RSM). To validate the proposed method, the prototype 
motor is manufactured and the simulation results are verified by 
experiment. 

I. INTRODUCTION 
The line-start permanent-magnet synchronous motor 

(LSPMSM) is a hybrid PM/reluctance motor that has high-
efficiency alternative to the induction motor [1]. 

In general, the stator with winding and air-gap volume 
(D2L) in LSPMSM is the same as conventional single-phase 
induction motor for a wide use. Therefore, the design 
parameters of the LSPMSM are restricted to the rotor such as 
magnets, barriers and cage-bars. Among the design parameters, 
the shape of cage-bars is very important parameter because it 
related to the torque in stating state and the magnetic flux path 
in steady state. But conventional researches of LSPMSM deal 
with only design of magnets and barriers in rotor. 

In this paper, the optimal design method of cage-bars is 
proposed in the LSPMSM. This method consists of the two 
procedures. First, the basic design of cage-bars is made by 
analytic method of an induction motor [2]. In this case, the 
equivalent magnetic circuit method is used but this method 
cannot consider nonlinear characteristic as magnetic saturation 
and leakage flux. Second, for considering the nonlinear 
characteristics, the optimal design of cage-bars is performed 
by the finite element method (FEM) and the response surface 
method (RSM). To validate the proposed method, the 
prototype motor is manufactured and the simulation results are 
compared with the experimental results. 

II. PROCEDURE FOR OPTIMAL DESIGN OF LSPMSM 
The rotor design process of LSPMSM is shown in Fig. 1. 

First, using the widely accepted D2L of single-phase induction 
motor, the outside diameter of rotor can be determined. Next, 
the basic cage-bars design to maximize the starting torque is 
performed. It gives a full explanation in chapter III. After the 
basic cage-bars design is determined, the shape and position 
of permanent magnet are determined. The position of 

permanent magnet is determined as close as possible to the 
cage-bar to maximize magnetic flux density of air-gap. The 
size of permanent magnet is determined by considering the 
demagnetization and the magnetic flux density of air-gap at 
rated torque. And the barrier is designed to minimize leakage 
of magnetic flux. The previous design process is very rough, 
but the design of cage-bars doesn’t have big problems. 
Because the optimal designed cage-bars can be performed by 
controlling flux of permanent magnet at steady state, the basis 
design can be compensated by blocking the leakage flux. 
Finally, the cage-bar optimal design is explained in chapter IV 
in detail. 

 

 
Fig. 1.  Flowchart of proposed design procedure of LSPMSM 

III. BASIC DESIGN OF CAGE-BARS BY ANALYTIC METHOD 
Based on past experience, slot combination between the 

stator and rotor numbers of slots is chose to reduce parasitic 
torque, additional losses, radial forces, noise, and vibration. 

Single phase LSPMSM has same starting performance of 
single phase induction motor due to using rotor cage at 
starting. So, through improving starting torque of single phase 
induction motor, we try to improve starting torque of 
LSPMSM. The starting torque of single phase induction motor 
can be calculated as follows: 

.2
1

1
rmss RIpT

ω
=                                                           (1) 

( ) ( ) .22
rmsmrmsms XXRRZ +++=                              (2) 
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The method that starting current is increased is undesirable 
for high starting torque. Therefore, rotor cage resistance is 
very important factor for high starting torque.  

Rotor cage resistance is to subdivide it into two part, rotor 
bar resistance and end ring resistance. We can write the 
following resistance equations.  

The equation of equivalent cage resistance is: 

( )./sin2 1
2

r

ring
Rbbe Np

R
KRR

π
+=                                      (3) 

Where KR is skin effect resistance coefficient for bar, Nr is 
number of rotor slot. The skin effects increase with the slot 
height for slip frequency. 

Notice that equivalent cage resistance has to be reduced to 
the stator. Therefore rotor cage resistance can be calculated as 
follows: 
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In this study, we design only rotor of LSPMSM using stator 
of single phase induction motor. Therefore we consider only 
equivalent cage resistance, we can write the following 
equivalent cage resistance equations again. 
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In this equation, assume the change of end ring is little, so 
the adjustable variables are slot upper width, slot lower width 
and slot height. These variables are adjusted for high starting 
torque motor. 

IV. OPTIMAL DESIGN OF CAGE-BARS BY NUMERICAL 
METHOD AND RSM 

The basic design of rotor is only considered to the starting 
torque at starting state.  Because the magnetic flux path is 
adjusted by the barrier as well as the cage bar, we cannot 
consider the magnetic saturation and leakage flux using 
analytic method. So, the optimal design is necessary. Fig. 2 
shows flux density by using FEM analysis. We choose the 
points which can be doubted the saturation region or the 
leakage flux region by using FEM analysis. And the parameter 
design of the cage-bars is tried not to excess the limited value 
of flux density at this region. Finally, the optimal value is 
obtained by optimal design using FEM analysis and RSM.  

Fig. 3 shows the starting characteristic of the conventional 
induction motor and the proposed LSPMSM. Although the 
LSPMSM has the breaking torque due to permanent magnet, 
the induction motor and the LSPMSM have similar starting 
time due to the designed cage-bars. 

V. EXPERIMENT 
The LSPMSM with the proposed design method is 

manufactured as shown in Fig. 4(a). In order to verify the 
validity of the optimal design method, the experiment results 
of the rating torque are compared with the results of the 
simulation as shown in Fig. 4(b). From the results, it is evident 

that the FEM analysis gives good agreement with the 
experimental one. 

VI. CONCLUSION 
In this paper, the optimal design method of cage-bars 

considering starting torque and magnetic saturation by using 
FEM and RSM is proposed in LSPMSM. To verify the 
validation of proposed design method, the results of 
simulation are compared with characteristics of proto type.  

 

 
Fig. 2. Flux density plot with points of leakage flux and the magnetic 

saturation 
 

 
Fig. 3. Starting characteristics comparison of LSPMSM with Induction Motor 

 

 
(a)  Prototype of LSPMSM    (b) Torque comparison of Experiment with FEM 

Fig. 4. Experiment results 
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Abstract — Very fast transient overvoltages (VFTOs) in the 
secondary winding of air-cored Tesla transformers have been 
surveyed using a comprehensive model based on Multi-conductor 
Transmission Lines (MTLs) theory. The governing equations 
have been solved by Finite Difference Time Domain (FDTD) 
method. Voltage distribution in two different structures of Tesla 
transformers, tapered single layer and multi-layer secondary 
windings has been investigated. The experimentally validated 
simulation results show considerable fluctuations and 
overvoltages in some sections of the transformer winding that 
should be considered in insulation coordination.  

I. INTRODUCTION

In pulsed power generators, the amplitude of output pulse 
of a Tesla transformer is even higher than several hundred 
kilovolts. The induced traveling waves in the secondary 
windings of such transformers include high-order harmonics 
that can bring about internal resonance and cause exceedingly 
uneven turn to ground and inter-turn voltage distributions. 
Since this unevenness can cause inter-turn insulation failure or 
partial discharge, it is essential to investigate the voltage 
distribution in the secondary winding of Tesla transformers. 
Mainly there are three models to study the VFTOs in the 
windings of transformers: Lumped circuit model [1], Multi-
conductor Transmission-Lines theory [2] and full-wave 
solution [3].  

An appropriate simulation model is the most fundamental 
condition for the research of the voltage distribution in 
transformer windings. Since the frequency of VFTO is very 
high, the lumped parameter model could not satisfy the 
computation request and also the full-wave solution is hard to 
obtain due to the complexity of model and lots of degrees of 
freedom. Considering the fact that the MTL theory is very 
accurate in case of pulses with short rise/fall times and where 
the coils are long compared to the wavelength, in the current 
study, this model is utilized for very fast transient simulations.  

To study the voltage distribution in transformer windings 
under VFTO, a model for transformer windings has been 
developed based on MTLs theory. A common way of 
determining the time-domain response of a MTL is the use of 
finite difference-time-domain method. 

In this paper, based on FDTD method, distribution of 
voltage in the secondary winding of two conventional types of 
Tesla transformers, tapered single layer and multi-layer, is 
studied and turn to ground, inter-turn and inter-layer 
overvoltages are evaluated. Furthermore, numerical results are 

compared with measurements. Simulation and measuring 
results obviously demonstrate the fluctuation and oscillation 
of the voltage in different turns which would result in 
insulation failure. 

II. THE WINDING MODEL

To have a proper evaluation of time domain response, the 
electrical parameters should be assessed precisely. For this 
purpose, these parameters are evaluated via Finite Element 
Method (FEM). Moreover, the frequency dependency of the 
parameters is considered in this method. The recursion 
relations of voltage and current are as follows:  
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Two different structures of Tesla transformers are being 
studied, tapered single layer and multi-layer which are 
illustrated in Fig. 1.  

Fig. 1. Two conventional structures, single layer (left) and multi-layer (right) 
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III. RESULTS

Voltage at different turns of the high voltage winding is 
shown in fig. 2 for a transformer with single layer winding 
structure. As shown in this figure there is high magnitude 
transient over voltages across the terminal turns (see fig. 2f). 
Similar pattern has been achieved for two layer structure and 
is depicted in Fig. 3. 

Fig. 2. Voltage at different conductors in a single layer winding if input is a 
100 kHz pulse at conductors: a) 15th, b) 30th, c) 45th, d) 60th ,e) 75th and f) 95th

Fig. 3. Voltage at different conductors in a two layer winding if input is a 100 
kHz pulse at conductors: a) 15th, b) 30th, c) 45th, d) 60th e) 75th and f) 95th

Maximum inter-turn overvoltage plays an important role in 
insulation design of transformer windings. As depicted in Fig. 
4 maximum overvoltage happens in middle part of the 
winding where winding direction inverses (red circle in fig. 
1). It must be noted that this voltage difference should be zero 
under steady state condition, but in transient condition the 
insulation material is subjected to very high stresses. 

Fig. 4. Voltage difference between two layers 

According to calculated overvoltages, electric field stresses 
have been analyzed by FEM method in discussed structures.  
These transient overvoltages have been investigated by using 
a test setup including windings similar to the simulation ones. 
Measurements are in good agreement with the simulation 
results. The measured values clearly show that the highest 
overvoltages occur at head end of winding in case of single 
layer and at the middle of the winding in the case of two layer 
winding structure, as predicted by simulations. 

IV. CONCLUSION

The study of VFTO in an air-cored Tesla transformer’s 
winding is important for insulation co-ordination. It is 
especially important to determine the position of maximum 
inter-turn overvoltage, which depends on the configuration of 
the winding and wave style. In this paper, studying voltage 
distribution in the secondary windings of conventional Tesla 
transformers based on FDTD method, the maximum 
overvoltages in these windings have been simulated. 
Calculation of the electric field stresses demonstrates the risk 
of insulation failures in different parts of the high voltage 
winding depending on its structure. 
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Abstract—This paper discusses the calculation of fringing fields
and forces which exist in slotted tubular permanent magnet
actuators. The magnetic field distribution will be calculated in a
semi-analytical manner and with two-dimensional finite element
analysis in the cylindrical coordinate system. The semi-analytical
model is based on Fourier analysis to describe various mag-
netization profiles and the resulting magnetic field distribution.
A periodic model with a single semi-closed slot geometry will
be considered for both models which reduces the computational
time. These modeling techniques allow for accurate calculation
of the fringing fields and the resulting cogging force.

Index Terms—Actuator, cylindrical, permanent magnet, slot-
ting effect.

I. INTRODUCTION

When tubular permanent actuators with a high force density
are required, a slotted armature is more preferred since the
effective airgap is reduced. However, the introduction of the
slots results in a distortion of the magnetic field due to the
magnets, giving fringing fields at the tooth tips. This field
distortion leads to a force ripple which is generally referred
to as a cogging force. It is beneficial to predict the resulting
force ripples for various slot-pole combination in a fast way
in order to choose the optimal slot-pole combination regard-
ing the application. The effect of slotting on the magnetic
field distribution is extensively investigated in the literature,
providing analytical and numerical tools for predicting the
resulting cogging forces. Recently, Liu [1], presented an exact
semi-analytical solution of the airgap flux density for slotted
linear machines with an extension to rotary machines. Based
upon his work, this paper provides the exact semi-analytical
solution for the cylindrical coordinate system including the
more complicated semi-closed slot geometry as shown in
Fig. 2. The slotting effect will be described for a single slot
traveling across one pole-pair. The cogging force due to a
single slot can be calculated and the total solution can be
obtained by synthesis of the single slot solution, [2]. From
the semi-analytical field solution, the cogging force can be
calculated by means of the Maxwell-Stress method. Next
to that, a 2D finite element model will be considered for
calculation of the slotting effect and the related cogging force.
This force component will be calculated by means of the
virtual work method. Comparisons between the two models
will be made in terms of accuracy and computational time.

Windings

Slotted
armature

Permanent
magnet
array

r

z

Shaft

Fig. 1. A three phase slotted tubular permanent magnet actuator.

II. THE SEMI-ANALYTICAL MODEL

The tubular structure inhibits angular symmetry and hence
a 2D-cylindrical coordinate system, (r, z), can be considered.
The iron is assumed infinitely permeable, hence saturation
is not included. The magnets are modeled having a linear
second quadrant characteristic. Although only a single slot is
considered, it should be noted that it is possible to consider the
total solution, including all slots in once, however the com-
plexity increases drastically and numerical instability becomes
dominant, these influences will be shown in the final paper.
Furthermore, three different magnetization profiles (radial,
quasi Halbach and axial) will be considered since the boundary
value problem is different for each of them. For example, when
axial magnetization is considered, five different regions, need
to be distinguished, the shaft (I), the permanent magnet (II),
the airgap (III), the slot opening (IV) and the slot (V) region,
respectively, see Fig. 2. This boundary value problem is solved
by considering the magneto static Maxwell equations, which
can be reduced to a Poisson equation written in terms of the
magnetic vector potential A as B = ∇× A,

∇2 A = −µ0∇× M, (1)

where, M = 0 for regions I, III, IV and V. Fourier analysis
will be used to describe the magnetization vectors and con-
sequently, the solution for the radial and axial flux density
distribution will be written as a Fourier series which will be
given in the final paper. Note that this semi-analytical model
is an exact solution for the magneto static Maxwell equations
with the limitation that only a finite number of harmonics
can be included in the numerical implementation. This gives
inaccuracies of the magnetic field solution at discontinuous
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Region II

Region III

r

z
Region I

Region IV

iron

2τp

τt

τs

Rr

Rm

Ri

Rt

Rs
Region V

µr = ∞

∆z

iron
µr = ∞

iron
µr = ∞

Fig. 2. The boundary value problem with division in regions for the axial
magnetized topology.

points in the structure, for example at the boundary of the
magnets or at the corner points of the slotted armature.
However, for calculation of the cogging force, the Maxwell
Stress method is used at the center of the airgap where a more
accurate field solution can be obtained since the harmonic
content is lower here.

III. THE FINITE ELEMENT MODEL

In order to be able to minimize the slotting effect by means
of finite element analysis, a model is preferred which only
considers the slotting effect without the effect due to the
finite stator length (end effect). In [3], this is obtained by
converting the tubular actuator to a rotary actuator which
allows for periodic modeling in finite element packages. An
alternative way is to consider only the cogging force due
to a single slot and obtaining the total solution by means
of synthesis of the single slot solution for the proper pole-
slot combination, [2]. This allows one to focus on the single
slot cogging force calculation which significantly reduces the
model and allowing for implementation of the finite element
model for only one period as done for the semi-analytical
model. Periodic boundary conditions are applied to the axis
symmetric model at 0 and z = 2τp and triangular mesh
elements are used where the airgap consists of two layers
of mesh elements in the airgap. In order to make a fair
comparison with the semi-analytical model, the tangential
component of the magnetic field strength is set to zero at the
soft-magnetic boundary of the slotted stator.

IV. COMPARISON

The radial and axial component of the flux density in
the center of the airgap are shown in Fig. 3 for the semi-
analytical and finite element model. A close up of the slotting
effect is shown next to the figure. It can be observed that
excellent agreement is obtained which is as expected since the
linear 2D FE model has the same assumptions as the semi-
analytical model. For the finite element modeling, the virtual
work method is applied to calculate the cogging force which
is compared with the semi-analytical solution in Fig. 4 for
radial, quasi Halbach and axial magnetization where excellent
agreement is obtained. The final paper will give a more
detailed discussion about numerical accuracy and stability
of the analytical solution. The semi-analytical calculation is
around 40 times faster then a finite element calculation.

Fig. 3. Magnetic field solution of the axial magnetized topology in the center
of the airgap, ∆z = 20 mm.
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Fig. 4. Cogging force calculation with the semi-analytical and finite element
model.

V. CONCLUSION

This paper compares computational methods for calculation
of the fringing fields and resulting cogging forces due to
the slotted armature in tubular permanent magnet actuators.
The semi-analytical and the finite element method are com-
pared in terms of accuracy and computational time. The
solution is given for a single slot traveling across one pole-
pair where besides quasi Halbach magnetization, radial and
axial magnetization will be considered in the final paper.
Excellent agreement between the semi-analytical and finite
element model is obtained for the magnetic field distribution
and cogging force calculation.
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Abstract — The magnetic fields in 1-phase and 3-phase 
transformers with amorphous modular cores have been analyzed. 
Scalar magnetic potentials have been implemented for 3D Finite 
Element (FE) field calculation. Due to inability to simulate each 
thin amorphous layer, we introduced supplementary 
permeabilities of the core along the main directions of 
magnetization. Calculated fluxes in the cores were tested on the 
prototype. 

I. INTRODUCTION

Usually to build the transformer core thin sheets cold 
rolled, grain-oriented silicon steel are used [8]. The amorphous 
ferromagnetic alloys were manufactured at the end of the 
fifties [5]. The right way to manufacture them limits the ribbon 
thickness from 30 to 50 µm [3]. Due to this, and the material 
structure, their core losses are several times lower than those in 
silicon steel [1], [4], and [6].  

II. DESCRIPTION OF THE ANALYSED OBJECT

Fig. 1. Transformer with modular amorphous core 

The outline of the 3-phase transformer with amorphous 
modular core is given in Fig. 1, where coordinate system and 
main dimensions are depicted. Each column consists of two 
hollow cylinders (toroids). In both prototypes the primary and 
secondary windings are cylindrical. The primary (internal) 
ones, which are close to the columns, are divided into two 
sections: with N11=116 and N12=75 turns. The turn number of 
the secondary windings is N2=116. Rated power of the 3-phase 
transformer prototype is S=10 kVA. The nominal currents are 
I1N=15.2 A and I2N=26 A. 

III. CALCULATION MODEL

The analysed object has XZ plane of symmetry (Fig. 1). 
After halving the field region, only one part has been chosen 
for the Finite Element (FE) analysis. For the 3D calculations 

we used two scalar potentials: the first one, (called total 
potential) ψ, and the second one (called reduced potential) φ  
[2]. Total potential is obligatory in the current free regions and 
satisfies the Laplace’s equation  

( ) 0=∇⋅∇ ψµ .                             (1) 

In the current carrying regions, the reduced potential φ satisfies 
the elliptic equation  

( ) ( ) 0=⋅∇−∇⋅∇ SH


µφµ .                 (2) 

The field intensity SH


, arisen from the excited coils, can be 

calculated independently before the FEM solver runs.  
The magnetic flux is parallel to the rolling up direction of 

the yokes. In each column, it is perpendicular to the direction 
of the magnetic strip winding. As we were not able to 
discretize each thin amorphous layer, we introduced 
supplementary permeabilities of the core along the two 
directions of magnetization. Thus, in the mathematical model 
we introduced two different µ(H) curves for legs and yokes, 
respectively. For the lamination layers the core losses were 
neglected in the field modeling. 

Using the FE method, after discretization of the equations 
above, we obtained the difference equations set, which can be 
written in matrix form 

[ ] [ ] [ ]SK =Φ                                 (3) 

Due to the µ(H) curves, the equation (3) with the matrix [K], is 
non-linear. The known right hand side, n-dimensional vector 
[S], is calculated including the given current excitations and 
boundary conditions. The vector  [Φ]   of the unknown nodal 
potentials is calculated with Newton-Raphson method [2]. 

Including the previous solution [Φ](k) , a the new one, 
[Φ](k+1) is found in the iteration process [1], [2] by solving the 
linearized system  

[ ]( ) [ ]( ) [ ]( ){ } [ ]( )kkkk RJ
11 −+ −Φ=Φ                    (4) 

The residual vector [R](k) and the Jacobean matrix [J](k) in the 
(k) iteration are expressed below 

[ ]( ) [ ]( ) [ ]( ) [ ]( )kkkk SKR −Φ=                      (5) 

[ ]( )

[ ]( ) [ ]( ) [ ]( ) [ ]( )( )kkk

k

k SKJ −Φ
Φ∂
∂=               (6) 

IV. CALCULATION RESULTS 

We studied two configurations of the modular core 
transformer system at no load state. The magnetic fields, for 
several values of the magnetizing current were analysed in the 
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1-phase configuration. In Fig 2 we presented the flux density B
distributions at the plane shifted by y=1 cm from the plane XZ
(Fig. 1). The B values were excited by the magnetizing current 
amplitude of I=1.41 A. The maximal values are around the 
yokes and columns connections. The B values at edge points of 
the core are much lower. Inside the yokes, they are slightly 
higher than those  inside the columns.  

Fig. 2. Bmod distribution for I=1.41 A 

Distribution of flux density modulus and the vectors B


 are 
also presented for the 3-phase transformer with amorphous 
modular core (Fig 3). It concerns the current arrangement, with 
rms values equal to IB=1,27A and IA= IC=0,705A. Depicted 
map is drawn for the surface y=1 cm (Fig. 1). Due to the 
currents, the B values are relatively high in whole region of the 
middle column. The flux density is lower in the yokes. 

Fig. 3. Bmod distribution for IB=1.27 A. 

Fig. 4. Bz distribution for 3-phase transformer. 

Fields in the described transformers were analyzed under short 
circuit state, as well. We assumed current values I1N= I2N=15A in 

the primary and secondary coils with N=116 turns. In Fig. 4 we 
presented the Bz component distribution at the XY plane. 

V. MEASURED VERIFICATION OF THE CALCULATION

Magnetic flux values under the under short circuit state of the 
3-phase transformer were compared with the measured ones. They 
were tested at the middle of each column toroids. The mean values 
from the three columns were compared in Fig. 5.  

Fig. 5. The mean values of the flux in 3 transformer columns.

VI. CONCLUSIONS 

The new constructions of the 1-phase and 3-phase modular 
transformers with amorphous cores have been studied with 
FEM. In 3D field calculations, magnetic anisotropy of the 
amorphous (Fe based) alloy was included. The different 
magnetization characteristics for the yokes and columns were 
assumed. The calculated fluxes values were confirmed 
experimentally. Thanks to modular technique, the described 
structure is convenient for assembling and repairing. 
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Abstract — A pending workbench shall be designed, that is 
able to perform linear and rotational movements in four axes 
with high accuracy, so that different operations can be run on the 
work piece. The design of this workbench is supported by 
numerical simulations. Since the workbench’s movement is free 
in a certain range, simulations have to be run for the high 
number of possible positions. When optimizing the device’s 
layout by varying different parameters, simulations are needed 
for all positions in which the device shows an extreme behavior. 
The numerousness of simulations leads to very high efforts 
concerning pre- and post-processing. To reduce these efforts, a 
CAD software and a mesh software have been automated. 

I. INTRODUCTION

Linear induction motors and servo motors can be used for 
accurate positioning systems. A combination of both 
principles can realize several degrees of freedom of motion, if 
the moving part is pending or mounted in a way that allows 
these movements. The pending part is called flotor. A similar 
principle was realized for a haptic device in 1999 [1]. Six 
degrees of freedom of motion have been realized but only with 
strongly limited translational movements and rotational 
angles. 

This paper deals with the development of a workbench for 
the machining of small pieces.

II. THE PENDING WORKBENCH

Fig. 1. Cross section through the yz-plane of the workbench device 

A pending flotor shall carry a small workpiece and 
perform translational movements in three axes and rotational 

movements around the z-axis. The translational movement is 
limited on the workpiece size. The rotation should cover a 
range of 360 degrees. 

Fig. 1 shows a schematic view on the device. The upper 
part performs movements in horizontal direction and 
compensates torques around the x- and y-axis. The lower part 
performs translations in x- and y-direction and rotations 
around the z-axis. 

Fig. 2. Isometric view on the flotor’s coils and the stator’s permanent magnets 

Fig. 2 shows an isometric view on the device. A design 
approach to realize six degrees of freedom of motion is 
presented in [2]. It also contains a more detailed description of 
how the different types of motion are realized. 

III. THE NUMERICAL SIMULATION 

A multitude of simulations has to be run for every design 
approach. Forces and torques between stator and flotor are 
obtained by magnetostatic computations and the application of 
Maxwell’s stress tensor. These simulations show, if it is 
possible to generate forces that can compensate the process 
forces and carry or accelerate the flotor. 

The non-linearity of the magnetic material requires an 
iterative algorithm, the optimization process requires a large 
number of computations. These efforts are reduced by the 
application of a volume integral equation method (VIEM) in 
combination with the fast multipole method (FMM). Since the 
air-gaps between coils and permanent magnets are large, only 
a small number of degrees of freedom occurs compared to a 
similar FEM simulation. 
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A bigger problem from an economical point of view is the 
manpower invested in preprocessing. This paper deals with 
how to automate the simulation steps in the design process of 
the pending workbench. 

A. The Optimization Process 

A first design approach is developed considering 
mechanical requirements by means of approximation 
formulas. The resulting values are chosen as first step 
parameters of the numerical optimization process. 

B. The CAD Tool 

The first step in a numerical simulation is to create the 
geometrical data. The commercial software Rhinoceros® has 
been chosen, because it is easy to handle and it can be 
controlled by a Visual Basic Script (VBS) [3]. 

Many parameters can be varied, as there are geometrical 
properties such as diameters, or heights, the number of coils 
and magnetic poles as well as the flotor’s position to the 
stator. Due to the modular design of the implemented script, 
further parameters can be appended. 

The script delivers a CAD-file in IGES-format that can be 
imported by the meshing tool and a text file with geometrical 
data that has to be pasted into the input file of the numerical 
software. Some variables are returned to control the meshing 
software. Fig. 2 has been created with this script. 

C. The Meshing Tool 

As a second step, the geometrical bodies have to be 
divided into finite elements of an appropriate size. The IGES-
file is imported by the program Hypermesh®, which creates 
volume meshes of the coils, magnets, and back irons and puts 
out a text file with the volume elements’ and their respective 
collectors’ data. Hypermesh can be automated by Tool 
command language (TCL) [4]. Some global parameters like 
the maximum element lengths are defined in the control 
program. 

D. The Numerical Software FAMU 

Our numerical software FAMU is based on the VIEM, the 
system matrix is reduced by the FMM. The magnetostatic 
problem is solved by an iterative ( )M H algorithm. The 

required input parameters are the text file with the mesh data 
and a text file with control parameters containing information 
about the coil’s and magnet’s positions and geometrical 
shapes and a lot of other control parameters that remain the 
same in the majority of cases. The changing parameters are set 
by the control program considering the output of the CAD-
tool. The software delivers a text file which contains the 
needed results. 

E. The Control Software 

The control software starts the mentioned programs 
according to a user-set sequence. New design approaches are 
evaluated by running simulations in critical positions between 
stator and flotor. To describe the behavior of the chosen 
design approach, the control software shall be extended in a 
way that makes it possible to create matrices A  for every 

displacement r  and rotation ϕ  which describe the relation 

between impressed coil currents I  and the resulting forces F
and torques M :

1

( , )

n

I

I

ϕ
⎛ ⎞

⎛ ⎞⎜ ⎟ = ⎜ ⎟⎜ ⎟ ⎝ ⎠⎜ ⎟
⎝ ⎠

F
A r

M
        (1) 

The x- and y-component of M  are used to compensate 
unsymmetric process forces and unwanted torques excited by 
stray fields. The predictions about the device’s behavior 
received from the matrices are computed with a superposition 
principle which leads to a small error. To reduce 
computational costs, these errors are neglected, if it can be 
assured that they are limited to a certain barrier. 

IV. NUMERICAL RESULTS

Some preliminary numerical results are presented here. 
Similar to the synchronous motor, the coils of the lower part 
have to excite a rotating field to realize rotations. To create the 
mentioned matrices, it is necessary to know the forces and 
torques generated by a single coil at every interesting position. 

Fig. 3. Torque of a single rotation coil over the rotation angle 

Fig. 3 shows the torque generated by applying a constant 
current to a single rotation coil. The translational deviations 
are zero and the number of magnetic poles is eight, therefore 
the rotation angle is varied from 0 to 90 degrees. Hence, the 
coil passes two different magnetic poles. In the middle of the 
air-gap the intersection between the magnetic fields of the two 
different poles is very long. Therefore, the device has to be 
realized with a small number of poles. 
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Abstract — So far, effects of load variation have not been 
investigated for eccentricity fault diagnosis in synchronous 
motors. In this paper, a synchronous motor under static and 
dynamic eccentricity with different loads is modeled using 
winding function method. Self inductances of the stator and 
rotor, mutual inductances between stator and rotor, stator 
current, torque and speed motor are evaluated and analyzed. 
Spectrum of the stator current is utilized for detection of 
eccentricity occurrence, recognition of its type and determination 
of its percentage. Variation of eccentricity degrees and loads on 
the selected index is scrutinized separately and simultaneously. 
The accuracy of obtained simulation results is verified using 
experimental results. 

I. INTRODUCTION 
Fault conditions disturb machines performance and declare 

their life spans. Also, persistent faults damage the machines 
and consequently outage time for repairing is extremely 
costly. Therefore, faults diagnosis and condition monitoring of 
the synchronous motors as efficient machines in different 
industries are necessary. In [1]-[2], a salient-pole synchronous 
generator under dynamic eccentricity has been modeled using 
winding function method (WFM). Revision of the 
assumptions and basic equations of the WFM show that the 
theory differs for non-uniform air gap [3].  In addition, the 
stator and rotor windings distribution and air-gap permeance 
have been taken into account in [3] while this has not been 
considered in [1]-[2]. Amplitude of harmonic components at 
frequencies 17th and 19th has been employed for dynamic 
eccentricity in [1]-[3]. So far, round rotor synchronous motors 
under static and mixed eccentricity have not been investigated. 
Meanwhile, effects of the load variation on the eccentricity 
fault diagnosis in synchronous motors have not been studied.              

II. SYNCHRONOUS MOTORS MODELING USING WFM 
Precise modeling of the faulty machines is the most 

important stage of any reliable fault diagnosis procedure. 
Modeling methods which are developed based on magnetic 
field components of the machines can be utilized to calculate 
required parameters and signals incisively. Albeit WFM 
ignores non-linear characteristics of the stator and rotor cores, 
considers many effective parameters of the machines [1]-[3]. 
The principal equation of this theory which presents the 
mutual inductance of two arbitrary windings x and y in respect 
to the winding distribution is as follows: 

2 2 x y
y x x y

P n P n
L n n

P
π π= −

 

 

(1) 

where operator < f > is defined as the mean of function f over 
[0,2π] and P is the permeance distribution of the air-gap. 

Since, it is an arbitrary angle in the stator reference frame, it 
follows that: 

( )
2

0

1
2

f f d
π

α α
π

= ∫
 

 

(2) 

Equations (1) and (2) have been developed by taking into 
account a more precise distribution of stator phases and rotor 
excitation windings and also a more precise computation of 
the air-gap permeance. Air-gap permeance is proportional to 
the inverse of the air-gap length. Therefore, the air-gap 
permeance distribution, between the rotor and stator, is as 
follows:  

( ) 0
( )
( )

avrP
g

αα µ
α

=
 

(3) 

where rav (α) and g (α) are the mean radius of air-gap and air-
gap distribution, respectively. These two quantities are 
constant for all the points between the rotor and stator, in the 
symmetrical case.  

III. PERFORMANCE ANALYSIS OF THE FAULTY MOTOR 

A. Stator Inductances 
     Fig. 1 depicts the per phase self-inductance of the stator 
winding of a synchronous motor in healthy and 50% static 
eccentricity. Fig. 1 exposes that the static eccentricity 
increases the inductance and distorts distribution of the 
inductance. The reason is that in the static eccentricity case, 
the air gap permeance depends on the rotor angular position. 
Since this angle varies continuously the distribution of the 
inductance is asymmetrical. 

B. Rotor Inductances 
    Fig. 2 illustrates the self-inductance of the excitation 
winding of a synchronous motor in healthy and 50% static 
eccentricity. Comparison of Fig. 1 and Fig. 2 shows that the 
variation rate of the mutual inductance in static eccentricity is 
higher than that of the self-inductance.  

C. Stator current 
      Stator current of the healthy and faulty synchronous motor 
and their spectrum have been presented in Fig. 3 and Fig. 4. 
Referring to these figures presents the considerable increases 
of amplitude of 17th and 19th harmonic components due to 
static eccentricity which can be utilized as a proper index for 
eccentricity fault detection in synchronous motors. This is 
because of distortion of magnetic flux density which strains motor 
inductances. Therefore, stator currents are unbalanced and the 
amplitude of harmonic components is increased. 
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a 

b 
Fig. 1. Per phase self-inductance of the stator winding in (a) healthy and 
(b) 50%, static eccentricity 

a 

b 
Fig. 2. Per phase self-inductance of the rotor winding in (a) healthy and 
(b) 50%, static eccentricity 

IV. EFFECTS OF LOAD VARIATION  
        Fig. 4 shows the amplitude of the 17th harmonic 
component for different loads and different static eccentricity 
degrees (DED). The peak of harmonic amplitude is seen at the 
highest DED and the maximum load. On the other hand, the 
minimum harmonic amplitude is seen at the lowest DED and 
no-load. As shown in Fig. 4, an increase in the eccentricity 
degree and load, consequently increases the amplitude of the 
17th harmonic component.  According to Fig. 6, it is 
noticeable that the effects of increase of DED are much 
considerable on the amplitude of 17th harmonic component in 
which, effects of load variation can be ignored. Indeed, 
amplitude of the 17th harmonic component is fairly constant 
against load variation.   

V. CONCLUSION 
    In this paper static and dynamic eccentricities were modeled and 
analyzed using WFEM. This modeling method provided us with 
exact calculation and analysis of air gap permeance and so the 
machine inductances were calculated precisely. It was shown that, 
static and static eccentricities increase the magnitude, distort the 
distribution and these both affect on machine inductances.  

a 

b 
Fig. 3. (a)  Stator current waveform of healthy motor and (b) it’s spectrum 

a 

b 
Fig. 3. (a) Stator current waveform of faulty motor under 30% static eccentricity 
and (b) it’s spectrum 

Fig. 4. Amplitude variation of 17th harmonic component versus static 
eccentricity degree and different loads 
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Abstract— This paper describes the dynamic analysis method 
for a spherical resonant actuator using the three-dimensional 
finite element method (3-D FEM). In this computation, the 
magnetic field equation is coupled with the electric circuit 
equation and the motion equation. And the mesh modification 
method using the Laplace equation is applied for the rotation of a 
spherical actuator. The dynamic characteristics of this actuator 
are quantitatively clarified using this method. 

I. INTRODUCTION 
Recently, it is desired to develop a magnetic actuator that 

can move in arbitrary direction without auxiliary mechanism. 
We have been developing some novel spherical resonant 
actuators [1]. This paper describes a dynamic analysis method 
for a spherical resonant actuator using the 3-D FEM [2]. It is 
difficult to modify the FEM meshes of a complicated spherical 
actuator in accordance with rotation of an armature. Therefore, 
the mesh modification method using the Laplace equation is 
employed. The dynamic characteristics of this actuator are 
clarified using this method. 

II. ANALYSIS METHOD 

A. Magnetic Field Analysis 
The equations of the magnetic field and the electric circuit 

are coupled using the 3-D FEM, which are given by the 
magnetic vector potential A and the exciting current I0 as 
follows: 

      (1) 
 

      (2) 
 

     (3) 
 

where ν is the reluctivity, J0 is the exciting current density, ν0 
is the reluctivity of the vacuum, M is the magnetization of 
permanent magnet, V0 is the applied voltage, R is the effective 
resistance, Ψ is the interlinkage flux of exciting coil, nc and Sc 
are the number of turns and the cross-sectional area of the coil 
respectively, and ns is the unit vector along with the direction 
of exciting current. 

The motion of the armature is described as follows: 
 

 
(4) 

 
where I is the moment of inertia, θ is the rotation angle, D is 
the viscous damping coefficient, k is the spring constant, and 
Tm is the torque acting on the armature. 
 

B. Mesh Modification by solving the Laplace equation 
The procedure of mesh modification for next time step is 

executed by solving the Laplace equation, which is given as 
follows [3]: 

 
(5) 

 
where θ is the potential, which can be regarded as the rotation 
angle of the armature. 

(i) The potential θrotation, which is the rotation angle of the 
armature, is given to nodes in the armature region, and the 
potential zero is given to nodes in the stator region. 

(ii) The distribution of potential θ of the armature region is 
calculated by solving (5). 

(iii) The coordinates of nodes in the mesh are modified 
according to each potential θ. 

The meshes of the gap between the armature and the stator 
are smoothly modified by using this mesh modification 
method. Fig. 1 shows the flowchart of the dynamic analysis 
method. 
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III. ANALYZED MODEL AND ANALYSIS CONDITIONS 
Fig. 2 shows the analyzed model. The stator has four poles 

and a couple of coils in this study to consider the rotation only 
in y-axis. The armature is composed of the spherical-shaped 
core with the ring-shaped permanent magnet, which is 
connected to the resonance spring. The rotation angle θ is 
defined as shown in Fig. 3. θ is 0 in the initial position. The 
magnetic flux caused by the permanent magnet flows as 
shown in Fig. 4. The armature is stable at the center because 
of balanced magnetic flux in the gap between the armature 
and the stator. The torque is generated on the armature when 
the current is excited to the coil, and the armature rotates in y-
axis. Table I shows the analysis conditions. In this 
computation, the rectangular voltage is applied to the coil.  
The discretization data and CPU time is shown in Table II. 

IV. RESULTS AND DISCUSSION 
Fig. 5 shows the waveforms of current and rotation angle of 

the armature in resonance. From this figure, the effective 
value of current and the maximum rotation angle are 0.94A 
and 7.5°, respectively. Fig. 6 shows the characteristics of 
rotation angle versus operating frequency. From this figure, it 
is found that this actuator has a resonance frequency of 127Hz. 
The effectiveness of the calculated results will be confirmed 
through the comparison with the measured ones in the full 
paper. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
TABLE I 

ANALYSIS CONDITIONS 
Voltage (V) 1.2 

Resistance (Ω) 0.42 Coil 
Number of turns (turn) 100 

Inertia of armature (N·m·s2/rad.) 8.05×10-6 

Spring constant (N·m/rad.) 3.75 
Viscous damping coefficient (N·m·s/rad.) 1.80×10-4 

 
TABLE II 

DISCRETIZATION DATA AND CPU TIME 
Number of elements 2,028,744 

Number of nodes    344,578 

Number of edges 2,386,097 
Number of unknown variables 2,347,770 

CPU time (hours/step) 1.2 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

REFERENCES 
[1] Y. Hasegawa, T. Yamamoto, K. Hirata, Y. Mitsutake and T. Ota: “Study 

of Dynamic Analysis for Spherical Resonant Actuator”, The Papers of 
Technical Meeting on Linear Drives, IEE Japan, LD-07-41, 2007. (in 
Japanese) 

[2] S. Suzuki, T. Yamaguchi, Y. Kawase, K. Sato, S. Kakami, K. Hirata and 
T. Ota: “Dynamic Analysis Method of Spherical Resonant Actuator 
Using 3-D Finite Element Method”, Proceedings of the 18th 
International Conference on Electrical Machines, Paper ID 1400, 
September 2008. 

[3] Y. Kawase, T. Yamaguchi, M. Watanabe and H. Shiota: “Novel Mesh 
Modification Method Using Laplace Equation for 3-D Dynamic Finite 
Element Method”, Proceedings of the 16th Conference on the 
Computation of Electromagnetic Fields, Vol.2, pp.631-632, June 2007. 
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Abstract—In this paper, a finite element(FE) analysis of the 
peripheral flux leakage in a novel axial field flux-switching 
permanent magnet (AFFSPM) machine was presented by using 
energy method. The size of peripheral air cylinders in FE 
analysis model of AFFSPM machine was determined by the 
suggested method. Thus, it was possible to optimize between the 
computational precision and time. The calculation results are 
coincide with that by permanent magnet (PM) flux method. In 
addition, the presented method was also used in 2D FE 
simulation. The investigation shows that this method is useful in 
the application of machines with PM in stator. 

Index Terms—peripheral flux leakage; air cylinder; energy 
method; AFFSPM machine.

I. INTRODUCTION

The peak-to-peak values of the PM flux and the induced 
electromotive force (EMF) computed by FE method are larger 
than their actual values due to the peripheral flux leakage in a 
AFSFPM machine with PM in the stator. In order to decrease 
the computation error, it is necessary to add peripheral air 
cylinders to the periphery of FE analysis model of machines. 
However, this increases the workload for meshing, computing 
and post-processing. Therefore, it’s very practical to 
determine the sizes of air cylinders and to optimize the 
computation precision and time.  

FE simulations of PM machines, including the design, the 
optimization of machines, the calculation of parameters, have 
been studied in the literatures. However, how to decide the 
sizes of peripheral air cylinders in the FE analysis model have 
rarely been investigated. In this paper, an energy method is 
suggested to determine the sizes of the air cylinders for a 
novel AFFSPM machine. The calculated results is compared 
with that gotten by the PM flux method.  

The energy method is discussed in section Ⅱ. In section 
, PM flux method is Ⅲ introduced and the results are 

compared. In order to illuminate that the energy method is 
applicable to 2D FE simulation, a 2D FE example is presented 
in section .Ⅳ

II. THE ENERGY METHOD

A. The simulation  model of AFFSPM machine 

The magnetic energy is a sum of the magnetic co-energy in 
each element. For each one, the magnetic co-energy is 
calculated as follows: 

{ } { }dHBW
H

Hc
c

⋅= ∫−                     (1) 

where Wc is the stored magnetic co-energy, Hc is the coercive 
force, B is the flux density vector, and H is the magnetic field 

intensity vector. For the static magnetic field in the zero-
current condition, the interrelated parameters are governed by 
the following three equations: 

                                     
⎪
⎩

⎪
⎨

⎧

=
=⋅∇
=×∇

HB

B

H

μ
0

0
                                     (2) 

whereμis the magnetic permeability. To solve these equations, 
a magnetic scalar potential is introduced to describe H:
                                         ψ−∇=H                                   (3) 

whereψis the magnetic scalar potential, which could deduce 
the requisite parameters. 

Fig. 1 shows a typical AFFSPM machine of the type to be 
investigated in this paper. The machine consists of two outer 
stators and one inner rotor. 

There are three peripheral air covers in the FE analysis 
models of the AFFSPM machine, that is, a radial outer 
peripheral air cylinder, a radial inner air cylinder and a 
terminal air cylinder. The three peripheral air cylinders are 
added in the FE analysis model in turn and their sizes should 
be determined. Fig.2 shows the 3D FE analysis model of a 
AFFSPM machine. 

Fig.1.  configuration of a AFFSPM machine 

 (a)  Not considering the                  (b) Considering the 
peripheral flux leakage                  peripheral flux leakage 

     Fig. 2. 3D FE analysis model of AFFSPM machine 
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B. Determination of radial peripheral air cylinder size 

The outer diameter of the radial peripheral air cylinder was 
calculated. If koair is defined as a changeable coefficient for the 
undetermined parameter, and  it is 

ooairoair DDk =                                    (4)  

Where Doair is the outer diameter of the radial peripheral air 
cylinder, and Do is the outer diameter of AFFSPM machine. 
Fig.3 shows the magnetic energy varied with koair at initial 
rotor position angle, and the change of magnetic energy in one 
cycle at different koair is shown in Fig.4. 

The magnetic energy is constant when koair is larger than 
1.5(Fig.3), which is also demonstrated by the results in Fig.4. 
Therefore, 1.5Doair is determined as the outer diameter of the 
radial periphery air cylinder. 

The sizes of radial inner air cylinder and terminal air 
cylinder are also determined according to the above analysis. 
0.5Di is selected as the inner diameter of radial inner air 
cylinder, and 1.1hs is the axial depth of the terminal air 
cylinder, where Di is the inner diameter of AFFSPM machine, 
and hs is the axial length of the stator. 

Fig.3. Magnetic energy at the initial    Fig.4. Magnetic energy in one cycle 
position angle                                                         

III. THE PM FLUX METHOD

The PM flux is one of most important parameters in the 
design and optimization of PM machines. The relationship 
between the peak-to-peak value of the PM flux and the koair in 
one phase is shown in the Fig.5. The peak-to-peak value of the 
PM flux is constant when the koair value is larger than 1.5, and 
this is coincide with that obtained from the energy method.  

The relations of PM flux peak-to-peak with the sizes of the 
radial inner air cylinder in one phase and the terminal cylinder 
are also obtained by the same method. The inner diameter of 
the radial inner air cylinder is determined as 0.5Di, and the 
axial length of the terminal air cylinder is 1.1hs. These are 
coincide with those obtained by the energy method. 

IV. 2D FE ANALYSIS

In the 2D FE analysis model of a radial field flux-
switching PM machine, a circle was added to the periphery of 
the stator to simulate the air condition. Fig.6 shows the FE 
analysis model of the machine. The outer diameter of the 
peripheral air circle is determined. The calculated results 
based on the energy method are shown in Fig.7 and Fig.8, 
where kairso is the proportion of the outer diameter of the air 
circle  to the outer  diameter  of  the  stator.  According  to  the  

Fig.5.  PM flux peak- to-peak value     Fig.6. 2D FE analysis model 
                                                                         of a radial field flux-

switching PM machine 

Fig.7.  Magnetic energy at the initial                 Fig.8.  Magnetic energy in 
rotor position.                                                    one cycle 

calculation of the magnetic energy, 1.5Dso is determined as the 
outer diameter of air circle, where Dso is the outer diameter of 
the stator. This result can also be obtained by using the PM 
flux method.

V. CONCLUSIONS

In this paper, an energy method is presented and used to 
determine the sizes of peripheral air cylinders in the FE 
analysis models of the flux-switching machines. The 
simulation results are confirmed by the PM flux method in the 
3D and the 2D FE simulation. In additional, the peak-to-peak 
values of the PM flux and the induced EMF computed by the 
FE method are larger than their actual values, which is caused 
by the difference of the PM flux at different air cylinder sizes. 
The determination of the sizes of peripheral air cylinders on 
the FE analysis models of flux-switching machines is 
important to obtain the balance between the computation 
precision and the time. Therefore, it’s useful to determine the 
air cylinder sizes by the energy method in the FE simulation 
of machines with PM in the stator. 
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Abstract — Direct-drive permanent-magnet generators for use 
in low speed applications are described and compared. A target 
specification is set and a design procedure is carried out for a 
radial-flux slotted machine and a Torus machine. The design for 
the fractional-slot high-pole number brushless permanent-magnet 
generator is developed using an analytical design package and 
verified using a finite element analysis. The design is compared 
with a preliminary Torus machine design. 

I. INTRODUCTION

With the development of new generation systems which are 
both low-speed and variable power there is an increasing need 
for direct-drive generators. Unfortunately many PM generators 
suffer from low power factor [1] and will require controlled 
rectification. It is an advantage to have high p.f. so that a diode 
bridge load can be utilized for simple and robust operation [2]. 

The topology of these machines can vary considerably – 
they can be of conventional radial-flux [2] with slotted stator 
and surface/internal magnets, axial flux machines with air-gap 
windings [3], torus arrangements [4] or Vernier hybrid [5].  

In the paper a comparison between direct-drive PM 
generators is made. The basic target specification is outlined 
and the design carried out and verified using finite element 
analysis. This paper represents an interesting electromagnetic 
design challenge and sets out a simple procedure for machine 
designers using modern design and analysis tools. 

Winding arrangement
  

Fig. 1. (a) Winding arrangement and (b) stator cross section. 

II. SPECIFICATION AND OUTLINING OF SLOTTED MACHINE

The application here is low speed. If the target speed is 15 
rpm and 200 Nm, and allowing a frequency of 12.5 Hz at this 
speed, then a pole number of 100 is obtained; this was used for 
the slotted design. The frequency is low because the generator 
may be required to operate at higher speed (above 60 rpm) and 
also the pole number would be prohibitively high. This 
generator is aimed at being used in a Bristol Cylinder [6]. For 
the slotted design, surface magnets are used to prevent saliency 

and minimize Xq. The slot number should be a multiple of 3. A 
convenient number for 100 poles is 90 slots with two coil-sides 
per slot. The machine uses rare earth magnets. Fig. 1 shows the 
machine and winding layout (for 3 phases). The periodicity of 
this arrangement is 9 slots (10 poles). The use of fractional slot 
stator topology is necessary to reduce cogging torque. 

III. DETAILED SLOTTED MACHINE DESIGN AND ANALYSIS

A. Sizing 
If the target speed is 15 rpm, and the frequency of 12.5 Hz 

at this speed, then the pole number is 100. [7] suggests that the 
torque per rotor volume (TRV) for a high-performance servo 
machine should be between 20 and 45 kNm/m3; the low end of 
the range is taken for a prototype. The total axial length for the 
machine is 270 mm so the core length of the machine is about 
half. Using this length gives a rotor diameter of 

3

200 1
2 2 0.307  m

0.13520 10stk

T
D

TRV Lπ π
= = × =

× ××
 (1) 

Hence, the radius of the rotor it 150 mm and the axial length 
is 135 mm. The sizing is calculated to fill the generator voids 
in the cylinder. Fig. 1(a) shows the coil arrangement. The slots 
and stator are scaled to give appropriate slot area (211 mm2), 
tooth width (4 mm) and yoke depth (30 mm). This is shown in 
Fig. 1(b). The outer radius is 420 mm which is much less than 
the maximum allowed. The slot opening was set to 3 mm and 
the coils consist of 60 series turns. The gross slot fill is 0.5. 

B. Phasor Diagram  
The phase winding back-EMF has a good sinusoidal 

waveform with 3rd harmonic (which does not affect the 
operation). The torque has little ripple (a mean of 228 Nm). 
The machine is current fed and the current phasor is on the –q 
axis. The phasor diagram is also shown in Fig. 2(a). When the 
machine is attached to a diode bridge rectifier the performance 
will be degraded, this is because the current will not be in 
phase with the back-EMF and not sinusoidal. Low IqXq will 
help the diode bridge performance. 

C. Finite Element Analysis and I-Psi Diagram 
The model was fed through to an FEA package. The model 

spanned 10 poles. The derived current/flux-linkage loop is 
shown in Fig. 2(b). This is similar to the loops used in 
switched-reluctance machines. The current and rotor rotation 
are cycled round together and the flux linkage measured at 
each step. The area enclosed is the work done and therefore 
torque can be calculated in a straightforward manner. If the 
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loop is long and thin then the machine is operating poorly 
however this example shows good conversion. These loops are 
calculated both analytically (solid line – torque = 222 Nm) and 
in FEA (dotted line – torque = 254 Nm).  

Iq

IqXq

RXq

Vt=56 V

Vd

Vq

Eq=68 V

Fig. 2. (a) Phasor diagram and (b) I-Psi loop for one phase  

D. Cogging Torque 
Cogging torque requires fine detail of the machine magnetic 

circuit to calculate an accurate model. Cogging torque is very 
susceptible to numerical error. The air-gap had four regular 
layers and the distance between the nodes round the central 
air-gap boundary is equal to the step angle between steps. The 
cogging torque was found to be about 2.8 Nm peak-to-peak. 

IV. TORUS DESIGN

In this section a short comparison is done with an alternative 
design – the Torus machine. There is little in the literature that 
gives direct comparison between the two machines.  

A. Torus design 
The Torus arrangement has the advantage of low armature 

reactance and can be either radial flux or axial flux [11]. This 
machine has air-gap windings and the disadvantage to this 
arrangement is that the coupling with the winding is reduced 
and available winding area is limited. In addition there can be 
additional eddy current losses in the air-gap copper so that 
many parallel strands of thin wire may be required. Therefore 
to design this machine then maximum diameter should be used 
in the initial design. Here it was decided to use a 760 mm 
diameter for the outer diameter of the machine and the same 
magnet material. The pole number was increased to 120 poles 
and since there is no cogging torque then an integral number of 
coils per pole can be utilized (120 coils per phase). 

The rotor diameter is 735 mm so that the machine is more of 
a ring in structure which requires careful mounting within a 
frame and bearing mountings. The thickness of the winding 
layer was limited to 1.4 mm with a low 0.7 mm air-gap. This is 
to attempt to maintain good flux linkage with the rotor. 
Because the Torus arrangement has limited end-winding (since 
the coils are wound around the toroidal laminated stator core) 
it is possible to increase the axial length (up to 170 mm here). 
This is necessary because of the limited number of turns that 
can be used so every effort should be made to improve the flux 
linkage per turn. Since it is easier to wind this machine then 
the slot fill was increased to 0.7 – this will be difficult to 
achieve and rectangular conductors would probably have to be 
used. Fig. 8 shows the finite element analysis of this machine 

while Table 1 shows a comparison of the designs. 

Fig. 3. Radial-flux Torus design showing one pole pair (stator at top showing 
three coils per pole around stator core). 

TABLE I COMPARISON OF MACHINE DESIGNS (AT LOAD AND 15 RPM) 
Parameter Slotted Torus Parameter Slotted Torus 

Outer Diameter [mm] 420 760 Core length [mm] 135 170 
Copper [Kg] 12.4 6.5 Magnet [Kg] 2.3 7.6 

Load current (set) [A] 1.77 1.77 Torque [Nm] 228 231 
Back-EMF [V] 68.3 68.9 Power Factor 0.87 1 

Copper losses [W] 99 162.9 Efficiency [%] 69.9 55.5

B. Comparison with slotted machine 

Table I shows that the issue with the limited area for the 
winding leads to the requirement for more magnet material 
while there is additional copper losses in the winding because 
it runs with a higher current density in the copper. Even with 
the increase in poles it is still difficult to get sufficient flux 
linkage and hence back-EMF. With further design it would 
probably be possible to obtain better performance by 
optimizing the magnet thickness and winding window to 
obtain the optimum back-EMF and copper losses which gives 
best efficiency. However this does illustrate that the slotted 
machine is much easier to design for a given specification 
because of the flexibility of the winding area available. 

V. CONCLUSIONS

In this paper a comparison has been made between a slotted 
machine and a Torus machine using standard design 
techniques and 2D FEA validation of design calculations. It 
was found that Torus machine required a larger diameter to 
meet the specification. A direct comparison highlighted the 
advantages and disadvantages of both. Neither is of high 
efficiency; further refinement is needed to improve this. 
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Abstract — This paper compares the effects of dynamic 
eccentricity (DE) on the performance of a salient-pole and round-
rotor synchronous generators. Time stepping finite element 
(TSFE) method has been used for calculating the self and mutual 
inductances of the stator phases and rotor windings. It also used 
to determine the influence of the eccentricities on the flux 
distribution and no-load voltage characteristics in 
aforementioned generators. Then, new index is introduced for 
dynamic eccentricity fault detection in the two types of 
synchronous generators. This index which is extracted from the 
spectrum analysis of the stator current can be utilized to 
determine the dynamic eccentricity degree accurately.   

I. INTRODUCTION 
  Operation of generators under faults condition can disturb 
their performances and declare their life spans. Also, 
persistent faults can damage the generators and consequence 
outage time for repairing is extremely costly. Therefore, faults 
detection and condition monitoring of the generators allow 
more flexibility in operation by knowing the performance and 
extend generator life by adjusting the operation to avoid 
known operating regimes or ranges and cost effectiveness. 
   Mechanical faults such as eccentricity are one of the major 
faults in electrical machines caused by mechanical parts such 
as bearing, shaft and coupling [1]-[2]. In the case of dynamic 
eccentricity, the center of rotation and the center of stator are 
the same. Therefore, the air gap length is both time and space 
dependent [3]. 
   Many researches have been devoted to the eccentricity fault 
in induction machine [4], but it is considerably poor in the 
field of the synchronous generator. Hence, study of the 
generator performance under this fault seems to be necessary. 
   In this paper, from the basic geometry, nonlinear properties of 
the magnetic materials and winding layout of the two 
generators, the FE approach is implemented using Flux2D 10.2 
software package. All signal and the characteristics of the two 
generators have been calculated by TSFE method with a very 
high accuracy. The standard Galerkin formulation is applied to 
the field and current equations, moving-band technique is taken 
into account the movement and Newton-Raphson method has 
been used to consider the nonlinearity of the magnetic 
materials.  

II. IMPACTS OF THE ECCENTRICITY FAULT UPON THE FLUX 
DISTRIBUTION IN THE SYNCHRONOUS GENERATORS 

The synchronous generators field winding is subject to the 
dc saturated current equal to 12A at no load condition. The 
magnetic field equations solved in the given structure via the 
FE approach. The eccentricity degree, δ, is definite as follows: 

100×=
gl

eδ  
 

(1) 

Where e is the displacement of the rotor in the horizontal 
direction in respect to the stator symmetry center and lg is the 
air gap length in healthy condition [3]. In the case of 40% 
eccentricity degree to the right at no load, it is observed in Fig. 
1 that the eccentricity clearly affects the flux distribution in 
generators and the magnetic flux distributions are not identical 
on both sides of the generators.    

 

  
(a) 

 
(b) 

Fig. 2. Flux distribution in the generator at no load in case of the 40% 
eccentric air gap, (a) salient-pole, (b) round-rotor.   
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III. SPECTRUM ANALYSIS OF THE STATOR CURRENT FOR DE 
FAULT DIAGNOSIS IN THE SYNCHRONOUS GENERATORS 

   In the presence of eccentricity faults, some harmonics 
related to the faults appear in the air gap field of the 
synchronous generator. These harmonics will increase as 
eccentricity degree rises. They should induce corresponding 
current harmonics in the stationary stator windings. 
Consequently, the stator current signatures of synchronous 
generator can be utilized for diagnosis eccentricity fault.  
     The synchronous generators under dynamic eccentricity 
(DE) faults are simulated very accurately in full-load 
condition using TSFE method and current signal are extracted 
for the analysis and extracting efficient index related to the 
faults. Fig. 2 shows the frequency spectrum of the stator 
current of the round-rotor synchronous generator for the 
healthy and 40% DE faults. It is observe that the 19th 
harmonic increase from the -88.38 dB to -83.95 dB with 
increase in 40% DE. Also, amplitudes (in dB) variation of 
harmonics for healthy, 10%, 20%, 30%, and 40% DE are 
shown in Fig. 3. It is clear that the 19th harmonic of stator 
current of the synchronous generator can be utilized for 
diagnosis the DE fault. Fig. 4 presents the corresponding 
curve for the salient-pole synchronous generator under above 
mentioned degrees of DE fault. It indicates that the 29th 
harmonic is a suitable index which can be used for DE fault 
diagnosis in salient-pole synchronous generator. Because of 
the approximately linear rise of 29th harmonic amplitude due 
to increasing DE fault, it can be used for identify the degree of 
the DE fault.  

IV. CONCLUSIONS 
    In this paper, comparison between the performance of the 
round-rotor and salient-pole synchronous generator under DE 
fault was carried out using 2-D TSFE method. For this, the 
flux distribution within the generator, self- and mutual- 
inductances of rotor and stator windings and stator current 
signature analysis were studied. Stator current signal spectrum 
analysis was employed for DE fault diagnosis in the 
synchronous generators. It was shown that the harmonic 
frequency components of 19th and 29th are suitable indices 
which can be used for diagnosis of the DE fault and 
determination of its degree in round-rotor and salient-pole 
generator, respectively. The completed results for DE fault 
will be presented in the full paper. 
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Fig. 2. Normalized spectrum of line current of round-rotor synchronous 
generator for: (a) healthy, (b) 40% DE. 

 
Fig. 3. Variation of harmonic amplitude of the line current in healthy round-
rotor generator and the generator with 10%, 20%, 30%, and 40% DE.   

 
Fig. 4. Variation of harmonic amplitude of the line current in healthy salient-
pole generator with 10%, 20%, 30%, and 40% DE. 
 
 
[4] S. Nandi, H. A. Toliyat, and X. Li, “Condition monitoring and fault 

diagnosis of electrical motors-A review,” IEEE Trans. Energy 
Conversion, vol. 20, no. 4, pp. 719-729, Dec. 2005.

 

786

 



COMPUMAG 2009

Magnetic Forces and Displacements Analysis of 
Large Scale BLDC Motor  by Magneto-

Mechanical Formulation 
1Pan Seok Shin. 1Hee Jun Cheong, 1Sung Hyun Woo, and  2Chang Seop Koh 

1Department of Electrical Eng., Hongik University, Jochiwon , Chungnam 339-701, Korea 
2School of ECE, Chungbuk National University, Cheongju, Chungbuk 361-763, Korea 

E-mail Address : psshin@hongik.ac.kr 

Abstract — This paper proposes a method to calculate 
vibration modes and forces of a large scale BLDC motor by using 
a magneto-mechanically coupling formulation. The mechanical 
vibrations are the results of the magnetic forces acting on the 
surfaces of the stator. The procedure of the vibration force 
calculation is three steps: FEM calculation of the magnetic field, 
local force density calculation, and calculation of the dynamic 
displacement and vibration modes of the stator. To verify the 
algorithm 3 MW BLDC motor is simulated, and the vibration 
modes, forces and displacement are calculated.  

I. INTRODUCTION

A Vibration analysis of the large scale BLDC motor is very 
important for design of the mechanical structure of the motor 
as well as for diagnostics of the motor system. For the 
magnetically forced vibration analysis of the BLDC motor, the 
calculated magnetic forces from FE analysis are put into the 
equations of the mechanical motion of the stator.  

Additionally, magnetoelastic phenomena is to be taken into 
account in the magnetic force calculation of the motor. So, it 
is considered not only electromagnetic exciting force but also 
magnetostrictive forces which effect on electrical sheets of the 
large stator core. The permeability and the saturated 
magnetization of electrical sheets are distorted by the 
magnetostrictive force.  
To verify the proposed algorithm 3 MW BLDC motor is 
simulated, and the vibration modes, forces and displacement 
are calculated. As the results of the simulation, the 
displacement and the 6 major modes are found, and the results 
are also compared with those of the existence of the 
magnetostrictive force.  

The magnetic field distribution and the mechanical 
vibrations are calculated by the finite element method. The 
one pole pitch model(1/32 model) is used for the magnetic 
field and the surface force density calculation. The whole 
model of the stator with frame is used for the calculation of 
the mechanical vibrations.  

The calculation of the magnetically forced vibration is 
divided into three steps: to calculate the transient behavior of 
the magnet field vectors, to evaluate the force density on the 
stator surface and to transform it into the mechanical 
equations, and to calculate the displacement by using the 
components of force as forward signals.

II. MAGNETIC FIELD, FORCE AND DISPLACEMENT

CALCULATION

The electromagnetic force generated by the interaction of 
load current with the magnet flux is calculated by the Maxwell 
stress method based on the finite element analysis of the 
equation: 

AAjJA ee
2)/1( ωσωμ +−=×∇×∇ ,     (1) 

where A is magnetic vector potential, σ  electrical 

conductivity, eω  power frequency, μ  permeability, 

respectively. The magnetic flux density, B, and the magnetic 
field intensity, H, are estimated by using A.

The simulation model of the 3 MW BLDC motor has 32 
poles, 192 slots with 12-phase winding in the stator. Fig.1 
shows the FE model of the motor. To analyze the field in one 
pole-pitch(1/32 model), a magnetic field computation at 30 
stator-rotor positions is carried out.

Fig.1. 1/32 Model of 5 MW BLDC motor and airgap flux density in the 
normal direction  

For a linear approximation of the ferromagnetic material, 
an expression of the local surface force density, κ , is given 
by the Maxwell’s stress tensor: 

( ) ([ ]tttnnn BBHHHBn 2121122
1

−−−=κ )       (2) 

The values B and H represent the magnetic flux density 
and magnetic field intensity, and the subscript n, 1, and 2 
describe the normal direction, region 1 and region 2 
respectively(see Fig.2). Equation (2) has some assumptions of 
the definition of the stress tensor and the electrodynamic field-
conditions on the boundary(Div B=0 and Rot H = 0). Because 
the force is a periodic function in one pole, the surface force 
density function has to be approximated by a number of 
models, each with another rotor position. The magnetic force, 
F, acting on the stator surface, can be calculated by 
integrating κ over a closed surface.
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Fig.2  Boundary condition of the surface force density 

The FE calculation of the dynamic displacements is 
based upon the principle of Hamilton, which prescribes to find 
the minimum of the difference from the kinetic energy and the 
elastic potential of the whole structure[1]. Using this principle 
the following system of equations is obtained. 

FDKDM =⋅+′′⋅  or    

(3)

FDMK mech =⋅⋅− )( 2ω

D ′′  is the global vector of node displacements, M is the 
global mass matrix including the  information of inertia and K
is the global stiffness matrix, describing the elastic features of 
the structure[2]. The vector F includes the amplitudes of the 
exciting force densities which is calculated by Eq.(2). For a 
transient characteristics, a dynamic response analysis is 
performed at a point by using mode superposition method[3].  

The simulation model is shown in Fig. 3(a) for mechanic 
calculation. The model has about 280 thousands nodes and 
about 185 thousands tetrahedral meshes. Fig.3(b) shows the 
surface force density on the stator boundary. Fig.4 shows 
vibration modes of 3 MW BLDC motor stator with frame: the 
first mode is 60.55hz, the third mode 127.63Hz, the fifth mode 
199.2 hz. Fig.5 shows a time response of displacement on a 
point of the stator to the radial direction. Fig. 6 shows an 
effect of the magnetostrictive force on the displacements in 
the axis direction: type A is the conventional, type B is 
considered the magnetostrictive force.

 

(a) FE model of BLDC motor stator 

(b) Force density along stator surface(one pole)  
Fig.3   Simulation model of the stator(inner radius : 1450mm) and force 
density

(a) 1st  mode(60.55hz)   (b) 3rd  mode(127.63Hz)  (c) 5th  mode(199.2 hz) 
Fig.4. Vibration modes of 3 MW BLDC motor stator with frame 

  Fig. 5. A time response of displacement on a point of the stator (radial 
direction) 

Fig. 6. A comparison of time response of displacements in the axis 
direction with type A and B.

III. SUMMARY

This paper proposes a method to calculate the vibration 
modes and forces of a large scale BLDC motor by using an 
electromechanically coupled formulation. The mechanical 
vibrations are the results of the magnetic forces acting on the 
surfaces of the stator. The procedure of the vibration force 
calculation is three steps: FEM calculation of the magnetic 
field, local force density calculation, and calculation of the 
dynamic displacement of the stator. To verify the algorithm 3 
MW BLDC motor is simulated, and the vibration modes, 
forces and displacement are calculated.     
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11. ELECTRIC MACHINES AND DRIVES 

Abstract — A permanent magnet spherical motor is novel 
concept an electric machine which has two performance features 
as rotation mode and position one [1]. In this paper the authors 
propose the modified coil position on the stator of the permanent 
magnet spherical motor for improving characteristic of position 
mode. A characteristic of the holding torque depends on the 
position between stator coils and rotor magnets, because the 
rotation of the stator and rotor has to be considered on 3-
dimensional. A characteristic of the holding torque is important 
factor to decide the stable tilt angle of the rotor. Therefore the 
authors researched into the feature of the holding torque as using 
the finite element method and another numerical one. As 
following results from the comparison two methods, the 
improved performance of the spherical motor is verified by 
experimental results.  

I. INTRODUCTION 
The manipulator, 3D-measuring instruments, and robot 

system have a characteristic of multi-degree of freedom 
performance. These machines have several motors which can 
rotate as multi-degree of freedom operation. 

 

 
Fig. 1. Permanent-magnet spherical motor 

 
The permanent-magnet spherical motor can perform the 

multi-degree of freedom as only one motor like Fig. 1. The 
remarkable feature of the permanent magnet spherical motor is 
that the shaft can be tilted while the rotor is rotating 
continuously [2]-[3]. However the characteristic of tilt 
operation depends on mechanical structure of the machine and 
position between coils and magnets of the motor. Especially, 
the coils position has to be optimized for improving the motor 

performance first. Besides the coil position relates with torque 
stabilization and operating range of the rotor tilt degree. 
Therefore the authors researched into the characteristic of the 
holding torque by using numerical methods as a function of 
coil position. 

II. TORQUE CHARACTERISTIC 

A. Proposed Model 
The permanent-magnet spherical motor consists of 4 Nd-

permanent magnets on the rotor and 12 coils on the stator. The 
summed holding torque, which is generated between coils and 
magnets, decides a rotor position. The structure is shown in 
fig. 2. 

 
Fig. 2. Structure of permanent magnet spherical motor 

B. System Modeling 
The components position of rotor and stator is identified as 

using spherical coordinates system : r , θ , and ϕ  as well as 
their torque like (1) [4]-[5]. 

   (1) 
The holding torque is summed vector calculated from 

position as coils and magnets. Therefore the torque is 
computed by using the torque profile function as )( jkf ϕ  and 

unit direction vector of each component as coils and magnets. 
The torque profile function is calculated by using Finite 
Element Method. Even though the Finite Element Method is 
useful computation method for electromagnetic field 
calculation, the long computation time is a serious 
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11. ELECTRIC MACHINES AND DRIVES 

disadvantage. Therefore it has many advantages that the 
holding torque is computed by the torque profile function. 

III. IMPROVEMENT TORQUE CHARACTERISTIC 

The torque is generated between coils on the stator and 
magnets on the rotor. Fig. 3 shows the torque characteristic as 
function of the position between coil and magnet.  

 

 
Fig. 3. The torque profile function as using FEM and Regression Method 

 
Fig. 4 shows simulation models for studying the torque 

characteristic. Each simulation model shows different stability 
characteristic of the holding torque. In this paper, optimized 
structure of stator improving coil position is researched. 

 
Fig. 4. Simulation model for optimization of the holding torque 

 
Fig. 5 shows simulation results of holding torque profile. 

The holding torque shows different stability depending on 
situation of magnet position with coils. Therefore, in this 
paper, factor of instability holding torque is analyzed and the 
coil position on the stator is optimized by using numerical 
method for computation electromagnetic field. Finally the 
results are verified by experiment. 

 

IV. CONCLUSION 

The permanent magnet spherical wheel motor is able to tilt 
and rotate at 3 axes as the Yaw, Pitch, and Roll. Because the 
holding torque depends on structure of coils and magnets, 
however, the torque which is generated from them has to be 

simulated by numerical method as 3D FEM. Even though the 
FEM method is used to analysis for the electromagnetic field, 
it is a problem to have a long computation time. For 
improving the disadvantage of calculation time, the authors 
use novel numerical method as using the torque profile 
function for calculating electromagnetic field. When the 
magnet is controlled by 4 coils, the holding torque shows 
instability phenomenon. Based on this torque feature, the 
model of 60 degrees coil position which is prototype motor is 
modified to 36 degrees coil position. Finally the torque is 
generated for holding the rotor stably. 

 

 
Fig. 5. Comparison data of stability holding torque 

 

 
Fig. 6. Optimized structure of stator 
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11. ELECTRIC MACHINES AND DRIVES 

Abstract — In this work the inductances of an induction motor, 

which rotor may be misaligned, are evaluated. This motor is 

intended to be used as a self bearing motor with split windings. 

Two types of analysis are performed: Analytical method (AM) 

and Finite Elemennt Method (FEM). Results suggest the best 

reliability of FEM as with AM it is not possible to take into 

account effects like leakage flux. 

I. INTRODUCTION 

Induction motors with split windings operating as self 

bearing motors are being studied since 1989 [1]-[2]. With this 

configuration it is possible to generate torque and radial 

positioning forces. With this approach some works were 

reported in the literature focusing on starting and constant 

speed operation [3], [4]. Strategies of speed control with good 

responses were also reported in [5] and [6]. Nevertheless, the 

effects of possible misalignment between rotor and stator were 

not considered.  

With this in mind, the interaction between magnetic fluxes 

from induction motor when submitted to misalignment is 

being studied [7]-[8]. One interesting analytical method (AM) 

is presented in [9]. This is characterized by considering 

cylindrical the surfaces of stator and rotor. In this work, this 

method is compared with simulations using the Finite 

Elements Method (FEM) which has been consolidated as an 

useful tool in the study of non-linear phenomena and of great 

complexity.  

The aim of this work is to study the behavior of self and 

mutual inductances of an induction motor when submitted to 

radial misalignment. These results will allow for the prediction 

of possible interferences between the magnetic effects inside 

the motor: torque and radial forces. These concerns are present 

in the so called self bearing motor with split windings. 

 

II. ANALYTICAL DETERMINATION OF MOTOR INDUCTANCES 

WITH NON UNIFORM AIRGAP 

The machine analyzed in this work is a four poles, two 

phase induction motor. Each phase is composed of four 

windings that are connected in series in normal operation. 

When operating as a self bearing motor, each of the windings 

of one phase is supplied separately in order to get radial 

positioning. The other windings are connected in series and 

supplied simultaneously allowing starting torque. 

A. Analytical Method 

Assuming that the eccentricity of the rotor is limited to the 

airgap, it is possible to approximate the inverse to airgap as the 

following function [7]:  

.                  (1) 

Where  is the reference angle of stator windings, α is the 

mechanical angle of displacement of the rotor,  is the 

uniform airgap, and: 

.                  (2) 

Where ε is the eccentricity between of the centers of rotor 

and stator, as shown in Fig. 1. 

 

 
Fig. 1. Eccentricity of airgap.  

Due to the variation of magnetic field caused by the 

eccentricities of airgap along any portion of winding v, it is 

possible to find:  

.                  (3) 

Where Hv is the magnetic field intensity, nv the turn 

function (number of coils), which depends of  and iv is the 

winding current. 
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11. ELECTRIC MACHINES AND DRIVES 

Manipulating (3) and (1), using the Gauss law for magnetic 

fields in closed surfaces, assuming that the magnetic 

permeability of the core is infinite, that magnetic field is 

homogenous along the axial direction, that the dispersion of 

the magnetic field on both extremities of the rotor is neglected 

and considering that the airgap is very short when compared 

with the rotor radius, self and mutual inductances can be 

evaluated as in (4) and (5) respectively.  

        (4) 

        (5) 

Where Nv and Nw are the winding functions.  

B. Finite Elements Method (FEM) 

The complexity of the machine demands great care in its 

modeling through FEM. A three dimensional simulation would 

be more appropriate but it demands a high computational 

effort. For this reason it was chosen a two dimensional 

simulation using an appropriated refinement on the mesh.  

From electromagnetism the inductance can be expressed 

as: 

.                        (6) 

Where L is the inductance, I is the current, N is the number 

of coils and Ψ is the magnetic flux which can be obtained 

from (7). 

€ 

Ψ = ∇ ×A( )• ds∫ .                       (7) 

According to Stoke theorem and calculating the vector 

potential from its nodal values, it is possible to determine one 

relationship to calculate the inductance in a general form:  

.                   (8) 

Where l is the length, Aij the nodal potential vector, S is the 

total area in study, Si the element area, m is the number of 

element and n is the number of nodes by element (first-order 

triangle elements).  

III. COMPARATIVE RESULTS 

As an example, the self inductances of horizontal windings 

of phase-A were evaluated using the two methods. In Fig. 2 

were considered horizontal disalignments. As observed, the 

average error between analyitcal results and FEM results was 

around 7% which can be explained by the strong 

approximattions used with the analytical method. 

Additionally, with FEM it was possible to evaluate 

inductance variations when angular changes of the rotor were 

simulated. The analytical simulation would be extremely 

complex. As one example, the behavior of self inductance of 

the second winding of phase-A, when submitted to radial and 

angular displacements, is shown in Fig. 3. 

 

 
Fig. 2. Self inductances of  horizontal windings of phase A submitted to 

horizontal displacements. 

 

 
Fig. 3. Behavior of the self inductance of the winding 2 from phase A 

submitted to linear and angular displacements. 

A. Conclusion 

The results suggest the reliability on finite elements 

method in order to calculate inductance variations when there 

are linear and angular displacements inside an induction 

motor. The importance of these results is related to the use of 

them to evaluate the performance of a self bearing motor, 

where there are simultaneous torque and radial force effects. 
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Abstract — This paper presents the development of a flexible 
phase variable model for the performance prediction of two 
phase hybrid stepping motor (HSM) by employing advanced 
design and analysis techniques. In the parameter calculation of 
the motor, a virtual magnetic gateway based 2-D magnetic field 
finite element analysis with multi-levels are conducted to 
calculate the air gap flux, back electromotive force (emf), and self 
and mutual inductances of the stator windings. To predict the 
dynamic performance, a Simulink-based phase variable model is 
built, taking into account the real waveforms of applied phase 
voltage, back emf and current. To increase the flexibility and 
accuracy of the model, both the mixed digital-analog based 
technique for different digital-analog mixed systems and the 
controllable voltage source based technique for the nonlinearity 
of HSM are introduced.  The model has been implemented in the 
development of a HSM drive system for driving embroidery 
machine. The predictions are in good agreement with 
experimental results.  

I. INTRODUCTION 
Hybrid stepping motors (HSMs) have been popular in low 

speed applications thanks to their many advantages such as 
high torque density and high resolution [1]. Considering the 
wide use of the HSM drives which are often highly nonlinear, 
it is desired to develop a numerical model with high practical 
merit for predicting the drive performance. To achieve the 
practical merit, including the accuracy, efficiency, flexibility 
and easiness, the following issues should be resolved first: 
calculation of the parameters in the equivalent electric circuit 
of HSM, flexible structure of numerical model, and 
appropriate expression of electrical parts in the circuit [2]-[4]. 

HSM drives belong to the field-circuit coupled system 
with high nonlinearity. The HSM features 3-D flux pattern 
and very tiny air gap which causes high magnetic saturation in 
the teeth, so 3-D numerical magnetic field analysis is a very 
challenging task and little satisfactory work has been 
completed so far. In this paper, a virtual magnetic gateway 
based 2-D finite element analyses (FEA) with multi-levels are 
applied to calculate the air gap flux. Based on the field 
solutions, all the parameters in the equivalent electric circuit 
of HSM such as back electromotive force (emf) and self and 
mutual winding inductances can be obtained efficiently. 

A modern HSM drive system is often composed of both 
digital subsystem and analogue subsystem. A digital system 
can be modified by designing the corresponding program in a 

block. However, as an analog system has fixed characteristic 
and a model cannot satisfy the requirement of different 
systems, it is required that the function of analog system in the 
simulation tool can be easily modified. In this paper, Simulink 
is used to build the simulation model, which can provide the 
functions of digital system and analog system simultaneously. 

The self and mutual inductances and back emf in the HSM 
model are generally processed as the function of applied 
magneto-motive force (mmf) and rotor position, but there no 
such direct corresponding parts in the power electronics block 
of Simulink. In this paper, the technique of controllable 
voltage source obtained by combining power electronics block 
and general simulation block in Simulink is proposed. 

II. PHYSICAL PHASE VARIABLE MODEL 
The phase variable model of two-phase HSM is given as 
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where ea and eb are the back emfs, the Ψsa and Ψsb are the flux 
linkages contributed by the stator currents, θ is the electrical 
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angle, θm is the mechanical angle, Zr is the number of gears on 
the rotor, L is the apparent inductance and L′ is the 
incremental inductance. The rest variables are used as their 
conventional meaning. 

III. ANALYSIS AND RESULTS 

According to (1)-(6), the physical phase variable model of 
HSM is illustrated in Fig. 1, which consists of two parts: the 
power electronics circuit block and the digital control system; 
both of them correspond to the practical HSM drive system. 

As an example, the circuit diagram of the phase “a” 
winding of the HSM is shown in Fig. 2, in which the 
controlled voltage source (CVS) or the controlled current 
source (CCS) is used, and all the parameters such as apparent 
inductance, increment inductance and back emf are calculated 
in advance by FEA and stored in look-up tables.  

For parameters calculation, a virtual magnetic gateway 
based 2-D magnetic FEA with multi-levels are applied to 
calculate the air gap flux. It is known that the distribution of 
magnetic flux density in the air gap varies sharply [1]-[2], but 
the distribution of magnetic flux density varies smoothly in 
the teeth. According to the FEA results, the magnetic force 
lines in the tooth root are approximately parallel, showing that 
the magnetic potential level of each point on the circle with 
the same radius is similar, then the radial permeance between 
the stator tooth root and the rotor tooth root can be processed 
as a function of applied mmf and rotor position. Fig. 3 shows 
the FEA result using the virtual magnet gateway. Based on 
field solutions, all the parameters in the equivalent electric 
circuit of HSM such as back emf, self and mutual inductances 
of the stator windings are obtained efficiently. Detailed field 
analysis will be presented in full paper.  

 
Fig. 1.  Developed physical phase variable model 

 
Fig. 2.  Circuit diagram of the HSM stator phase winding 

 
Fig. 3.  FEA of a two-phase HSM using virtual magnetic gateway 

Running the Simulink based model with the calculated 
parameters, various drive performance can be obtained and 
some results are shown in Fig. 4. Experiments have been 
conducted on the two phase HSM, validating the simulations. 

More theoretical analysis and experimental results will be 
presented in the full paper. 

 
Fig. 4.  Simulated results by using the flexible phase variable model 
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Abstract —This paper examines the flexibility of flux-barrier 
design for pulsation torque reduction in an interior permanent 
magnet synchronous motor(IPMSM). As well known, the torque 
characteristics are significantly related to the magnet pole-arc 
variation, which can be flexibly determined by the unique flux-
barrier design in the IPM rotor. In this study, a prototype 
conventional single-layer IPMSM model, a popular double-layer 
IPMSM model and a proposed novel double-barrier IPMSM 
model are built and optimized for reducing the pulsation torque, 
consisting torque ripple and cogging torque. The novel IPMSM 
model has beneficial attributes of economic single-layer IPM for 
manufacture and flexible double pair of flux-barriers for IPM 
rotor design. The geometries of buried flux-barriers in analysis 
models are optimized by using the response surface methodology 
(RSM). Finite element analysis(FEA) and test results confirmed 
the validity of presented pulsation torque computation. In final, 
the proposed novel double-barrier IPMSM model is well proved 
to be quite effective for pulsation torque reduction. 

I. INTRODUCTION

The interior permanent magnet synchronous motors 
(IPMSM) have wide applications in household goods, 
industrial use, and electric and hybrid vehicle propulsion[1]. 
The IPMSMs offer some superior advantages, such as high 
efficiency, high torque density and wide speed range[1]. 

However, from the torque characteristic point of view, the 
significant pulsation torque is an inherent drawback of 
IPMSM. For most practical applications, the reduction of 
torque ripple and cogging torque is always an essential 
requirement, for avoiding mechanical resonance, vibration, 
acoustic noise and damage to drive component, realizing 
motor runs smoothly[1]. There are many papers focused on 
torque ripple or cogging torque reduction in IPMSM, and 
proposed some effective approaches, such as the magnet pole-
arc design method. 

As known, the conventional single-layer IPMSM has only 
one pair of flux-barriers with each single PM piece buried in 
rotor iron, that propitious to manufacture. And the popular 
double-layer IPMSMs are attractive since their double pair of 
flux-barriers can be utilized for reducing torque pulsation[2]. 
In addition, this paper proposes a novel IPMSM model 
features double flux-barrier created with each single-layer 
IPM.  

By using response surface methodology(RSM), the shape of 
flux-barriers in analysis models are optimized. Then, finite 
element analysis(FEA) and test results confirm the validity of 
the proposed design is effective for reducing torque pulsation.

II. ANALYSIS MODELS

As Fig.1 shows, a prototype 6-pole/9-slot IPMSM model 
is given as a driving compressor of a hybrid electric vehicle. 
The stator has 3-phase concentrated windings, and the rotor 
adopts conventional single-layer IPM design, in which the PM 
pole-arc is described by flux-barrier with pole-arc_#1 and #2. 

III. FLUX-BARRIERS DESIGNS IN IPMSM

The effect of various flux-barrier designs on the reduction 
of pulsation torque in IPMSM is analyzed in this study. Base 
on the prototype single-layer IPMSM model, a double-layer 
IPMSM model is built by splitting the same amount of PM 
into thin pieces. It correspondingly creates two pairs of 
separated flux-barrier to be utilized for effectively distributing 
the magnetic flux crossing into air-gap field, as Fig. 2(a) gives. 
It should be noticed that double-layer IPM design will 
unavoidably increase the manufacture cost, and may cause PM 
irreversible demagnetization since thin PMs are employed. 

A novel double-barrier IPM rotor model is proposed, as Fig. 
2(b) illustrates. The single-layer buried PM has two pairs of 
connected flux-barrier, which is similar to the effectivity of 
double-layer IPM design for redistributing magnetic flux. 
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IV. IPM ROTOR DESIGN OPTIMIZATION

The multiple flux-barriers design is very complex owing 
to many design factors. Therefore, RSM, as a validated 
economic optimization technique[3], is applied to flux-barriers 
optimal design. The torque ripple and cogging torque are 
chosen as the design objectives in RSM, which are calculated 
by using the equivalent circuit method coupled with FEA.  

In each flux-barrier optimal design, the magnet pole-arcs 
determined by the flux-barriers variation are used as the only 
design variables for simple consideration. TABLE 1 lists the 
experiment ranges of each design variables in RSM. 

TorqueTorque
transducer Reducer

Optimized model model 

TorqueTorque
transducer Reducer

Optimized model model 

(a) Motor appearance. (b) Test apparatus for torque ripple measurement 

Fig. 5.  Torque performance test of fabricated optimized double-layer IPMSM 

0.16Nm0.16Nm

TABLE I 
RANGES OF DESIGN VARIABLES FOR OPTIMIZATION IN RSM 

Analysis
IPMSM Model

Pole-arc #0 
[Outer layer] 

Pole-arc #1 
[Inner layer] 

Pole-arc #2 
[Inner layer] 

Single-layer design 41o ~ 48o 54.2o ~ 59.2o

Double-layer design 35.4o ~ 41o 46o ~ 52o 54.2o ~ 59.2o

Double-barrier design 35.4o ~ 41o 46o ~ 52o 54.2o ~ 59.2o

* Outer layer: the upper PM layer closing to rotor surface.
* Pole-arc #0 is defined for the pole-arc of “Outer-layer” PM with red lines.

(a) Test result                                          (b) FEA result 

Fig. 6. Cogging torque results of optimized double-layer IPMSM  
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V. RESULTS AND DISCUSS

The optimal flux-barriers designs of each IPMSM models 
are determined with desired design objective results in RSM, 
as Fig. 3 illustrates. And their torque ripple and cogging 
torque characteristics are confirmed by FEA. Compare with 
single-layer IPM design, the double-layer IPM design and 
proposed novel double-barrier IPM design are both effective 
for reducing the pulsation torque, by which the torque ripple 
reduced from 16.5% to 10.0% and 7.0% separately, and 
cogging torque relatively decreased 46.7% and 66.7%, as 
Fig.4 results show. In addition, the optimized double-layer 
IPMSM is fabricated and tested as Fig. 5 shows. The tested 
cogging torque has a good agreement with FEA result, as Fig. 
6 gives, and the measured torque ripple [7.8%] is smaller than 
the FEA result [10.0%]. The error is thought caused by the 
influence of reduction gear inertial. 

(a) Test result [1V indicates 1Nm]                          (b) FEA result 

Fig. 7. Torque ripple results @Rated Tave=5.5Nm, and I= 15.3A, β=32.5o

VI. CONCLUSION

Torque ripple and cogging torque reduction in IPMSMs by 
flexibly designing the buried flux-barriers is presented in this 
paper. The proposed novel double-barrier IPMSM design has 
unique features as each single-layer IPM coupled with double 
pairs of connected flux-barriers, which shows similar attribute 
of the popular double-layer IPMSM design, but realizing the 
simplicity and low-costing for manufacture. The novel 
double-barrier design is proved be an effective approach for 
reducing pulsation torque in IPMSM by comparing with the 
other two design models. The FEA and test results well 
confirmed the validity of presented pulsation torque analysis. 
Generally, the proposed novel IPM design has cost advantage 
to the double-layer IPM design for effectively reducing 
pulsation torque. 
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Fig. 3.  Optimized flux-barriers designs in IPMSM analysis model 
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   (a) Torque ripple@Tave=5.5[Nm]      (b) Cogging torque [P-P: peak-peak]  

Fig. 4.  Torque ripple at rated operation and cogging torque results  
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Abstract – Permanent magnet synchronous ma-
chines with an external rotor nowadays gain in sig-
nificance for high performance electrical drive sys-
tems such as with hybrid electric vehicles. With
these applications, the machine will operate in a
wide speed range and on the other hand with very
fast changing loads in both motor and generator op-
erational modes. In order to achieve a robust ma-
chine design, a position-sensorless control scheme
using the dependence of the stator inductances on
the rotor position is of great interest. With this
intent, the paper discusses finite element analyses
for the optimization of such permanent magnet ma-
chines with external rotors. Regarding the geom-
etry parameters, a magnetic saliency necessary for
the sensorless control scheme has to be preserved in
the whole range of the operational modes.

I. Finite Element Modelling

Fig. 1 depicts the basic geometry with 24 poles of
the investigated permanent magnet synchronous ma-
chine with an external rotor. In order to study the
torque ripples, both unskewed and skewed stator slots
as well as integer and fractional slot windings with
concentrated coils are concerned with the analyses.

Fig. 1: Cross section of the permanent magnet synchronous

machine with an external rotor, angular rotor posi-

tion 0
◦

One set of calculation uses current driven analy-
ses to obtain the related parameters such as torque
and inductances in dependence on the stator currents
and the angular rotor position. As proposed in [1],
transient voltage driven analysis with high frequency
voltage pulses are additionally used for an evaluation
of the position dependent inductances of the perma-
nent magnet synchronous machine.

All analyses utilize separated 2D models of rotor
and stator which are coupled by floating boundary

conditions in dependence on the angular rotor position
along the sliding surface interface within the air-gap
[2], [3]. In case of the skewed stator slots, a multi-slice
approach with a Gauss distribution of the slices will
be used [4], [5].

II. Space Vector Calculus

In the dq rotor fixed reference frame [6], the nor-
malized stator current and stator flux space vectors
are given by

iS,dq = iS eβ = iS,d +  iS,q , (1)

ψ
S,dq

= ψS eϑ = ψS,d +  ψS,q , (2)

where β,ϑ are the stator current angle and the stator
flux angle, respectively. The components of the stator
flux linkage are defined by

ψS,d = ld iS,d + ψM , (3a)
ψS,q = lq iS,q , (3b)

where ld,lq are the direct and quadrature axis induc-
tances and ψM denotes the flux linkage of the perma-
nent magnets.

In order to inject the stator currents in the finite
element model, the stator current and stator flux space
vectors are transformed as given by

iS,αβ = iS,dq eγ , (4)
ψ

S,αβ
= ψ

S,dq
eγ , (5)

where γ denotes the angular rotor position. As the
stator winding is Y-connected, any zero sequence sta-
tor currents are impossible.

III. Sample Analysis Results

The sample results presented herein are focussed
on the magnetic saliency obtained from stator cur-
rents only in direct and quadrature axes. Since the
machine is highly nonlinear, there are several meth-
ods to evaluate a stator inductance in dependence of
the stator currents [7]. As the high frequency volt-
age pulses slightly shift the actual operating point,
differential inductances as evaluated underneath will
describe the transient behaviour of the machine in an
appropriate way.

With the linear dependency i = i0 +∆i, the mag-
netic energy

Wm =
�

Ω

H · B dΩ (6)
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allows for an approximation of the normalized mag-
netic energy

wm(i0,∆i) = wm0(i0) + wm1(i0)∆i+wm2(i0)∆i2 (7)

yielding the nonlinear inductance as

lwm
(i0) = wm2(i0) =

wm(i0,+∆i)− 2wm(i0, 0) + wm(i0,−∆i)
2∆i2

. (8)

On the other hand, the flux linkage

Ψ =

�

Ω

A · J dΩ

�

Γ

J · n dΓ
(9)

allows for an approximation of the normalized flux
linkage

ψ(i0,∆i) = ψ0(i0) + ψ1(i0)∆i (10)

yielding the nonlinear inductance as

lψ(i0) = ψ1(i0) =
ψ(i0,+∆i)− ψ(i0,−∆i)

2∆i
. (11)

Finally, the fundamental distribution of the radial
component of the magnetic flux density along the air-
gap obtained from a Fourier series expansion defines
the normalized fundamental component of the flux
linkage ψ1 within the air-gap which yields the non-
linear inductance

lψ1(i0) =
ψ1(i0,+∆i)− ψ1(i0,−∆i)

2∆i
. (12)

Fig. 2 and Fig. 3 depict the ratio ld(id)/lq(iq) of
the three inductances (8),(11),(12) for an assumption
of linear materials and for the actual nonlinear be-
haviour of the permanent magnet synchronous ma-
chine. Obviously, all three ratios are equal with linear
materials and there is no significant magnetic saliency
of the machine. On the other hand with nonlinear
materials, only the flux linkage inductances (11) and
the fundamental inductances (12) are further useable
while the inductance values obtained from the mag-
netic energy (8) are not applicable.

IV. Concluding Remarks

The full paper will discuss in detail the design vari-
ations to obtain the desired magnetic saliency in the
whole range of the operational modes. As these posi-
tion dependent inductances of the permanent magnet
synchronous machine are the most important crite-
rion for an application with a high performance drive
system and a position-sensorless control scheme, an
optimization of the machine design can be carried out
in the design stage without any prototype of the ma-
chine.
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Fig. 2: Ratio ld(id)/lq(iq), flux linkage inductances
(11) (solid line), fundamental inductances (12)
(dashed line), magnetic energy inductances (8)
(dotted line), linear analyses
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Fig. 3: Ratio ld(id)/lq(iq), flux linkage inductances
(11) (solid line), fundamental inductances (12)
(dashed line), magnetic energy inductances (8)
(dotted line), nonlinear analyses
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Abstract — This paper presents an analytical technique for 
prediction of open circuit magnetic field distribution in slotted 
surface mounted permanent magnet radial flux synchronous 
machines. This technique can either be used in the case of internal 
or external rotor radial-field machines topologies. It involves 
solution of Maxwell’s equations in slots, airgap and the PM’s 
region. The obtained analytical model is used to estimate the 
cogging torque and induced back electromotive force. Results 
from this analytical model are compared to corresponding finite 
element analyses. 

I. INTRODUCTION 

This paper attempts to provide analytical tools to facilitate 
the analysis and design of a class of radial flux PM 
synchronous machines (fig. 1). The developed model gives 
exact field distribution due to permanent magnet source in the 
slots region (radial slots), the airgap region and the PM’s 
region. The developed model embraces both internal and 
external rotor topologies (figure 1). Most of developed models 
do not take into account slotting in an explicit manner [1], [2]. 
In [3], authors presented an exact analytical description of 
magnetic field in idealized surface mounted permanent magnet 
structures which does take into account stator slotting. 
However, the developed model was limited to machines with 
integer number of slots per pole per phase. The proposed 
model, in this paper, is more general and can be used for 
machines with fractional numbers of slots per pole per phase. 
In [4], authors presented a model which does take into account 
stator slotting for an axial flux synchronous machine. 

II. MAGNETIC FIELD CREATED BY PERMANENT MAGNETS 

Figure 2 shows different regions (slots (I), airgap (II), 
permanent magnets (III), region under magnets (IV)) where 
the exact analytical solution is established. Region IV is only 
considered in case of a non-magnetic permanent magnets 
supporting armature. Permeability of all ferromagnetic parts is 
assumed to be infinite. The permeability of permanent magnets 
is assumed to be equal to that of air. 
 The governing field equations, in terms of the Coulomb 
gauge, 0=×∇ A , are: 







×∇−=∇

=∇

IIIregion in  ,

IV and II I, regionsin ,0

0
2

2

    MA

                   A

µ
    (1) 

A only has Az component which is independent of z (infinitely 
long machine in axial direction). M is the magnetization. 

Combining equations (1) with boundary conditions, and 
using separation of variables method, help establish a set of 
linear equations (NH x NH) (where NH is the number of 
considered harmonics), where coefficients of magnetic vector 
potential solution in region III are the unknown. Solving these 
linear equations and using interface conditions give 
coefficients of magnetic vector potential in other regions. 

(a) (b) 

Fig. 1. Radial-field PM machines topologies: internal rotor (a) and external 
rotor (b). 

Fig. 2. Polar coordinates system (quasi-Halbach magnets distribution). 

 Obtained linear equations are solved using Gaussian 
elimination method. The developed model takes into account 
rotor movement helping the authors to calculate global 
quantities such as electromotive force and cogging torque. 

III. COMPARISON WITH FINITE ELEMENT ANALYSIS 

Figure 3 shows comparisons of flux density components 
space distribution in the different regions. Table I gives some 
characteristics of the machine to which both methods 
(analytical technique and finite element) have been applied. 
Finite element method has been applied to real geometry of 
the machine with a relative permeability of 1e6 for stator core.  
As seen, the predictions from analytical model are in good 
agreement with finite element calculations. 

Oscillations in the analytical prediction in figure 3.c (radial 
component Br) are due to the finite number of terms in the 
Fourier series (NH = 40). Numerical problems occur in 
estimation of analytical solution for a number of harmonics 
NH > 40. 

TABLE I – MACHINE’S PARAMETERS

Pole number 6 
Slot number 18 

Magnets distribution Quasi-Halbach 
R0, R1, R2 and R3 (mm) 50, 58, 60 and 84 

w (rad) π / 18 

2D Exact Analytical Solution of Open Circuit Magnetic Field in Slotted 
Surface Mounted PM Radial Flux Synchronous Machines

Y. Amara, J. Raharijaona and G. Barakat
Groupe de Recherche en Electrotechnique et Automatique du Havre - EA 3220, Department of Electronic and 

Electrical Engineering, University of Le Havre 
25 rue Philippe Lebon - B.P. 1123 - 76063 Le Havre cedex, France 
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(a) (r = (R2+R3) / 2, region I (slots)) (b) (r = (R1+R2) / 2, region II (airgap)) 

(c) (r = (R0+R1) / 2, region III (permanent magnet)) (d) (r = R0 / 2, region IV) 

Fig. 3. Comparison of field distribution by both finite element and analytical model (machine with quasi-Halbach magnets distribution and a non-magnetic 
PM supporting armature). 

Indeed, analytical solutions agree extremely well with the 
finite element results. The analytical model can then be used to 
estimate and analyze open circuit performance (cogging 
torque, induced back electromotive force, airgap radial forces 
distribution) of surface mounted permanent magnet 
synchronous machines. Cogging torque is estimated using 
Maxwell stress tensor and E.M.F. is calculated by 
differentiating magnetic flux passing trough a given phase. 
Induced back electromotive force can be estimated for 
numerous types of windings distributions (integer or fractional 
slot number per pole per phase, overlapping or non 
overlapping windings distributions). Figure 4 compares 
cogging torque waveforms obtained by both finite elements 
and analytical model. Cogging torque is computed using 
Maxwell stress tensor on the PM’s surface. 

In the full paper, analytical solutions for other machine 
topologies (magnetic rotor yoke, external rotor topologies) 
will be compared to corresponding finite element calculations. 

IV. CONCLUSION 

This paper presents a general analytical model for the 
analysis and design of a class of surface mounted permanent 
magnet synchronous machines. The model is developed in the 
slots, the airgap and the PM’s region and its accuracy has been 
validated by finite element analyses. 

In the full paper, the mathematical aproach leading to the 
exact solutions of Maxwell’s equations in the different regions 
will be detailled. Results from other machine topologies will 
be compared to corresponding finite element calculations. 

The developped model will be used to estimate and 
analyze open circuit performance (cogging torque, induced 

back electromotive force, airgap radial forces distribution) of 
surface mounted permanent magnet synchronous machines. 
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Fig. 4. Cogging torque waveforms obtained by both finite elements and 
analytical method (machine with quasi-Halbach magnets distribution and a 
non-magnetic PM supporting armature).
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2. QUASI-STATIC FIELDS, 11. ELECTRIC MACHINES AND DRIVES

Quasistatic Electromagnetic Field Computation by Conformal Mapping in Permanent
Magnet Synchronous Machines
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Schinkelstraße 4, D-52062 Aachen, Germany
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Abstract— In the design of modern servo drives or electrical
drives for positioning, torque pulsation, tangential forces and
ripple torque are highly undesirable effects. These quantities
are directly linked with the occurring harmonic air gap flux
density waves. This paper presents a time-effective method to
compute the radial and tangential field components in load and
no-load condition by conformal mapping in frequency domain.
The proposed method is applied to a surface permanent magnet
synchronous machine, and compared to numeric results obtained
by nonlinear FEA. The analytical results are in good agreement
to the finite element simulations.

I. INTRODUCTION

Nowadays the design of electric machines is accomplished
by virtual prototyping to short time-to-market. Since finite
element analysis (FEA) is time consuming and requires a
high computational effort, analytic models are applied that
are focused on an estimation of the fundamental air gap flux
density. Consequently, the effect of air gap field harmonics
on the main machine characteristics, like EMF, cogging-
torque and load-torque, as well as the impact of geometry
variations on those quantities are neglected. In this paper, an
analytic conformal mapping method in frequency domain for
permanent magnet synchronous machines (PMSM) is applied
to consider the occurring air gap field harmonics for torque and
EMF computation. Even if that approach attributes infinite per-
meability characteristics, a comparison with standard nonlinear
FEA shows that it nevertheless gives a good approximation of
the air gap flux density spectrum and all derived quantities.

II. COMPUTATIONAL FRAMEWORK

A. Rotor Field Distribution in the Slotless Stator

The analytical technique for computing the 2D magnetic
no-load field distribution in the air gap of radial-magnetized
permanent magnet rotors has been published by [1]. The
derived parametric field solution is applicable for internal and
external rotors. In further researches the approach has been
generalized to radial and parallel magnetizations, [2]. Recently,
[3] published a further extension to radial sine and sinusoidal
direction magnetizations. In case of a slotless stator, the radial
flux density Br (Θ) and the tangential flux density Bϕ (Θ) are
given by

Br (Θ) + Bϕ (Θ) =

∞�

n=0

(Br,n + Bϕ,n) enpΘ (1)

where n is the frequency order, p the number of pole pairs,
Θ the mechanical angle. The Fourier coefficients Br,n and
Bϕ,n represent the solution of the linear Laplace problem with
magnets and a slotless stator.

B. Rotor Field Distribution in the Slotted Stator

Stator slotting significantly influences the magnetic field
distribution:

1) Different radial magnetic permeances of teeth and slot
affects the local distribution of the flux in the air gap,
so that a flux concentration beneath the stator teeth can
be observed.

2) In case of slotting, a characteristic peak of the flux
density can be observed over the PM vertices in the
air gap.

3) Slotting mixes up radial and tangenial components, as
shown by Bϕλϕ and Brλϕ in (2).

A common method for modeling these effects on the magnetic
field distribution are known as "permeance functions" in
literature. In a former research, [4] models the impact of
effect 1) on the radial flux density component only. The recent
publication [5] derives by four complex conformal mappings,
including a Schwarz-Christoffel transformation, a permeance
function which takes the effects 1) - 3) into account. Assuming
a infinite permeable stator core, this ansatz has shown to yield
identical flux density results in comparison to FE simulation
applying Neumann boundary conditions.

For that approach, the conformal transformations are used
to transform slotted stator geometry into a slottless stator,
where the Laplace equation for the air gap field can be
solved analytically. By this, the impact of slotting on the field
distribution keeps considered. Correlating the field distribution
with slotting s

B to the field without slotting (1) yields the
complex permeance λ,

s
B (Θ) = (Br + Bϕ)λ∗ (2)

which describes the individual characteristic of the slotting on
the field.

Even if the Laplace equation can be solved analytically,
the combined governing equations can not be solved directly.
Therefore the local-dependent complex permeance number is
evaluated numerically in a nonlinear iterative solution. At each
point of an equidistant sampled arc in the air gap with the
length of one slot pitch, the complex permeance number, that
fulfills (2), is evaluated

λ = λr + λϕ (3)

where λr and λϕ represent the permeance variations in radial
and tangential direction. The sampling points of the slot pitch
can be expressed by a Fourier-Series and extended to the whole
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air gap, yielding,

λ (Θ) =

Nλ�

0

λr,n cos (nNsΘ) + 

Nλ�

1

λϕ,n sin (nNsΘ) (4)

where Ns is the number of stator teeth and Nλ the sampling
rate depending maximal occurring frequency.

C. Armature winding field

The magnetic field distribution of a current in a single slot,
assuming a infinite slot depth and a infinite permeability in a
slotless stator, can be obtained by three conformal mappings
[6]. Since coils occupy two slots with opposite directed
currents, a flux density distribution c

B for the whole air gap
per coil can be assembled in functions of the coil current Ic
and the number coil turns N by

c
B (Θ, N, Ic) = NIc

Na�

1

(cBr,n + cBϕ,n) enΘ (5)

where Na denotes the maximal frequency order and the
radial and tangential quantities c

Br,n and c
Bϕ,n the Fourier

coefficients of the coil computed for one ampere. According
to the winding schema of the PMSM a flux distribution p

B for
all phases can be found by adding shifted terms of (5). In case
of a symmetric current load (UVW) I , the allover armature
field a

B is given by

a
B (Θ, I) = (pBU ,

p
BV ,

p
BW )·

�
e
φq , e

(φq+120
◦
)
, e

(φq+240
◦
)
�T

(6)
where the angle φq defines the relative phase orientation to
the quadrature axis of the machine.

D. Field Distribution in the Slotted Air Gap

The magnetic air gap field in case of stator slotting can be
assumed as a superposition of the field component fields due
to permanent magnet and stator excitation.

Introducing a time-discretization ∆FE and a corresponding
time-stepping nFE, the rotor flux distribution gives,

s
B

t (f) = s
B (Θ) e

ω·
n·nFE
Nel·p (7)

where n is the rotor speed and Nel the number of computa-
tion steps per electric period. The corresponding time-depend
armature field is frequency-shifted by the stator frequency f1,
yielding

a
B

t (f, I) = a
B (Θ, I) e2πf1e

ωnFE·
n·nFE
Nel·p (8)

For a given time step t (7) and (8) represent the allover load
and no-load flux density distribution in the slotted air gap.

III. APPLICATION

To demonstrate the proposed method, a PMSM, designed
by in-house sizing software is investigated. Its cross-section
together with the field distribution in rated operation is given
in fig. 2(a). The FEA flux density is sampled in the air gap for
each time step individually. The spectrum for a certain time
instance obtained numerically and by (7), (8) is shown in Fig.
1(b); the corresponding local flux distribution for a pole pitch
is given in 1(a). The resulting torque according to Maxwell
stress tensor for both magnetic fields are given in fig. 2(b).
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(a) Local field distribution of PMSM
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Fig. 1. Flux density distribution in time and frequency domain by FEA and
conf. mapping in rated operation.

(a) Six pole PMSM with field
lines in rated operation.
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Fig. 2. PMSM cross section and torque characteristic over an electric period
by FEA and conf. mapping in rated operation.

IV. CONCLUSION

Electromagnetic field computations are ubiquitous in the de-
sign of electrical machines. Even if established finite-element
methods yield very accurate result, their high computational
effort inhibits an application in early design stages or multi-
object optimizations of electrical drives. In that case, it is worth
to seek for approximative and time-saving representations. In
this paper, the air gap field of a PMSM under load and no-
load is computed by conformal mapping in frequency domain.
A first demonstration on a PMSM shows, that the obtained
occurring harmonic air gap flux waves under load condition
are in good agreement to nonlinear FEA results. A detailed
comparison in different load conditions between the proposed
method and standard simulation will be presented in the full
paper submission.
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11. ELECTRIC MACHINES AND DRIVES 

Abstract — This paper presents an accurate method to 
calculate the main inductances associated to InterCell 
Transformers (ICTs) in order to facilitate the transformer design. 
In this application the leakage inductance is a key parameter 
which theoretically requires 3D Finite Element simulation. We 
show in this paper that a very good estimation can be found using 
only two 2D FEM simulations: one related to the field contained 
inside the core window and the other related to the field outside. 
In the final paper, results obtained for various sizes and shapes of 
ICTs will be compared to the values measured on actual devices. 

I. INTRODUCTION

One of the main goals in power electronics is the increase 
of power density in converters. The use of interleaved 
converters is especially interesting since they increase the 
apparent frequency of the voltage applied across the filters. 
They also improve the dynamic behavior of the converter. A 
traditional interleaved converter consists of several identical 
commutation cells with the outputs interconnected through 
separate inductors as shown in Fig. 1. 

Fig. 1. Traditional interleaved converter  
The association of these inductors may result in large 

ripple in the current flowing in each cell [1]. This leads to high 
conduction losses in the switches and high copper losses in the 
inductors. In order to reduce these problems, coupling the 
inductors allows obtaining the same relative current ripple in 
the commutation cells and at the output. This is obtained by 
the use of intercell transformers [2-4]. In such devices, the 
ripple of the output current i0 is a function of the leakage 
inductance. For this reason, predicting the current ripple, the 
AC losses, the voltage ripple, the saturation current and many 
other crucial parameters requires an accurate prediction of the 
leakage inductance. An analytic formulation of the field 
distribution inside the window is easily obtained under the 
assumption that the window is rectangular and its depth is 
infinite. However, practical components are far from this 
assumption, and the field outside the window (which cannot be 
easily modeled) has a very significant contribution to the 
overall leakage inductance. 

II. MAGNETIC MODEL OF SIMPLE INTERCELL TRANSFORMERS  

Let’s analyze the operation of intercell transformers by 
taking as an example the transformer on Fig. 2. In this 
transformer, each winding is connected to a commutation cell 
in such a way that the fluxes from both legs (Φ1 and Φ2) are 
obliged to pass by the air (leakage flux).    

    
Fig. 2. Physical aspect of a simple intercell transformer  

If we use the transformer of Fig. 2 in an interleaved converter 
composed of 2 commutation cells, and supposing that output 
voltage is filtered (which is usually the case), we can note that 
the voltage across each winding is rectangular. Consequently, 
a triangular flux is imposed in each leg of the transformer. We 
may calculate the reluctance of the core (Rmag) of this simple 
transformer by using the average magnetic path length of the 
core, its cross-section and the average permeability of the 
magnetic path (calculated for gapped and ungapped cores). 

A. Low Permeability Cores Used in Intercell Transformers 

Usually high permeability cores are used in the 
construction of intercell transformers in order to minimize 
magnetizing current. However, in certain applications it is 
preferable to use low permeability cores if we take into 
account cost, size and loss density when designing the 
transformer. 

In an intercell transformer, if a low permeability core is 
used, the core reluctance is comparable to the leakage 
reluctance. In this case, the current in each cell will be the sum 
of the magnetizing current (of which fundamental frequency is 
equal to the switching frequency) and the “coupled” ripple (of 
which fundamental frequency is equal to the double of the 
switching frequency). 

III. FEM SIMULATION TO FIND LEAKAGE RELUCTANCE 

In order to determine the current in each cell, the leakage 
reluctances must be found. It may be done analytically [5-7] or 
by the use of finite-elements methods. Although analytical 
methods allow speeding up the optimization process of 
transformer design, they are restricted to particular geometries.  

The use of 3D FEM simulation may result in accurate 
calculation of the leakage inductance, but it is very time 

Calculation of Inductances in Intercell 
Transformers by 2D FEM simulation 

Bernardo Cougo*, Thierry Meynard*, François Forest**, and Eric Labouré*** 
*LAPLACE (Laboratoire Plasma et Conversion d’Energie) 
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consuming. 2D FEM simulation can be considered [8] if the 
procedure used in the simulation takes into account 3D effects. 

This work presents a simple procedure that allows the 
calculation of the leakage inductance and reluctance of 
intercell transformers, based on 2D FEM simulations. 

This procedure relies on the calculation of 2 linear 
inductances (inductance per unit of length): one related to the 
part of the winding inside the core window and the other one 
to the outside. For a better understanding of this model, let’s 
consider the transformer of Fig. 2. First, we simulate a frontal 
cut of this transformer only with the conductors inside the core 
window, as shown in Fig. 3a. Like this, we can calculate the 
linear inductance (Lleakin, H/m) related to the volume inside the 
core window. Then, a second simulation is needed. We 
simulate a frontal cut of this transformer only with the 
conductors outside the core window, as shown in Fig. 3b. Thus 
we can calculate the linear inductance (Lleakout, H/m) related to 
the volume outside the core window.  

To calculate the total leakage inductance, we use the 
following equation: 

outleakoutinleakinleak dLdLL +=               (2) 

where din is the average turn length inside the core window and 
dout is the average turn length outside the core window.  

The calculation of the leakage reluctance is simply: 

leakleak LNR 2=                  (3) 

where N is the number of turns in each winding. 

a) intercell transformer with the conductors inside the core window 

b) intercell transformer with the conductors outside the core window  
Fig. 2. FEMM simulation of intercell transformer (magnetic field intensity) 

IV. EXPERIMENTAL RESULTS 

A middle power inductor was used to verify the accuracy 
of the simulation. This inductor has 14 turns in each leg and it 
is suitable to be used as an intercell transformer. It is made 
using a Mega Flux magnetic alloy powder core with a relative 
permeability equal to 40.  

Simulations were made using FEMM software, version 4.2. 
Simulation output graphs are shown in Fig. 3. Results found 
are shown in Table I. Measurements were made at 15kHz and 
low flux density. 

TABLE I 
SIMULATION AND EXPERIMENTAL RESULTS 

 Simulation Measure 

Lleakout * dout (H) 55  

Lleakin * din (H) 3.5  

Lleak (H) 58.5 61.1 

Lmag (H) 69 62 

Note that there is only 2.6% of difference between the 
leakage inductance simulated and measured. The magnetizing 
inductance was also analytically calculated and its value was 
the same as that found in the simulation.  
 The procedure shown in section III was also verified in 
other transformers tested in the laboratory. 

V. CONCLUSION

Intercell transformers are used in interleaved converters in 
order to reduce current ripple in each commutation cell. Low 
permeability cores may be used in intercell transformers but 
magnetizing and leakage inductances must be found with the 
purpose of estimating current ripple. A simple procedure, 
based on only two 2D FEM simulations, allows the calculation 
of the leakage inductance and the accuracy in the design of 
intercell transformers. Experimental results confirm the 
accuracy of this method for calculating the leakage inductance.   
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— We are studying a new analysis method to calculate 
the shape of ferrofluid spikes. The shape of a ferrofluid is 
influenced by the magnetic force, surface force, and gravity. 
Therefore, the electromagnetic field equation is coupled with 
avierStokes equation employing the MPS and FEM. This paper 
describes the analysis algorithm of coupled method, and the way 
to convert particles data for MPS method to elements data for 
FEM. 
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Isogeometric analysis for electromagnetic problems
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Abstract—Isogeometric Analysis (IGA) is a novel discretization
method, introduced in [1], which is based on non-uniform rational
B-splines (NURBS). Among other features, IGA uses directly the
geometry description coming from computer aided desing (CAD)
software without approximation, and the analysis is performed
using shape functions of variable (possibly high) regularity. In this
work we propose a new discretization scheme based on continuous
B-splines, adapting the ideas of [1] to the solution of Maxwell’s
equations. We present extensive numerical results to show that
our scheme is free of spurious modes, and that it approximates
singular solutions in non-convex domains.

I. INTRODUCTION

In this work we focus on Maxwell’s eigenvalue problem:
Find ω ∈ R and u ∈ H0(curl), u �= 0, satisfying

(curlu, curlv) = ω2(u,v) ∀v ∈ H0(curl) , (1)

where H0(curl) is the space of square integrable functions
such that their curl is also square integrable, and their tangen-
tial component is zero on the boundary.

It is known that the solution of (1) with nodal finite elements
produces an approximation with spurious modes in non-convex
geometries. Instead, edge elements provide a solution which
is free of spurious modes and that approximates singular solu-
tions in non-convex geometries. However, the electromagnetic
fields computed with edge elements are discontinuous, and in
recent years some methods have been introduced in order to
discretize the equations with continuous finite elements (see,
e.g. [2]-[4]).

In [1] the concept of Isogeometric Analysis (IGA) was
introduced with the aim of bridging the gap between computer
aided design (CAD) and the finite element method. Loosely
speaking, in IGA the space of non-uniform rational B-Splines
(NURBS) describing the geometry is also used as the space of
trial and test functions in the discrete variational formulation:
i.e., an isoparametric concept is adopted. The main advantage
of this approach is that the geometry is exactly described
at the coarsest level, and mesh refinement is done without
affecting the geometry. Moreover, NURBS basis functions
have higher continuity than usual finite elements. Following
the ideas of [1], in this work we present a new numerical
technique, based on (non-rational) B-splines, for the numerical
solution of problem (1) with continuous functions.

II. B-SPLINES SPACES

In one dimension, B-splines basis functions of order m are
constructed from an open knot vector

Ξ = {0 = ξ1 ≤ ξ2 ≤ . . . ≤ ξn+m = 1} , (2)

where the open nomenclature means that the first and last knots
are repeated m times. Using the iterative procedure described
in [1], from the knot vector we can construct n B-splines of
degree p = m − 1. These B-splines are positive piecewise
polynomials which form a partition of unity. If a knot appears
only once, the B-splines have p − 1 continuous derivatives in
that knot. The number of continuous derivatives is reduced by
one each time we repeat the knot.

In two dimensions the definition of B-splines is easily
generalized by tensor products. We consider two knot vectors
Ξ1 and Ξ2, that define a mesh in the parametric domain Ω0 =
[0, 1]× [0, 1]. The B-splines basis functions are then defined as
Bij(x, y) := Bi(x)Bj(y), where Bi is constructed from the
knot vector Ξ1 and Bj from Ξ2. These B-splines essentially
satisfy the same properties we have seen in one dimension.
Associating to each of the B-spline basis functions a positive
weight we define the NURBS basis functions Nij as in [1].
Then, requiring a control point Cij ∈ R

2 for each function we
describe our physical domain Ω by a parametrization of the
form

F : Ω0 −→ Ω
x �−→ F(x) :=

�
i,j

Nij(x)Cij . (3)

This parametrization also maps the mesh in the patch Ω0

to a mesh in the physical domain Ω. The refinement of
the mesh is done as in [1]: new knots are inserted in the
knot vectors, but the parametrization (3) remains unchanged.
Moreover, our technique can also be extended to the cases
where the geometry is more complicated and described by
several patches, analogously as it is explained in [1].

III. DISCRETIZATION TECHNIQUE BASED ON B-SPLINES

We now introduce a discretization scheme for problem (1)
such that it satisfies de De Rham diagram. Denoting by Sp,q

the space of B-splines of degree p in the x-direction, and
degree q in the y-direction, we will seek our solutions in the
space Sp−1,p×Sp,p−1. We can prove that with this choice the
diagram

Sp,p grad−−−−→ Sp−1,p × Sp,p−1 curl−−−−→ Sp−1,p−1 (4)
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is satisfied: i.e., ker(curl) = grad(Sp,p).
In fact, our discretization technique can be understood as

a generalization of edge finite elements. As it is well known,
edge elements, combined with an adequate choice of nodal
finite elements, satisfy a diagram analogous to (4). Moreover,
if the knots of the knot vector (2) are repeated exactly p
times, our discretization technique in the parametric domain
Ω0 coincides exactly with an approximation by edge elements.
The main advantage of our technique respect to edge elements
is that it provides smoother solutions, and in particular the
electromagnetic fields can be approximated with continuous
functions.

IV. NUMERICAL RESULTS

The error analysis of the numerical technique we presented
is still being developed. So far, the convergence of the method
has been only proved for regular solutions. However, the
method has been used to solve several numerical tests and
it performed well in all the cases.

A. Test 1: Maxwell eigenvalues in the square

As the first test case we have solved problem (1) in the
square. The problem has been solved considering different
degrees and continuities for the space of solutions. In every
case our solution is free of spurious modes. Note that degree el-
evation provides better and better convergence rate (see Fig.1)
at the price of very few additional degrees of freedom. For
instance, passing from p = 2 to p = 3 we add only 4(N + 2)
shape functions, where N is the number of subdivisions of the
interval [0, 1], while for standard edge elements the increase
would be equal to 8N2 +4N . Moreover, our method provides
a solution for which the divergence is well defined, and in this
test case it tends to zero with good convergence rates.
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Figure 1. Convergence rates in the square domain, where h is the mesh size.

B. Test 2: Maxwell eigenvalues in an L-shaped domain

The second test we present concerns the computation of
Maxwell eigenvalues in a non-convex geometry, in particular
an L-shaped domain. The geometry is described with a single
C1 mapping F from the square Ω0 (see Fig. 2). It is known
that the first eigenfunction is singular (see [5]), and nodal
finite elements fail to approximate it. Instead, our method
approximates this eigenfunction correctly, as it is seen in
Fig. 3.

Figure 2. L-shaped domain. Coarsest mesh for computations.

Figure 3. L-shaped domain. Approximation of the first eigenfunction.

V. CONCLUSION

We have presented the first numerical results for the iso-
geometric generalization of edge elements. In particular, our
technique: i) is adequate for the optimal treatment of complex
geometries, ii) produces regular fields preserving the optimal
convergence rates also towards singular solutions. Finally,
the main drawback of this technique is the patchwise tensor
product structure. We emphasize that local refinement and non
structured meshes can be obtained by adapting the theory
of T-splines [6] to IGA. This goes beyond electromagnetic
applications and it is object of intense studies.
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Abstract—Diffuse Optical Tomography (DOT) has been inten-
sively developed over recent years. It is an imaging technique
which aims to recover the optical properties of biological tissue.
The image reconstruction problem in DOT is a non-linear
ill-posed problem which requires feasible forward model that
describe light propagation within the medium accurately. The
forward problem in DOT can be modelled in a frequency domain
as a diffusion equation with Robin boundary conditions. In case
of multilayered geometries the forward problem can be treated
as a set of coupled equations. In this paper we present the
solution for diffuse light propagation in a four layer concentric
spherical model using overlapping or nonoverlapping domain
decomposition methods and the Boundary Element Method.

Index Terms—Diffuse Optical Tomography, Domain Decom-
position Methods, Boundary Element Method.

I. INTRODUCTION

Diffuse Optical Tomography in medicine aims to recover
the optical properties of biological tissue from measurement
of the transmitted light made at multiple points on the surface
of the body. This boundary data measurements can be used
to recover a spatial distribution of internal absorbtion and
scattering coefficients.

The main topic within this field is the development of an
efficient and accurate method for calculating the intensity of
light transmitted or reflected from the object under experi-
mental investigation. In case of sufficiently high scattering
the diffusion equation with Robin boundary conditions [3] is
an acceptable model of light propagation. A method we use
to solve this problem includes analytical expression based on
Green functions [2], and numerical methods based on Finite
Difference Method (FDM) or Finite Element Methods (FEM).

In this paper it is assumed that the object being studied is
considered as a set of disjoint simply connected regions with
constant optical coefficients within each region, but that may
differ between regions. In this case the diffusion equation can
be replaced by a set of Helmholtz equations for each domain,
together with interface conditions. For this problem, analytical
solution isn’t easily available. Although volume based PDE
solvers such as FDM or FEM can be applied to this problem,
there are often practical difficulties in constructing meshes for
general geometries that respect the interfaces accurately. In
contrast, the use of boundary integral methods (e.g. BEM)
involve only representation of the surface meshes and can be
much easier to implement.

II. FORMULATION OF THE PROBLEM

The problem of Optical Tomography in a highly diffusive
body Ω with boundary Γ can be modelled by the use of the
diffusion equation in the frequency domain form:

−∇·κ(r)∇Φ(r;ω)+µa(r)Φ(r;ω)+
(iω)

c
Φ(r, ω) = q(r;ω)

(1)
with Robin boundary conditions:

Φ(m;ω) + 2ακ(m)
∂Φ(m;ω)

∂ν
= h−(m;ω), m on Γ

(2)
where ω ∈ R

+ is the frequency modulation, Φ is the radiance
c is the velocity of light, q is an internal source of light in
medium, h− is an incoming flux, α is a boundary term which
incorporates the refractive index mismatch at the tissue-air
boundary, ν is the outward normal at the boundary Γ, κ and
µa are the diffusion and absorption coefficients, respectively.
We define, κ = 1

3(µa+µ′

s
)
, where µ′s is the reduced scattering

coefficient [1], [2]. We use the notation r for a position vector
in Ω and m for a position vector restricted to a surface.

III. INTEGRAL FORMULATION AND NUMERICAL

IMPLEMENTATION

The boundary integral formulation makes use of Green’s
function of the Helmholtz equation, which in the absence of
boundary conditions is also referred to as the fundamental
solution. We define a Green’s function of Eq. (1) in each sub-
domain Ωl as solution of the equations

∇2Gl(r, r
′;ω) − ω2

l Gl(r, r
′;ω) = −δ(r − r

′) (3)

with the asymptotic Gl(r, r
′;ω)|r→∞ = 0 where Gl(r, r

′;ω)
is the response of the infinite media to a single source ql = δ
at position r = r

′. From equations (3) and (1), by multiplying
(3) with Φl(r;ω) and (1) with Gl(r, r

′;ω), and subtracting
we get:

Φl(r;ω)∇2Gl(r, r
′;ω) −Gl(r, r

′;ω)∇2Φl(r;ω) =

−δ(r − r
′)Φl(r;ω) +

ql(r;ω)

κl
Gl(r, r

′;ω) (4)

As far as numerical implementation is considered the
surface interfaces Γl are discretised in Pl surface elements
τl,k; k = 1, . . . , Pl with Nl vertices N l,k′ ; k′ = 1, . . . , Nl
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after which we can approximate the functions Ul and Vl by
the use of nodal basis functions φk, restricted to Γl.

Ul(m;ω) ≃

Nl�

k′=1

Ul,k′(ω)φl,k′(m),

Vl(m;ω) ≃

Nl�

k′=1

Vl,k′(ω)φl,k′(m) (5)

Representation above expresses both Ul and Vl in terms of the
complex coefficients Ul,k′ , Vl,k′ interpolated by the nodal basis
functions and thus enforces Vl to be at least C0 continuous.

The integrals occuring in the Boundary Integral equations
take the form:

ul(m;ω) =

Nl�

k′=1

Ul,k′(ω)

�

Γl

∂lGl(m,m′;ω)φl,k′(m′dS(m′)

(6)

ul(m;ω) =

Nl�

k′=1

Ul,k′(ω)

�

Γl

∂lGl(m,m′;ω)φl,k′(m′dS(m′)

(7)
Function vl(m;ω), which is obtained by convolution with a
Green’s function, is known as a single layer potential, and
function ul(m;ω), which is obtained by convolution with the
normal derivative of a Green’s function, is known as a double
layer potential.

IV. THE FOUR LAYER SPHERICAL MODEL

In our research we have taken into consideration a four
layer concentric spherical model. The Generalised Minimum
Residuals Method (GMRES) was used to solve the linear
matrix equation Kf = b obtained from BEM. Here, f is the
discrete version of {f} and contains approximations in (5), K

is the system matrix, and b the vector of known coefficients
calculated form the light sources in the problem. K is a block-
bounded asymmetric matrix. In order to solve equation of
20000 unknowns it takes up to 50 hours to a 64-bit Athlon
processor. Taking advantage of domain decomposition meth-
ods [4] as well as BEM we are able to decrease computation
time to minutes. BEM is preferable to other methods because
it provides in each node not only the value of the state function
but its normal derivative as well. In the Fig. 1 we can see the
solution of the state function in concentric spherical model.

Fig. 1. The logarithm of amplitude of photon density. The outer surface of
the object (left) and its cross-section (right).

Generally, there are two kinds of approaches depending
on whether the subdomains overlap (Schwarz methods) or
are separated (Schur Complement methods)[5]. The latter are

called substructuring methods and are based on nonoverlap-
ping decompositions of the region into a set of subdomains.
The number of equations needed to solve this smaller problem
is minor, compared to the whole system. Thus the amount of
memory required for allocating the equations is smaller too. In
the Fig. 2 a scheme of the Dirichlet-Neumann substructuring
algorithm is presented.
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Fig. 2. Boundary condition transmission in the Dirichlet-Neumann algorithm.

The results presented in the Fig. 3 are taken from the nodes
located on the circumference of adjacent spheres (cross-section
with the largest radius). The chart on the bottom right corner
shows results with an relative error less than two percent when
compared to the solution without use of any decomposition
method.
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Fig. 3. Results form the Dirichlet-Neumann substructuring algorithm.

In case of overlapping subdomains the decomposition algo-
rithm reduces the number of sequential steps in contrast to the
previous one. It is an advantage form standpoint of ill-posed
problems which may converge very slow. The main drawback
of this approach is the use of greater memory resources as one
iteration refers to two regions simultaneously.
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Galerkin Projection Method for Sliding Interfaces in
Finite Element Analysis of Electrical Machines
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Abstract— This paper proposes the application of the Galerkin
projection method to implement the relative motion of stator
and rotor in the FE simulations of electrical machines. The non–
conforming representation of stator and rotor regions impose
no restriction on time or space discretization. The symmetry
and sparsity of the system of FE equations are preserved. The
method is applied to the 2D simulation of the cogging torque
of a synchronous machine and the results are compared with
a conforming moving band approach with remeshing of the air
gap at each time step.

I. INTRODUCTION

SEVERAL approaches to simulate the movement within
a Finite Element analysis (FEA) of electrical machines

have been developed. Static and transient analysis of the
machines require a flexible variation of the rotor position. An
obvious and early adopted approach is the moving band (MB)
technique [4] whose principle is to re-generate at each time
step a single layer of conforming finite elements in a thin
annulus–shaped region of the air gap. However, in practical
the automatic remeshing of the air gap is only tractable for
2D rotating machines. For linear motion in 2D and motion
in 3D models, air gap remeshing would imply invoking a
full–fledged automatic mesh generator at each time step,
which is impractical. The mortar element method (MEM) was
proposed in [8] and applied to a 2D machine problem in [1].
The Lagrange multiplier (LM) method has been extensively
investigated in [2]. Both MEM and LM can be extended to
3D problems, but the MEM requires an additional integration
mesh [9], and for the LM the conditioning worsens signifi-
cantly [6].

The non–conforming approach proposed in this paper is
based on a mesh–to–mesh Galerkin projection method (GPM)
which has been introduced in [5]. While applications described
in [7] project a known field from a source to a target mesh, in
this paper the GPM is implemented in a standard FE assembly
process.

II. PROJECTION METHOD AND FORMULATION

Let L2(Ω) be the space of square integrable functions on
Ω ⊂ Rn, n = 1, 2, 3. The scalar product relative to the L2–
norm of F and G is defined as

(F,G)Ω =


Ω

F (x) ·G(x) dx. (1)

A field FΩ ∈ L2(Ω) can be interpolated in a discrete domain
as:

FΩ =
n
i=1

fiα
Ω
i (2)

where αΩi is the shape function associated to the node or edge i
and fi is the corresponding coefficient.

The sliding boundaries of the rotor (master) and the stator
(slave) domain are denoted ΓN and ΓM respectively. Note that
the choice of the master boundary is based on the discretiza-
tion: The boundary with the largest number of unknowns is
chosen as the master boundary. Let p : ΓN → ΓM be a
bijective mapping. Consider the two magnetic vector potential
fields FN ∈ L2(ΓN ) and GN ∈ L2(ΓM ). One wishes to have
γ
�
FN ◦ p−1


= GM on ΓM and FN = γ

�
GM ◦ p


on ΓN

with γ = ±1 according to whether the identification between
ΓN and ΓM is a symmetry (or an identity) or an antisymmetry.
This writes in weak form:

ΓM

�
γ
�
FN ◦ p−1


−GM


αMk dΓM = 0, ∀k = 1 . . .m

(3)

ΓN

�
FN − γ

�
GM ◦ p


αNk dΓN = 0. ∀k = 1 . . . n

(4)

It can be shown that (3) and (4) loose their symmetry on the
discrete level. Thus, the idea is to use only the projection p
and avoid its inverse p−1 by applying p to (3) which leads to
the following formulation:

ΓN

�
γFN −

�
GM ◦ p

 �
αMk ◦ p


dΓN = 0, (5)



ΓN

�
FN − γ

�
GM ◦ p


αNk dΓN = 0. (6)

If, after discretization, FN and GM are expressed by (2), (5)
and (6) can be written in matrix form

A −γB
−γC D

 
g
f


= 0 (7)

with the components of A and D being:

Amj =


ΓN

�
αMm ◦ p

 �
αMj ◦ p


dΓN , (8)

Dni =


ΓN

αNn α
N
i dΓN . (9)
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And the components of B and C expand to:

Bmi =


ΓN

αNm
�
αMi ◦ p


dΓN , (10)

Cnj =


ΓN

�
αMn ◦ p


αNj dΓN . (11)

Obviously Bmi = Cjn and the resulting system (7) is
symmetric. The GPM can be incorporated into the equation
system of any standard Galerkin FE formulation. Furthermore,
no restriction regarding the degree or the type of the degrees
of freedom are imposed.

III. APPLICATION: COGGING TORQUE

The GPM has been implemented in the iMOOSE–package
[10]. The cogging torque of a permanent magnet synchronous
machine with surface mounted magnets has been studied. The
torque is calculated according to Arkkio’s method [3]. The
numeric field solution is obtained by means of a standard
magnetic vector potential FE formulation combined with either
the GPM or the MB technique. Despite its non–conformity, the
mesh density for GPM, as shown in Fig. 1, is identical to the
one for MB. The mapping p = f(ϕ) is the rotation about
the center of the rotor by the angle ϕ. The simulated cogging
torques, normalized to the nominal torque T0, are compared in
Fig 2. Additionally, the relative difference between the GPM
and the MB is shown. The GPM has as well been applied to
meshes with slightly differing numbers of unknowns n in ΓN
and m in ΓM (0.75 < n/m < 1.25). The results are similar
to the ones shown in Fig. 2.

IV. DISCUSSION

Numerical results show a good agreement between the non–
conforming GPM and the conforming MB. In general it can
be stated, that the torque calculated by the GPM follows a
smoother waveform compared to the one of the MB. The
higher harmonics in the MB waveform are suspected to stem
from the remeshing process. The differences between the GPM
and the MB do not follow a certain pattern. Larger differences
occur around the maximum as well as around the zero crossing
of the torque waveform.

Fig. 1. Nonconforming elements at ΓN and ΓM of rotor and stator
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Fig. 2. Cogging torque vs. rotation angle by means of GPM and MB

V. CONCLUSION

This abstract presents a non–conforming method to model
the sliding interfaces in electrical machines for FEA. The
method is applied to the simulation of the cogging torque
of a permanent magnet machine and the results are com-
pared to a classical MB technique. The first results and
the straightforward implementation of the GPM compared
to MEM or LM approaches for 3D problems promise a
flexible and versatile approach to deal with sliding conditions
in electrical machines. The application to 3D problems as
well as further investigations regarding energy conservation,
error estimations, numerical integration and a comparison to
measurements will be presented in the full paper.
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Abstract — This paper proposes a novel method for the 
improvement of the convergence to a steady state in time-
periodic transient eddy-current analyses with nonlinear magnetic 
materials. The proposed method, which is based on the time-
periodic finite-element method and the singularity 
decomposition-explicit error correction method, can extract 
poorly converged error components corresponding to large time 
constants of an analyzed system. The correction of the extracted 
error components accelerates the convergence to a steady state 
efficiently. Some numerical results verify the effectiveness of the 
proposed method. 

I. INTRODUCTION 
For the further speed-up of the electromagnetic field 

computations by the finite-element method (FEM), a fast 
iterative linear solver for large-scale sparse system of 
equations such as a multigrid method [1] and a method to 
stably accelerate the convergence of the Newton-Raphson 
(NR) method such as a line search technique [2] have been 
investigated intensively.  

On the other hand, to carry out transient eddy-current 
analyses taking account of nonlinear magnetic properties, a 
step-by-step calculation is necessary by using time integration 
methods such as the backward Euler method. As is the often 
case with finite-element analyses coupled to electric circuit, an 
extremely large number of time steps are required to attain 
steady state solutions in the case that the time constant of the 
analyzed problem is large. The time-periodic FEM (TPFEM) 
[3] has an advantage that the steady state solution can be 
obtained directly without transient calculation. However, we 
have to treat a large-scale nonsymmetric coefficient matrix, 
which results in the huge computational costs. Therefore, it is 
indispensable to improve the convergence characteristic of 
transient calculation as well as that of linear iterative solvers 
and the NR method for the further reduction of computational 
costs required for the analysis of practical problems. 

As a solution to the above difficulty, we propose a novel 
method for the improvement of the convergence characteristic 
of step-by-step time integrations in nonlinear transient eddy-
current analyses. The proposed method, which is based on the 
TPFEM and the singularity decomposition-explicit error 
correction (SD-EEC) method [4]-[6], can extract poorly 
converged error components which correspond to large time 
constants of an analyzed system. The correction of the 

extracted error components accelerates the convergence of 
transient calculation efficiently. The formulations based on the 
ordinary or half time-periodic boundary condition are 
presented. Finally, the effectiveness of the proposed method is 
examined in the finite-element analysis coupled to electric 
circuit.  

II. METHOD OF ANALYSIS 

A. Time-periodic finite-element method 
A nonlinear system of equations, for example, derived 

from the A-φ formulation in quasi-static field coupled to 
electric circuit equations, is expressed as follows: 

fxx =
∂
∂

+
t

CS )(               (1) 

where x is the unknown vector, and f is the right-hand-side 
vector. The number of unknowns is m. The matrix S is 
generally nonlinear because of magnetic properties of 
magnetic materials and the coefficient matrix C is constant.  

When one or half period is divided into n time steps and the 
θ method is adopted for the time integration scheme, the 
linearized equations of the TPFEM under the ordinary or half 
time-periodic boundary condition are given by 
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Here, the subscripts indicate the time step, Δxi is the increment 
of xi, Gi is the residual, the signs − and + of nC~  correspond to 
the ordinary and half time-periodic boundary conditions 

)()( tTt xx ±=+ , respectively, and T is the period.  
The solutions obtained from step-by-step calculations of 

(1) starting with x0 as initial value are equivalent to those 
obtained from (2) by using forward block Gauss-Seidel (GS) 
method [3]. It’s noted that low frequency error components 
converge slowly in the GS method. Therefore, in the case that 
the time constant of (1) is significantly large, a large number 
of time steps are necessary to obtain steady state solutions.  
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B. Improvement of convergence characteristic of transient 
calculation based on the SD-EEC method  
The following nonlinear system of equations is considered 

bx =)(A ,                  (3) 
where A(x) is a nonlinear matrix with respect to x and b is the 
right-hand-side vector. The procedure of the SD-EEC method 
taking into account the nonlinearity of A is as follows: 
(i) Update the approximate solution x~  by iterative methods. 
(ii) Compute ))~(( xbr ABT −=  by using auxiliary matrix B. 

      Obtain correction vector p by solving rp
x
x

=
∂

∂ BABT )~( . 

(iii) Update the approximate solution by pxx B+← ~~  
where the superscript T means transpose. 

In order to accelerate the convergence of transient 
calculation, we apply the SD-EEC procedure to (2). The 
auxiliary matrix B is constructed so as to approximate the dc 
error component, which corresponds to large time constants 
and is poorly converged, in a transient calculation as follows: 

[ ]TIIIB LL=             (4) 
where I is a m × m identity matrix and B is a nm × m matrix. 
The correction vector p can be obtained by solving the 
following equation 

( ) ( )nnn

n

i
i CCCCS xxp ~~~~~

000
1

±−=⎟
⎠

⎞
⎜
⎝

⎛
+∑

=

m .     (5) 

The step-by-step calculation is restarted by adopting the 
corrected solution xn+p as the initial value x0 for the next one 
or half period. Although the procedure of solving (5) is added 
to the ordinary transient calculation once per one or half 
period, the additional computational costs are fairly small 
compared with the total computational costs required for 
normal step-by-step calculation. 

III. NUMERICAL EXAMPLES 

The effectiveness of the proposed method is investigated 
in a nonlinear eddy-current analysis of the iron core model 
shown in Fig. 1. The exciting coil is wound around the core 
and excited by a sinusoidal voltage of 100 Hz. The coil turns 
is 3000, the resistance of the coil is 45.79 Ω, the conductivity 
of the core is 7.505×106 S/m, and the nonlinear magnetic 
property is the same as mentioned in [7]. Because of the 
symmetry, one-eighth part of the whole model is analyzed. 
The number of elements and unknowns are 29250 and 88081, 
respectively. One period is divided into 20 time steps.  

Fig. 2(a) shows the time variation of the coil current in the 
case that the applied voltage is 1000 sin(2πf t) V. In this 
problem, we can use the correction method based on the half 
time-periodic boundary condition. Whereas the steady state 
solution cannot be obtained from the step-by-step calculation 
in 5 periods, the proposed method accomplishes the 
convergence of the transient calculation after only two 
corrections, which results in the drastic reduction of the 
computational time. Fig. 2(b) shows the time variation of the 
coil current in the case that the applied voltage is 
1000(1−cos(2πf t)) V. The correction method based on the 
ordinary time-periodic boundary condition is applied to this 
problem. The steady state solution is attained in two periods.  

From the above results, the effectiveness of the proposed 
method can be confirmed. The detailed discussion about the 
formulation of the proposed method and more numerical 
results will be included in the full paper. 

 

iron

coil

 
Fig. 1. Analyzed model.  
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Fig. 2. Time variation of coil current. (a) Correction based on half time-
periodicity. (b) Correction based on ordinary time-periodicity. 
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Abstract — A novel precondition method for edge-based full-
wave electromagnetic finite element method is presented. The 
method utilizes the symmetric block Gauss-Seidel iteration based 
on an extension of the node patch edges. Numerical results 
demonstrate an excellent performance for our proposed 
preconditioner.   

I. INTRODUCTION 
Edge-based finite element approach to the simulation of 

arbitrarily shaped 3D complex structures is an efficient and 
versatile technique for passive electromagnetic analysis. In 
edge-element analyses, however, the large null space of the 
coefficient matrices causes difficulties in convergence when 
iterative solution techniques are applied. Several approaches 
have been reported to improve this slow convergence 
performance by preconditioning the original finite element 
matrix[1][2]. One of the effective approaches exploits the 
block Jacobi or block Gauss-Seidel iterations as 
preconditioning with the blocks composed of the edges around 
every node[3][4]. Our approach extends this „node patch‟ to a 
long stencil whose corresponding block becomes a narrow 
band matrix. The stencil which consists of the long strip of 
node patches not only contributes to preserve a divergence 
free nature of the Maxwell‟s equations but also improves 
global convergence, resulting in an excellent convergence 
property. Numerical experiments support the effectiveness of 
our approach. 

II. FORMULATION 

A. Edge-Based Finite Element Formulation 
 A time harmonic boundary value problem for the vector 
wave equation is expressed by the electric field vector as 
follows: 
 
∇ × 1

μr
∇ × 𝑬𝑬 + jωμ0σ𝑬𝑬 − 𝜔𝜔2 μ0ε0εr𝑬𝑬 = −jωμ0 Jv  𝑖𝑖𝑛𝑛 Ω  (1) 

      𝑬𝑬 × 𝒏𝒏 = 0 on  ΓD            (2) 
 
whereΩ is a finite three dimensional domain with a Dirichlet-
type boundary ΓD and outward normal vector n.  μ0, μr , ε0,
εr ,σ,ω and Jv are the magnetic permeability of free space,  the 
relative magnetic permeability, the electric permittivity of free 
space, the relative electric permittivity, the conductivity, the 
angle frequency and the impressed volume electric current 
density, respectively. Using a Galerkin‟s testing procedure 
leads to the following finite element system: 
 

Mee xe =  −jωfe           (3) 
 

where Mee is the finite element matrix, xe denotes the vector of 
the unknown expansion coefficients of E and fe is the 
approximation of the source term associated with the 
impressed current Jv[5]. 

B. Symmetric Block Gauss-Seidel Preconditioning  
 Preconditioning is a means of transforming the original 
linear system into well-conditioned one with the same solution, 
but that is likely to be easier to solve with an iterative 
algorithm. The popular  incomplete Cholesky preconditioner, 
however,  normally results in low-order convergence due to 
the large null space of an edge-based coefficient matrix.  
High-order convergence may be achieved by a „node patch‟ 
defined by edges around a node shown in Fig.1. A symmetric 
block Gauss-Seidel preconditioning is used in units of the 
node patch edges defined at every node.  
   

 
Fig.1 Node-Patch Edges for n1(Dashed Lines) 

 
 Symmetric Gauss-Seidel Iteration is given by 
 
   Input: r; Output: z = M-1r 
   z=0 
   for i=1,2,…p,p,p-1,…2,1 
    z = z + RT

iA-1
iRi(r-Az) 

   end for    
 
where M stands for a precondition matrix and Ai is a sub-

matrix whose elements are chosen according to the edges in 
the i-th node patch. 

III. BLOCK GAUSS-SEIDEL PRECONDITIONER BASED ON A 
LONG STENCIL OF NODE PATCHES 

A. Extended Node Patch for Unstructured Mesh 
 We extend the definition of the node patch to a long strip 
stencil depicted in Fig.2, where the extended node patch 
consists of edges around the nodes n1, n2, n3 and n4.  

Efficient Block Gauss-Seidel Preconditioner 
for 3D Full-Wave Finite Element Analysis 
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Fig.2 Extended Node Patch Edges for n1, n2, n3 and n4 
(Dashed Lines) 

B. Extended Node Patch for Structured Mesh 
As for a structured mesh, the extended node patch can be 

easily defined similarly. In an analytical space with hexahedral 
blocks, for example,  one of the practical extended node patch 
definitions is obtained as the set of edges like: 

 
Xpatchjk = {e | e  is originating from nijk, i=0,…n x}, 
Ypatchik = {e | e  is originating from nijk, j=0,…n y} and 
Zpatch ij = {e | e  is originating from nijk, k=0,…n z}, 
 
where e is an edge, nijk, is a node at (i,j,k), nx, ny and nz are 

the number of nodes in X, Y and Z direction, respectively. 
With this definition, the resultant block matrix becomes a 
narrow block band matrix, which can be quickly factored and 
solved numerically. 

IV. NUMERICAL RESULTS 

A. Convergence Behaviors 
 We applied the proposed preconditioning method to the 
large electromagnetic scattering field depicted in Fig.3. The 
analysis space is divided into 24x24x24 cubic elements 
enclosed by 4-layer perfectly matched layers. Total 92256  
unknowns are to be solved in a large, sparse matrix equation 
preconditioned by the X, Y and Z patches in Fig.3 (b). Current 
sources as an excitation are located in the center of the space. 
The convergence profiles in 74MHz and in 148MHz cases are 
shown in Fig.4. Comparison with the conventional IC-COCG 
method shows that the excellent convergence property of a 
normal and an extended node-patch stencil preconditionings. 

 
(a) Analysis Model     (b) Extended Node Patches 

Fig.3 Overview of the Analysis Model and Stencils 
 

The numerical convergence is measured by the relative 

residual defined by ||current residual||/||initial residual||, in 
which ||•|| denotes the L2-norm. The iteration process is 
terminated when it becomes below10e-8. 

 
(a) 74MHz         (b)148MHz 

Fig.4 Comparisons of the Convergence Behaviors 

B. Memory Requirements 
The preconditioning method using a normal or extended 

node patch block iterations requires many number of small 
size matrix calculations including factorizations and backward 
and forward substitutions. A normal node patch, for example, 
requires a 6x6 matrix for each node.The extended node-
patches based on our stencil require a long but narrow band 
matrix, which can be easily factored and solved with the small 
number of fill-ins. With hexahedral element modeling, the 
bandwidth is less than that of the original matrix, that means 
that the method is a very memory-effective preconditioner. 

V. CONCLUSION 

An efficient and reliable preconditioning method for the 
edge-based finite element method has been derived, and 
numerically evaluated. The new preconditioner is based on an 
extended node-patch symmetric block Gauss-Seidel iteration. 
The effectiveness in performance and required memory 
resource has been demonstrated as a preconditoner for the 
COCG method for a large space electromagnetic scattering 
problem. The test results serve to validate the method and 
illustrate the valuable advantages associated with using the 
newly proposed extended node patch preconditioning 
procedure for practical 3D electromagnetic scattering analyses. 
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9. NUMERICAL TECHNIQUES

Abstract — The scattering analysis by method of moments may 
lead to integral equations with severe singularities in their 
kernels. In this work we demonstrate that when these 
singularities are removed by the extraction technique and enough 
basis functions are used to describe surface current behavior, the 
numerical solution converges with Z-matrix integrals 
numerically evaluated using 2-point Gaussian quadrature. The 
numerical convergence is investigated in the analysis of the 
electromagnetic scattering by conducting and dielectric spheres.   

I. INTRODUCTION

In the analysis of electromagnetic scattering by 
homogeneous bodies, the numerical evaluation of surface 
integral equations by the method of moments (MoM) has 
proved its efficiency to treat surfaces with arbitrary shape. The 
choice of suitable basis functions to represent the surface 
currents, the numerical evaluation of singular integrals, and 
efficient algorithms for the matrix inversion are fundamental 
to obtain accuracy and convergence from the MoM analysis. 
However, the numerical evaluation of singularities arising in 
the integral kernels is not a simple task. In [1] a robust 
numerical technique (extraction technique) is presented to 
remove singularities arising in the scattering by conducting 
bodies of revolution (BOR’s). In [2] the method is extended to 
handle triangular basis functions in a Galerkin scheme. 

For homogeneous dielectric BOR’s the accuracy of the 
MoM analysis deteriorates as the dielectric constant increases 
[3]. In [4] different integral equation formulations are used to 
overcome this problem, but still with relatively small 
accuracy. This drawback may be partially overcome by 
increasing the number of segments used to represent the BOR 
generatrix, which should be made proportional to the 
dielectric constant and, consequently, increases the Z-matrix 
size. In [5] triangular functions for both basis and testing 
functions were used, simply represented by a series of pulses. 
It was observed that, to attain certain accuracy, more pulses 
had to be used to represent the triangular functions as the 
dielectric constant of the BOR increased. In some sense this 
leads to the perception that accuracy increases with the 
number of quadrature points used to evaluate the integrals. 

In this work we analyze the plane-wave scattering by 
conducting and dielectric spheres. We observe that when the 
extraction technique [2] is applied and a sufficient number of 
triangular basis functions (TBF’s) is used to represent the 
surface geometry, numerical convergence is attained when 2-
point Gaussian quadratures are applied to evaluate the 

integrals of the MoM Z-matrix. The accuracy increases if 
more TBF’s are used but does not change with the number of 
quadrature points. 

II. INTEGRAL EQUATION EVALUATION

The MoM solution involving surface electric (EFIE) and 
magnetic (MFIE) field integral equations leads to many 
different formulations [3], [6]. The EFIE formulation is the 
choice for open conducting shells. For closed conducting 
surfaces the combined field integral equation (CFIE) avoids 
spurious resonances [6]. The CFIE is a linear combination of 
EFIE and MFIE. For dielectric bodies, EFIE and MFIE can be 
linearly combined in several forms [3]. One of the most 
adopted combination is the Müller formulation [3]. All these 
formulation, when applied to the analysis of the scattering by 
BOR’s, lead to integrals of the form [2]: 

( ) ϕααϕ
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ϕ α
dddF

c
ab

d

Rjk

R
e

′
−

−=′= −=
∫∫ ∫ ⎟

⎠
⎞

⎜
⎝
⎛=

1

1

2

0

1

1

I ,                (1) 

where R=|r − r′| is the distance between source and 
observation points, a may be equal to 1, α′ or α′ 2, b may be 
equal to 1, α or α 2, c may be equal to 1, ρ , ρ′ or ρρ′ , and 
the exponent d = 1 or 3. The integral (1) has removable 
singularities whenever the observation point r is very close to 
the source point r′. The concept adopted in [2] to treat these 
singularities is to split the corresponding integrands into two: 
one that is regular and can be numerically evaluated by a 
Gaussian quadrature and another that contains a removable 
singularity and can be integrated analytically.

III. NUMERICAL RESULTS   

To evaluate the numerical convergence we consider the 
CFIE and Müller formulation to the plane-wave scattering by 
perfect electric conductor (PEC) and dielectric spheres, 
respectively. The accuracy of the numerical results was 
verified against analytical solutions based on Mie series using 
the RMS error: 

( ) 4EEEE(%)E MMJJRMS φφ +++= tt ,             (2) 

with EX representing a RMS defined by 
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9. NUMERICAL TECHNIQUES

where X is any one of the electric (Jt or Jφ) or magnetic (Mt or 
Mφ) surface current components while XMoM and XMie

represent the corresponding numerical and analytical 
solutions, respectively.  

The first case study is a PEC sphere, as illustrated in Fig. 
1. The sphere radius is 1λ0 (the wavelength in vacuum). 
Different numbers of segments per λ0 were used to represent 
the sphere generatrix. The TBF is defined over two 
consecutive segments [1]. Over each segment the regular 
integrals in α  and α′ of (1) were both evaluated using a NIP-
point Gaussian quadrature, with NIP varied from 1 to 10. 
Singularities were removed by extraction technique [2]. 
Figure 2 shows the RMS error as function of NIP. Converge is 
attained using NIP = 2, independently from the number of 
segments per λ0, which is determinant for the RMS error. 
When singularities are not removed the RMS error increases, 
as expected. 

Fig. 1. Plane-wave scattering by homogeneous sphere 
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Fig. 2. Error for PEC sphere a) with singularities removal b) without 
singularities removal 

The RMS error for dielectric spheres are illustrated in Fig. 
4 for relative permittivity εr = 2 and 20. Once more, when 
singularities are removed numerical convergence is attained 
for NIP = 2. The number of segments/λ0 influences the RMS 
error, which diminishes as more segments are used. When 
singularities are not removed, convergence is attained only for 
larger NIP values, especially for large values of εr.
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Fig. 3. Error for dielectric sphere a) εr =2 with singularities removal b) εr =2 
without singularities removal c) εr =20 with singularities removal d) εr =20 

without singularities removal 
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13. NUMERICAL TECHNIQUE 

Abstract — In this paper the authors present a Finite Element 
PIC Parallel approach, based on an appositely developed 
parallelization algorithm for the balancing of load among several 
processors. In particular the master processor establishes the 
number of slave processors, where the particle tracing procedures 
must be launched, according to the number of particles and to the 
simulation time resulting during the previous time step. The tests 
performed have shown a reduction of about 10-20% of the 
simulation time in comparison with analysis performed using a 
fixed processors loading scheme. 

I. INTRODUCTION 

Particle-in-Cell (PIC) codes are used for the 
electromagnetic analysis of electron devices in terms of 
particle trajectories. In fact, the interaction between the 
electromagnetic fields and the charged particles is described 
by the classical Maxwell’s electrodynamics equations, coupled 
with the Newton-Lorentz’s equations for the motion of 
particles. However in the evolution of the charged particles 
beam, the particles themselves are source of electromagnetic 
fields. Unluckily the analytic solution of the coupled equations 
system can be obtained only for domains of simple geometry. 
For realistic devices the domain has complicated boundaries 
(for example shadow and control grid in electron guns) and the 
numerical solution is a not trivial task, since it is necessary to 
manage and process an huge amount of data coming out from 
the required domain discretization and from the representation 
of particle distribution. Although the PIC methods are often 
and successfully used in device simulation for electron 
trajectories tracing, but these approaches have also a high 
computational cost.  

In this paper the authors present a Finite Element Parallel 
PIC approach which uses appositely developed parallelization 
algorithms for the balancing of load among several processors, 
whose number is not previously fixed, but is modified during 
the simulation according to the amount of particles to manage. 
The tests performed have shown a reduction of about 10-20% 
of the simulation time in comparison with analysis performed 
using a fixed processors loading scheme. 

II. 3-D FE PARTICLE IN CELL APPROACH 

The dynamics of a set of charged particles subject to an 
electromagnetic field in collisionless conditions can be 
described by means of the Vlasov equation for the particle 
distribution function f(t,x,p), defined in the phase space         
(x, p)∈ℜx×ℜp and time t, 

0)( =∇⋅×++∇⋅+
∂
∂

f
m

qf
mt

f
px BpEp

       (1) 

where p is the particle momentum, m and q are the particle 
mass and charge respectively. The electric field E and 
magnetic field B satisfy the Maxwell equations, for which the 
charge and current density 

=
pR

dtfqt ppxx ),,(),(ρ               (2) 

=
pR

dtf
m

qt ppxpxJ ),,(),(              (3) 

are the source terms. 
The Vlasov equation together with the Maxwell equations 

constitutes a system of coupled equations called Vlasov-
Maxwell system [1]. An attractive computational tool for 
numerically solving this nonlinear Vlasov-Maxwell problem is 
the particle-in-cell (PIC) method, in which the particles’ beam 
is represented by a reasonable number of dot-like macro-
particles sources of electromagnetic field, subject to the 
dynamic equations. Each macro-particle represents an 
appropriate number of elementary particles of a specific type. 
A type of particles is characterized by its specific ratio 
between charge and mass. Since the movement of elementary 
particles is to be simulated, each macro-particle moves like an 
elementary particle of the proper type. However, when 
determining the fields it must be taken into account that each 
macro-particle consists of many elementary particles. In the 
solution process the interaction with the ‘self-consistent fields’ 
(those generated by the charge particles) and the applied 
external fields is obtained through an appropriate 
computational scheme, which schedules at each integration 
step of the trajectories: 

1- the distribution of space charge and current density 
2- the solution of the fields’ equations. 

To solve the evolution equation we used an FE approach, 
which is adequate to describe the complex three-dimensional 
geometries of electron devices by using irregular 
discretizations. Moreover, the finite element method gives the 
possibility of using a more accurate modeling of the most 
critical device regions (such as in proximity of the electrodes, 
where the gradient of the unknown function is higher), using 
an adaptive meshing without affecting the number of degrees 
of freedom. 

Although solving the evolution equations of the fields is 
one of main components of a PIC code; however its execution 
time accounts for less than 10%–20% of the simulation’s total 
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time. The remaining time is spent on tracing particles’ 
trajectories and calculating the particle-field interactions, 
expressed computationally as local interpolation operations (in 
the case of FEM a very time consuming procedure is the 
individuation of the element containing the moving particle in 
the case of unstructured mesh). These operations are the major 
performance bottleneck of PIC codes. Strategies to optimize 
PIC performance have been studied and implemented 
extensively for codes running on large scale distributed 
memory architectures and grid computing environment [1].  

III. PARALLELIZATION OF THE PIC ALGORITHM  

When parallelizing an algorithm one problem concerns the 
assignment of the computational tasks to the various processes. 
In order to have a good load balancing for the trajectories 
tracing, it is possible to split the macro-particles integration 
task over processors, but even in this case an optimal parallel 
code is obtained only by following a dynamic load balancing. 
To fulfill the dynamic load balancing we define a master 
processor that at each time-step counts the particles and 
assigns the various tracing tasks to the slave processors; each 
slave processor integrates the dynamic equation of macro-
particles assigned to it and computes the space charge 
distribution and current density using a copy of the FE mesh. 
Then it sends its results together with the copy of the charge 
and current density vectors ([ρ] and [J] respectively) to the 
master processor (see figg. 1 and 2 for flow charts of master 
and slave processors). This “reduces” the vectors [ρ] and [J] 
by adding the outputs of all the slave processor and solves the 
fields’ equation. Thus, the main time consuming procedure, 
that is the particles tracing, is “equally” distributed among the 
processes. In literature [2-3] in order to evaluate the 
parallelization speedup the total simulation time is compared 
for simulations with and without load distribution among 
processors, respectively, and for a different number of 
particles. It is worth noticing that the speedup curve is very 
close to the ideal case only if few processes and a huge amount 
of particles are employed. In addition, it is very far from the 
optimal case, when the number of processes increases above a 
certain value. Consequently the number of parallel processes 
to get optimum speedup depends on the number of particles 
used in the simulation. In order to overcome this problem a 
heuristic adaptive algorithm has been developed to avoid 
excessive inter-process communication. In particular the 
master processor establishes the optimal number of slave 
processors, where the particle tracing procedures are launched 
according to the number of particles and to the simulation time 
resulting in the previous time step. It is worth noticing to 
emphasize that in the case of PIC time-dependent solution the 
total number of particles can vary during the simulation since 
the pushing of the particles inside the domain and the 
extraction procedure do not necessarily follow a deterministic 
law.  
So during a run the processors used in the parallelization 
scheme are not fixed but can increase or decrease, from a time 
step-iteration to another. The FE PIC parallel code is written in 
C/MPI and has been developed in the LINUX OS 
environment. In order to carry out the dynamics load balancing 

using a variable number of processors the processors are 
configured like master-slave structure. At each time step, the 
master processor establishes the number of the active slave 
processors, and takes care of the dynamic load balancing, 
while the slave processors trace the particles trajectories. The 
minimum number of particles above which the first split is 
performed is 500k and the maximum number of slave 
processors used was 8. The tests performed have shown that 
by using this adaptive load balancing the overall speedup is of 
about 10-20% with respect to a fixed number of processors. A 
more detailed description will be given in the full paper, 
together with application examples. 

 

 
Fig. 1. Flowchart of the parallel PIC code for the master processor  

 

 
 

Fig. 2. Flowchart of the parallel PIC code for the slave processor  
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Abstract— In this paper, the outline of the parallel computing 
method of the magnetic field for rotating machines by using the 
3-D finite element method with edge elements is developed. The 
performance of the method running on the Earth Simulator is 
quantitatively clarified. 

I. INTRODUCTION 
In fields such as structural mechanics and fluid dynamics, 

the large-scale parallel computing on a supercomputer has 
been already researched. However, for the practical numerical 
analysis of the magnetic field for rotating machines, the large-
scale parallel computing is still in an early stage of 
investigation. 

We have developed the parallel computing method of the 
magnetic field by using the three-dimensional Finite-Element 
Method (3-D FEM) with edge elements for rotating machines.  

In this paper, we describe the outline of the developed 
method and an optimization of the method for the Earth 
Simulator, which is a vector type parallel supercomputer in 
Japan. Moreover, the performance of the proposed method 
running on the Earth Simulator is quantitatively clarified. 

II. OUTLINE OF PARALLEL COMPUTING METHOD 

A. Domain Decomposition Method 
The Domain Decomposition Method (DDM) is adopted 

for the parallel computing [1]. Using the DDM, the analyzed 
domain is divided into multiple subdomains, and the 
subdomains are calculated in parallel while doing appropriate 
data communications between those subdomains. 

Fig. 1 illustrates the DDM for FEM with edge elements. 
This figure shows that one domain is divided in two 
subdomains. 

The number of edges in each subdomain is almost the 
same to split the CPU power into subdomains evenly. The 
divided domain has the overlap elements. By using the 
overlap elements, the data communication between 
subdomains becomes unnecessary when the element 
coefficient matrix is made.  

B. Data Communication 
The overlap element has two kinds of edges, one is called 

‘boundary edges’ and another is called ‘external edges’. In Fig. 
1 (b), the boundary edges are drawn as the bold line (edge 7 in 
Subdomain I, and edges 8 and 9 in Subdomain II), and the 
external edges are drawn as the dotted lines (egdes 8 and 9 in 
Subdomain I, and edge 7 in Subdomain II). The boundary 

edge in one subdomain is the external edge in another 
subdomain. By using this relationship, the data 
communication in the process of matrix solving is achieved 
properly. Fig. 2 shows the calculation of matrix-vector 
product divided into two subdomains. In order to calculate the 
Subdomain I, the values of potential of external edges 8 and 9 
are obtained from those of the corresponding boundary edges 
8 and 9 in Subdomain II. Similarly, in order to calculate the 
Subdomain II, the value of potential of external edge 7 is 
obtained from Subdomain I. This procedure is repeated in 
solving the matrix equation. 

The code for the parallel computing is written using the 
Message Passing Interface (MPI) that allows many computers 
to communicate with one another . 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Calculation of matrix-vector product divided into two subdomains 
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III. OPTIMIZATION FOR EARTH SIMULATOR 
The Earth Simulator is a distributed-memory type parallel 

computer system, which consists of 640 processor nodes 
connected by the crossbar network. Each processor node has 8 
vector processors. The whole system has 5120 processors with 
10 TB of main memory and the peak performance of 40 
Tflops. 

In our parallel computing method, the Scaled Conjugate 
Gradient (SCG) method is used as the matrix-solving method 
because of its simplicity and efficiency. 

On the vector processor, the vector efficiency affects 
computing speed. Therefore, the Descending-order Jagged 
Diagonal Storage (DJDS) [2] format in Fig. 3 (a) is adopted as 
the storage of sparse matrix format because it can attain longer 
vector length and thus lead to higher vector efficiency than the 
Compressed Row Storage (CRS) format in Fig. 3 (b). The 
DJDS format involves permuting rows in decreasing order of 
the number of non-zero elements in each row. 
 
 
 
 
 
 
 
 
 
 

IV. NUMERICAL RESULTS AND DISCUSSION 

A. Fundamental Equation of Magnetic Field 
The fundamental equation of magnetic field is given by the 

magnetic vector potential A as follows: 
( ) e00 rotrotrot JJMA ++=νν          (1) 

where ν is the reluctivity, ν0 is the reluctivity of the vacuum, 
M is the magnetization of permanent magnet, J0 is the exciting 
current density, Je is the eddy current density. 

B. Analyzed Model 
Fig. 4 shows the analyzed model of the IPM motor. In 

order to evaluate the parallel computing efficiency, we 
calculate the model using three kinds of meshes: coarse mesh, 
middle mesh, and fine mesh. The number of unknown 
variables of the coarse, middle and fine meshes is 328,298, 
969,298 and 4,007,888, respectively. Fig. 5 shows the middle 
mesh that is divided into four subdomains.  

C. Performance of Proposed Method 
Fig. 6 shows the distribution of flux density vectors 

calculated in each subdomain. 
Fig. 7 shows the speed-up obtained for three kinds of 

meshes. The speed-up is evaluated in one time step. The 
saturation of the speed-up for the larger number of CPUs is 
due to an increase in the ratio of communication cost to 
computing cost. For any given number of CPUs, the speed-up 
becomes larger as the number of unknown variables increase. 
This is because the ratio of the communication cost to the 

computing cost decreases, and the average vector length 
becomes longer. In the fine mesh, the proposed method 
achieved over 60-fold speed-up by 128 CPUs.  

V. CONCLUSION 
We have developed a parallel computing method of the 3-

D finite element method for rotating machines by the domain 
decomposition method. In this method, speed-up becomes 
larger as the number of unknown variables increases. 
Specifically, in the fine mesh that has 4,007,888 unknown 
variables, the proposed method achieved over 60-fold speed-
up by 128 CPUs. Better speed-up is expected in a larger scale 
analysis. 
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Abstract — An iterative process based on the wave concept 

(WCIP) is formulated and applied. A recursive relationship 

between a wave source and reflected waves from a discontinuity 

plane is computed. In order to simplify calculations and 

accelerate the convergence with reduced central processing unit 

time, a two dimensional Fast Modal Transformation (FMT) 

algorithm using periodic walls is used with the 2D-FFT 

algorithm. 

I. INTRODUCTION 

Several analytical and numerical techniques are reported in 

the literature for the analysis of monolithic microwave 

integrated circuits (MMICs), among them: the method of 

moments [1], the finite elements method and the finite 

difference time domain method [2]. For the reduction of 

development times and costs of MMICs, it is of primary 

importance the use of fast and efficient software tools, which 

can accurately predict the electrical behavior of a device. The 

computational time of these numerical techniques is the 

limiting factor in the practical design of microwaves circuits. 

In this paper a tool that reduces the required computational 

effort is proposed. It employs the Wave Concept Iterative 

Procedure (WCIP), an integral based on generalized wave 

definitions. This method is not conditioned by the complexity 

of the circuit design and was proved to be particularly 

interesting for planar multi-layers circuits [3]-[4]. The WCIP 

approach consists in separating the structure under study into 

interfaces with upper and lower homogeneous media. The 

boundary conditions on the interface are represented by the 

diffraction operator, S, and in the homogeneous media by the 

reflection operator, Γ. They are respectively defined in spatial 

and modal domains. In this case, a formulation based on the 

periodic walls is applied.  

In the work reported herein, the analysis and simulation of a 

rectangular waveguide including a microstrip open line and a 

microstrip patch antenna with periodic walls using a WCIP 

were carried out. Section 2 provides the theoretical 

formulation used in the development of the WCIP. Simulation 

results are presented in section 3. Finally, conclusions are 

included in section 4. 

II. FORMULATION OF THE WCIP 

The spatial and modal waves are directly deduced from each 

other with a Fast Modal Transformation (FMT) and its inverse 

transform (FMT
-1

). As illustrated in Fig. 1, the FMT is 

comprised of the 2D-FFT algorithm and transformation from 

the spectral to the modal domain.  

A Fast Modal Transform (FMT) and its inverse ensure 

conversions between the two domains. 

 

 
 Fig. 1. Block diagram for the Fast Modal Transformation 

(FMT) algorithm 
 

Let us consider a single, but general, interface problem with 

its waveguide transversal cut shown on Fig. 2. The Γ operator 

is described in the modal domain. The S operator expressed in 

the spatial domain assigns boundary conditions at the interface 

plan. The air-dielectric interface is divided into cells and 

includes three sub domains: dielectric, metal, source. The 

source generates two waves, one in each side of the interface. 

 
Fig. 2. Iterative Process illustration for a microstrip line 

The representation of electromagnetic fields using the Wave 

Concept is a well-established procedure [5]. This formulation 

concept is also used in the Transverse Line Matrix method 

(T.L.M.). 

The incident (A) and reflected (B) waves and the electric 

field (E) and current density (J) can be related by: 
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Where, Z0i is the characteristic impedance of medium i. 
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The usually used WCIP scheme is very simple. It can be 

represented through two equations: 

0
ASBA +=                  (3) 

AB Γ=                                (4) 

Where, A0 is the local source of the circuit. 

Finally, it is possible to express the boundary conditions in 

terms of waves on each cell. 

( )
iiii

BAZE +=
0

  (5) 

( )
ii

i

i
BA

Z
J −=

0

1
  (6) 

III. SIMULATIONS RESULTS 

In order to present the performance of the proposed tool two 

case studies were conducted. The simulation results for two 

different structures are given in sections A and B. 

A. Microstrip open line 

A microstrip open line in a waveguide of dimension 32mm 

x 8mm with periodic walls was simulated with the Matlab 

software. The microstrip line lies on a substrate with εr = 2.2 

and height of 1mm. 

The simulated source has dimensions of 2mm x 2mm, while 

the simulated microstrip line is 2mm wide, and 25 mm long. 

Figure 3 shows the computed input impedance, Zin, 

 
Fig. 3. Input impedance in Ohms as a function of frequency in Hz 

 

The Zin is in conformity with the theory [6]. The Zin 

imaginary part is calculated by -cot (βl). As expected, the real 

part reaches a positive peak value at the line resonance 

frequency. 

B. Microstrip patch antenna 

A patch antenna with resonance frequency of 1.32 GHz as 

analyzed in [6], is now considered. Its physical construction 

guarantees a characteristic impedance of 50 Ohms.  

 

 
Fig. 4. Absolute value of the input reflection coefficient, | S11| in dB as a 

function of frequency in Hz 

As can be seen in Fig. 4 (blue curve), the resonance 

frequency simulated result is very close to the measured 

frequency (about 1.38 GHz). Also, this is in good agreement 

with the measured frequency presented in [7]. Therefore, it 

can be used to confirm that the method proposed herein gives 

rather satisfactory results, as they are closer to the measured 

ones than those of the simulations in [7], with a comparatively 

small computational effort. 

IV. CONCLUSION 

In this paper, an implementation of the WCIP using periodic 

walls is presented. A microstrip open line and a microstrip 

antenna patch have been analyzed and simulated. The obtained 

results show that the method herein formulated and 

implemented in software, is suitable to electromagnetic 

analysis of planar circuits. Very good agreement among 

simulated results, available theory, and physical 

implementation has been achieved.  
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Abstract — This work is devoted to the combined numerical 
technique which makes possible the effective simulation of very 
large electromagnetic models.  The two principle constituents of 
the proposed combined approach are the curved finite elements 
and their realization on the basis of Message Passing Interface 
(MPI).  The usage of the curved finite elements allows to 
minimize the error introduced by the indispensable spatial 
discretization, while employing the MPI programming technique 
makes it possible to significantly speed up the calculation process. 
In the paper it is demonstrated how the proposed numerical 
technique can be used to tackle large electromagnetic problems. 

I. INTRODUCTION 
Electromagnetic problems are formulated on the basis of 

Maxwell’s equations and are completed by the corresponding 
material relations. The obtained vector valued equations can 
be solved exactly only for a limited number of problems with 
reasonable complexity. Problems of practical importance are 
usually solved only approximately on a discretized level. 
From the above reasoning it is of crucial importance to make 
the process of numerical solution robust and effective with 
respect to the calculation time and memory consumption.  

II. FINITE ELEMENT METHOD 
During the last decades various discretization techniques 

have been developed with individual advantages depending on 
the aspired application. In the current work the focus is put on 
the classical finite element method for the spatial 
discretization with vector valued basis functions on tetrahedral 
elements in a hierarchical setup [1]-[3]. In order to improve 
the accuracy of the spatial approximation in those cases where 
non-flat material interfaces are involved, the linear mapping of 
a unit tetrahedron to any element of the mesh is replaced by a 
nonlinear variant. For this purpose, the set of scalar basis 
functions of lowest order employed to set up a transformation 
that includes merely the corner points of the element is 
extended by higher order scalar basis functions.  On the one 
hand, increasing the desired order for the interpolation leads to 
the more geometrically flexible transformation; on the other, it 
simultaneously increases the numerical efforts since more 
control points have to be involved into the calculation process. 

Quadratic interpolation as the simplest complete nonlinear 
representative requires the knowledge of ten control points per 
tetrahedron, where four of them are typically allocated on the 

corners of the element and the remaining six are usually 
placed in the center of the corresponding edges. Thus, each 
face of such an element can be represented by a function of 
second order behavior and can therefore smoothly conform to 
curvilinear interfaces. In case of hierarchical scalar basis 
functions, the control vectors are represented by difference 
vectors from the edge centers to the surface points instead of 
the surface vectors itself. In Fig. 1, two different approaches 
are visualized. 

    linear curvilinear 

Fig. 1. Linear versus curvilinear transformation of a unit tetrahedron 
conforming to a sphere of radius 2 touching the element in tree corner points 

 

Assuming the notation { }ijA a= for the stiffness matrix 

and { }ijB b= for the mass matrix the following definitions 

 

curl curl / d

d

ij i j

ij i j

a w w

b w w

μ

ε
Ω

Ω

= ⋅ Ω

= ⋅ Ω

∫∫∫

∫∫∫
 (1) 

are employed. Here, vectors refer to the 

vector valued basis functions and denotes the entire 
computational domain. Material properties are given in term 
of the permeability

DoFs, 1,...,iw i N=
Ω

μ  and the permittivityε . 
Due to the compact support of the applied basis functions, 

the population of the matrices is very sparse. The integration 
in (1) is typically performed independently for each individual 
element and a subsequent summation of each contribution 
allows then to assemble the entire sparse matrix in an efficient 
parallel strategy. The individual contributions can be 
summarized to 
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where ,  and matrix ' 1
i iw J w−= 'curl curlT

iw J w= J  
denotes the Jacobian of the involved geometrical 
transformations. In (2), the integration is performed only on a 
unit tetrahedron and can be carried out analytically for 
linear geometry transformations. In contrast to this, in case of 
higher order spatial transformations with curvilinear elements, 
a numerical integration technique with sufficient accuracy to 
capture the variation of the integrand is employed. As soon as 
an element matrix is calculated, the assembling of the entire 
system of equations is proceeded step by step by means of 
inserting those local values into the global system. 

0Ω

III. IMPLEMENTATION 
The geometric modeling of the structure is performed 

within the CST Studio Suite which is also used for the 
tetrahedral meshing [4]. The necessary information is passed 
to the FEM program by means of ASCII or binary file 
transfer. The entire FEM algorithm is implemented in C++ 
thus enabling high performance and clear arrangement of the 
whole program [5]. The external mesh information is used in a 
first step to set up a graph representing the population pattern 
of the sparse stiffness and mass matrices in a way that only the 
degrees of freedom (DoF) are considered. Constraints placed 
due to boundary conditions are incorporated in the matrix 
setup. The entire graph is initially arbitrarily distributed 
among all the contributing processes but has to be partitioned 
in proper clusters of contiguous elements to keep the 
communication overhead during the computations low. The 
final distribution of the various DoFs among the processors is 
determined with the help of the graph partitioning library 
ParMeTiS [6]. This knowledge is necessary to allocate the 
memory used to manage the matrices in an advantageous way. 
An efficient implementation can be found for example within 
the software package PETSc [7] which also provides proper 
linear solvers and various preconditioners. 

Once the mesh and material information are properly 
distributed among all the processors, an efficient assembly of 
the global matrices can be performed. During this step, a 
distinction is made between elements based on linear 
geometric mapping and their nonlinear counterparts.  

IV. CONVERGENCE ANALYSIS 
In the following we refer to the solution of Maxwell’s 

equations within closed perfect conductive structures. The 
continuous formulation is thus turned into the discrete 
generalized eigenvalue problem 

 Ac Bcλ=  (3) 

with the eigenvector collecting all the individual weighting 

coefficients for the expansion  of the electric 

field intensity. In this setup, the eigenvalue 

c

i ii
E c=∑ w

2λ ω= represents 
the squared value of the corresponding angular frequency. 
 For the problem of finding the resonant frequency of the 
fundamental mode within a hollow perfect conductive sphere, 
an analytical solution can be derived. Comparing the 
numerical solutions f obtained on different discretization 

levels with the analytical one denoted by 0f  enables to carry 
out a convergence analysis which is illustrated in Fig. 2 for a 
number of selected approximation schemes. 
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Fig. 2. Convergence analysis for the resonant frequency of  the fundamental 
mode in a unit sphere with perfect conducting boundary conditions 

 
From this graph one can clearly see that all methods 

enabling linear geometric modeling suffer from an inexact 
boundary geometry representation whereas the curvilinear 
geometric modeling overcomes this difficulty. 

V. CONCLUSION 
In this digest we report on the successive implementation 

of a parallel FEM kernel featuring curvilinear tetrahedra 
elements. In contrast to the results reported in the literature, 
the superior convergence of higher order approximations 
versus lower order variants can be preserved even on non-flat 
material interfaces with a usage of a moderate geometrical 
transformation order. In the full paper we extend the 
calculations to practically relevant structures.  
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Abstract—To realize the acceleration potential of multicore
computing environments computational electromagnetics re-
searchers must address parallel programming paradigms early
in application development. We present a new blocked-pipeline-
matched sparse representation and show speedup results for the
conjugate gradient method by parallelizing the sparse matrix-
vector multiplication kernel on multicore systems for a set of finite
element matrices to demonstrate the potential of this approach.

I. INTRODUCTION

Multicore processors represent one of the newest main-
stream computing trends for enhancing the performance of
scientific kernels, bringing about new opportunities and chal-
lenges to electromagnetic (EM) practitioners. Parallel pro-
gramming challenges must now be confronted earlier in appli-
cation development in order to exploit this new trend. Some
EM computations are highly parallelizable, offering different
opportunities for multicore acceleration (e.g. parallel mesh
builders, parallel iterative solvers, etc). Of particular interest
to this work is the solution of the large-sparse linear systems
that arise when solving EM problems.

This work focuses on accelerating the conjugate gradient
(CG) solver by parallelizing its dominant computing kernel,
the sparse matrix-vector multiplication (SMVM) where a
sparse matrix A multiplies a dense vector x. A new block-
partitioned sparse format is presented to accelerate the SMVM
kernel using both high-level parallelism, e.g., scheduling tasks
across cores in multicore or clustered processors, and low-level
parallelism within processor cores, such as vectorization, loop
transformations and time skewing. First, we identify the key
challenges confronted in parallelizing general sparse kernels
and then describe the new sparse format and the algorithmic
approach, showing performance results to validate it.

II. PREVIOUS WORK

Parallelizing and optimizing dense linear algebra kernels
is a well understood task that has given rise to a variety
of Basic Linear Algebra Subprograms (BLAS) libraries (e.g.
LAPACK, ScaLAPAC) [1], [2]. Sparse kernels on the other
hand represent a greater challenge. They enable larger prob-
lems, using less memory resources and computing on non-
zero matrix entries only; however, drawbacks such as increased
instructions overhead and irregular and indirect access to data
significantly limit the use of hardware optimization techniques
and BLAS operations. Support for parallel sparse kernels

on clustered systems is available in some newer packages
(e.g. SPARSEKIT, NIST’s Sparse BLAS, and PETSc) which
operate on general sparse formats (e.g. compressed sparse row-
CSR [3]), but are generally only optimized for dense kernels.
Efficient multicore implementations and low-level parallelism
on sparse kernels have yet to be thoroughly addressed.

Specialized formats have been used as means to regularize
the computations and data layout of general sparse formats at
the expense of processing some extra zeros, unveiling better
opportunities for high and low-level parallelism. The Block-
CSR (BCSR), Ellpack-ITpack and Jagged-diagonals formats
are the three classic formats used for this purpose, however
they each demand certain matrix properties to be efficient
[3]. Recent work on specialized sparse matrix formats [4]–
[6] has shown that further performance improvements are
possible without such restrictions. In [6] we report up to 14
times speedup (SU) compared to a single core CSR SMVM
implementation obtained by designing a specialized sparse
format (called pipeline-matched sparse format-PMS).

III. NEW SPARSE FORMAT FOR PARALLEL PROCESSING

Based on the experience gained in [6] we introduce a
blocked adaptation of PMS, that exploits both locality and
vector units in modern processors, as opposed to other blocked
formats that only aim at exploiting locality.

A. Blocked Pipeline-Matched Sparse Representation

The new format called blocked pipeline-matched sparse
(BPMS) representation defines clear data boundaries for parti-
tions (as PMS [6]), nonetheless it also offers better opportuni-
ties to exploit fine grained parallelism. In BPMS the matrix is
stored in small dense matrix-blocks, which are enforced to be a
multiple of the vector-registers size on the target architecture
as in PMS; thus allowing to easily exploit vector or single-
instruction multiple-data (SIMD) parallelism in multicore pro-
cessors. Furthermore, when the size is a multiple greater than
one, loop transformations can be implemented to enhance
performance (not possible on PMS). BPMS stores the matrix
data in four linear arrays as follows: (i) the nonzero elements
of the matrix stored in dense square/rectangular blocks by rows
(elements in blocks are stored row-wise), with zero padding
to match the pipeline width of the target processor (as in
PMS); (ii) the column indices of the first element in each
block (as in BCSR); (iii) the row index of the first element
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in a block that starts a new row (as in BCSR); and (iv) the
number of dense blocks preceding the block pointed to by
each of the row indices. The row indices can be used to
determine high-level boundaries for data-partitions to spread
across processing cores. The newly introduced fourth vector
aids in load balancing by providing information on the amount
of data to compute on for each coarse data-partition defined.

The main advantage of BPMS over other blocked formats
such as BCSR, is that it takes advantage of vector units in
modern processors. The pipeline-matching in BPMS blocks
creates vector-data sets aligned to natual vector boundaries,
that ease implementing vector operations. Traditional blocked
formats only exploit data-locality by creating small blocks
(also achieved by BPMS), but do not align data to vector
boundaries nor do they assure data sizes to fit within vector-
registers. In addition to this, BPMS includes a fouth vector
that provides important information to load balance the ma-
trix data when partitioning it across processors and provides
useful information for low level loop optimizations. To further
enhance locality and efficiently support building dense blocks
minimizing padded-zeros, we apply a reordering technique
(reverse Cuthill-McKee [7]) that reduces the matrix bandwidth
before creating the BPMS representation. The insight provided
by the reordering process can also be used to define coarse
data-partition boundaries within the matrix (full details in
long version). The two level partitioning used for the PMS
format [6] is still used here to stream data across the cores of
a multicore processor with user-managed cache (e.g. Cell BE
processor) or FPGA based systems.

IV. RESULTS

The new BPMS representation was implemented in an Intel
Core2 Quad 2.40GHz CPU, 4GB of global DRAM and 64-
bit Linux system. Compilation was done using GCC 4.1.2
with different optimization flags (e.g. -O2, -O3), reporting the
best results only. The matrix-blocks were configured as 2-by-
2 elements to match the 4-element single-precision floating-
points (SPFP) vectors in the Intel processor (common in other
multicore chips). Time SU results for the SMVM kernel using
CSR versus the new BPMS and PMS formats are shown in
Fig. 1 for increasing matrix sizes on one CPU-core. CSR
provides the base computing time since it contains no zero
padding, whereas PMS and BPMS have extra computational
overhead. The SU curve increases as the matrices grow and
stabilizes around 1.5x SU, which shows that BPMS performs
better than CSR as the cache misses in the CSR kernel become
regular. BPMS also demonstrates good scaling for increasing
matrix sizes, requirering less padded-zeros. This is true in
general, but non-zero padding may slighty increase for very
irregularly-structured matrices, e.g., the two matrices in the
valley of Fig. 1. The BPMS-SMVM kernel was not vectorized
for this test, so a maximum increase of 4X the reported SU can
be expected when vectorizing for SPFP on modern processors.

A high-level parallelized version of the SMVM kernel was
implemented across different numbers of cores using standard
Pthreads and the new BPMS format (configured as before). We
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Fig. 1. SU of SMVM with BPMS and PMS versus CSR for one core.
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Fig. 2. SU scaling for CG-BPMS using 1-4 cores.

TABLE I
BPMS-CG GFLOPS RESULTS FOR 1 AND 4 CORES.

Matrix Name(#) fidapm37(1) bcsstk32(2) s3dkt3m2(3) s3dkq4m2(4)

Non-zeros 765944 2014701 3753461 4820891

% added zeros (21.63%) (30.36%) (19.02%) (11.32%)

BPMS-CG 1-core 0.94 0.90 0.96 1.02

BPMS-CG 4-core 2.86 2.67 2.63 2.89

then used this parallel BPMS-SMVM kernel to accelerate the
CG solver (BPMS-CG). The performance scaling with respect
to 1-core BPMS-CG is shown in Fig. 2 for the 4 biggest test
matrices. Near 3-times increase in performance (measured in
GFLOPS) was obtained when running the accelerated BPMS-
CG from 1 to 4-cores (see Table I). Table I also shows, that in
general, as the non-zero entries of the matrix grow the added
zeros due to padding drop, demonstrating the good scalability
behavior of the new format. This work demonstrates that by
using special sparse formats one can regularize these kernels
and significantly increase their performance even when consid-
erable zeros are padded. As an added benefit, the regularization
process provides insight into the coarse partition boundaries
that can be used for distributing data among processing cores.
Full performance results for vectorized BPMS-CG will be
presented at the conference and in the long version paper.
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9.  

Abstract — This paper presents a new approach based on the 

use of interpolation for the electric potential which provides a 

significant increase in the accuracy of field calculation using the 

impedance method. In a rectangular three-dimensional grid we 

use a first order interpolation function to describe the distribution 

of electric potential within each voxel of the mesh. The electric 

field obtained analytically from this function is used as a solution 

of the continuity equation applied to each node of the mesh. The 

system of node equations is then solved and the resulting potential 

distribution obtained allows us to make the calculation of the 

electric field and current in each voxel.  

I. INTRODUCTION 

The impedance method and similar methods use lumped 

parameters of electric circuit to model the electric properties of 

the related materials [1,2]. Such methods have been applied in 

several important situations of electromagnetic modeling in 

linear materials, especially those involving excitation with 

sinusoidal sources, where the technique of phasor analysis can 

be applied [3,4]. These methods are simple to implement, 

because they basically involve a three-dimensional mesh of 

rectangular voxels. Naturally, as the method of finite 

differences, their biggest limitation is the representation of 

curvilinear surfaces.  

The Impedance Method provides accurate results 

when the size of the medium is small compared with the 

wavelength of the electric field in the frequency of the source. 

This method is based on quasi-static approximations of 

Maxwell’s equations, so the potential distribution can be 

obtained from the equations of the electric circuit theory. Thus, 

the conductivity and permittivity of the medium are modeled 

by lumped circuit elements as conductance and capacitance 

that connect the voxels of the discretization mesh. The 

impedance and admittance of connection between two 

neighboring voxels are defined by the following expressions 

(see Figure 1):  

( ) / / ( )nm n m nm nm nm nm nmZ V V I L i Aσ ωε= − = +                 (1) 

/ ( ) ( ) /nm nm n m nm nm nm nmY I V V i A Lσ ωε= − = +                  (2) 

Where σnm and εnm  are the conductivity and permittivity, 

respectively, in the region around nodes n and m and ω is the 

angular frequency. Anm is the area of the face and Lnm is the 

distance between the geometrical centers of the neighbor 

voxels. With this approach one can easily model anisotropic 

and heterogeneous medium, such as biological materials which 

have significant differences in electrical conductivity and 

permittivity between different tissues and organs and in 

different directions of the applied field. 

An important limitation of the impedance method lies in 

the fact that it allows the calculation of potential or current 

only in discrete positions of the mesh, which tends to intensify 

the discretization error. This problem can be minimized with 

the use of interpolation to represent the distribution of 

potential within each voxel. 

 

An m

L

Vn Vm
Inm

 
Fig. 1. Connection between two voxels in the Impedance Method. 

 

The aim of this paper is to present a new strategy for 

numerical modeling with the impedance method that uses 

interpolation to describe the electric potential within the voxels 

of the discretization mesh. In this approach, in order to obtain 

a system of equations for the node potentials, we apply the 

equation of continuity for the total flow of current around each 

node.  

II. METHOD 

Based on the impedance or admittance model of the 

medium one can calculate the node potentials or the mesh 

currents in the equivalent circuit through the usual techniques 

of circuit analysis. Figure 3 shows a voxel with a local 

numbering of nodes in its vertices.  This numbering is identical 

for all voxels of the mesh.  Furthermore, each node is 

identified by a set of three indexes allocated in accordance 

with its position in relation to the origin of the reference 

system. The electric potential inside the voxel is described by 

the following function: 

0 1 2 3 4 5 6 7V k k x k y k z k x y k x z k y z k x y z′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′= + + + + + + +        (3)                     

in the intervals  xx ∆≤′≤0 , yy ∆≤′≤0 , zz ∆≤′≤0 .  

The coefficients of equation (3) are determined by 

substituting this expression in each node of the voxel and 

solving the resulting system composed of eight 

equations. From equation (3) we obtain the electric field and 

calculate the current in each direction of the reference system 

in each voxel by integrating the current density under the 

assumption that conductivity and permittivity are uniform 

inside the voxel.   

In order to obtain a relationship between the potential of 

nodes that meets the principle of continuity we establish that 

the sum of all components of current entering (negative) or 

leaving (positive) any node of the grid is zero. The resulting 

equation contains all the potential of nodes of the eight voxels 

that contains the common node (i, j, k). That is, this equation 

relates potential of 27 nodes. It can be written in the following 

general form:  

A New Approach to the Impedance Method 
Airton Ramos, Daniela O. H. Suzuki 

Universidade do Estado de Santa Catarina 
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        (4)  

where n, m and r are integers that can take the values 1, 0 

or -1 and Is is the current injected in the node (i,j,k) by the 

external source. The coefficients a(n,m,r) relates the 

admittance of the eight voxels involved in each node equation.   

The proposed method is to solve the system of equations 

described by (4) (one equation for each node of the mesh) 

aiming to obtain the potential of nodes according to the 

boundary conditions specified for the problem.  
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Fig. 2. Representation of a voxel with the numbering of its nodes.  

III. RESULTS 

As an example of application and adequacy of the 

proposed method, we analyze a case of simulation in a medium 

with high dielectric constant and low conductivity. These 

characteristics are similar to biological tissues. The example 

has simple geometry to allow obtaining an analytical solution 

that serves as a reference for the validation of the numerical 

method. It refers to a spherical region with admittivity four 

times greater than the external medium in a uniform electric 

field (see Figure 3). We used a regular grid with 140 x 50 x 50 

voxels with a mesh parameter of 100µm. The electric field is 

applied through the imposition of fixed potentials of -1V and 

+1V on the boundary plans in x direction. On the other 

boundary surfaces we applied the homogeneous Neumann 

boundary condition. The analytical model for this system is 

easily obtained from the general solution of Laplace’s equation 

in spherical coordinates with azimuthal symmetry. The 

potential inside and outside the sphere is given respectively by 

the following two equations: 

θ
γγ

γ
cos

2

3
rEV o

oi

o
i

+
−=                                                   (5) 

( )
( )

θ
γγ

γγ
cos

22

3

o
oi

oi
o Er

r

a
V












−

+

−
=                                    (6) 

Where γ =σ+jωε and the indices i and o indicate internal and 

external media, respectively.  
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Fig. 3. Model used in the example.  

 

Figure 4 shows the angular distribution of electric potential 

for four values of the radial distance from the centre of the 

sphere. The points refer to the simulation and continuous line 

refers to the analytical model. There is good agreement 

between these results. It is also presented the root mean square 

of the deviations of the numerical results in relation to the 

analytical model, including the results obtained using the 

traditional Impedance Method [1,2].  
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Fig. 4. Angular distribution of electric potential and mean square deviation in 

relation to the analytical model. 

 

It is observed that for the three smaller radial distances the 

mean deviation from the analytical model in the simulation 

with interpolation is much smaller than in the conventional 

method simulation. The fact that the error is greater for smaller 

distances indicates great influence of spatial resolution of the 

mesh, ie there is a predominance of the discretization error in 

the conventional method. We concluded then that the use of 

interpolation in obtaining the equations of nodes in the 

proposed method significantly reduces the error of 

discretization. Finally, we note that the deviation increases in 

the vicinity of the radius of the sphere, and this is more an 

effect of discretization, because in the discrete space the form 

of the boundary between the two medium is considerably 

distorted in relation to the spherical shape in the continuum 

space.  
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Abstract — We present a simplified model for eddy current 

modeling in anisotropic thin multilayered plates. Under certain 

assumptions, the T- formulation is reduced to a simplified 

formulation involving only the normal component of the electric 

vector potential. As a validation, the two formulations are 

compared in a numerical example which consists in the evaluation 

of the impedance variation of an air cored coil above a thin 

composite multilayered plate. 

I. INTRODUCTION 

New synthetic materials such as carbon fiber reinforced 

polymer composites (CFRPs) are generally made of several 

anisotropic thin layers.  The electromagnetic field modeling in 

these materials is a challenging problem because of their high 

anisotropy and scale effects. Dyadic Green’s functions are 

often used when their geometries are simple [1]-[2]; however, 

these functions do not converge rapidly when the layers are 

very thin, and difficulties are encountered to derive them when 

a great number of layers are involved.  

In a recent work [3], we developed a numerical model for 

eddy currents computation in carbon fiber reinforced polymer 

composites (CFRPs) based on the T- formulation. In this 

work, under certain assumptions, this formulation is simplified 

so as only the normal component (Tz) of the electric vector 

potential is retained. This makes the calculation faster and 

reduces considerably the memory space required for data 

storage. On the other hand, only the active parts are discretized 

which permits to overcome the problems related to the scale 

effects and offers an ease to handle the motion of the moving 

parts of the system. As a validation, the T- and Tz 

formulations are compared in a numerical example which 

consists in the evaluation of the impedance variation of an air 

cored coil above a thin composite multilayered plate. The 

reciprocity and energy conservation principles are used to 

evaluate the impedance variation of the coil.  

II. FORMULATION 

Consider the system presented in figure 1. A nonmagnetic 

thin multilayered CRFP plate is subjected to the influence of a 

magnetic field s
H


produced by an inductor where a current 

density sJ


variable in time is imposed. The electromagnetic 

field behaviour in the plate is described by the equations (1), 

(2) and (3) [3], involving the electric vector potential T the 

magnetic scalar potential , the resistivity tensor ρ of the 

composite plate, the free space permeability 0µ  and the 

angular frequencyω .  

   

     
Fig.1. An inductor above a thin multilayered CFRP plate 

 

sHjTjT


00 )( ωµϕωµρ −=∇−+×∇×∇            (1) 

                              0).( =∇−+∇ ϕ


TH s            (2) 

Γ=× /0


Tn            (3) 

 

We assume that the adjacent layers (plies) of the plate are 

electrically isolated and the eddy currents flow in plans 

parallel to the surface of the plate (i.e. 0=zJ ), which is often 

the case in laminated composite materials such as CFRPs. On 

the other hand, if the used frequencies are such that the 

thickness of the plate is considered to be small compared to 

the skin depth, the derivatives of the electric and magnetic 

fields with respect to the thickness can be neglected. Also, as 

the plate is nonmagnetic, the magnetic scalar potential can be 

removed.  With these assumptions, (1) is reduced to (4) 

involving only the normal component of the electric vector 

potential. The eddy currents are calculated by means of (6). 

     

( ) ( )[ ] s
zzxxyyxxyxyyyyxx HjTj 00 ωµωµρρρρ −=+∂−∂∂−∂−∂∂    (4)  

 

[ ] [ ]T

xzy

T

yx TTJJJ ∂−∂==


         (6) 

 

Each ply of the composite plate is constituted of carbon 

fibers embedded in a polymer matrix. The resistivity tensor of 

the plate is given by (7) [3], involving the conductivities 

parallel and transverse to the fibers ( //σ , ⊥σ ), and the 

orientation  of each ply with respect to a reference axis.  
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Using the principle of the energy conservation [4], the 

impedance variation (Z) of the inductor due to the eddy 

currents flowing in the plate can be calculated by (8), where 
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the magnetic term is reduced to Tz for the simplified 

formulation. In (8), p denote the plate volume and Is the 

source current.  
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       (8) 

III. NUMERICAL EXAMPLE 

The two formulations are compared in this numerical 

example which consists in the evaluation of the impedance 

variation of an air cored coil above a thin CRFP plate. The 

geometry of the modelled system is described in figure 2; the 

numerical values of the different parameters are given in Table 

I. Only the coil and the plate are discretized. The source field 

is calculated by the Biot and Savart formulae; (1), (2) and (4) 

are solved using the finite difference method in the plate [3].  

 

TABLE I 

THE NUMERICAL VALUES OF THE SYSTEM PARAMETERS 

Regions Parameters Numerical values 

Thickness (e)  /  Side (D)  0.25mm / 50mm 

Conductivities (//, ⊥σ )  (104, 102)S/m 

 

Plate    

Number of plies / Orientations   2  /   [0°, 90°] 

Number of turns  500 

Inner radius (ri)  / Outer radius (ri)  5mm    /   10mm 

 

Coil    

Height (h)   /    Lift off (l)  1mm    /  variable 

 

Figure 3 represents the repartitions of the real and 

imaginary parts of the eddy current density in the two plies 

obtained by the Tz formulation. We notice that the imaginary 

part is concentrated near the coil position whereas the real part 

is more stretched along the axis of the high conductivity.    

For a fixed lift off (l=1mm), figure 4 shows the real and 

imaginary parts of Z for different values of the frequency, 

obtained by the two formulations. Similarly, for a fixed 

frequency (f=1MHz), figure 5 shows the variations of the real 

and imaginary parts of Z according to the lift off.  As the lift-

off decreases, the normal component of the source field 

becomes predominant and its tangential components decrease 

until cancellation at the limit when the lift off becomes nil. In 

this case, we notice a difference between the values of Z 

obtained by the two formulations. This difference may be due 

to numerical errors in the T- model engendered by the fact of 

calculating quantities which are in reality nil.  
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Fig.2. The modeled system  

 

 

 

Fig. 3. Repartitions of the real and imaginary parts of the eddy current density 

in the two plies obtained by the simplified formulation (l=1mm) 

 

 

 

Fig. 4. The variations of the real and imaginary parts of Z according to 

frequency (l=1mm) 

 

 

Fig. 5. The variations of the real and imaginary parts of Z according to 

the lift off (f=1MHz) 

σ , o 

h 

ri re 

l 

e 

sJ


 

D 

D 

832

 



9(c) 

Preconditioned BICGSTAB Algorithm and its 
Application to a Moving Linear Electric Motor 

 
Faxi Zhu1, Haitao Yu1, S.L. Ho2 and Minqiang Hu1

1School of Electrical Engineering, Southeast University, Nanjing, 210096, P.R. China 
2Department of Electrical Engineering, Hong Kong Polytechnic University, Hong Kong 

htyu@seu.edu.cn 

Abstract —The finite element method (FEM) is developed to solve 
the diffusion equation containing the moving term. For the 
solution of the large sparse non-symmetrical, the preconditioned 
biconjugate gradient stabilized (PBICGSTAB) method is 
presented, combining the ILU[p] preconditioner and BICGSTAB 
method. The magnetic field distribution of Permanent Magnet 
Linear Motor (PMLM) problems is calculated by the FEM 
electromagnetic package including the proposed PBICGSTAB 
algorithm. Then the results are compared to those from the 
commercial software ANSYS, showing the validation of this 
analysis technique. Comparisons between PBICGSTAB method 
and other widely used algorithms show that PBICGSTAB is 
speedy, applicable to solve system of large-scale non-symmetrical 
linear equations. 
Index Terms—BICGSTAB Algorithm, Precondition technique, 
Permanent Magnet Linear Motor 

I. INTRODUCTION 
The study of moving PMLM through analytical methods 

requires many simplifications, leading to huge errors. 
Numerical methods have become progressively more 
important than analytical methods in the solution of 
nonlinearity, anisotropy and motion problems. Among various 
numerical methods, FEM is the most powerful one.   

A non-symmetrical system with sparse matrix is obtained 
after Galerkin technique is applied to the convective-diffusion 
equation which involves the moving effect. In the previous 
papers, the linear equations were solved using the direct 
algorithm of Gaussian elimination. However, the cost in terms 
of computer operations and storage is unbearable when the 
number of equations is large enough. Iterative methods have 
become major methods for solving linear systems, especially 
for the large, sparse one. There are many iterative methods 
used for non-symmetrical linear systems, such as CGS, BICG , 
QMR and GMRES methods. However, CGS and BICG 
methods have irregular convergence behavior[1]. QMR 
method applies a least squares method to solve and update the 
BICG residuals, thereby smoothing out the irregular 
convergence behavior. Also, QMR avoids the breakdown that 
can occur in BICG, but transpose matrix is required[2]. 
GMRES method has monotonic convergence and only 
involves one matrix-vector product with the coefficient matrix, 
but the amount of storage and operation count increase as the 
iteration progresses[3]. Therefore, these methods have 
considerable limitations in the practical application. 

The paper is arranged as follows.  In section Ⅱ,  a  new 
simulation model for magnetic field of a moving Permanent 
Magnet linear motor is developed and BICGSTAB algorithm 

is expatiated in detail. In order to verify the proposed method, 
a single-sided PMLM problem is presented as an example in 
section Ⅲ. 

II. NUMERICAL SIMULATIONS 

A. Simulation model 

The electromagnetic fields in PMLM can be expressed 
with the Maxwell equations with the vector magnetic potential 
A
v

 as the variable, 

SJAVA
vvv

=×∇×−×∇×∇ σγ )(                    (1) 
Where; V is the velocity of PMLM; σ and γ is the 

conductivity and reluctivity, respectively; SJ
v

 is the equivalent 
current density for permanent-magnet.  

If the PMLM is computed in two-dimensions and it 
moves along the x-axis, the formulation can be simplified as, 

( ) ( ) S

A A A
V

x x y y x
γ γ σ∂ ∂ ∂ ∂ ∂

J+ = −
∂ ∂ ∂ ∂ ∂

       (2) 

By using the Galerkin method, (2) becomes an integral 
equation, 

i iS S

S i

S

A
W Ads V W ds W Ads

x

J W ds

σ γ
Γ

∂
∇ ⋅∇ + − ∇

∂
=

∫ ∫ ∫

∫

� i

       (3) 

where the weighting function  is set to be equal to an 
interploation function. The last term on the left hand side is 
the integral on the boundary Г enclosing the whole 
computation region. One can obtain the large sparse linear 
equations after discretizing (3) and imposing the boundary 
conditions， 

iW

                               [ ][ ] [ ]K A f=                                    (4) 

where [ ]K  is a coefficient matrix of order n  ; [ ]A is 
unknown vector to be solved; [ ]f  is the source on the right 
hand side. 

B. BICGSTAB algorithm  

 BICGSTAB algorithm is a variant of the BICG method. 
The algorithm can be considered as a product of the BICG 
method and the GMRES method. The residual vector is 
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minimized locally by GMRES method local step. BICGSTAB 
algorithm does not use the transpose of the matrix K  in the 
calculation of the recurrences. This is advantageous for cases 
where the transpose of the matrix K  is not readily available. 
However, when the GMRES step stagnates, the residual 
vector is not minimized and the algorithm breaks down. 

The iterative formula of BICGSTAB method can be 
written as follow: 

 （1） ，0 0r f K x= − ⋅ 0 0r r= ，  0 0p r=
(a)   Flux density along X-axis      (b) Flux density along Y-axis 

（2） j jMY p= ，
( , )

( , )
j j

j

j j

r r

r KY
α = ， j j j js r KYα= −  Fig .2 The flux density along air gap 

         j jMZ s= ，
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j j

j )j j
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jβ ω+ += + −  

（3） 1 2 0 2|| || / || ||jr r ε+ < ， 
where matrix M is called a preconditioner obtained by ILU[0] 
method, that is incomplete LU factorization without fill-ins[4];  

If (3) holds, final result 1jx + is got，and the computation 
is over. Otherwise, set 1j j= + , and go back to（2）until (3) 
is satisfied. 

Fig .3 Convergence curves of iterative methods III. ANALYSIS OF A PMLM  
In order to prove the validation of the proposed method, 

a single-sided PMLM moving at low speed is simulated. Then 
the results are compared to those from the commercial 
software ANSYS.

Fig.1 shows us the magnetic field distribution of PMLM 
when secondary moving relative to primary at a speed of 
10cm/s. From Fig.1, one can see that secondary’s velocity 
affects magnetic field distribution, called dynamic 
longitudinal end effect. It makes the magnetic field increase at 
entry end and decrease at exit end. The magnitude of effect 
depends on moving velocity. 

Fig.2 shows the flux densities along the centerline of gap. 
X-axis component and Y-axis component of flux density is 
provided respectively. As a result of end effect, flux density 
unequal to zero in the air gap at the end of primary. 

 
iterative methods is provided in the Fig. 3. As we can see in 
the figure above, the best method is PBICGSTAB method 
which converges rapidly to the precise results without 
oscillation. Also, through the contrast between BICGSTAB 
method and PBICGSTAB method, precondition techniques 
have been proved to be of great importance in the solution of 
large, sparse systems. 

IV. CONCLUSIONS 
In this paper, the mathematical model for magnetic field 

of moving Permanent Magnet linear induction motors has 
been developed. A new favorable iterative algorithm has been 
presented for solving large sparse non-symmetrical systems 
formed from discretization by finite element methods. A 
single-sided PMLM has been simulated with the proposed 
algorithm. The computed results are found to be in good 
agreement with those obtained from ANSYS shown in Fig. 1 
and Fig. 2.   

(a) Magnetic field distribution by proposed method 
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9. Numerical Techniques 

A Comparison of Parallel Finite Element 
Analysis Using Domain Decomposition 
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Kita 14, Nishi 9, Kita-ku, Sapporo, 060-0814, JAPAN 
watanabe@ssi.ist.hokudai.ac.jp 

Abstract — This paper discusses parallel computation of finite 
element (FE) analyses using domain decomposition. The 
overlapping domain decomposition method is an effective method 
for distributed memory computers. A preconditioner based on 
the Incomplete Cholesky decomposition is introduced for this 
method so as to improve the convergence of iteration. On the 
other hand, the hierarchical domain decomposition method is 
also known as a parallel computation method with high parallel 
efficiency. We compare a performance between the overlapping 
and hierarchical domain decomposition method. The numerical 
results show that the overlapping domain deposition method 
using stabilized conjugate gradient method has less 
computational cost than the hierarchical domain decomposition 
method. 

I. INTRODUCTION 
It is important to make fast computation of large scale finite 

element analyses in the development of electromagnetic 
machines. Although these analyses can be performed using 
expensive super computers, it is unacceptable in view of 
reducing the cost of development. Hence, the large scale 
analyses should be performed fast on popular computation 
environment such as PC clusters.  

The parallel computation methods for electromagnetic 
field analysis have been investigated so far. The domain 
decomposition method is one of effective method so as to 
distribute the large system matrix to the PEs (Processor 
Elements) [1]. The incomplete Cholesky (IC) decomposition 
is a useful and stable pre-conditioner for preconditioned 
conjugate gradient (PCG) method. However, it is not suitable 
for domain decomposition method due to the cross 
components between divided sub domains. The simple 
solution of this difficulty is that the cross components are 
neglected. However, the convergence of PCG method with 
this preconditioner is considerably poor. The overlapping 
domain decomposition method has introduced in order to 
overcome this difficulty. The disadvantage of the overlapping 
method is increase of communication cost in the distributed 
memory environment. 

The hierarchical domain decomposition method is another 
domain decomposition method for distributed memory 
computers [2-3]. In this method, a solution of governing 
equation is obtained to solve the unknowns about interface of 
sub domains (interface problem) and the unknowns about 
inner sub domains. This method has a significant high parallel 
efficiency. However, it is difficult to apply the strong 
preconditioner such as IC decomposition to the interface 

problem, because the system matrix for interface problem is 
given implicitly. Therefore, this method has high 
computational cost. 

In this paper, we compare performance between the 
overlapping domain decomposition and the hierarchical 
domain decomposition method on popular computational 
environment such as a PC cluster.  

II. METHODS 

A. Overlapping Domain Decomposition 
Let us consider the electromagnetic field analysis using the 

finite element method with edge elements. In order to 
distribute the whole system matrix K to the PEs, the set of all 
edges G is divided into non-overlapping subset Gk (k=1, 2,  ... ,  
np) where np is the number of sub domains, and 

ji , i.e., there are no overlapped edges in Gk. 
We define set of elements kE

GjGi  ,
~  which includes at least one edge 

in Gk. We also define the set of edges kG
~  as a set of edges 

contained in kE
~ . It is noted that Gk is a subset of kG

~ . We 
introduce the restriction operator Rk mapping from the space 
G spanned by all edges to the space spanned by Gk. The 
restriction operator kR~  mapping from G to kG

~ is also defined. 
The preconditioned matrix M can be obtained as, 

 
 pnk

T
kk

T
k RMRM

,...,2,1

~~~ , (1) 

where kM
~ is the IC decomposition matrix corresponding to 

the overlapping restricted system matrix .The 
preconditioner defined by (1) is a kind of Additive Schwarz 
Preconditioner. The convergence of PCG with this 
preconditioner is better than that of PCG using the simple IC 
decomposition of the non-overlapping system 
matrix .  

kK~

T
kk KRRkK 

Instead of (1), we introduce a following preconditioned 
matrix 

 
 pnk

T
kk

T
k

T
kk RMRRRM

,...,2,1

~~~ . (2) 

It is known that the term  in (2) results in decrease 
the maximum eigenvalue and the condition number of M, 
hence, the convergence of PCG can be improved. Moreover, 

T
kk RR
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9. Numerical Techniques 

the cost of communication in (2) is less than that in (1). In 
compensation for these advantages, the matrix M in (2) is non-
symmetric. As a result, linear solvers for non-symmetry 
should be used. 

B. Hierarchical domain decomposition 
The hierarchical domain decomposition method is an 

iterative domain decomposition method for improving parallel 
efficiency. The system equation can be separated as, 

 , (3) 

















































B

F

I

B

F

I

BBBFBI

FBFFFI

IBIFII

b
b
b

x
x
x

KKK
KKK
KKK

where subscript I denotes inner regions, F denotes 
interfaces of sub domains, B is the boundary of whole domain 
[4]. Equation (3) is rewrite the following equations, 

 , (4a) )( BIBFIFIIII xKxKbxK 

 , (4b) 
BIBIIFIFB

IIIFIFFIFIIFIFF

xKKKK

bKKbxKKKK

)(

)(
1

11









Equation (4a) can be solved easily, however, the interface 
problem (4b) is hard to solve because the system matrix of 
(4b) is given implicitly. Therefore it is difficult to construct 
the preconditioner for (5b). As a result, the computational cost 
of this method is higher than that of the overlapping domain 
decomposition method. 

III. NUMERICAL RESULTS 

To compare the performance of the above described 
methods for domain decomposition, we analyze a 
perpendicular magnetic recording head model shown in Fig. 1. 
The IC decomposition with shift parameter (=1.12) is used as 
preconditioner. The numerical results described below are 
performed on a PC cluster consisting of 4 PEs (Pentium4 
3.4GHz, 2GB RAM for each PE, two gigabit Ethernet are 
used for communication among PEs). The program code is 
written in C++ with MPI (Message Passing Interface). 

Figure 2 shows an acceleration ratio normalized by the 
computation time in PE=1. The notation "ICCG" in the Figure 
is the CG method with the conventional preconditioner 
defined by (1), "GPBiCR" is a Generalized Product-type Bi-
Conjugate Residual method combined with the preconditioner 
defined by (2). This ratio of these methods linearly increases 
with the number of PEs. Moreover, GPBiCR method shows 
good efficiency compared with the ICCG method. 

Table I shows a computational time in PEs = 4. The 
computational time of the hierarchical domain decomposition 
method is significantly slower than that of other methods, 
because it takes much iteration to solve (4b). For this reason, 

the overlapping domain decomposition method is suited on 
small size parallel computation environment.  

 

z

Fig. 1. Analysis model of perpendicular magnetic recording head, 
(Number of elements = 266112). 

 

 
Fig. 2. Parallel efficiency on PC cluster. 

 
TABLE I COMPUTATIONAL TIME IN PE=4 

Method ICCG GPBiCR Hierarchical 
Elapsed time [s] 19 23 106 
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13. EDUCATION 

Abstract — The methods of reducing of kernel singularity 
order for volume integral equations have been considered and 
some new kind of volume integral and integrodifferential 
equations with surface terms have been proposed.  

I. INTRODUCTION 
The regularization in the theory of singular integral 

equation (IE) [1-2] usually means the detachment of singular 
part of kernel with the posterior full or partial inversion of 
integral (integrodifferential) operator [1-2]. At that the first 
kind Fredholm singular IE is transformed into the second kind 
one. This approach is widely used for one-dimensional IE 
with Cauchy and logarithmical singularities. The term 
“regularization” is also used for the solutions of incorrect 
problems. In the works [3-6] the term “regularization” has 
been applied as the main kernel singularity detachment and 
reducing for two-dimensional immittance (impedance or 
admittance) IE, i.e. it aims only to kernels. The introducing of 
auxiliary potentials, the application of vector integral 
theorems, the integration over the observation point, and some 
other methods have been applied to realize this [3-6]. The 
reducing of kernel singularity allows one to use the more 
simple piece-constant or piece-linear base functions which is 
not applicable for initial IE owing to divergence of matrix 
elements.  

There are volume IEs and integrodifferential equation 
(IDEs) in applied electrodynamics which may be obtained by 
several ways [7-10] and have strong nonintegrable 
singularities. In this work the method of tensor Green’s 
functions (GFs) has been used to realize this purpose. After 
the regularization the vector piecewise constant and linear 
volume finite elements may be applicable to solve the volume 
IE.  

II. THE REDUCTION IE TO IDE 
Let consider a dielectric body with volume V confined by 

regular surface S in the free space which is excited by incident 
harmonic in time field ( )rEinc

rr . Let the field sources are located 
outside the body i.e. the field ( )rEinc

rr  inside and near the body 
is solenoidal. Let also the permittivity ( )rrε  is the 
continuously differentiable function inside the V and may 
have the jump discontinuity on the S. In the case of jump the 
normal component of permittivity also has the jump, therefore 
let denote its values on the inner and outer part of surface  S as 
“-” and “+” correspondingly.The scattered field is determined 
by GF as  

( ) ( ) ( ) ( )( ) ( ) rdrErrrjrErE
V

ee
inc ′′−′′−Γ+= ∫

rrrrrrrrrr 10 εωε ,          (1) 

where the electrical tensor (dyadic) GF of electrical kind is 
introduced [10]: 

( ) ( ) ( )rrG
j

IkrrG
j

Ikrree ′−
+∇′⊗∇′

=′−
+∇⊗∇

=′−Γ
rrrrrr

0

2
0

0

2
0

ˆˆ

ωεωε
.  (2) 

This GF is determined through the scalar GF of free space 
( ) ( ) rjkerrG

rrr
014 −−= π   .                  (3) 

Here the operation ⊗  denotes the dyadic or tensor (direct) 
multiplying (thus ( ) zyxlkbaba lkkl ,,,, ==⊗

rr  ), Î  is the unit 
tensor, rr r

≡ , rrr /0
rr

=   is the unit vector directed along the 

radius-vector, dVrd ≡
r  is the volume element, the operator  

∇  acts on the observation point coordinates ( without stroke), 
and ′∇  - correspondingly on  source ones. GF (2) may be 
presentable in the form 

( ) ( ) ( )








−⊗+⊗−





 +

−
=Γ

−

IrrkrrI
r

jk
rrj

er
rjk

ee ˆ3ˆ1
4 00

2
000

0
2

0

0 rrrrr

ωεπ
,   (4) 

and the volume IE (1) may be written as 
( ) ( ) ( ) ( ) ( )( ) ( ) rdrErrrGkrErE

V
inc ′′−′′−+⋅∇∇+= ∫

rrrrrrrrrr 12
0 ε   .  (5) 

Here the operator ∇∇⋅ ≡ ⋅grad div  is introduced. It acts on 
arbitrary vector ar  as dyadic multiplication: ( ) ( ) =⋅∇∇=∇⊗∇= aab rrr

  
( ) ( )adivgradadivgrada rrr

⋅==⋅∇∇= . The relation (1) is the 
consequence of equivalence the polarization currents to 
influence of body [7-9]. The strong singularity arises owing to 
double differentiation of week singularity 1−′−rr rr . Our goal is 

to transfer the differentiation from not stroked coordinates to 
stroked ones, i.e. on integrand function. Therefore we wont o 
transform the IE into IDE. Such transformation may leas to 
surface integrals. We will use the following identities: 

( ) ( ) ( )rrG
rr

jk
rrrr

errrrG
rrjk

′−∇′−=












′−
−

′−′−
′−

−=′−∇
′−− rr

rrrrrr

rr
rr

rr

0
2

1
4

0

π
 ,   (6) 

( ) ( )( ) ( ) ( )( ) ( ) ( )rarrGrarrGrarrG ′⋅∇′′−+′′−⋅∇′−=′′−⋅∇
rrrrrrrrrrrr . (7) 

Therefore  
( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( )[ ] ( ) ( )( ) ( )( ){ } ,11

12
0

rdrErrrGrErrrG

rdrErrrGkrErErFrFrF

V

V
incSV

′′−′′−⋅∇′−′−′⋅∇′′−∇=

=′′−′′−−−=+=

∫

∫
rrrrrrrrrrr

rrrrrrrrrrrrrrrr

εε

ε    (9) 

( ) ( )( ) ( )[ ] ( ) .1∫ ′′−∇′′−′⋅∇′−=
V

V rdrrGrErrF rrrrrrrr
ε               (9) 

( ) ( ) ( )( ) ( ) ( )

( )( ) ( ) ( ) ( ) .1

1

∫

∫
′′−∇ ′′′−′=

=′′′−′′−−∇=

−−

−−

S

S
S

SdrrGrErr

SdrErrrrGrF

rrrrrrr

rrrrrrrrr

νε

νε         (10) 
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13. EDUCATION 

Here we list the several kind of IDE with integrable kernels. 
For sharp body boundary  

( ) ( ) ( )( ) ( )
( )

( )( ) ( ) ( )( ) ( ) .1 SdrrGrErr

rd
r

rrGrrErF

S

V

′′−∇′′′−′+

+′
′

′−∇′′∇′′
−=

∫

∫
−− rrrrrrr

r
r

rrrrr
rr

νε

ε
ε

              (11) 

After the transferring the second derivative to source point 
( )

( ) ( )( ) ( )[ ]{ } ( ) ( )( ) ( )[ ]{ } .11 rdrErrrGrErrrG

rF

V

V

′′−′⋅∇′∇′′−−′−′⋅∇′′−∇′=

=−

∫
rrrrrrrrrrr

rr

εε
(12) 

Using the theorem about gradient it may be transformed to 
( )

( ) ( )( ) ( )[ ] ( ) ( ) ( )( ) ( )[ ] .11 SdrErrrrGrdrErrrG

rF

SV

V

′′−′⋅∇′′′−−′′−′⋅∇′∇′′−

=

∫∫
rrrrrrrrrrrrr

rr

ενε
(13) 

Let the observation point is inside the S. Surrounding it by 
infinitely small sphere of radius ρ  and using the relation (13) 
for S and sphere one can get in spherical coordinates 
coincided with center of sphere 

( ) ( ) ( ) ϕϕθρθθρν
ρ

ππ

drfddSrfrrI
S
∫ ∫∫−=−= −

2

0
0

0

1 ,,sin rrrrrr          ,                         

where ( ) ( )( ) ( )[ ]rjkerErdivrf
rrrrr 01 −−= ε . To calculate the projection 

on the axis z it is necessary to change 0rr  on ϕcos00 =zr rr . Since 

( )f ρ θ ϕ, ,  is continuous and finite at ρ → 0 , then the angle 

integral is finite and the projection tends to zero. We consider 
that divergence is continuous up to inner side of S, so in the 
presence of permittivity jump the surface integral must be 
calculated on the inner side (it is zero on the outer side).  
Thus, 

( ) ( ) ( )( ) ( )[ ]
( )( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )[ ]{ } .11

1

SdrErrrGrrrGrErr

rdrErrrGrF

S

V

′′−′⋅∇′′−′−′−∇′′′−′+

+′′−′⋅∇′∇′′−=

∫

∫
−− rrrrrrrrrrrrrr

rrrrrrrr

εννε

ε (14) 

Using the foregoing smoothing and calculating the integral 
over the slab with usage of formula for gradient from the inner 
product in the value 

( ) ( )( ) ( )[ ] ( ) ( ) ( )
( )r

rrErErErrs r

rrr
rrrrrrr

ε
εε ∇

∇=⋅−∇∇=−⋅∇∇= 1         .                   

one can exactly get the surface integral in (14) . Let's consider 
one more variant of initial equation transformation. Let there 
are the arbitrary differentiable vector functions ( )ra ′rr  and   
( )rrb ′−

rrr . Then ( ) ( ) ( ) ( )ababbaba rrrrrrrr
×∇′×+∇′+⋅∇′=⋅∇  . Let 

( ) ( )( ) ( ) ( )∫ ′′−∇′−−∇=
V

rdrrGrErrF rrrrrrrr 1ε , 

Applying the above relation and using the theorem about 
gradient, one can get 

( ) ( ) ( )( ) ( ) ( )[ ]
( ) ( )( ) ( )( ) ( ) ( )( ) ( )( ){ }∫

∫
′−×∇′×′−∇′+−∇′⋅′−∇′−

−′′−∇′′−′′=

V

S

rdrErrrGrErrrG

SdrrGrErrrF

.11

1

rrrrrrrrrrr

rrrrrrrrr

εε

εν (15) 

III. THE DIRECT INTEGRATION METHOD 

According to Helmholtz’s theorem the arbitrary vector 
may be presented by its solenoidal and potential parts. Let's 
divide the electrical field into solenoidal and potential parts: 

ps EEE
rrr

+=  , or 

( ) Φ∇−×∇= CrE
rrr  .                      (16) 

Our goal is to reformulate the equation (9) for C
r  andΦ . As 

E
r

 is the polar vector that Φ  is the scalar, and C
r

 is the 
pseudovector (axial vector). The choice of this values is not 
single-valued as C

r
 may be added by gradient of arbitrary 

pseudoscalarΨ , and the potential Φ  may be defined accurate 
within arbitrary constant c0 . In order to exclude the ambiguity 
in C

r
, let subjugate it by the conditions 0=Cdiv

r
, i.e. consider 

it solenoidal. Thus, the introduced values satisfy relations 
 ( ) Φ−∇=⋅∇ 2rE rr  ,                                (17) 

( ) ( ) CCdivgradCrE
rrrrr 22 −∇=∇−⋅=×∇×∇=×∇   ,       (18) 

( ) ( )rCrEinc
rrrr

0×∇=   .                          (19) 
The equations (17)-(19) have been integrated and, as the 
result, the new coupled IEs have been obtained for Φ  and C

r
. 

The coupling is realizing by virtue of that the field normal 
component on S is defined by both parts of vector E

r
. The 

function Φ  at k0 0→  defines the own potential for charge 
density under the body polarization by incident field which 
must tend to zero at infinity. The Poisson equation arises as 
the result of transformations  

IV. NUMERICAL RESULTS AND CONCLUSIONS 

The proposed IEs and IDEs have been numerically 
investigated and used for numerous diffraction and eigenvalue 
problems. They demonstrate very high effectiveness. 
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9 Numerical Techniques (d) error estimation

Abstract — The calculation of electromagnetic fields, based on 
the finite element method, involves a judicious division of the 
domain under study. This division strongly affects the accuracy 
of numerical results. This work proposes three different error 
estimators, all based on Kriging interpolation. These estimators 
have a high ability to identify regions where the solution has high 
error in the numerical solution. Thus, it is possible to obtain, 
through a structure based on the computational paradigm of 
adaptive meshes, a strong improvement in the quality of the mesh 
and therefore increase the precision of the response of the 
problem under analysis.  

I. INTRODUCTION

The solution of partial differential equations by the Finite 
Element Method (FEM) has become extremely popular and 
this can be observed on different branches of engineering. 
Most of this popularity is associated to the increase computer 
processing capacity, but the techniques which provide the 
automatic generation of finite elements also The objective of 
this work is to examine a particular form of automatic 
generation: the adaptive approach. It is an iterative process, 
which is divided in the following steps [1]: 
Step1) Build a finite element mesh 
Step2) Solve the FEM problem.  
Step 3) Error evaluation of the FEM solution.  
Step4) Treatment of errors. 
Step5) Stopping criterion. If it is satisfied, the process ends.  
Step 6) A finite element mesh is refined, where high errors 
were detected to built a new finite element mesh. Go to Step 2 

The fundamental problem is to define a robust estimator of 
errors, a reliable strategy for deal with the errors, an 
appropriate refinement technique and a good stop criterion. 
There are several attributes associated to an adaptive finite 
element mesh process. The definition of a robust error 
estimator is, probably, the most critical. Error estimation has a 
strong relationship with the physical phenomenon under 
study, i.e., there are some guidelines to obtain high precision 
in the MEF context, and this can be explained in several ways: 

1- places where the variation of field is high, are more 
sensitive to error  

2- places where the variation of the stored energy is more 
intense should be associated with a fine mesh and vice-versa. 
This is strongly correlated with the previous one. 

3- the solution accuracy depends on the size of the element 
and its shape. Elements with small angles will be avoided [2]. 

II. THE ADOPTED ERROR ESTIMATORS

In this work, error estimators will be computed based on 
Kriging interpolation [3], a statistical tool, which has become 

very popular in the electromagnetic field community, 
particularly on works, which deals with optimization.  

The error estimators were developed from three different 
concepts: the error associated to the flux of the magnetic 
induction vector, the gradient of the magnetic energy with 
respect to the position and the difference between the two 
ways of calculating the field. In all three cases, Kriging 
functions were adopted to perform the error on the FEM 
solution. With the Kriging interpolation of the magnetic 
potential vector, it is easy to find the values of the magnetic 
induction vector. 

A. The error associated to the flux of the magnetic 
induction vector 

This adopted error estimator is highly connected to the 
physical phenomenon. If the solution found by the FEM has 
high reliability, then a Kriging approximation performed on 
this solution must also to be a good candidate to solve the 
differential equation, which governs the phenomenon. Thus, 
applying the equations of Maxwell on the Kriging 
approximation is a criterion to measure the FEM solution 
accuracy. One way to measure this accurately is to observe, 
for example, the value of the flux of the vector magnetic 
induction in a closed line, as proposed in [4]. By the nature of 
the adopted formulation (magnetic vector potential and first 
order finite element), the FEM will always furnish a null flux 
for the magnetic induction vector in a closed surface. 
Nevertheless, the Kriging approximation tends detect any 
small error on the potential, i.e., when calculating the flux of 
the magnetic induction vector in a closed area a non-zero 
value is obtained. This value could be associated with the 
error in the FEM solution. The choice of the closed surface is 
quite natural: the triangular element. So the error in each 
element could be written as: 

∫
Δ

⋅= dsBe (1)

Where B is the induction calculated based on Kriging 
interpolation of the magnetic vector potential. 

B. The error estimator based on the gradient of energy  

This error estimator can be obtained by analyzing the 
regions where changes in stored energy on the field more 
intense. In these regions, it is desirable that the size of the 
finite element is small. Thus, the norm of the gradient of the 
stored magnetic energy could detect regions, where the 
refinement of the mesh of finite elements should be high. This 
estimator is consistent with that proposed in [5] to calculate 
the sensitivity of energy in relation to the nodal position. Here, 
the proposed estimator has a change in the conceptual point of 
view with respect to [5]: the Kriging interpolation provides a 

Error Estimators based on Kriging Interpolation 
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9 Numerical Techniques (d) error estimation

direct estimate of the value gradient of magnetic energy stored 
in any position without any need for approaches to calculate 
the derivative of magnetic induction as presented in [3], [10]. 

magWe ∇= . (2)

C. The error estimator based on the difference between 
fields  

Another way to estimate the error is based on the 
difference between the field calculated by FEM and calculated 
by the Kriging approximation. It could be calculated through 
the following expression, valid for each element: 

∫
Ω

Ω>−−<=
e

dBBBBe estcalcestcalc , , (3)

where calcB  is the magnetic induction vector, calculated by 

FEM and estB  is the magnetic induction vector, calculated by 
the calculation of spatial derivatives of the Kriging estimation 
on the values of field element and <x, y> is the scalar product 
between the vectors x, y. 

III. RESULTS

The L-shaped region is an interesting problem for finite 
element mesh generation. It is a magnetostatic problem and 
the magnetic vector potential was used. The boundary 
conditions are shown in Fig.1.  

Fig 1 The L-Shaped region 

The adaptive mesh will always begin with a coarse mesh, 
just enough to describe the basic geometry of the problem. 
With the error estimator based on the flux of the magnetic 
induction vector, it was necessary 7 iterations to achieve a 
high correlation between the values of field calculated by 
FEM and Kriging. Fig. 2 shows the distribution of elements at 
the end of the process and the evolution of the stored magnetic 
energy with respect to the iterations. 
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Fig 2 Final Mesh and energy convergence: first estimator 

The same problem was analyzed with an estimator that 
uses the concept of gradient of magnetic energy on the 
position. The mesh generation starts with the same initial 
mesh of the previous item. Fig. 3 shows the final mesh (after 5 
iterations) and the evolution of the stored magnetic energy 
with respect to the iterations.  

The error estimator, based on the difference the fields, was 
also used to improve the mesh of the L-shape problem. 
Kriging interpolation of the magnetic vector potential was 

used to compute an approximation of the magnetic induction 
for each triangle. For this estimator, the behavior of stored 
magnetic energy is shown in Fig. 4, which is very similar to 
Fig.2 and Fig.3 
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Fig3 Final Mesh and the energy convergence: second estimator 
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Fig. 4 Final Mesh and the energy convergence: third estimator 

The benchmark proposed in [6] to force evaluation is a 
problem of simple geometry, as shown in Fig. 5. The current 
on the coil is equal to 1 A, so there is a small force on the iron 
part. This problem is highly dependent on the mesh due to the 
different permeability values and the corners. Table I shows 
the obtained values, for five approaches. Three of the results 
use the proposed adaptive scheme based on a Kriging 
interpolation. 

Fig 5 The problem geometry for force evaluation 
TABLE I FORCE VALUE FOR SEVERAL METHODOLOGIES 

Reference Estimator
 [6] [7] Flux  Gradient Difference
Force (N) x10-7 2,5567 2,551 2,562 2.543 2.559 
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Abstract — In micro-positioning devices with ironcore 
permanent magnet linear synchronous motors (PMLSM), the 
detent force needs compensation and, therefore, needs to be 
identified accurately. Different approaches have been proposed 
to account for the detent force in such devices using 2D finite 
element methods. In this paper, an analysis of the impact of the 
thickness of an eggshell layer used in the force calculations is 
presented. Precisely, the Maxwell Stress Tensor (MST), the 
Virtual Work Method (VWM) and the Weigthed Stress Tensor 
(WST), also called Eggshell Method, are compared using several 
mesh sizes, and a special attention is given to the eggshell layer 
around the PMLSM mover. The accuracies of these force 
calculation technique are compared and analyzed with regard to 
the meshes.  

I. INTRODUCTION 
Permanent Magnet Linear Synchronous Motors (PMLSM) 

are widely used in many applications, such as micro-
positioning devices [1]. In position controlled drive systems, 
they offer very reliable performances in terms of accuracy and 
speed. However, at low speeds, they suffer from the existence 
of detent forces (due to the interactions between the magnets 
and the mover part), which causes positioning errors at the 
end of the strokes. Even with optimized actuator designs, a 
residual force remains. To balance it, the detent force has to be 
taken into account in the control strategy. Unfortunately, this 
force is difficult to obtain experimentally and Finite Element 
simulations are required. In a previous paper [2], a 2D finite 
element software has been used to calculate the detent force in 
the magnetostatic case. An approach has been proposed to 
reduce the discretization errors in the force calculation by 
using an eggshell layer surrounding the mover.  

The purpose of this paper is to present an analysis of the 
impact of the eggshell layer thickness on the force 
calculations. First, the studied PMLSM is presented and its 
main features are given. Then, different force calculation 
methods are explained. Thirdly, the benefit of the eggshell 
layer is justified. Finally, numerical results obtained with the 
force calculation methods are given and compared. 

 

d q

 
Fig. 1. 2D cutting view of the studied PMLSM [3] 

II. DESCRIPTION OF THE STUDIED PMLSM 
The studied system is a LMD10-050 linear motor from the 

ETEL Company, used in many high-precision, high-speed 
positioning applications, such as Pick-and-Place systems in 
the semiconductor industry. Figure 1 gives a 2D cutting view 
of the structure and Table 1 summarizes its main features. 

This actuator consists of two parts: the primary part, 
above, is the mobile one. It is toothed and includes the three-
phase concentrated windings. The secondary part, below, is 
fixed and composed of a set of alternating NdFeB magnets 
mounted on the surface of a massive ferromagnetic yoke. 

TABLE I 
Specifications of the LMD10-050 [4] 

Parameters ame Value Parameters ame Value 
Rated Current 2 Arms Maximal Current 7.9 Arms 
Rated Force 130 N Maximal Force 554 N 
Peak Detent Force 5 N Attraction Force 177 0N 

III. FORCE CALCULATION METHODS 

Resultant electromagnetic forces and torques acting on 
rigid bodies in electrical systems can be calculated using 
different methods [5]. The most widespread methods in FEM 
codes are the Maxwell Stress Tensor (MST) [6], the Virtual 
Work Method (VWM) [2], and the Weighted Stress Tensor 
[7]. 

A. The Maxwell Stress Tensor 
In the case of the Maxwell Stress Tensor (MST) method, 

the following tensor is calculated: 

2
0

1( ) , , ,
2ij i j ijT H H H with i j x y z    ,       (1) 

H(Hx Hy Hz) the magnetic field given by its values in the 
Cartesian frame (x,y,z), δij the Kronecker symbol (δij = 1 if 
i = j otherwise δij = 0). 

The force is obtained by means of a surface integration 
over an arbitrary surface  in the air region enclosing the 
moving body: 

2
0

Γ

1F μ (( ) )ds
2

  H.n H H n                      (2) 

The vector n is the normal vector to the Γ’ surface. 

Investigations on the Accuracy of Maxwell 
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9. NUMERICAL TECHNIQUES 

B. The Virtual Work Method 
This approach is based on the transformation of magnetic 

energy into mechanical energy. It can be shown that the total 
force Fs in a direction s is obtained from the magnetic energy 
variation W of the system after a displacement in this 
direction. The motion is performed at constant flux [5], [8], 
[9]. A similar expression can be deduced from the variations 
of the co-energy W’ at a constant current i, with the co-energy 
W’ calculated using an integration over a volume v inside a 
domain D of the induction b and the magnetic field h. 

h

s

D 0

W'F     i , W' b dh dv
s

cst with
  

             (3) 

C. The Weighted Stress Tensor in the software FEMM 
The method implanted in the FEMM software [7] is 

inspired from the approaches developed in [6] and [10]. The 
WST method automatically selects a set of elements of the air 
region forming a thick boundary, or an eggshell, around the 
moving part. On that set of elements, weighting functions are 
obtained with an additional Laplace equation and a modified 
volume integral of the Maxwell Stress Tensor is performed. 
This method is generally more accurate than one using the 
Maxwell Stress Tensor [7].  

IV. MESHING CONSIDERATIONS 

A. Mesh design 
The aim is to obtain accurate results on the force 

calculations. So, particular care is taken with the mesh size of 
each component. Figure 2 shows a zoom on the mesh 
designed for the actuator (LMD10-050). 

To reduce the number of elements, it seems better to finely 
mesh only the zones with high gradients of the flux density. 
Zone 4 is the eggshell and is composed of a thin meshed layer, 
which is particularly efficient for the force calculation [2]. 
Indeed, this eggshell allows a more accurate representation of 
the bending of the flux lines in the magnets’ vicinity 
(Figure 3b). The other zones are defined with a larger mesh 
size than the air-gap, with an auto-adaptation of the mesh to 
connect with the finer meshed Zone 4 of the eggshell. 

 

1
2

3
4

5
6

 
Fig. 2. Geometry with mesh size of 0.3 mm [2].  

B. Calculation principle 
To validate the mesh quality, force calculations are 

performed at no-load at a position where the detent force 
should be zero. As previously described, in the classical case, 
the mesh in the airgap is usually very fine and the windings 
are supposed to fill the slots entirely (Figure 3a). 

     
Fig. 3. Contour plot of the WST calculation for the PMLSM 

a) in the classical case    b) with eggshell case.  

TABLE II 
FEM Results of the detent force calculation 

Parameters ame Classical Eggshell 
Nodes number 130158 132230 
Elements number 259692 263994 
x-axis Force Error 0.3909 N 0.0221 N 
Zone 3 mesh size 0.3 mm 0.8 mm 
Zone 4 mesh size - 0.1mm 

V. CONCLUSION 

The presented FEM results confirm that the eggshell layer 
helps to improve the detent force calculation of a PMLSM at 
no-load using 2D FEM Software. Indeed, with approximately 
the same number of elements, the accuracy on the detent force 
calculation is greatly improved (Table 2). 

The full paper will present more results on the force 
calculation using the MST, the VWM and the WST methods. 
A comparison of the accuracy of these methods regarding the 
mesh size of the eggshell layer around the PMLSM mover 
will be added. 
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9. NUMERICAL TECHNIQUES 

Abstract —There are some determination techniques of 
magnetizing current density such as the method using the current 
vector potential with tree co-tree decomposition, the electric 
scalar potential obtained from boundary value problem, and so 
on. However high current density is estimated in inner curve for 
the cause of solving homogeneous boundary value problem. In 
this paper, we present the effective method for the computation 
of magnetizing current density which is uniformly distributed 
and assured stable ICCG convergence by means of regularization. 

I. INTRODUCTION 
 The data of magnetizing current density in finite element 
analysis has to be prepared in advance. The distribution of 
current density should be uniformly modeled to describe the 
stranded winding. However, inner curved current density is 
highly estimated when conventional technique such as the 
solution of homogeneous boundary problem is applied. Some 
effective methods [1] - [3] for realizing the uniform current 
density were developed. 
 In this paper, we propose a new uniform distribution 
technique for magnetizing current density. The uniform 
current density is temporary evaluated by using the 
conventional electric scalar potential method [4] at first. Next, 
regularization is applied to temporary current density in order 
to realize the stable ICCG convergence characteristic. The 
effectiveness of proposed method is investigated by using the 
inductance value in the IEEJ coil model. 

II. DETERMINATION METHOD OF UNIFORM CURRENT 
DENSITY 

A. Determination of current density direction 
 Firstly temporary vector of current density is determined by 
using conventional electric scalar potential method [4] in the 
step 1 as shown in Fig. 1. The weighted residual Gi of the 
equation of current density continuity using nodal shape 
function Ni is given as follows: 
 0dd 00 =⋅+⋅∇−= ∫∫∫∫∫ SNVNG

S iV ii nJJ     (1) 

where J0 is the current density vector, and n is the external 
unit normal vector. Here, J0 is composed of electric scalar 
potential φ as follows: 
 φσ ∇−=0J                  (2) 

where σ is conductivity, which is considered as homogeneity 
in the coil region. At the step 2, intensity of J0 is normalized 
asI / S in the center point of all elements as follows: 
 )()( 00_init0 JJttJ == QSI        (3) 
where S is the cross-sectional area of current input surface, 
and the direction of J0_init is the same of J0. Here the intensity 
of J0_init is completely uniform, however J0_init doesn’t satisfy 
the weak form of equation of continuity. 

B. Regularization 
 The characteristic of ICCG method in edge-based FEM will 
diverge when the equation of continuity ( 00 =⋅∇ J ) is not 
weakly satisfied [5]. Therefore, the discontinuous vector J0_init 
should be corrected by using correction vector J0c to improve 
poor ICCG convergence of magnetic field analysis as follows: 
 )δ( 0cc0_init0r0 φ−∇≡+= JJJJ Q        (3) 
where J0r is the corrected vector, and δφ is the correction 
potential. Substituting J0r for the equation of current density 
continuity, the weak form is obtained as follows: 

 
0d)(

d)δ(

c0_init0

_init0

=⋅++

⋅∇−∇⋅∇=

∫∫
∫∫∫

SN

VNNG

S i

V iii

nJJ

Jφ
      (4) 

where the second term about the boundary integration is equal 
to the input current I when the equi-unknown boundary 
condition is imposed on the correction potential δφ on the 
input surface. (4) is solved about δφ at the step 3. Next δφ is 
substituted for (3) at the step 4, and then continuous J0r can be 
utilized in magnetic field analysis. 
 Fig. 2 shows the effectiveness of regularization for the flat 
motor coil in the case of substituting J0 obtained from the two-
scalar potential method [1] for J0_init in (4). The ICCG 
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             Fig. 1.  Flow chart of uniform              Fig. 2. ICCG convergence  
                distributed current density.               using two-scalar potentials. 
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9. NUMERICAL TECHNIQUES 

convergence characteristic of magnetic field analysis is 
improved by the additional process of regularization. 

III. VERIFICATION 

A. Analyzed results 
 Fig. 3 shows the finite element mesh of IEEJ coil model. 
The number of elements, nodes, and unknowns of the first 
order hexahedral edge elements are 268,202, 278,832, and 
791,101, respectively. The target value of uniform current 
density is 400 x 103 kA/m2 in this model. 
 The correction vector is mostly distributed for imposing the 
J0_init continuity in the connection area of the straight and 
curved region as shown in Fig. 4. The maximum intensity of 
correction vector is 25.2 kA/m2. The uniformity of current 
distribution is improved by using proposed method as shown 
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              Fig. 3.  Finite element mesh.         Fig. 4.  Correction vector J0c. 
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Fig. 5.  Intensities of magnetizing current density. 
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Fig. 6.  ICCG convergence characteristics in magnetic field analysis. 

 
TABEL I 

COMPUTATION RESULTS OF IEEJ MODEL 
electric scalar

potential
uniformity 1.89 1.00 1.07 － －

L  [mH] 33.77 34.10 34.10 34.18 34.65
inductance
error [%]
ICCG ite. 594 595 594 － －

CPU time [s] 255.8 253.1 259.1 － －

measuredmethod

2.54 1.59 1.59 1.36 －

two-scalar proposed Biot-Savart

 
CPU Intel Xeon X5482 processor / 3.2 GHz & 3.25 GB RAM 

ICCG convergence criterion || rn || / || r0 || < εcg 
εcg = 10-15 (current density computation), 10-6 (magnetic field analysis) 

in Fig. 5. The ICCG convergence characteristics in three 
methods are similar distributions as shown in Fig. 6. 
 TABLE I shows the computation results obtained from 
various techniques. The inductance value is close to measured 
one by using the two-scalar or proposed method. While two-
scalar method is applicable to only the coil with rectangular 
surface of current inflow, proposed method is effective to 
arbitrary input surface. And the CPU time of proposed method 
is a little longer than that of the electric scalar potential 
method for the cause of double computation of same size 
equation. 

B. Iterative process 
 Iterative process of proposed method is investigated in 
order to make the current distribution more uniform in IEEJ 
coil model. Iterative process is composed of the step 2 – step 4 
and the process of substitution of J0r for J0 in Fig. 1. Fig. 7 
shows the changes of current density intensity. Fig. 8 shows 
the changes of uniformity and inductance value in five 
iterations. Inductance value is gradually changed according to 
the improvement of uniformity. The sufficient solution is 
obtained at the first step, and then the single computation will 
be needed in the practical use. 
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               Fig. 7.  Changes of current density intensity in iterative process. 
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Fig. 8.  Changes of inductance and uniformity using iterative process. 
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9. NUMERICAL TECHNIQUES

Abstract — The Finite Integration Technique (F.I.T) is used to 

compute  the  electromagnetic  phenomena.  This  technique  is 

efficient  if  the  mesh  is  generated  by  a  regular  hexahedron. 

Moreover the matrix system, obtained from a regular mesh can 

be exploited to use the parallel direct solver. In fact, in reordering 

the unknowns by the nested dissection method, it is  possible to 

construct  directly  the  lower  triangular  matrix  with  many 

processors without assembling the matrix system. In this paper, 

the parallel direct solver is described and the efficiency is shown 

as a function to the number of processors. 

I.INTRODUCTION

To compute the electromagnetic phenomena many methods 
can be used, such as the finite element method (F.E.M), the 
finite  integration  technique  (F.I.T)  [1]-[2].  These  methods 
provide  a  large  system which is  usually solved by iterative 
methods (Krylov) associated to a preconditioner. If the system 
is very sparse, the Krylov method is very interesting because 
the utilization of memory is low and consequently the method 
is fast. Recently, the memory capacity has been increased and 
can accommodate a larger full system. Moreover, as the CPU 
clock frequency stagnates, the number of processors increases 
to  keep  a  constant  acceleration  of  computing  power. 
Nowadays,  large  systems  can  be  solved  by  parallel  direct 
methods.  In  this  paper,  the  F.I.T  is  used  to  compute  the 
electromagnetic phenomena for which it's necessary to use a 
regular  mesh.  The  system  obtained  has  some  priorities  of 
regularity which will be used for  the parallel  computing. In 
order  not  to  use  a  large  memory, the  reordering  technique 
(Nested Dissection [3]) is implemented to minimize the fill-ins 
during  the  factorization  elimination  process.  This  technique 
keeps the regular structure of the matrix whose it  is easy to 
extract  efficient  parallel  computing  without  latency.  Due to 
these  conditions,  we  propose  in  this  paper  to  compute  an 
academic problem with the F.I.T using a parallel direct solver.

II.THE FINITE INTEGRATION TECHNIQUE

This method is based on the same theory as the F.E.M. But 
in case of F.I.T, there are no shape function cause a diagonal 
mass matrix. Also,  to construct the model it  is  necessary to 
define a dual mesh. It appears that if the primal mesh is regular 
then the dual mesh should also be regular. Therefore, it is easy 
to  build.  In  this  paper,  both  potential  (scalar  end  vector) 
formulations of the electrokinetic problem are treated. In the 
case  of  scalar  potential  formulations  the  matrix  system 
obtained is :

GT M feG=−GT M fe G                (1)

Where  G is  the  incidence  matrix  node-edge,  Mƒ̃e the  mass 
matrix,  ϕ the  electrical  scalar  potential  and  α the  scalar 
potential source. With the help of a scalar potential source, a 
voltage between two electrodes can be imposed. 
For  the  vector  potential  formulation  the  matrix  system 
obtained is :

RT M ef R T =−RT M ef RT s                 (2)

Where,  R is  the  incidence  matrix  edge-facet,  Mẽf  the  mass 
matrix,  T the  electrical  vector  potential  and  Ts  the  vector 
source.  With  this  formulation  a  current  density  is  imposed 
through the conductor.

For both formulations a gauge must be defined to solve the 
numerical system with a direct solver. For the  ϕ-formulation 
just one unknown is fixed to zero. However a T-formulation is 
classically gauged with a tree technique. In these conditions 
both matrix systems (1) and (2) are symmetric positive definite 
(S.P.D).  The matrix given by the  ϕ-formulation (1)  have at 
most 7  non-zero  elements in each line and column. On the 
other side, the T-formulation gives a matrix with a possible 13 
non-zero elements in each line and column.

In this paper, for solving both systems, it is proposed that 
the matrices should be assembled and factorized at the same 
time.  For  minimizing  the  fill-ins  in  the  factorization,  the 
reordering technique Nested Dissection of the nodes is done. 

III.NESTED DISSECTION METHOD

The goal  of  the reordering techniques is  to  decrease  the 
amount of fill-in and reduce the number of operations in the 
factorization and resolution of linear systems. The two most 
classically used reordering methods are the Minimum Degree 
[5]  and  the  Nested  Dissection  [3].  The  minimum  degree 
algorithm is a local heuristic that performs its pivot selection 
by  selecting  from  the  graph  a  node  of  minimum  degree. 
Nested  Dissection  is  a  method  of  finding  an  elimination 
ordering. The algorithm uses a divide and conquer strategy on 
the graph of the matrix. The basic idea of Nested Dissection is 
to bisect the graph by finding and removing a node separator 
and  labeling  the  nodes  of  the  two  resulting  sub-graphs  by 
applying the same technique recursively. Labeling the nodes 
of the separator after the nodes of the sub-graphs have been 
labeled (i.e.,  the separator nodes receive a higher label than 
any of the nodes of the sub-graph). The recursion terminates 
when the sub-graphs become too small. The minimum degree 
algorithm is  known to  be  a  very  fast  and  general  purpose 
algorithm, however,  the algorithm is intrinsically sequential. 
On  the  other  hand,  the  nested  dissection  is  easily 
parallelizable.  In  practice,  nested  dissection  produces 
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9. NUMERICAL TECHNIQUES

orderings which, in terms of fill-in and operation count, give 
the same results as the ones obtained with minimum degree. 
Moreover, the elimination trees induced by nested dissection 
are broader, shorter, and better balanced, and therefore exhibit 
much more concurrency in the context of the parallel Cholesky 
factorization.

With a single node separator, a matrix system is split into 
the following form

 [
A11 0 A31

T

0 A22 A32
T

A31 A32 A33
]

A33  is  the  matrix  corresponding  to  the  nodes  in  the  node 
separator,  A11  corresponds  to  the  first  sub-graph,  and  A22  

corresponds  to  the  second  sub-graph.  Since  these  two sub-
graphs are not joined by any edges,  A21 is zero. Otherwise, A11  

and A22 can be assembled in parallel. With this new reordering, 
a  block  matrix  system should  be  obtained,  it  is  shown  in 
figure1.

 Figure 1.  The Matrix to solve with reordering

 Figure 2. Lower Matrix with reordering

IV.PARALLEL DIRECT SOLVER

A typical  direct  solver  for  systems  with  SPD  matrix  is 
Cholesky factorization [4].  Here,  the problem is to compute 
the solution of the linear equation system  Ax = b, where A is a 
sparse and S.P.D matrix. The Cholesky factorization consists 
to decompose A as  A = LLT, where L is a lower triangular with 
positive  diagonal  elements.  We  propose  here  to  generate 
directly the matrix  L (figure 2) in parallel because its block 
structure allows it. Finally, the solution is computed by solving 
two  triangular  systems.  Ly  =  b is  solved  by  forward 
elimination  followed  by  solving  LTx  =  y with  backward 
substitution. These two substitutions are parallelized because 
some set of unknowns are independents. 

V.APPLICATION 

As example, a sample electrokinetic problem is treated. It 
is an electrical conductor cube. Inside this cube, a rectangular 
part is placed with smaller electrical conductivity. To increase 
the  efficiency  of  the  method,  a  regular  mesh  is  used  with 
64000 hexahedrons. For the ϕ-formulation a voltage of 1V is 
imposed  in  the  conductor  and  the  system  contains  65559 
unknowns. In the case of the T-formulation, a current of 1A is 
imposed through the conductor. As the  T is computed on the 
edge,  the  system  is  larger  (188759  unknowns).  For  both 
formulations,  the  value  of  the  resistance  is  computed.  We 
obtained for ϕ-formulation 1.282 mΩ and 1.258 mΩ for the T-
formulation.  To  illustrate  the  problem,  the  current  density 
inside the conductor is shown on the figure 3.

Figure 3 : Distribution current density inside the conductor

In the following table, the acceleration in accordance with 
the number of processors is shown for the assembling of the 
matrix L.  

TABLE I
Number of processors 1 2 4 8

Speed-up ϕ - formulation 1 1.59 1.97 2.26
Speed-up T - formulation 1 1.69 2.86 4.06

VI.CONCLUSION

In  this  paper,  it  is  shown  that  it's  possible  to  generate 
directly and in parallel  the lower triangular  matrix L, which 
guarantees the acceleration of  the resolution method.  In  the 
final  paper,  the  method  will  be  more  developed  and  many 
examples will be treated and the results discussed. 
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12. DEVICES AND APPLICATIONS 

Abstract — The paper addresses an alternative method for the 
calculation of global forces. The mean and difference potentials 
technique is physically related to the virtual work principle, but 
relies on a reformulation of the computation sequence. The 
technique is the result of exploiting superposition in magnetically 
linear systems, and can be applied to any sequence of boundary-
value problems which differ only in the placement of their 
excitations. The method has been successfully applied to solve 
interior problems with translational symmetry. The present work 
investigates its performance when used to solve an unbounded 
axisymmetric problem. Computed forces by the method under 
investigation are compared to results obtained by two reliable 
methods: weighted Maxwell stress tensor and Lorentz force. 

I. INTRODUCTION

Calculation of forces and torques from numerical field 
solutions is subject to large numerical errors because their 
computations are usually based on magnetic flux densities, not 
to the scalar or vector potential values. The potential 
distribution produced by conventional finite element analysis 
represents only a numerical approximation to the true potential 
distribution, i.e. there is an inherent error in the values of 
potentials, commonly referred to as error in the approximation 
function. The evaluation of forces and torques invariably 
involves some kind of numerical differentiation, and all 
familiar sources of errors are present in numerical 
differentiation. Errors in the approximation function are the 
most critical, even when small, because they are magnified by 
differentiation algorithms. 

In numerical problems involving both differentiation and 
integration, errors will be minimized if the order of the 
operations can be so rearranged that all integrations are done 
numerically, all differentiations analytically [1]. Since 
numerical integration is a robust process and analytic 
differentiation is error-free, the results can be expected to be 
numerically stable. The method of mean and difference 
potentials is physically related to the virtual work principle and 
relies on this reformulation of the computation sequence. The 
method is detailed in [2]-[3] and has been applied to solve 
interior problems with translational symmetry. The present 
work investigates the performance of the method when used to 
solve the unbounded axisymmetric problem proposed by 
Meeker [4]. The problem concerns the computation of the 
force acting on an iron ball at various positions relative to an 
excited wound, air-cored coil. An outline of the problem 
geometry is shown in Fig. 1. In this drawing, it is shown the 
configuration where the iron ball is located 1.5” from the 
center of the coil.  

Fig. 1. An excited coil attracts the iron ball; dimensions in inches. 

II. METHOD OF ANALYSIS

A sequence of magnetic vector potential solutions is used 
to simulate the movement of the coil relative to the iron ball. 
The reaction force acting on the coil is computed by three 
different methods: (i) mean and difference potentials; (ii) 
weighted Maxwell stress tensor; (iii) Lorentz force J×B. 

Were the virtual work approach to be used, there would be 
two boundary-value problems in A1 and A2 corresponding to 
positions 1 and 2 of the coil. Both problems differ only in the 
placement of the current distributions J1 and J2, and are subject 
to the same boundary conditions. The subtraction of the 
system’s total energy at the two coil positions gives the energy 
difference 

,
2

1

2

1
2211 ∫∫

ΩΩ

Ω−Ω= dJAdJAWδ                                     (1) 

where Ω denotes the problem region. 
If the problem is magnetically linear, superposition can be 

exploited and, instead of working with the two boundary-value 
problems in A1 and A2, two other boundary-value problems 
may be defined. The difference problem, expressed in terms of 
potentials Ad and current densities Jd, is obtained as half the 
difference of the two problems above, and is subject to 
homogeneous boundary conditions as a result of the 
subtraction. The mean problem, expressed in terms of 
potentials Am and current densities Jm, is obtained as half the 
summation of the two problems, and is subject to the same 
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12. DEVICES AND APPLICATIONS 

boundary conditions of the problems which represent the two 
consecutive positions. Rewriting the energy difference 
expressed in (1) in terms of the other two problems yields  

.∫∫
ΩΩ

Ω+Ω= dJAdJAW dmmdδ                                         (2) 

III. TESTS AND RESULTS 

To test the method set out above, a magnetic field analysis 
program [5] has been used to solve the field problems. An 
outline of the axisymmetric structure is shown in Fig. 2. 

Fig. 2. Regions of the numerical model 

To model the unbounded field problem, asymptotic 
boundary conditions have been used for the field solutions 
representing the mean problems, as well as for the solutions by 
the other two methods. For the difference problems the 
potentials are equal to zero at the semicircular boundary. The 
numerical model includes several rectangular regions that 
allow flexibility for simulating the coil movement. In this 
drawing, it is shown the field problem that represents the iron 
ball situated at the center of the wound coil; this position 
represents the stable equilibrium point for the iron ball and the 
system’s stored energy is maximum. According to the 
reference frame used, at this position, z=0. As the coil moves 
upwards from the centered position, the force on the iron ball 
increases up to its maximum value, and this occurs when ball 
starts to leave the coil region. Further increases in the distance 
imply a reduction in the force and this starts to vanish when 
the ball is approaching 1.5” from the centre of the coil.  

The coil movement in steps of 0.15” (10% of the total 
excursion) is simulated by redefining material properties. 
Different current distributions are the basic feature 
distinguishing the eleven geometrically distinct problems 
solved by the other two methods. For these methods, there are 
force estimates at two consecutive coil positions, as illustrated 
in Fig. 3(a)-(b). In the mean and difference potentials 
technique, there are force estimates for the intermediate 
positions. Here, two distinct field problems are solved to 
obtain the energy difference δW given by (2), so there are 
altogether 20 program runs for the new technique. The current 
distributions of the problems representing half the difference 
and half the summation of two consecutive coil positions is 

illustrated in Fig. 3(c)-(d). Since a single finite-element mesh 
is used for all computations, the pre-processing script is 
basically a series of commands to edit the material 
identification labels attached to the different regions.

Fig. 3. Current distributions: (a)-(b) Excitations at two consecutive coil 
positions; (c) Half their difference; (d) Half their summation 

Preliminary test results are presented in Fig. 4. Computed 
forces by mean and difference potentials are marked with “ο” 
whilst results from the weighted tensor method are marked 
with “∗”. These characteristics clearly reproduce the analysis 
results previously published in [4]. A closer observation of the 
graph shows that both characteristics trace similar courses, 
especially along the first half of the simulated path. Given the 
reliability of the weighted tensor method, the results from the 
new method are completely satisfactory. 

Fig. 4. Computed forces
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6. OPTIMIZATION

Abstract — The problem of the image reconstruction in 
Electrical Impedance Tomography (EIT) is a highly ill-posed 
inverse problem. There are mainly two categories of image 
reconstruction algorithms, the direct algorithm and the iterative 
algorithm which was used in this publication. The forward 
problem can be solved by the finite element method, immersed 
interface method or boundary element method. The iterative 
algorithm is based a combination of the level set methods with one 
of numerical methods. The representation of the shape of the 
boundary and its evolution during an iterative reconstruction 
process is achieved by the level set method.  

I. INTRODUCTION

In this paper was proposed a method based on the 
combination level set idea and a few numerical methods to 
solve the inverse problem arising from electrical impedance 
tomography. The representation of the boundary shape and its 
evolution during an iterative reconstruction process is achieved 
by the level set method [6]-[8]. The shape derivatives of this 
problem involve the normal derivative of the potential along 
the unknown boundary.  

II. ELECTRICAL IMPEDANCE TOMOGRAPHY

Electrical impedance tomography is a widely investigated 
problem with many applications in physical and biological 
sciences [2]-[4]. It is well known that the inverse problem is 
nonlinear and highly ill-posed. The forward problem in EIT is 
solving by Laplace’s equation: 

0)grad(div =ϕγ  (1) 

where ϕ  - electric potential, γ  - conductivity. 

The following functional is minimized: 

∑ −−=
=

p

1j

T )()(5.0F 00 VΦVΦ  (2) 

where p is the number of the projection angles. 

III. NUMERICAL ALGORITHMS 

A. Level set method 

The level set method is known to be a powerful and 
versatile tool to model evolution of interfaces. The idea is 

merely to define a smooth function ϕ, that represents the 
interface and has the following properties (fig.1):

Ωφ   x for 0)t,x( ∈>
Ωφ   x for 0)t,x( ∉<   (3) 

)t(  x for 0)t,x( ΓΩφ =∂∈=

Fig. 1. Level set function. 

B. Mumford-Shah model 

The Mumford-Shah algorithm set formulation and 
minimization problem  in image processing, to compute 
piecewise-smooth optimal approximations of a given image. 
The proposed model follows and fully generalizes work [1], 
where there was proposed an active contour model without 
edges based on a 2-phase segmentation and level sets 1γ  and 

2γ . Conductivity γ is represented as: 

))(H1()(H 21 φγφγγ −+=  (4) 

where H is the Heaviside function. 
The derivative of F with respect to γ is given by 

∑ ∇∇−=
∂
∂

=

p

1j
jj

F ϕϕ
γ

 (5) 

Level set function is updated the following iterative scheme: 

φ
µφφ

∂
∂−=+ Fk1k  (6) 

where coefficient >0 and 

)()(
FFF

21 φδγγ
γφ

γ
γφ

−
∂
∂=

∂
∂

∂
∂=

∂
∂

 (7) 
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6. OPTIMIZATION

where δ is the Dirac delta function. 
Conductivities are calculated as: 

  
F

1

k
1

1k
1 γ

βγγ
∂
∂−=+  (8) 

2

k
2

1k
2

F

γ
βγγ

∂
∂−=+  (9) 

where coefficient β>0. 
The delta function δ(ϕ) and Heaviside function H(ϕ) are 
calculated as: 

)(
)(

22 εφπ
εφδε
+

=  (10) 

2

1
)(tan

1
)(H 1 += −

ε
φ

π
φε  (11) 

where ε>0. 

IV. IMAGE RECONSTRUCTION 

Figures 2,3,4 presents model of computer simulation an 
image reconstruction. The numerical model  was inserted in 
the inside of the examined object. The grid was used by16x16 
elements solution. 

a)  b) 

  
c) d) 

  

Fig. 2. The image reconstruction by level set method:  
a) without reinitialization, b) with reinitialization,  

c) with narrowband method, d) with remeshing level set function.  

a)  b) 

  

Fig. 3. Images reconstruction with the Mumford-Shah algorithm:  
a) =0.0005,  eps=0.001 with reinitialization,  

b) =0.001, eps=0 without reinitialization. 

a)  b) 

  
c)  d) 

  
e) f) 

  

Fig. 4. Images reconstruction with the Mumford-Shah algorithm (=0,0005 
eps=0.0001 with  reinitialization), coefficients for step of time dt:  

a) 0.5, b) 0.75, c) 0.9, d) 1.2, e) 1.2, f) 2.  

V. CONCLUSION 

Application was presented in this paper of the level set 
function for identifying the unknown shape of an interface in a 
problem motivated by electrical impedance tomography. Level 
set methods with Mumford-Shah model give good results. The 
error of the image reconstruction is caused the rare 
discretisation. 
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13. EDUCATION

Abstract — The methodology of Systems Dynamics is 
presented as an alternative to visualizing and learning the 
operation of physical systems. The objective of this article is to 
show the applicability of this technology in computer simulation 
involving an Electromagnetic Contactor.  A simulation model 
based on causal loops and flow diagrams was developed with 
Powersim® Studio Enterprise 2003, taking the device parameters 
into consideration. The timely graphical output display becomes 
a tool in aiding the teaching-learning process, highlighting the 
importance of the simulation so that students can rethink their 
models of certain dynamic processes.  

I. INTRODUCTION

According to Vygotsky [1], learning is the cornerstone of 
human development and it includes the interdependence of the 
individuals involved in the process. With this approach in 
mind, a more profound modeling reference is anchored, 
because as proposed by Vygotsky, “language shapes thought”.  
The issue of modeling in teaching can be approached in, at 
least, three different perspectives: (a) construction of 
knowledge, (b) explicitation and refinement of mental 
representations of knowledge, and (c) perception of the world 
through the eyes of dynamic systems. The dynamic systems 
theory can be interpreted as a “new” way to understand our 
day-to-day dynamic phenomena, taking into account not only 
the causal relations between sets of variables, but also system 
behavior as a whole [2]. From the educational standpoint, the 
understanding and application of these concepts enable 
students to comprehend complex dynamic systems and to 
focus on the models of any given system, as well as the reason 
why these systems change through time. Human thought is 
completely dependent on models. Mental concepts are 
abstractions in our experience and this experience is filtered 
and modified by our individual perception. Mathematical 
simulation models belong to the ample class of abstract 
models that resort to mental images. The dynamic behavior is 
one of the most important characteristics of a linear 
electromagnetic device, such as an electromagnetic contactor 
[3]. In this work, the Powersim® Studio Enterprise software 
was applied in the construction and exploration of an 
Electromagnetic Contactor model.  

II. SYSTEMS AND MODELS

A system is comprised of a collection of interacting 
elements (or components) to fulfill a purpose.  The 
Electromagnetic Contactor is a device that is commonly used 
for switch-controlling induction motors in industrial 

processes.  Thus, the parts of a Contactor make up a system, 
albeit each isolated component not even resembles the system 
of which it constitutes.  However, if any of these components 
were missing, the system would be impaired and unable to 
execute the functions for which it was originally designed, as 
a whole. Therefore, when the word Electromagnetic Contactor 
is mentioned, the student will most certainly be interested in a 
simplified system capable of simulating some significant 
characteristics of an actual Contactor . 

III. DYNAMIC MODELING OF THE AC CONTACTOR

According to the Maxwell Tensor [4], the instantaneous 
electromagnetic force that produces the contactor’s closing 
action movement can be expressed in Newton/Pole by:   
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Where “S1” represent the area of the magnetic pole-face 1, 
“S21” and “S22” represents the external and internal section 
fluxes of the ring, respectively; “φ1”, “φ21” and “φm1”
represent Magnetic Fluxes in the respectively Air Gaps; “μ0”
represents the magnetic permeability of the air; “α” is the 
angle between two fluxes (coil and short-circuit ring). 

The total instantaneous electromagnetic force (half part of 
the nucleus) is given by Fe = F1+F2.

Differential equations are formulated for calculation and 
behavior analysis of the AC Contactor.  The description of the 
equations system includes mechanical movement (position, 
velocity and acceleration), circuit current and magnetic flux, 
simultaneously solved by numerical integration method.  Fig. 
1 shows the equivalent electric circuit referent to the main 
coil.  

Fig. 1. Equivalent Electric Circuit 
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13. EDUCATION

In these circuits, “R1 and R2” represent the resistance of 
the coil and of the short-circuit ring, “Ld1, Lmd1 and Ld2” 
represent the inductances of coil dispersion and of the short-
circuit ring, and Lm1 represents mutual inductance [5].   

All the inductances in this model are detected by software 
of finite elements methods (FEM), reproducing nonlinear flux 
behavior (inductance). The equations for current states i1 e i2

(x1 and x2), are respectively, [5] 
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where Ld = Ld1 + Lmd1. At each time step, a new inductance 
matrix is calculated. 

Based on Newton’s Second Law, the motion equation is 
obtained: 

2

2

dt

dx
BFmFel

dt

xd
M −−=         (4) 

Where “Fel” and “Fm” represent the resulting 
electromagnetic and mechanical forces (coil and springs), 
respectively; “B” is the buffering coefficient (shock 
absorbing); “M” is the mass of the moving part and “x” is the 
displacement. 

The equations for motion and velocity states are 
determined from (4). The system of equations (5) is resolved 
by step-by-step time integration (Runge-Kutta 4th Order 
Method). 
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The mechanical force is obtained from the resulting sum of 
all forces pertaining to Normally Open Springs, Normally 
Closed Springs and the principal springs. 

IV. RESULTS

The analyzed contactor has springs assumed to behave in 
accordance to Hooke’s Law, with the condition that the 
strength of the spring varies in relation to the movement “x”. 

It can be observed in the model on Fig. 2 that: the 
variables “x” for position and “vx” for velocity are established 
in the system dynamics representation; the model’s stock or 
level, where dx_dt and dvx_dt are rates. 

dx_dt x dvx_dt vx

M

atr

FM

FM_M

FB FEL

FMO

xr

Fig. 2.  Stock and flow diagram – Interaction of the contactor forces 

The results contemplate, qualitatively and quantitatively, 
the expected behavior of variables, configuring good 
modeling performance, as will be explained in full paper. 
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Fig. 3. Behavior of total electromagnetic force  

Fig. 3 illustrates the behavior of total electromagnetic 
force, obtained by the simultaneous effect of currents in the 
main coil and short-circuit ring.  It is perceptible that the force 
is always positive and greater than zero, allowing the 
contactor to always remain in the closed position, when of the 
passage of current or flux by zero. 

Therefore, the systems dynamics tool is attributed to be a 
strong instrument in the study of complex physical systems, in 
the presence of transitory phenomena, formulated through 
differential equations.  The qualitative vision of the behavior 
of a physical system is very important in the teaching-learning 
process, by the mental representation necessary for the 
compliance of causal loops and by equations system assembly 
and the respective resolution by numeric methods. 

V. CONCLUSION

Simulating a model can be cognitively demanding.  The 
interpretation of movement dynamics requires from the 
students, besides a mental representation of the physical, a 
profound mathematical knowledge, mastery of circuit analysis 
and of numerical methods. System dynamics, through 
software applications, allow students to interact with these 
concepts and to establish the possibility of a user-friendly 
interface for simulation and display of graphical output.  The 
utilization of computer modeling is extremely pedagogical, for 
it enables students to structure certain concepts or collection 
of concepts and, within the phenomenon, to establish an 
alternative pattern of organized learning, thus allowing 
students to apply knowledge with much greater ease. 
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13. EDUCATION

Abstract— The proposed software allows students to perceive
the importance of the experimental data accuracy in magnetism.
A common error source for the magnetization curves (including
hysteresis cycles) is the demagnetization effect and the influence
of the magnetic sensor position. Our software helps the user to
understand the principle and the effect of each correction method.
The graphical user interface (GUI) is designed as a wizard,
assisting the student to decide which the best correction
procedure is and to obtain the intrinsic magnetic material
characteristic to be used in electromagnetic field computation.

I. INTRODUCTION

A modern Electrical Engineering education includes more
practical activities during the undergraduate, Master or Ph.D.
studies. Consequently, many students learn to work with
complex equipment for the experimental characterization of
magnetic materials [1], and then use these material data in
electromagnetic CAD. However, any measurement is
influenced by many factors and the student must know how
he/she could correct the experimental data. Therefore, it is
useful to have a well-structured educational tool, which helps
the user to compare the effect of different correction methods
and to choose the best one. The proposed software is based on
the correction procedure presented in [2] and has a GUI
developed in MATLAB©.

II. BACKGROUND THEORY

The measured magnetic material curve could be corrected
taking into account the sample geometry, its magnetic
behavior, the equipment configuration and the measurement
probe position. The main influence, especially in open sample
measurements, is due to the demagnetization effect: for a non-
ellipsoidal sample, the internal magnetic field and the
magnetization cannot be simultaneously uniform and an
average correction must be performed. The computation of this
demagnetizing factor was proposed for rectangular prisms [3]
[4], cylinders [5] [6], or ring cores [7].

Another approach is the computation of more accurate
factors using the finite element method (FEM) for the
experimental device simulation. This procedure allows
computing both the demagnetizing factor and the field
correction factor, which depends on the position of the
magnetic field probe [2]. These correction factors are
computed and stored in dedicated files, which can then be
visualized by the user. Three measurement types are
considered: closed circuit with sample between poles (e.g.
hysteresisgraph), closed circuit with surrounding coil (e.g.

single sheet tester) and open circuit (e.g. vibrating sample
magnetometer). The sample could be an ellipsoid, a cylinder, a
rectangular prism or it could have an arbitrary shape.

III. SOFTWARE DESIGN

The workflow that may be followed by a student for
performing several corrections and for selecting the best one is
represented in Fig. 1 as an activity diagram, using the
modeling language UML (Unified Modeling Language) [8].
The graphical interface is designed in Matlab© like a wizard,
with successive windows, which guides the student to the final
goal: selecting the best correction of the experimental curve, as
seen in the window presented in Fig. 2.

Fig. 1. Activity diagram, using UML

Educational Software for the Numerical Correction
of the Experimental Magnetization Curves
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13. EDUCATION

Fig. 2. Visualization of the correction effect for different methods

Each step is assisted by a link to the help file, where the
student can find information both about the software
commands and about the correction theory. The correction
setup includes the choice of the measurement type, sample
shape and sizes (Fig. 3). The user can choose between several
field correction procedures (considering 2D or 3D simulation
of the simplified or of the entire geometry of the experimental
device) and between different demagnetizing correction
methods: computation of a constant factor; extraction of a
constant factor or of a susceptibility-dependent factor from a
database. The corresponding files are loaded (using the
window presented in Fig. 4) and the user can also visualize the
correction factors.

Fig. 3. Setting the correction parameters

Fig. 4. Setting the correction method

The selected parameters of the correction method are
parsed by the corresponding computation subroutine, which
saves the corrected data in a dedicated file, the correction
effect being analyzed in the graphical window presented in
Fig. 2.

For the robustness of the design, the user has the possibility
to return to the previous decision at any moment.

IV. CONCLUSIONS

This educational software is useful for understanding the
way from the experimental measurement to the final material
characteristic. The extensible software architecture allows the
development of correction procedures for any other
equipment, using new numerical techniques. This integrated
correction technique is used in our Laboratory of Technical
Magnetism for Master courses. The next step of the software
development will be its integration with the dedicated software
of each experimental device, in order to have a real-time
correction during the measurement.
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13. EDUCATION

Abstract — In this abstract, the authors present the determination 
of two-dimensional (2-D) rotor eddy-current losses due to the 
stator slot-openings in surface mounted permanent-magnet (PM) 
motors (SMPMM). These parasitic losses are resistance-limited 
and only determined in the PMs from a new 2-D semi-analytical 
solution of the magnetic field taking into account the slotting 
effect. The 2-D rotor eddy-current losses due to the slotting effect 
have been compared with the finite element analysis (FEA) and 
calculated both for radial and parallel magnetization. The 
analytical results are in quite satisfying agreement with those 
obtained by the FEA. 

I. INTRODUCTION

In the SMPMM, the rotor (i.e., the conducting retaining 
sleeve, the PMs, and the rotor yoke back-iron) is exposed to high 
order flux density harmonics which are not synchronous with the 
rotor. The 2-D rotor eddy-current losses computation, caused by 
these non-synchronous magnetic fields, is a well known problem 
in conventional synchronous machines design. These parasitic 
losses have two origins which can coexist. At no-load (at 
I 0 A=  with I  the RMS value of stator current), they are 

caused by the reluctance variation due to the slotting effect, 
while on load these losses in the turning parts result from both 
stator slotting permeance harmonics [1] and magnetomotive 
force (MMF) harmonics which are of two types [2]: i) MMF 
harmonics caused by the discrete positions of stator winding 
conductors; ii) MMF harmonics caused by time harmonics in the 
stator current, which result from six-step commutation and 
Pulse-Width-Modulation (PWM). 

The main scientific contribution of this paper deals with by 
the 2-D rotor eddy-current losses due to the slot-openings, 
which are little discussed in the literature. These parasitic 
losses are usually assumed to be resistance-limited (i.e., the 
influence of the eddy-current reaction field is neglected) and 
are determined in the PMs from a new 2-D semi-analytical 
solution [3], which determines the no-load magnetic field 
distribution in the air-gap taking account into the slotting 
effect. This new calculation of 2-D eddy-current losses in the 
PMs due to the slotting effect requires less hypotheses than the 
method proposed by [1] which uses the 2-D permeance 
functions, in the sense that the solutions takes into account the 
real waveform of the teeth and do not use an approximate 
permeance function. However, the price to pay is the 
resolution of the Cramer's systems described in [3]. 

The 2-D eddy-current losses in the PMs evaluation predicted 
by this new approach of the slotting effect (and calculated for 
both radial and parallel magnetization) have been compared with 
the FEA. The semi-analytical results are in quite satisfying 
agreement with those obtained by the FEA. 

PMs
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y0

Θ


r


syR
sR

rR

mR

oΘ

2 pΘ
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tΘ

Rotor  yoke

Slotted  stator

Slot

Air-gap

Region 1: PMs
Region 2: Air-gap
Regions i: Slots on the stator with

: Number of stator slots per pole
( )3, , 2= +⋯ pi Q

pQ

Fig. 1.  Cross section of one pole pitch of the multi-pole SMPMM. 

TABLE I 
PARAMETERS OF SURFACE MOUNTED PM MOTOR 

Parameters Values Unit 
Number of pole pairs, p 1 –
Total number of slots, sQ 12 –

Magnet pole-arc to pole-pitch ratio, p m pα Θ Θ= 100 % 

Stator slot opening to tooth-pitch ratio, o o tζ Θ Θ= 33.33 % 

Radius of the stator yoke surface, syR 37 mm 

Radius of the stator surface, sR 20 mm 

Radius of the PMs surface, mR 19 mm 

Radius of the rotor yoke surface, rR 14 mm 

Axial length, L 45 mm 

Remanent flux density of the PMs, rmB 1.13 T 

Relative magnetic permeability of the PMs, rmµ 1.029 –

Electrical conductivity of the PMs, mσ 0.694x106 S

Volumetric mass density of the PMs, vmρ 7500 kg/m3

II. A 2-D NEW SEMI-ANALYTICAL SOLUTION [3] 

A. Problem Description and Assumptions 

Fig. 1 shows the geometric representation of the multi-pole 
SMPMM for the new 2-D semi-analytical solution used to 
study the effect of the stator slotting. The main parameters of 
this geometry are given in the Table I. 

The usual assumptions of all models in the literature are: 
i) End-effects are neglected; ii) The stator and rotor back-iron 
is infinitely permeable (i.e., the magnetic saturation is 
neglected); iii) The electrical conductivity of the PMs is 
assumed to be null to calculate the no-load magnetic vector 
potential (i.e., no resolution of Diffusion's equations); iv) The 
PMs are assumed to be nonoriented (with no particular 
direction of magnetization), isotropic, and having a linear 
demagnetization characteristic (rare earth magnets); v) Radial 
slot faces on the stator. 

Semi-Analytical Solution of 2-D Rotor Eddy-Current 
Losses due to the Slotting Effect in SMPMM 

F. DUBAS and C. ESPANET 
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13. EDUCATION

B. No-load Vector Potential Determination 

The new semi-analytical solution is based on 2-D analysis in 
polar coordinates, and involves the solution of Laplace’s 
equations in the air-gap (i.e., concentric region: Region 2) and in 
the slots on the stator (i.e., non-concentric regions: Regions i) 
and the solution of Poisson’s equations in the PMs (i.e., 
concentric region: Region 1) [see Fig. 1] with constant magnetic 
permeabilities. The no-load magnetic field solutions with the 
slotting effect are obtained by using the Fourier’s series and the 
method of separating variables. However, it now caters for 
i) internal rotor motor topology; ii) radial and parallel 
magnetization; iii) curvature effect; iv) depth of the slots. 

The no-load magnetic flux density, in each region, has been 
compared to the FEA calculations, and the agreement was very 
good considering both amplitude and waveform. The no-load 
vector potential in Region 1 can be expressed by 

( )Θ= ⋅ ⋅z1 rm m z1n 1n 1n sA B R f E ,G ,r , , (1) 

where r and Θs  are respectively the radial position and the 

mechanical angular position of the stator; n is the spatial 
harmonic orders, and z1nf  is the function in Fourier's series 

which depend on the integration constants 1nE  & 1nG . 

The integration constants of no-load local quantities (i.e., 
the magnetic flux density and vector potential), in each region, 
are determined by numerically solving the linear equations 
(i.e., the Cramer’s system) for each rsΘ  (with rsΘ  the 

mechanical angular position between the rotor and the stator). 
The Cramer's system, detailed in [3], for each rsΘ  is based on 

( ) ( )max p max6 n 1 Q v 1⋅ + + ⋅ +  equations and unknowns with 

maxn  and maxv  terms in the Fourier's series for the 

computation of the no-load local quantities. 

III. 2-D EDDY-CURRENT LOSSES IN THE PMS CALCULATION

According to Maxwell’s equation (i.e., the Faraday’s law, 
the Coulomb’s gage and the Ohm’s law) and by using (1), the 
2-D eddy-current losses in the PMs at the resistance-limited 
due to the stator slot-openings are given by 

slot 2 2
m nsfd e 0 rm mP k k N B M= ⋅ ⋅ ⋅ ⋅ , (2) 

where 0N  is the speed of rotation, m vm mM Vρ= ⋅  is the PMs 

mass with ( )2 2
m p m rV L R Rπ α= ⋅ ⋅ ⋅ −  is the volume of the 

PMs, ek  is the eddy-current losses coefficient in the PMs 

2 2
m

e
vm

L
k

6

π σ
ρ

⋅ ⋅=
⋅

, (3) 

and nsfdk  is the harmonic coefficient of the non-sinusoidal 

magnetic flux density produced by the PMs due to the slotting 
effect. This harmonic factor, given in the extended paper, 
depend principally on 1nE , 1nG , 1nE ′  & 1nG′ . The integration 

constants 1nE ′  & 1nG′  are determined by numerically solving 

the derivative of Cramer’s system detailed in [3]. 
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Fig. 2.  Variation of 2-D eddy-current losses in the PMs due to 
the slotting effect versus the speed of rotation. 

It can be noted that the harmonic coefficient nsfdk  is equal 

to zero for the slotless motors equipped with PMs. 

IV. COMPARISON WITH FINITE ELEMENT SIMULATIONS

The evaluation of slot
mP  has been applied to a SMPMM, 

whose main characteristics are given in the Table I. Fig. 2 

shows the influence of the rotor speed on slot
mP , with radial 

and parallel magnetized PMs, calculated numerically by FEA 
and semi-analytically by the 2-D new approach with the 
slotting effect. It can be seen that, although the semi-analytical 
solution assumes to be resistance-limited, good agreement is 

obtained. It can be noted that slot
mP  calculated semi-

analytically, at high fundamental frequencies, are significantly 
over-estimated in relation to those calculated numerically. 
These differences are due to eddy-currents effect on the no-
load magnetic field which is not taken into account in the new 
2-D semi-analytical model developed in [3]. 

V. CONCLUSION

A new 2-D semi-analytical solution of the magnetic field 
with the slotting effect has been used to determine the 2-D 
eddy-current losses in the PMs at the resistance-limited in 
SMPMM. This new calculation of these parasitic losses is 
mathematically more rigorous and requires less hypotheses 
than the method proposed by [1]. The new semi-analytical 
solution takes significantly less computing time than the FEA. 
In this comparison, the Cramer's system in [3] has of 486 
elements (i.e., with maxn 49=  and maxv 30= ) which is much 

smaller than the FEA having 6,000 surfaces elements for the 
studied SMPMM. Moreover, the semi-analytical solution can 
be a useful tool for design and optimization of multi-pole 
SMPMM, e.g., to minimize the 2-D rotor eddy-current losses 
due to the slotting effect. 
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Effect of Source Replacement on both Iron Loss and 
Flux in Solid and Laminated Steel Configurations  
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Abstract- This paper investigates the effect of source replace-
ment on both the iron loss and flux inside solid magnetic steel 
plates and laminated silicon steel sheets. The working conditions 
of the proposed models described in the paper are very different 
from the conditions usually found when modeling the material 
properties. Therefore, a zoned (3-D and 2-D eddy current sub-
regions) approach is employed in the 3-D FEM analysis.  

I. INTRODUCTION

Material modeling is usually carried out under certain 
standard conditions. The material and/or the device, however, 
work in various complex and non-standard environments. 
Therefore, the usual material property data cannot be used 
everywhere in the solved region and special zoned treatment is 
suggested, in particular, for the lamination configuration which 
is excited by a perpendicularly applied field. 

In this paper, the verification models are proposed in which 
the magnetic steel component is excited by different sources. 
The effect of the source replacement on both the iron loss and 
the flux inside the solid and the laminated magnetic steel 
configurations is examined in detail.   

II. VERIFICATION  MODEL

Two verification models, namely P21-B and P21-M1, are 
established. P21-M1 is a simplified model based on the 
original benchmark model of P21c-M1, in which the solid steel 
plate is removed and the laminated sheets (30RGH120, total 
20 sheets) are driven by the exciting source of twin coils (coil 
1 and coil 2). Four search coils (20 turns each) are inserted at 
the specified positions around the laminated sheets of interest. 
The number of sheets included in each search coil (e.g., no.1 to 
no.4) is different, as shown in Fig.1. P21-B (coil and solid 
magnetic steel plate) is a member-model of the Problem 21 
Family. 

There are three test cases based on the exciting current in 
coils 1 and 2. Table I lists the current configuration for each 
test case where the exciting current in the coil ranges from 0A 
to 25A (rms, 50Hz). 

III. MODEL SIMPLIFICATION 

The advance experiments to measure the magnetic flux and 
the loss inside the solid plate or the laminations of the 
verification model under different excitation conditions have 
been designed in order to simplify the models. For example, 
the test results based on P21-M1 show that the average 
magnetic flux density in the laminations closest to the exciting 

source is considerably higher than those far away from the 
exciting source. The average magnetic flux density quickly 
drops with the increase in the number of the laminated sheets. 
The strong eddy currents within a thin layer closest to the 
source must be considered in the FEM analysis. 

                                          

    

Fig.1. Verification model and search coils (sketch).   

\                                                                TABLE I
DIFFERENT EXCITATION CONDITIONS 

Exciting currents (A, rms, 50Hz) Cases 

in Coil 1 in Coil 2 
Main property of flux 

I J -J Perpendicular to steel 

II J J Parallel to steel 

III J 0 
Partly perpendicular, 

partly parallel  

According to the obtained results, it is found that the entire 
analyzed region of P21-M1 can be divided into two zones, i.e., 
the 3-D eddy current region of a thin layer including a few of 
the silicon sheets with a fine mesh, e.g. 0.15mm thick mesh 
layer as an initial calculation, and a 2-D eddy current region, 
treated as a bulk of laminated sheets, in which the eddy 
currents flow along the planar sheets without the normal 
component. The nonlinearity and electric and magnetic 
anisotropy of the laminations are taken into account.  

In this zoned modeling the total iron loss W can be 
expressed as (1) 
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Where )(e
hW and )(e

eW denote the specific hysteresis and eddy 
current loss per element respectively for the 3-D eddy current 
region; while )(e

tW  represents the specific total iron loss per 
element for the 2-D eddy current region. The Wh-Bm and Wt-Bm

curves used in (1) can be measured in advance. )(e
mB and 

)(eV are the peak value of the flux density and the volume per 
element respectively; dNE2 and dNE3 are the numbers of 
elements of the 2-D and 3-D eddy current regions.  

The measured and calculated total iron loss results of P21-
M1 (20 sheets) and P21-B are shown in Table II and Table III 
respectively, and they are in practically good agreement.  

TABLE II 
TOTAL IRON LOSS UNDER DIFFERENT EXCITING SOURCE (P21-M1)

Case I（W） Case II（W） Case III（W）Current 
(A, ms, 
50Hz) Measured Calculated Measured Calculated Measured Calculated

10.0 2.2 2.14 0.66 0.62 0.59 0.57 

15.0 5.3 5.15 1.43 1.33 1.39 1.26 

20.0 10.2 9.58 2.71 2.45 2.99 2.76 

25.0 16.8 15.47 4.72 4.49 5.19 4.91 

TABLE III
TOTAL IRON LOSS UNDER DIFFERENT EXCITING SOURCE (P21-B) 

Case I（W） Case II（W） Case III（W）Currents 
(A, ms, 
50Hz) Measured Calculated Measured Calculated Measured Calculated

10.0 11.97 12.04 11.61 12.83 6.15 6.57 

15.0 26.89 27.12 26.52 26.98 13.70 14.43 

20.0 49.59 50.92 47.16 47.52 24.73 25.49 

25.0 82.39 84.78 74.40 76.30 39.92 40.12 

From Table II and Table III the essential difference between 
P21-M1 and P21-B in iron loss under different excitations can 
be summarized as follows: 

1) For the lamination-based model, P21-M1, one can see 
that 

        
⎩
⎨
⎧

≅
×≅

)()(

)(5.3)(

IIICaseLossIICaseLoss

IIICaseorIICaseLossICaseLoss
                      (2) 

2) For the solid plate-based model, P21-B, the results are 
quite different from that of P21-M1,  

⎩
⎨
⎧

×≅
≅

)(2)(

)()(

IIICaseLossIICaseorICaseLoss

IICaseLossICaseLoss
                       (3) 

The iron loss results suggest that the eddy current loss 
induced within a thin layer is strongly dependent on the 
exciting pattern, such as the cases described in Table I, and on 
whether the magnetic steel is solid or laminated. There is a 
complicated relationship between the loss and the exciting 
sources. 

The measured and calculated results of the magnetic flux 
inside the magnetic steel plate of P21-B are shown in Table IV. 
To validate the analysis method further, the measured and 
calculated results of the magnetic flux density at the specified 
positions in air (y=0.0mm, x=3.76mm, see the coordinate in [2] 

or in the definition of Problem 21at www.compumag.co.uk)
under different exciting conditions have been obtained for 
P21-M1. Fig.2 shows the distributions of Bx of the Case II and 
Case III. The measured and calculated results are in good 
agreement. 

TABLE IV
FLUX UNDER DIFFERENT EXCITING SOURCE (P21-B) 

Case I（mWb） Case II（mWb） Case III（mWb）Current
(A, ms, 
50Hz) Measured Calculated Measured Calculated Measured Calculated

10.0 0.158 0.151 0.341 0.386 0.326 0.318 

15.0 0.318 0.306 0.513 0.538 0.492 0.481 

20.0 0.478 0.458 0.679 0.687 0.652 0.637 

25.0 0.618 0.605 0.834 0.841 0.808 0.780 

Note: The search coil is located at z=130mm [1,2]. 

(a) Case II 

(b) Case III 
                     

Fig.2.Magnetic flux density Bx at specified positions 
(P21-M1, current: 10A, rms, 50Hz).  

IV. CONCLUSION

The effect of the source replacement on both the iron loss 
and flux inside the solid magnetic steel plates and the 
laminated silicon steel sheets is examined in detail based on 
the proposed models, taking account of both the electric and 
magnetic anisotropy of the material.  

The zoned approach (involving with 3-D and 2-D eddy 
current sub-regions) is efficient in dealing with the lamination 
configuration, which is validated by comparing the calculated 
and measured results. 

The different electromagnetic behavior of the magnetic steel 
components with either laminated or solid geometries is shown.  

V. REFERENCES

[1]Z.Cheng, N.Takahashi, B.Forghani,et al, “Analysis and measurements of 
iron loss and flux inside silicon steel laminations,” IEEE Trans. on 
Magn., vol.45, 2009.
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Abstract — An adaptive equivalent circuit method is developed 
for analyzing the TEAM Problem 28. The problem is solved by 
transferring the system to an equivalent circuit model which is 
set up by adaptively divided the plate into a series of segments 
based on the field continuity condition at the interface of seg-
ments. The performance is obtained by solving the circuit equa-
tions combined with motional equations with Runge-Kutta-
Fehlberg method.  The accuracy and efficiency of the proposed 
method are verified by comparing with FEM calculation and 
experimental results. 

I. INTRODUCTION

TEAM problem 28 is an electrodynamic levitation system 
utilizing the eddy current induced in conducting plate. This is 
a complex system involves electric circuits, magnetic fields 
and mechanical movements. This kind of repulsion system is 
being involved in many engineering applications due to its 
very fast response via small inductance. Typical examples are 
electromagnetic launcher, electromagnetic brake, actuator of 
circuit breaker and arc eliminator. In order to analyze this kind 
of system, finite element method (FEM) coupled with circuit 
and motional equations have been used widely. The FEM, 
however, require huge computing time related with transient 
time-stepping analysis. Especially if it is related with parame-
ter optimization of the system, it can be hardly adopted.    

For reducing the computing time, hence, paying attention 
to the fact that the system does not contain any magnetic ma-
terial, equivalent circuit methods have been developed [1]-[2]. 
These methods, however, still depend on FEM for parameter 
calculation with a lot of computing time, and do not explain 
how to divide the conducting plate for accurate analysis.

In this paper, an adaptive equivalent circuit method is de-
veloped, where the conducting plate is adaptively divided into 
a series of segments considering the field continuity condition 
at the interface of segments. The accuracy and efficiency of 
the proposed method are investigated through comparison 
with FEM and experimental results for TEAM problem 28.  

II. ADAPTIVE EQUIVALENT CIRCUIT METHOD

Fig. 1 shows the configuration of the TEAM problem 28 
where a cylindrical aluminum plate, of which mass is 
0.107(kg), is located above two cylindrical coils. When a si-
nusoidal current source is supplied to the inner and outer coils, 
the conducting plate will experience a repulsive force along z
direction due to the eddy current induced in the conducting 
plate.

A. Equivalent Circuit Method 

In order to approximate the distribution of eddy currents in 
the conducting plate, the plate is divided into a series of seg-
ments as shown in Fig. 2(a), and the eddy current, in each 
segment, is assumed to have uniform distribution. Each seg-
ment, then, physically corresponds to a conductive ring, as 
shown in Fig. 2(b), with its circuit parameters of resistance 
and inductance as shown in Fig.2(c). In this approximation, 
the whole system can be transformed into equivalent circuits 
as shown in Fig. 2(d).  

The circuit equations of the equivalent circuits are as fol-
low: 

0, 1, 2,3, , .i i iI R d dt i Nλ+ = = (1)
2 2

1 1 1

, 1,2, ,
N

i is
is ij s

s j s

s j
d L dzL L I
dt z dt

.I I iλ
= = =

∂= +
∂

+ =∑ ∑ ∑ N   (2) 

where the subscript s denotes the exciting coil, N is the num-
ber of segments, Ri, Ii,λi are the resistance, eddy current and 
flux linkage of the i-th segment, respectively, Lis is the mutual 
inductances between i-th segment and exciting coil. The de-
rivative of inductance Lij between segments is zero. Since the 
inductances depend only on the geometric configuration, they 
can be computed analytically using Bartky’s transformation 
[3].  

The dynamic state equations are obtained by combining 
(1)-(2) and motional equations as follows:  

Z
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Fig. 1. The dimension of the TEAM Workshop 28 Problem
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(d) equivalent circuit of the system 

Fig. 2. Equivalent circuits of the TEAM problem 28. 
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where IN+1, IN+2 and M are the position, speed and mass of the 
plate, respectively, Fem and FG are the electromagnetic and 
gravitational forces acting on the plate, respectively. In the 
solution of (3), Ii (i=1,2,···,N) and Fem are found from the pre-
vious time-step, and Runge-Kutta-Fehlberg method is intro-
duced to control the step-size automatically.  

After finding the eddy currents in each segment, the elec-
tromagnetic repulsive force is computed as follows:  

2

1 1

[ ]
N

si
s i

s i

em
L

I I
z

F N
= =

∂

∂
= −∑∑ (4)

B. Adaptive Segmentation of the Conducting Plate 

The efficiency and accuracy of the proposed algorithm 
strongly depend on the segmentation of the conducting plate 
since the distribution of the eddy currents in conducting plate 
is a lot affected by the segmentation just like mesh refinement 
in FEM. According to the electromagnetic field theory, the 
tangential component of electric field intensity should be con-
tinuous at the interface of two segments. From this, together 
with Ohm’s law, we get, at the interface of segments, the con-
dition of 1t 2tJ J= . In this paper, local field continuity error 
for a segment (e), shown in Fig. 3(a), is defined as follows:   

2
( ) ( )

1 1

e e

i

N Nt
e e k k k

t
k k

e J J l
= =

⎛= − ⋅⎜
⎝ ⎠
∑ ∑∫ l dt

⎞
⎟ (5)

where Ne is the number of the neighboring segments of e-th
segment, J(e) and Jk are the eddy current densities of the e-th
segment and the k-th neighboring segment, respectively, lk is 
the length of the overlapped interface between e-th segment 
and the k-th neighboring segment as shown in Fig. 3 (a). After 
computing the local error for all segments, the segments with 
local error of ( )1.1 is refined into two, and those 

with 

1.5ee e e≤ ≤
( ) 1.5ee  into four segments, respectively, as shown in 

Fig. 3(b) and Fig. 3(c).   

e≥

C. Solving Procedure 

The overall solving procedure of the proposed method is 
summarized as follow: 

Step 1. Divide the conducting plate into several uniform seg-
ments. 

Step 2. Calculate all circuit parameters, and set up the state 
equations. 

Step 3. Solve the state equations in time domain, and calculate 
the local field continuity error for all segments.  

Step 4. Stop if the final displacement is converged. Otherwise 

refine the segments and go to Step 2.

III. NUMERICAL RESULTS

Fig. 4 shows the distribution of the segments with eddy 
current density in each segment at different iterations, and Fig. 
5 compares the distribution of the eddy current density at the 
plane of z=4.6mm as the plate is refined. It is observed that 
the proposed algorithm gives very smooth eddy current distri-
bution compared with uniform segments. The numerical effi-
ciency and accuracy of the proposed method are shown in Fig. 
6 and Table I by comparison with FEM and experimental re-
sults. As it is seen from the comparison, the proposed method 
is much more efficient than FEM and uniform refinement, and 
also has a good accuracy. 

In the version of full paper, the proposed algorithm will be 
applied to the performance analysis of a Thomson-coil actua-
tor for a high-speed circuit breaker, and the results will be 
discussed.
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TABLE I 
COMPARISON OF ACCURACY AND EFFICIIENDY 

Proposed method  
(Number of segments) Measured FEM

5 11 20 38 71
Final position 11.3 11.39 11.05 11.29 11.37 11.38 11.40

Computing time - 5340 1 3 19 124 1018

* Position and time are in (mm) and (minutes), respectively. 
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Fig. 3. Segment refinement. (a) before refinement, (b) into two segments, 
(c) into 4 segments. 
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Abstract—A benchmark is proposed in order to compare 
algorithms for multi-level optimization. The device is a safety 
transformer. The discrete design variables are belonging to standard 
values for lamination, frame, and wire leading to 246,078,000 feasible 
solutions. Two models are available to compute the objectives and 
constraints: a 3D FE fine model and a lumped model. Their 
computation times are 2 hours and 50 ms, respectively. Combining 
their properties during the optimization greatly reduce the 
computation time. 
 

Index Terms—Multi-level optimization, discrete optimization, 
space mapping technique, benchmark, 3D FEA 

I. INTRODUCTION 

owadays, the finite element (FE) method is often used to 
model electromagnetic devices with a high accuracy. The 

FE models in two or three dimensions (2D, 3D) are considered 
as virtual prototypes. However, the multi-physical coupling and 
the great number of unknowns in 3D FE models are very time 
consuming. 

In the design of electrical devices, discrete design variables 
occur naturally in the optimization problem formulation. For 
instance, the numbers of slots and magnets are integers, and the 
type of materials and structure are discrete. However, discrete 
optimization requires different concept than the conventional 
continuous problems. Derivatives do not directly apply to the 
combinatorial optimization problem. So the amount of model 
evaluations during the discrete optimization is much higher than 
the continuous one. 

Applying directly the optimization methods to 3D FE models 
may lead to an excessive computation time going from several 
days to few months. So replacing the 3D FE model by a 
surrogate model that is less time consuming is an interesting 
way to reduce the computation time of optimization. However, 
the quality of the solution should be as good as the one found 
with the FE model. 

According to the state of the art, the global optimization with 
a FE model and its surrogate version can be done in two steps. 
The first step consists in the progressive building of a response 
surface. New points are added in the areas where the surrogate 
model is not accurate enough. The global optimum is found in 
the second step with any algorithm requiring a high number of 
evaluations such as genetic algorithms (GA). Several methods 
are used to build the surrogate model: diffuse element method 
[1], Kriging methods [2], artificial neural networks [3]-[5], and 
radial basis functions [6]. The surrogate model has the 
advantages to be fast to compute, smooth, and to have explicit 
derivatives at low cost. Other approaches use an inaccurate 
surrogate model that is progressively refined where temporary 

optimums lie [7]. In the EGO method [8], the surrogate model is 
also refined with points belonging to areas where the accuracy is 
low. Unfortunately, all those methods require a high the number 
of evaluations of the FE model to build the surrogate model. 
This is cancelling the benefits of the optimization with the 
surrogate model because the total time of identification and 
optimization is often similar to the time of a direct optimization 
with the FE model. 

To reduce significantly the number of FE model evaluations, 
the surrogate model has to contain initially some knowledge. It 
can be analytical equations describing the physical phenomena 
within the device or a lumped model. This model is called 
coarse model and can be improved locally thank to the FE 
model that is called fine model. Combining both models is 
called multi-level optimization and the space-mapping 
techniques are very effective to solve them [9]-[11]. 

The COMPUMAG TEAM workshops propose two 
benchmarks for optimization with FE models [12]-[13]. The 
models are 2D static magnetic and require few minutes for each 
evaluation. Thanks to them, continuous, discrete, and multi-
objective optimization algorithms have been proposed and 
compared. Unfortunately, no coarse model is available for the 
superconducting magnetic energy storage system and the die 
press. 

In many electromagnetic devices such as motors, 
transformers, electromagnets, etc. it is possible to build a 
lumped model and a FE model. Therefore, this paper proposes a 
benchmark for multi-level optimization with both models. The 
device is a transformer and a 3D FE model with a fine mesh is 
required to have accurate results on the leakage inductance, for 
instance. The computation time of the fine and coarse models 
are 2 hours and 50 ms, respectively. 

In the next sections, the optimization problem, the fine model 
and the coarse model are described. A first result is shown in 
section IV. Finally, some conclusions are given. 

II. OPTIMIZATION PROBLEMS 
The safety isolating transformer uses grain-oriented E-I 

laminations. The primary and secondary windings are both 
wound around the frame surrounding the central core (Fig. 1). 

The optimization problem contains 7 discrete design variables: 
three parameters {a, b, c} for the shape of the lamination; one for 
the frame {d}; two for the section of conductors {S1, S2} and one 
for the number of primary turns {n1} (Fig. 1). There are 24 types 
of lamination E-I, 62 types of frame F and 63 types of enameled 
wire W given in standard catalogues. The number of primary 
turns n1 is integer but only 1,000 values are allowed, leading to 
246,078,000 possible combinations.  

T. V. Tran, S. Brisset, and P. Brochet, Members, IEEE 
L2EP, Ecole Centrale de Lille, Cité Scientifique, BP 48, 59651, Villeneuve d’Ascq Cedex, France 

Proposal of a Benchmark for Multi-Level Optimization 
 with 3D Finite Element Model 
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There are 7 non-linear inequality constraints. The copper and 
iron temperatures Tco, Tir respectively should be less than 120°C 
and 100°C. The efficiency η should be greater than 80%. The 
magnetizing current Iμ/I1 and drop voltage ΔV2/V2 should be less 
than 10%. Finally, the filling factors of both coils f1, f2 should be 
lower than 0.5 for round wire. 

The objective function aims to minimize the mass of iron 
and copper materials. So the problem can be expressed as: 

 

min  mass (X) s.t. η ≥ 0.8 

X = {a, b, c, d, S1, S2, n1} Tco ≤ 120°C Iμ/I1 ≤ 0.1 

{a, b, c} ∈ E-I  d ∈ F Tir ≤ 100°C ΔV2/V2 ≤ 0.1 

S1, S2 ∈ W  n1 ∈ N f1 ≤ 0.5 f2 ≤ 0.5 

(1)

 
One of the constraints, e.g. the efficiency, may be changed 

to an objective in order to set up a multi-objective optimization 
problem: minimize mass and maximize η.  

III. MODELS 

A. 3D finite element “fine” model  
Thermal and magnetic phenomena are both modeled by 

using 3D FEA on one eighth of the transformer due to the 
symmetries. For the electromagnetic modeling, all magnetic and 
electric quantities are assumed sinusoidal. Full load and no-load 
simulations are used to compute all the characteristics. The iron 
loss is computed with Steinmetz formula and the leakage 
inductances are calculated with the magnetic co-energy. The 
magneto-thermal coupling requires about 2 hours. 

B. Lumped “coarse” model 
The modeling hypotheses are uniform distribution of 

induction in the iron core and no voltage drop due to the 
magnetizing current. The thermal assumptions are the same than 
the 3D FE model except that the temperatures are uniform 
within the coils and the lamination. The lumped model contains 
five elements and the computation time about 50 ms. 

IV. FIRST RESULT 
One algorithm combining Branch-and-Bound method with 

Output Space-Mapping obtain a solution by using 4 evaluations 

of FE model and 127,852 evaluations of lumped model [14]. 
The total time for optimization in then less than 10 hours. 

V. CONCLUSION 

A benchmark is proposed in order to compare algorithms for 
multi-level optimization. The device is a safety transformer. The 
discrete design variables are belonging to standard values for 
lamination, frame, and wire leading to 246,078,000 feasible 
solutions. Two models are available to compute the objectives 
and constraints: a 3D FE model and a lumped model. Their 
computation times are 2 hours and 50 ms, respectively. 

This benchmark meets the requirements of engineers and 
scientists working on the design of electromagnetic devices by 
using 3D FE models. It is dedicated to highlight the most effective 
multi-level optimization methods. 
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Fig. 1. Geometry of the transformer problem in 3-D. 

866

 



10. SOFTWARE METHODOLOGY (B) VISUALIZATION

Abstract — This paper presents a visualization method of 
magnetic flux lines applying Tube System. Incomplete 
visualization of magnetic flux lines leads to misunderstanding 
about the magnetic field and the phenomenon to an observer. We 
have already proposed a method to compute the magnetic flux 
lines analytically from edge finite element results. In this paper, a 
method to appropriately allocate the magnetic flux lines in 3-D 
space applying the Tube System is discussed. In the proposed 
method, the tube’s radius depends on the strength of the 
magnetic field, which regulates the density of the lines. The 
proposed method can generate the appropriate visualization of 
the magnetic flux lines, thus allowing the observer to correctly 
interpret the magnetic field and the phenomenon. 

I. INTRODUCTION

A huge amount of numerical data results from 
electromagnetic field analysis, with improvement of computer 
performances and development of analysis methods in recent 
years. From the huge data, it is difficult to interpret the 
physical phenomenon and to mine the valuable information. 
Some ways of electromagnetic field visualization are, 
therefore, used, such as contour, distribution and vector maps, 
as a tool of magnetic field analysis software. These ways are 
effective to quantitatively visualize the field on an arbitrary 2-
D plane, but unsuitable for 3-D field visualization. The 
magnetic flux line visualization is the most effective way to 
grasp the magnetic field in 3-D space, so it offers the observer 
the qualitative understanding about the characteristics.  

A few methods to visualize the magnetic flux line have 
been proposed [1], [2]. In [1] and [2], the magnetic flux lines 
are computed analytically from the tetrahedral and hexahedral 
edge finite element results. These works, however, do not deal 
with the problem to appropriately allocate the magnetic flux 
lines, in proportion to the magnetic flux density. The demands 
for the visualization of the magnetic flux lines are:  

(i) the density of magnetic flux lines is proportional to the 
strength of the magnetic flux density, B  [T], 

(ii) the tangential direction of magnetic flux line is the same 
as the direction of the magnetic field at each point. 

It is necessary to draw the magnetic flux lines according to the 
demands mentioned above. The demand (i) reveals that the 
magnetic flux lines must be allocated in proportion to the 
magnetic flux density. 

In this paper, a method to appropriately allocate the 
magnetic flux lines applying the Tube system is proposed on 
demands of magnetic flux line visualization. The Tube System 
is newly developed for 3-D magnetic flux line visualization 
based on the Dynamic Bubble System, [3], [4], which is used 

for mesh generation. It deals with a sphere, called the bubble.
However, a magnetic flux line cannot be represented by the 
sphere. In the newly developed Tube System, a tube 
surrounding a magnetic flux line is employed. The tube 
diameter and the attractive force between tubes, called the 
tube force, depend on the magnetic flux density. The tubes 
move until the distribution reaches a closely-packed 
configuration. 

II. ALLOCATION OF MAGNETIC FLUX LINES

The allocation of magnetic flux lines must obey the 
demands given in Section I, so that the observer can 
qualitatively grasp the magnetic field direct from the lines. 
Before, the method to allocate the magnetic flux lines was 
proposed in [5]. It has a difficulty to specify a plane 
intersecting with all the magnetic flux lines by hand. On the 
intersecting plane, the Dynamic Bubble System [3], [4] is 
applied to allocate the magnetic flux lines, as shown in Fig. 1. 
It requires a difficult labor for user and it has the problem that 
the allocation of magnetic flux lines cannot be obtained when 
the plane intersecting with all the magnetic flux lines does not 
exist in the analysis domain.  

B4

r4

B3r3

plane to apply the Bubble System

bubble

r1

B1

B2

r2

magnetic flux line

r5

B5

plane to apply
the Bubble System 

domain 1

iron

analysis domainpermanent magnet

Fig. 1. The previously proposed method has a problem for user to specify a 
plane which intersects with all the magnetic flux lines. 

In order to address the problem, we have developed the 
method applying the Tube System, which is unnecessary to 
specify the plane intersecting with all the magnetic flux lines. 

In the Tube System, a virtual tube is supposed to surround 
a magnetic flux line, as shown in Fig. 2. According the 
demands (i), the radius of tube, R, is in proportion to the 
strength of magnetic field; 

1
R ∝

B
,                                           (1) 

where B  is the magnitude of magnetic flux density on the 

center of tube. Thus, the radius of tube changes with the 
location. In order to effectively visualize the magnetic field, 

Visualization Method of Magnetic Flux Lines 
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10. SOFTWARE METHODOLOGY (B) VISUALIZATION

the tube radius R is controlled by multiplying an arbitrary 
constant value c;

1
R c= ×

B
.                                     (2) 

When c is too large, the number of the magnetic flux lines 
drawn is too small for the user to grasp the phenomenon. In 
order for the user to effectively grasp the magnetic field, the 
value of the constant c must be suitably controlled. 

Surrounding Tubes Magnetic Flux Lines

Permanent
Magnet

Fig. 2. An example of surrounding tubes and magnetic flux lines generated 
from a permanent magnet. 

In order to closely-packedly allocate the magnetic flux 
lines, the tubes must move by the tube force, which depends 
on the tubes’ radius and their distance. The tube force is 
categorized as follows: 

(i) attractive force when l > rA + rB,
(ii) zero force when l = rA + rB,
(iii) repulsive force when l < rA + rB,

where l is the distance of tubes, rA and rB are the radius of the 
magnetic flux lines A and B, respectively, as shown in Fig. 3. 
The function of the tube force [3], [4] is given as 

3 2( )F l l l lα β γ δ= + + + ,                          (3) 

where F(l) is shown in Fig. 6. The coefficients α, β, γ and δ
are obtained from F(l0) = 0, F(ul0) = 0, F(0) = M and F’(0) = 0, 
l0 = rA + rB, ul0 and M are the effective range of tube force and 
the maximum force, respectively. 

III. MAGNETIC FLUX LINE VISUALIZATION

A. Permanent Magnet and Iron Model 

An example is shown in Fig. 5, where the magnetic flux 
lines are analytically computed from the FEA result of the  

Magnetic Flux Line A

Surrounding Tubes

Magnetic Flux Line B

lrA rB

Fig. 3. The tube force acting between magnetic flux lines A and B depends on 
the radii rA, rB and the distance l.

Distance, l

ul0

l0

M

0

F(l)

Force, F

Fig. 4. The tube force is calculated from l0= rA + rB, the maximum force M,
and the effective range of the force ul0.

model consisting of a permanent magnet and an iron plate in 
Fig. 1. Fig. 5(a) shows the result with c = 50 in (2), the 
number of the drawn magnetic flux lines is 32. In Fig. 5(b), 79 
magnetic flux lines are drawn with c = 100. It is easy to 
control the number of the drawn magnetic flux lines. In both 
results, the rational allocations of the magnetic flux lines are 
achieved. 

B. Permanent Magnet Motor Model 

The proposed method is applied to a surface permanent 
magnet motor. It is difficult to visualize the magnetic flux 
lines since the rotor rotates. Fig. 6 shows the magnetic flux 
lines of the rotating motor. As the result, it is possible to 
represent the smoothly changing magnetic flux lines while the 
rotor is rotating. 

(a) 32 lines with c = 50                       (b) 79 lines with c = 100 
Fig. 5. The magnetic flux lines are visualized. 

(a) 0 deg.                        (b) 33.3 deg.                   (c) 66.7 deg. 
Fig. 6. The magnetic flux lines of the rotating motor. 

IV. CONCLUSION

We have proposed the method to rationally allocate the 
magnetic flux lines utilizing the Tube System. The proposed 
method and two examples are shown. The magnetic flux line 
visualization helps us to interpret the magnetic field and the 
phenomenon. 
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Abstract -- A strategy for the parallel 2D Delaunay refinement 
algorithm is proposed in this work.  The implementation 
approach is based on the decomposition of the initial coarse 
mesh into smaller subdomains which are refined in parallel. 
The developed parallel method presents few message-passing 
operations and low communication costs due to application of a 
prerefinement and a discretization of the segments along the 
boundaries. 

I. INTRODUCTION

Nowadays, the immense technological progress provides 
access to powerful computers for problem resolution, mainly 
in areas such as Computational Fluid Dynamics (CFD) and 
Computational Electromagnetics (CEM) that require larger 
meshes [1]. 

Methods such as Delaunay Algorithm [2], [3] or 
Advancing Front [4] can be applied for 2D quality grid 
generation. Nevertheless, the mesh generation grows with 
the problem size, thus the triangulation produces very large 
meshes with millions of elements, increasing the processing 
time and, in some cases, exceeding the memory capacity. 

The advent of the cluster brought a new programming 
strategy: the parallel programming. Parallel mesh refinement 
decomposes the initial mesh into smaller submeshes which 
are refined in parallel. However, this induces unpredictable 
communication costs with degree of dependency or 
synchronization [5]. 

An alternative to overcome this problem is the 
application of two strategies in order to minimize the 
synchronization between the subdomains. 

First of all, the initial coarse mesh is prerefined by 
eliminating the extremely obtuse triangles generating a less 
poor “initial mesh” [6]. Second, the discretization of the 
boundary segments along neighboring partitions decrease the 
coupling between them [5].  

II. PARALLEL 2D DELAUNAY REFINEMENT

Typically, a Delaunay mesh refinement finds an initial mesh 
starting from a collection of vertices and segments, also 
known as Planar Straight Line Graph (PSLG). In a 
triangulation, only the half-lines of  the  input  PSLG  will be 
considered segments, while the other ones are edges [3].  

This work was supported in part by the CNPQ under Grand No. 
140226/2002-8

The next stage is to decompose the coarse grid into 
smaller subdomains using METIS, a popular partitioning 
program from the University of Minnesota [7]. 

The partitions are distributed over the nodes of the 
cluster, where each submesh is refined concurrently. If a 
boundary segment is split, the neighboring subdomains are 
updated for this split by means of messages [8], ensuring the 
conformity of the mesh along the interfaces. 

However, this synchronization strategy has high 
coupling, presenting high communication costs. 

III. COMMUNICATION STRATEGY

The main insight of this algorithm is to attempt to reduce 
the communication and synchronization, through 
improvements in the initial mesh, resulting in submeshes 
nicely subdivided with minimal interaction among 
processors, which enables a weak coupled between shared 
subsegments. 

The algorithm does not divide the initial coarse mesh; 
firstly, a prerefinement, method developed by the authors [6], 
was used to try to eliminate triangles whose apex angle is 
extremely obtuse, generating an “initial mesh” with fewer 
small angles, instead. 

Therefore, the prerefinement strategy improves the coarse 
grid allowing the METIS to get submeshes with few 
extremely obtuse triangles in the boundary segments, 
decreasing the encroached subsegments and, consequently, 
less refinement is necessary in these places [6]. 

Fig. 1. Traditional domain decomposition (a) and with reduced 
communication strategy (b). 

Another important optimization is the discretization of 
the segments along their common boundary. The goal of this 
step is to anticipate the addition of the necessary vertices to 
guarantee a boundary conforming along the shared segments, 
decreasing more and more the number of the message-
passing between them. 
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The discretization proposed differs from others in that, 
instead of generating a constrained Delaunay triangulation, it 
ensures that all elements are Delaunay. 

As Fig. 1a shows, the submeshes have very small angles 
in boundary segments due partition of the initial coarse mesh 
of an electromagnet. In Fig. 1b, a few small angles are 
generated by prerefinement application. 

IV. RESULTS

The examples approach the final parallel mesh of an 
electromagnet with 4 partitions. In Fig. 2 a traditional 
parallelism is accomplished, while Fig. 3 illustrates the mesh 
with low synchronization obtained by the developed method, 
i.e., with weakly coupled parallelism. 

The comparison of the traditional algorithm and the 
communication strategy execution for an electromagnet with 
4 partitions is shown in Tables I and II. Table I summarizes 
the number of message-passing for the traditional parallel 
refinement. Similarly, Table II presents the results for the 
method proposed. 

Fig. 2. Parallel mesh of an electromagnet without reduced communication 
strategy. 

Fig. 3. Parallel mesh of an electromagnet with reduced communication 
strategy. 

TABLE I: PARALLEL REFINEMENT WITHOUT COMMUNICATION 
STRATEGY. 

Process
No of 

triangles
No of sent 
messages 

No of received 
messages 

Time 
(s)

P0 386 9 35 <2 
P1 313 6 9 <2 
P2 170 9 36 <2 
P3 208 65 9 <2 

TABLE II: PARALLEL REFINEMENT WITH COMMUNICATION 
STRATEGY. 

Process
No of 

triangles
No of sent 
messages 

No of received 
messages 

Time 
(s)

P0 578 2 2 <1 
P1 367 2 7 <1 
P2 637 4 5 <1 
P3 392 11 5 <1 

V. CONCLUSIONS

The presented strategies provided substantial 
improvements in the communication reduction in parallel 2D 
Delaunay refinement. The experimental results showed that 
the algorithm is weakly coupled or even decoupled according 
to the problem. 

The prerefinement generates a less poor “initial mesh”, so 
supplying quality submeshes with low degree of dependency, 
by decreasing the number of encroached subsegments. In 
addition, the discretization of the common boundary 
“predicts” the local of futures vertices, thus minimizing or 
eliminating the amount of necessary communication to 
ensure the conformity along the shared segments. 

Another possibility to reduce more and more the 
communication is to smoothing the boundary between the 
subdomains, i.e., if an element has more neighbors in a 
neighboring partition, then the element is transferred from 
original partition to this neighboring subdomian. 

Future works intend to smooth the boundaries, and, 
besides, to extend the developed strategies to a three-
dimensional version. The key idea is to apply the diametral 
sphere and equatorial sphere techniques [2] to extend the 
prerefinement process for 3D.
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Abstract-The purpose of these papers is to answer a basic 
problem of finite element method that is how do the elements 
which have determined shapes form the element grid which has 
determined structure. In order to study this problem, a method 
called chain-making and chain-coupling is established. Through 
this method the quantitive relationships between the geometric 
structures of the element grid and the geometric structures of its 
elements are founded. This problem is studied both in 2-D and 3-D 
cases and here is the second part of 2-D case conclusions. 

I. INTRODUCTION 

In order to answer the problem of how do the elements which 
have determined shapes form the element grid which has 
determined structure, a method called chain-making and 
chain-coupling is established. In the method, the relationships 
between elements in an element grid are classified according to 
their topological relationships. Then through defined steps the 
element grid which has complicated relationships between its 
elements can be disassembled to another element grid which just 
has a single kind of 0-dimension relationship between its 
elements. The disassembled element grid is called chain, and the 
disassemble procedure is called chain-making.  

In a chain, elements have simple relationships of 0-dimension, 
so the quantitive relationships between the geometric structures 
of the chain and the geometric structures of its elements can be 
found relatively easily.  

On the other hand, the 0-dimension relationships between the 
elements in a chain are inherited from the original element grid, 
so the original element grid can be reassembled from its chain. 
The procedure about how does the original element grid to be 
reassembled from its chain is called chain-coupling. By studying 
the chain-coupling procedure, basic properties about how do the 
elements in a chain form the original element grid are found, and 
the quantitive relationships between the geometric structures of 
the element grid and the geometric structures of its elements are 
found. So the problem of how do the elements which have 
determined shapes form the element grid which has determined 
structure are answered 

II. NARROW SENSE CHAIN-MAKING AND CHAIN-COUPLING 

THEOREM OF 2-D GRID 

Definition 2-1: Vertex Chain 

On a set N which consists of elements with a number of n, a 
function f can be defined as following: 

1. The first element e1 just has one 0-dimension relationship 
with the second element e2 through a common vertex v12;

2. The ith(1<i<n) element ei has one 0-dimension 
relationship with the (i-1)th element ei-1 through a common 
vertex v(i-1)i, and it has one 0-dimension relationship with the 
(i+1)th element e(i+1) through a common vertex vi(i+1);

3. The nth-element en just has one 0-dimension relationship 
with the (n-1)th element e(n-1) through a common vertex v(n-1)n;

Thus the elements in set N are mapped to a vertex chain 
through function f.

Theorem 2-1: The first chain-making theorem in 2-D grid 
In a 2-D triangle grid, if there are not cut-vertex, cut-edge 

and interior boundary in it, this triangle grid can be made into a 
vertex chain. 

Theorem 2-2: The second chain-making theorem in 2-D grid 
In a 2-D rectangle grid, if there are not cut-vertex, cut-edge 

and interior boundary in it, this rectangle grid can be made into a 
vertex chain. 

Theorem 2-3: In a 2-D vertex chain, if the element number is 
n, the edge number of every element is m, then the total edge 
number in the chain is lc=n×m and the total vertex number in the 
chain is vc= (n×m)-(n-1). 

Theorem 2-4: Narrow sense chain-coupling theorem in 2-D 
grid 

In a narrow sense chain-makeable 2-D grid among the 
number of elements: n, the edges of every element: m, total 
number of edges of the grid: l, number of boundary edges: lb,
number of interior edges: li; total number of vertexes of the grid: 
v, number of interior vertexes: vi, the following quantitive 
relationships hold: 

li=(n×m-lb)/2   (1) 
 l=(n×m+lb)/2   (2) 
 v=l-(n-1)   (3) 
 vi=l-(n-1)-lb   (4) 
The concern concepts and the demonstration of these 

theorems can be found in reference [1]. 

III. BROAD SENSE CHAIN-MAKING THEOREM

As shown in reference [1], the condition and procedure for 
narrow sense chain-making and chain-coupling are quite strict 
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and complicated. At the same time, along with these discussions, 
a very important property of chain-making and chain-coupling 
can be found, that is when the chain-coupling property of the nth 
element on a vertex chain is studied, the continuity of the nth 
element in the (n-1)th order chain-making grid and nth order 
chain-coupling grid are required. But when this continuity is 
satisfied, it is not required that the original element grid could be 
made into a entire vertex chain, and there could be some 
branches in the making out vertex chain.  

Definition 3-1: Branched Vertex Chain 
A function f can be defined on a set N which consists of 

elements with a number of n, if it makes the ith(i≤n) element ei

in the jth(j≥1) branch has one 0-dimension relationship with the 
(i-1)th element ei-1 through a common vertex v(i-1),I, then the 
elements in set N are mapped to a branched vertex chain through 
function f.

Definition 3-2: Branching Element in a Branched Vertex 
Chain 

If branches appear on an element of a branched vertex chain, 
this element is called a branching element of the branched vertex 
chain.

Theorem 3-1: Chain-making Theorem in 2-D Grid 
A 2-D grid can be made into one branched vertex chain at 

least.

IV. BROAD SENSE CHAIN-COUPLING THEOREM

Theorem 4-1: Theorem of Branched Chain-coupling 
Branches in a branched vertex chain have no influence on 

the result of chain-coupling. 
Theorem 4-2: In a 2-D branched vertex chain consist of 

elements of m edges and with element number of n, there are n 
element, lc=n×m edges and vc=(n×m)-(n-1) vertexes in it. 

Theorem 4-3: If there are x class touch vertexes with order 
of du(1≤u≤x) and number of  nu(1≤u≤x) for each class, in a 
2-D grid with boundary edge number of lb, then number of 

boundary vertex in it is vb=lb-∑ nu×du.

=

x

u 1

Theorem 4-4: Chain coupling theorem in 2-D grid 
 In a 2-D grid if there are x class touch vertexes in it, among 

the number of elements: n, the sides of every element: m, the 
number of interior boundary i, the order of the x class touch 
point du(1≤u≤x), the number of du order touch point: nu(1≤u

≤x), total number of sides of the grid: l, number of boundary 
sides: lb, number of interior sides: li; total number of vertexes of 
the grid: v, number of interior vertexes: vi, the following 
quantitive relationships hold: 

li=(n×m-lb)/2   (1) 
l=(n×m+lb)/2   (2) 
v=l-(n-1)-i   (3) 

vi=l-n-i+∑ nu×du -lb+1  (4) 
=

x

u 1

The concern concepts and the demonstration of these 

theorems would be given in full paper. 

(a)

(b)

(c)

Fig.1. Sample grid in 2-D case 

In fig.1 three sample grids are shown. In fig1(a) n=24, m=4, 

lc=96, vc=73, i=0, nu×du=4, lb=44, li=26, l=70, v=47, vi=7. In 

fig1(b) n=19, m=6, lc=114, vc=96, i=0, lb=52, li=31, l=83, v=65, 

vi=13. In fig1(c) n=33, m=4, lc=132, vc=100, i=3, ∑ nu×du=3,

lb=62, li=35, l=97, v=62, vi=3.  

∑
=

x

u 1

=

x

u 1

V. CONCLUSIONS

The goal of our work is to find out the numerical 
relationships among the number of geometric structures of the 
FEM grid and its elements. This task is rather difficult and 
interesting in 3-D case and the results can be used to verify FEM 
grid directly especially for automatic FEM grid generation.  

On the other hand, during the analysis topological 
relationship between FEM elements in a FEM grid is studied 
thoroughly. Thus many further researches and application can 
be performed. In the end an unified description of FEM 
procedure based on these numerical relationships can be gained, 
and this is especially effective for large FEM software 
programming. 

REFERENCES

[1] Nan Xiong, Kexun Jiang, “Narrow Sense Chain-making and 
Chain-coupling Theorems of Element Grid in 2-D Problem”, Proceedings 
of ICEMS2008 (electronic publication). 

[2] Ziqi Chen, Graph Theory, 1st ed., Higher Education Press, 1990.
[3] Yiqi Dai, Graph Theory and Algebra Structure, 1st ed., Tsinghua University 

Press, 1995. 
[4] Jitai Cheng, Set Theory, 1st ed., National Defense Industry  Press, 1985 
[5] Chengshu Yan, Guidance of Set Theory, 1st ed., China Social Science Press 

1994. 
[6] Xiaoling Zuo, Weijian Li，Discrete Mathematics, 1st ed., Shanghai Science 

and Technology Literature Press, 1982. 
[7] Tianfa Hang, Discrete Mathematics, 1st ed., Press of University of 

Electronic Science and Technology of China,1995. 

872

 



10. SOFTWARE METHODOLOGY 1

Analyse of different programming solutions adapted
to block matrix type in electromagnetic modelling
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Abstract—Block matrix type linear systems often appear in
many numerical resolution of electromagnetic problems and
coupling problems. This paper deals with the evaluation of some
adapted programming solutions for building and for inversing
this kind of algebraic systems. One pays a particular attention to
three criteria : development time, computation time and facility
of use.

I. INTRODUCTION

BLOCK matrix is a current structure of linear system
obtained when a numerical resolution is applied for an

electromagnetic problems or more generally for multiphysics
problems. For example, this kind of algebraic system appears
in the implementation of the dual magnetodynamic potential fi-
nite element formulations, the mortar method implementation,
a piezoelectric problem solved with finite elements method,
the introduction of shell finite elements, or mixed formulations
using boundary elements and finite elements, etc... In the
last case, according of the nature of matrix blocks, different
mode storages can be used full and sparse. In this paper three
programming solutions are evaluated to implement this kind of
linear systems in a finite element context. First by a MATLAB
approach is presented on the 2D mortar method. The second
solution is the use of a compilated language based on an
oriented object approach. Finally an alternative solution based
on a combined Python and C++ approach is proposed.

II. MATLAB APPROACH

The Matrix based languages such as commercial software
MATLAB, or equivalent Open Source Free Software such as
OCTAVE or SCILAB seem to be the more adapted solution.
No type declaration is necessary and they don’t need compi-
lation.

In Matlab environment, once the blocks are made, the
language allows great flexibility for manipulating block
matrix. In particular, the user has two options to perform
conjugate gradient method. As an example we can consider a
2D rotating electrical motor simulation with a mortar method
approach [1]. The first option consists to assemble blocks to
form a single global matrix. This option allows indifferently
the use of iterative or direct solvers (based on the Gauss
method) for the inversion of the linear system.

MatMortar = [A2ii CrossMortarBlock’ Block0
CrossMortarBlock DiagBlock A1Gammai

tBlock0 A1iGamma A1ii];
Sol = pcg(MatMortar,SdMembre);

with the direct solver the resolution line becomes

Sol=MatMortar \ SdMembre;

The previous example shows the synthetic and digest writing
of Matlab. The block matrix are manipulated as scalar
variables.
A second option is to call the iterative method directly with
the function defining how the matrix-vector product must be
performed ”MulMortar”.

Sol = pcg(@MulMortar,SdMembre);

But Matlab code is interpreted during runtime and the com-
putating time depends directly of the vectorization capability
of the algorithm. If the different parts of the elements loop
can be easily vectorized in a finite elements program, this
operation is impossible for the elements loop itself. This
drawback may be critical for a large 3D problem. It can
be solved by the use of compiled subprograms (Fortran or
C++ for example) directly interfaced with MATLAB through
the dedicated interface process named mex-files or indirectly
through files exchange cross the hard disk. This approach come
to the loss of two main advantages of MATLAB as program
readability and portability. One other critic is the poverty of
the C++ interface.

III. OBJECT ORIENTED APPROACH

To reduce computational time for the resolution of important
3D problems, a compilated code is developed. An Object
Oriented Programming (OOP) approach well adapted to finite
element method is used with the C++ language. The time per-
formance of this language is closed to Fortran one of the most
popular and most efficiency language in scientific computing.
A lot of libraries for scientific computing using this language
already exist. For example in the code developed, the Array
Class RNM of the free Open Source Software Freefem++ is
used for managing multidimentional arrays [2]. The main goal
of our code architecture is to guarantee no anticipation on
the matrix structure of the algebraic system and its mode of
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10. SOFTWARE METHODOLOGY 2

associated storage. The matrix can be an one block or a multi-
block matrix with different storage modes for each block. The
resolution of the algebraic system is based on iterative method
as one of the most popular : the conjugate gradient. These
methods are well adapted to this matrix structure because the
iterative product can be performed for each block indepen-
dently. Futhermore using specify functionnality of the C++
language as the mechanism of ”template”, the implementation
of the iterative resolution function can be made only once.
The mechanism of ”template” make the implementation of
algorithms independent of data types. This is not possible in
Fortran. The figure below presents a simplified scheme of the
software architecture. The linear system resolution part uses
the same principle seen previous with the definition of the
function MulMortar in the Matlab example.

Formulat ion

+build()

+addmatmul()

HexahedronTetrahedron

Mesh

SparseSymetr icMatr ix

+build()

+addmatmul()

Ful lMatr ix

+build()

+addmatmul()

Mater ia l

DoF

Fig. 1. Class agregation

Each storage mode has its own class with its associated
methods like constructors, pointers building, assembling, take
into account boundary conditions, and obviously how performs
the matrix-vector product.

To illustrate the code performance, a classical 3D Non De-
structive Testing Problem (air Coil over a conducting plate) [3]
is considered. Using a finite element modelling with combined
potential formulation A-V (570 000 degrees of freedom), the
computation time is about 420 s CPU on a pentium 2.66
GHz Processor. For the linear system resolution, the method
of conjugate gradient is used with a Jacobi preconditionner
(615 iterations). It can be observed that computation time is
reduced of a factor 10 comparing to a Matlab Program. In the
other hand, time for developement can be more disavantageous
than in Matlab language. Futhermore the introduction of the
problem data is more difficult.

IV. PYTHON APPROACH

An alternative solution is the use of the Python language de-
velopped in the 90s. It is a dynamic object-oriented program-
ming language that can be used for many kinds of software
development. Like Matlab, it has tools dedicated to a specific
domain named ”modules”. In the last years, Scientific module
(SciPy) for scientific functions and linear algebra, numerical
module (NumPy) for multidimentional arrays management or
a module for sparse matrix management (PySparse) have been
developed. But the fundamental difference with Matlab is the
number of solutions to encapsulate compilated languages [4].
Most languages offer the possibility to call programs written

in other languages but in Python this is particulaly easy and
smoothe process. One reason is that Python was initially
designed for being integrated with C and extented with new
C codes. Several very powerful tool such as Swig, f2Py or
Python Weave have been developed in this aim. It allows
particulary to preserve existing Fortran, C or C++ solvers and
to nest different codes in a multiphysics context [5]. Using
Python script with NumPy, SciPY and PySparse modules for
finite element method implementation, a computational time
similar to the Matlab code is obtained. But using C++ encap-
sulation tool such as Swig allows to reduce computation time
by a factor of more than 10. A complete example using several
techniques to interface C++ with Python will be detailled and
compared in the final paper. The Python script below shows
that using dedicated modules for scientific computing, finite
element method can have a Python implementation close to
the Matlab implementation.

Fig. 2. Python script example

V. CONCLUSION

Recent numeric tools developed in Python make that this
Free Open Source language can be a good alternative to Matlab
for very fast numerical methods evaluating. Futhermore it
seems to be very efficiency to encapsulate compilated lan-
guage. These properties will be developed in the final paper
to prove Python performance. Actually, it is more and more
used in an agile programming process in software engineering
and in numerical modelling.
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6. OPTIMIZATION 

Abstract—This paper explores firstly the potential of a new 
evolutionary method - the Cross-Entropy (CE) method in solving 
continuous inverse problems. For this purpose, a CE based 
metaheuristic algorithm is proposed and evaluated on both low- 
and high-frequency engineering problems with promising results.  

I. THE CROSS-ENTROPY METHOD 
In the study of inverse problems, the evolutionary 

algorithm plays an important role because of the multimodal 
nature of the objective functions of inverse problems. In this 
regard, the simulated annealing, genetic, tabu search, particle 
swarm optimization, and ant colony algorithms have all been 
developed and applied in the computational electromagnetics 
community to solving typical inverse problems. Nevertheless, 
there is no universal algorithm according to the no-free-lunch 
theorem. Consequently, it is essential to guarantee the 
diversity of available evolutionary algorithms. In this regard, 
the cross-entropy (CE) method is worthy of further studies. 

The CE method is firstly developed by Rubinstein for 
estimating the probabilities of rare events as an adaptive 
importance sampling algorithm [1], and soon it is extended to 
solve both combinatorial and continuous optimal problems [2]. 
The significance of the CE method is that it defines a precise 
mathematical framework for deriving fast and yet ‘optimal’, to 
a certain extent, updating/learning rules which are based on 
advanced simulation theory [3]. In finding the global optimum 

*f of the following maximization problem 
max ( ) : nf x X R R∈ → ,                           (1) 

the CE method will firstly randomize the problem according 
to a family of probability density functions (pdf) 
{ ( ; ), }g ν⋅ ∈v v  on X, and (1) is then transformed to the so–
called associated stochastic problem (ASP) to estimate the 
following probability 

 { ( ) }( ) ( ( ) )u u fl P f E I γγ γ ≥= ≥ = XX               (2) 
where, Eu denotes the corresponding expectation operator, X 
is a random n-dimensional vector with the pdf of ( ; )g ⋅ u  for 
some ν∈u , γ  is an adaptively updating parameter. 

For the ASP problem, the CE method adaptively updates 
( ; )g ⋅ u  based on the Kullback-Leibler cross entropy, resulting 

in a set of degenerated pdfs ( ; )g ⋅ u , 1( ; )g ⋅ v , 2( ; )g ⋅ v …, which 
will quickly converge to the global optimal probability density 
function * *( ; )g f v . Consequently, the CE method comprises 
generally of the following two phases: 

(1) Generate a set of candidate solutions according to a 
predefined probability density function; 

(2) Update the parameters of this pdf by using only the 

elite solutions to steer the search towards the global optimal in 
subsequent iterations. 

In this paper, the normal distribution function 2( , )N μ σ  
with its mean μ and standard deviation σ is selected as the pdf 
of ( ; )g ⋅ u . For the conditions as described, μ and σ will 
converge, respectively, to the global optima *f  and zero 
efficiently; and the corresponding iterative procedures of the 
proposed CE method are summarized as: 

Algorithm based on CE method for Continuous Optimizations 
1. Initialize: Set: N-size of the population, ρ-rarity 

parameter (which are small constant thresholds of the elite 
solutions for updating the parameters of pdf), µo, σo, αo, t = 0. 

2. Repeat 
2.1 t = t +1, Generate a population of feasible solutions 

according to the normal distribution pdf 1 1( , )t tN μ σ− − ; 
2.2 Select elites, let Ι be the indices of the ρN best 

samples (elites); 
2.3 Update μ and σ. For all j=1,…,n, compute 

2 2/ ( ), ( ) / ( )
tjtj ij ij tj

i i

x N x Nμ ρ σ μ ρ
∈ ∈

= = −∑ ∑
Ι Ι

 

 2.4 Smooth 
1 1(1 ) , (1 )t t t t t t t t t tα α α α− −= + − = + −u u u σ σ σ  

2.5 Test for the stop criterion. If the stop criterion is 
satisfied, set the Stop-criterion:='true'; 

3. Until Stop-criterion:='true'. 

The CE programming algorithm is very simply in code 
programming. Only a few parameters such as the size of the 
population and the rarity parameter need to be predefined and 
most of the key parameters are adaptively updated in the 
iterative process. For example, the performance parameter γ as 
used in (2) is automatically designated to the worst solution of 
the ρN best elites. On the other hand, the smoothing parameter 
α is updated automatically from its minimal to maximal values 
as the iterative number increases. Also, some small values of 
perturbations are deliberately and randomly added to σ to 
enhance the global search ability of the proposed CE method. 

II. APPLICATIONS 

A. Case Study One 
The proposed CE method is firstly used to optimize a 

completely non-uniform antenna array, as depicted in Fig. 1, 
with the minimal number of elements being exploited to 
produce a satisfactory or acceptable pattern of the desired field, 
which is a shaped beam with a cosecant variation, as defined 
in [4]: the field will vary following a cosecant function in the 
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6. OPTIMIZATION 

interval ]5.0,1.0[cos ∈θ  and has a Maximum SideLobe Level 
(MSLL) of less than -25 decibel in the residual intervals. 
Mathematically, the desired pattern is expressed as: 

 
cosecant( ) (0.1 0 5)

(cos )
0 ( )

25 dB

desired

desired

cos cos .
F

elsewhere
MSLL

θ θ
θ

≤ ≤⎧
= ⎨
⎩

≤ −

  (3) 

1d

2d

Qd

id

 
Fig.1.The schematic diagram of a linear antenna array of Q punctiform and 

omnidirectional elements along the z axis.  

 
Fig.2. Comparison of the field patterns of the optimized (non-)uniform arrays 

by using different optimal algorithms 

To optimize the non-uniform antenna array, the following 
objective function is defined and used: 

2

1

2

1

[ ( ) ( )]
min

[ ( )]

N
norm norm

desired i designed i
i

N
norm

desired i
i

f f
f

f

θ θ

θ

=

=

−
=
∑

∑
                     (4) 

where, ( )norm
desired if θ  is the value of the normalized desired 

radiation pattern at the sampling point iθ , ( )norm
designed if θ  is the 

value of the radiation pattern produced by a designed array of 
Q  elements. 

To produce a field pattern which is close enough to the 
desired one using the proposed method (CE), a 19 element 
non-uniform antenna array is selected and used to optimize the 
complex excitations and locations of each element in order to 
find the global optimal solutions of these decision parameters. 
For performance comparison purpose, the matrix pencil 
method (MPM) [5] is also employed in this case study. The 
final solutions of the location (given in relative values with 
reference to the wavelength λ), amplitude (Ampl) and phase 
(Phas in degree) of each element of the optimized array by 
using the CE method are tabulated in Table I. The radiation 
patterns for the optimized arrays obtained using different 
algorithms as well as the results of a 30 uniformly spaced 
antenna array, which has been optimized using a modified 
tabu search algorithm [4], are depicted in Fig. 2.  

From these numerical results it is obvious that a non-
uniform antenna array with a minimal number of 19 elements 
optimized using the proposed CE method can produce a 
satisfactory radiation pattern which is almost the same as that 
of a 30 element uniform array obtained using the tabu search 
method, whereas the results for the same non-uniform array 
optimized using available MPM technique are not acceptable. 

B. Case Study Two  
As a last example, the Team Workshop problem 22 of a 

superconducting magnetic energy storage (SMES) 
configuration with 8 free parameters as reported in [6] is 
solved by using the proposed CE method. Table II gives the 
performance comparison of the proposed CE algorithm and 
the best ones searched so far by IGTE [6]. Again, this case 
study confirms positively the feasibility of the proposed 
algorithm in solving low frequency inverse problems. 
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TABLE I 
THE OPTIMIZED POSITIONS, AMPLITUDES AND PHASES OF THE 19 ELEMENT NON-UNIFORMLY SPACED ARRAY BY THE PROPOSED METHOD 

di/λ 7.314 6.495 5.597 4.726 3.813 2.958 2.098 1.215 0.458 -0.202 -0.938 -1.746 -2.636 -3.438 -4.294 -5.075 -5.852 -6.702 -7.452
Ampl 0.0175 0.0209 0.0340 0.0459 0.0557 0.0845 0.0893 0. 1521 0. 2164 0. 2418 0. 1778 0. 1014 0.0862 0.0664 0.0441 0.0370 0.0268 0.0188 0.0161
Phas 160.7 -175.1 -165.3 -145.7 -125.6 -109.1 -91.3 -73.4 -32.3 14.8 61.4 84.6 99.0 127.5 129.4 151.6 173.5 -178.6 -155.0

TABLE II 
PERFORMANCE COMPARISON OF THE PROPOSED METHOD AND THE IGTE SOLUTION FOR THE SMES CONFIGURATION 

Results R1(m) R2(m) h1/2(m) h2/2(m) d1(m) d2(m) J1(MA/m2) J2(MA/m2) fobj No. iterations
PROPOSED 1.5702 2.1017 0.7845 1.4201 0.6002 0.2574 17.3402 -12.9653 6.7238×10-3 2543 
By IGTE 1.5703 2.0999 0.7846 1.4184 0.5943 0.2562 17.3367 -12.5738 5.5203×10-3 /  
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Scalability of Higher-Order Discontinuous Galerkin
FEM Computations for Solving Electromagnetic

Wave Propagation Problems on GPU Clusters
N. Gödel1, Student Member, IEEE, N. Nunn, T. Warburton 2 and M. Clemens1, Senior Member, IEEE

1Helmut-Schmidt-University, University of the Federal Armed Forces Hamburg, Faculty of Electrical Engineering,
Chair for Theory of Electrical Engineering and Computational Electromagnetics, P.O. Box 700822, D-22008 Hamburg, Germany

2Computational and Applied Mathematics, Rice University, 6100 Main Street MS-134, Houston, TX, USA

Abstract—A Graphics Processing Unit (GPU) cluster optimized
implementation of Maxwell’s equations discretized with a higher-
order Discontinuous Galerkin Finite Element Method (DG-FEM)
in the time domain is presented. DG-FEM is used because it’s
characteristics are matching the parallelization design aspects
of the NVIDIA Compute Unified Device Architecture (CUDA)
programming model. Asynchronous file transfer is introduced to
minimize parallelization overhead and improve scalability.

Index Terms—GPU-computing, GPGPU, CUDA, Discontinu-
ous Galerkin, FEM, High Order.

I. INTRODUCTION

Efficient numerical simulation of electromagnetic devices
strongly depends on short simulation time, which requires
efficient solvers running on fast hardware. In addition to
multicore parallelization, GPU computing has gained attention
for accelerating volume based simulation methods. In [1] and
[2], FDTD and FEM computations on GPUs are presented.
First DG-FEM simulations on GPUs are reported in [3].
First multi-GPU configurations for the DG-FEM solution of
Maxwell’s equations in time domain are considered in [4].
In this paper, the performance of DG-FEM discretized
Maxwell’s equations computed on a NVIDIA GPU cluster is
analyzed. A 3-level parallelization strategy is presented using
the NVIDIA CUDA programming model as well as a linux
pthread implementation [5] on the CPU level. The focus of
this publication is the CUDA adapted DG-FEM discretization
and its scalability when using more than a single GPU.

II. DISCRETIZATION

Electromagnetic wave propagation in lossless medium can
be described using Maxwell’s curl equations

∂

∂t
D = ∇× H, (1)

∂

∂t
B = − ∇× E. (2)

Here, D and B denote the electric and magnetic flux density,
respectively, whereas H and E identify the magnetic and the
electric field strength. A nodal variational form of Maxwell’s
equations is derived in [6], where the unknown field vectors
are approximated using local high-order multi-dimensional

Lagrange polynomials. The DG-discretization of (1), (2) leads
to a system of ordinary differential equations, reading

d
dt
εE = M−1S H + M−1F

�
n̂×�

H∗−H− , (3)

d
dt
µH = −M−1S E − M−1F

�
n̂×�

E∗ −E− . (4)

A special characteristic of DG-FEM is that the DG-operators
M,S and F, leading to mass-, stiffness and flux-matrices,
respectively, have compact support only within each element’s
boundary. As a consequence, M is locally defined on the
reference element and can be inverted without much numerical
effort. This provides the opportunity of using explicit time
integration schemes, e.g. the 4th order low storage explicit
Runge-Kutta scheme or local timestepping schemes. Further-
more, the first term of the right-hand side (RHS) is purely
local, i.e. each element can be computed separately. This part
of the RHS can be specified as volume kernel since it refers
to the volume integration of the curl operator applied on the
degrees of freedom inside each element. The second term in
the RHS identifies the fluxes from one element to its adjacent
elements. Fluxes combine all local element solutions to a
global solution and control unphysical components. Here, not
all values are element-local since the flux termsH∗ and E∗ are
a linear combination of face values at neighboring elements.
Regarding elementwise parallelization, these adjacent values
have to be supplied additionally.

III. PARALLELIZATION STRATEGY

The NVIDIA CUDA programming model incorporates two
parallelization levels. The computational work is associated
with a CUDA grid. In the coarse level, this grid is divided
into CUDA blocks, which are computed in parallel on the
multi-processors (MP). The fine grained level is associated
with CUDA threads which are computed on the streaming
processors (SP) cores of each MP. Regarding DG-FEM dis-
cretization, the computational domain is an unstructured mesh,
divided into finite elements. On these finite elements, degrees
of freedom are defined. Consequently, to match CUDA design
aspects for DG-FEM implementation, it is a natural approach
to associate the CUDA grid with the DG unstructured mesh
and to map each DG-element to a CUDA block and each
degree of freedom to a cuda thread. For detailed information
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about CUDA parallelization of DG-FEM discretization, see
[3]. In case of multiple GPUs, a further top layer paralleliza-
tion level can be introduced with help of a METIS domain de-
composition of the set of finite elements, [7]. Each subdomain
can be computed on one of the GPUs as the computational data
of all subdomains are independent of each other, except for
the flux data at the METIS boundaries. These flux terms have
to be synchronized after each timestep. The overhead of the
flux gathering can be minimized using the asynchronous file
transfer feature of current Nvidia TESLA GPUs. It provides
concurrent CUDA kernel and CUDA memcopy execution.
Since the volume kernel execution is numerically expensive
and purely element-local, flux gathering can be hided behind
the volume kernel execution, at least for a small amount of
METIS subsets compared to the global amount of elements.

IV. FIRST NUMERICAL RESULTS

As a first numerical benchmark, the enclosure of a mac-mini
has been discretized using 201 765 tetrahedra.

Fig. 1. Mac-mini model hit by a wave front

TABLE I
COMPARISON OF THE HARDWARE COSTS

Compute Solution

4 quad-core
Opteron 8356
2.3 GHz server

TESLA
S 1070

Hardware
costs

≈ 14 000e 3 451e
(+ host)

Power
consumption

1500 W 900 W
(+ host)

The coupling of a TEM wave into the device via its
ventilation slots as presented in Fig. 1 has been computed on
hardware listed in Table I. In Fig.2, the GPU performance is
compared to a floating point single precision CPU computation
for different polynomial orders. In summary, 4 GPUs can

Fig. 2. Comparison of the computational performance

perform about one order of magnitude faster than a current
CPU setup with four quad cores. Regarding hardware costs,
a 4 GPU setup can be realized much cheaper than a 4
CPU configuration, at almost the same power consumption,
including host computer. The resulting performance per cost
ratio is considerably higher using graphics hardware.
Regarding further upgrades of GPU based clusters, scalability
is an important factor. The scalability of the parallelization

Fig. 3. Scalability and METIS element distribution of a 4 GPU setup. 201 765
elements with 4

th order basis functions.

as well as the METIS element distribution is presented in
Fig. 3 resulting in 96.75% and 90.2% with and without the
asynchronous file transfer feature, respectively. The benefits
of the asynchronous file transfer result in better scalability,
since the complete flux transfer could be hidden behind the
execution of the volume kernel which took 11.56 ms on
average, whereas the transfer process needed approximatively
4.4 ms per timestep. The gap between these two times shows
that further parallelization can be benefitial. Furthermore, since
the work distribution of the METIS domain decomposition
is not perfectly balanced, further improvement in scalability
converging towards 100% is possible.

V. CONCLUSION

A multilevel parallelization strategy for solving DG-FEM
discretized Maxwell’s equations on a GPU cluster was pre-
sented. The suitability of DG-FEM for GPU computations
using the CUDA programming model was described. With
help of asynchronous file transfer, good scalability for up
to four GPUs was demonstrated. Further improvements in
scalability can be achieved by using work-balancing METIS
functions, also on more than four GPUs, depending on the
element distribution.
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12.DEVICES AND APPLICATIONS

Abstract — A method for specifying the electrical parameters 
of a High-Frequency (HF) Radio-Frequency-Identification 
(RFID) transponder loop antenna is presented. It is based on a 
quasi-static or a full wave field analysis of the subjacent eddy-
current problem. A comparison between two- and three-
dimensional computations is given. Additionally, the results 
obtained by in-house software tools are compared with those 
from calculations using a commercial code. Finally, initial results 
of measurements carried out on a given HF-RFID transponder 
tag are presented. 

I. INTRODUCTION

HF-RFID transponders, usually working at 13.56 MHz in 
the near field of the reader antenna are operating like resonant 
networks since the energy extraction from the emerging reader 
field can thereby be maximized [1]. Due to the resonance 
condition, it is of major importance that the electric 
parameters of the antenna structure and the analog input stage 
of the HF-RFID transponder chip are well specified [2]. 

In order to enhance the reading range the induced voltage
has to be raised, this can be attained by increasing the number 
of windings of the loop antenna or the antenna area or the 
magnetic field strength H of the reader at the given frequency. 
Since the reader field strength is limited by regulations, the 
only way to increase the induced voltage is to build efficient 
antennas considering the limitations given by the application. 
The loop antenna which is investigated in the present work is 
shown in Fig. 1 and a variation in terms of antenna size is not 
possible. Table I gives an overview of the structure of the 
transponder antenna. 

Fig. 1. Geometry of the transponder antenna 

In general, the input stage of an RFID transponder chip is 
a multi-stage charge pump structure with an effective input 
capacitance which mainly defines the silicon area of the chip 
[2], so the input capacitance is limited to a certain value in the 
small pF-domain. Hence, to enable the resonance condition of 

the transponder, an additional capacitance CRes as shown in 
Fig. 2 is necessary. 

Fig. 2. Equivalent electrical circuit of the HF-RFID transponder 

 To determine the value of the resonance capacitor, the 
electrical parameters of the transponder chip as well as the 
electrical parameters of the given antenna structure have to be 
specified.

TABLE I 
STRUCTURE OF THE TRANSPONDER LOOP 

Number of windings n 1, 2, 14 
Outer dimension a (mm) 6
Distance between turns d (µm) 90
Width of wire w (µm) 30
Relative permittivity of the substrate 4.1
Relative permittivity of the photoresist 3
Conductivity of the Nickel (Ni) trace (S/m) 1.5625*10^7
Relative permeability of the Ni trace 1240

II. PROBLEM TYPE

Using the conditions for electrically small loop antennas in 
[3] valid for circular loop antennas and adapting them to a flat 
spiral loop of square shape leads to 

. (1) ( )0
1

4 4 2
n

i
k a a i d

=

⎛ ⎞⎟⎜ ⎟⎜ ⋅ + ⋅ − ⋅∑ ⎟⎜ ⎟⎟⎜⎝ ⎠
1

With the given dimensions of the loop and the phase 
constant for free space k0 the condition (1) is certainly 
satisfied. Hence, one can assume a constant current along the 
circumference of the loop and, therefore, a quasi static 
approximation of the subjacent problem is allowed [4]. For the 
numerical simulation, the following equations in the time 
harmonic case applied in the eddy current region have to be 
solved [5] 

, ∇×  and jω∇× =−E B =H J σ=J E . (2) 

In the non-conducting domain 

 and  (3) jω∇× =−E B 0∇⋅ =B

characterize the problem. The problem described in (2) and 
(3) is referred to as a quasi static magnetic field (QSMF) 
problem in the following. Note that in (2) the displacement 

Calculation of Equivalent Circuit Parameters for 
a High-Frequency RFID Transponder 

T. Bauernfeind1, K. Preis1, O. Bíró1 and F. Hämmerle2
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3) QSMF-simulations with quarter model current is neglected. To get the stray capacitance of the loop 
one can either solve a full wave problem with 

 and tot∇× =H J (tot jσ ωε= + )J E  (4) 

An approximate way to determine the equivalent circuit is 
to assume two symmetry planes and analyze only a quarter of 
the problem. Influences of the contact areas on the ohmic part 
and the inductance of the loop antenna’s input impedance are 
thereby neglected. The results are again shown in Table II. 

or solve in addition to the QSMF problem a quasi static 
electric field (QSEF) problem and assuming a complex 
current flow: 

, . (5) 0∇× =E ( ) 0jωε∇⋅ + =J E

The results obtained by the commercial code are also 
based on a QSMF simulation of the quarter problem to obtain 
RLoop and LLoop. These results are also given in Table II. 

A detailed comparison of the efficiency and accuracy of 
the various approaches will be carried out in the full paper. III. NUMERICAL MODELS

To get a reference point for the loop antenna’s input 
impedance, a 2D analysis of the given antenna structure is 
considered first.

A. 2D simulations 

The real 3D structure has been transformed to a 
rotationally symmetric arrangement by assuming an equal 
mean circumference of the innermost winding. Since a full 
wave simulation is not implemented in the 2D in-house code, 
the results given in Table II are limited to the resistance and 
inductance of the loop antenna. 

Fig. 3. Full 3D model of the transponder with two windings 

C. Antenna measurement  

As a first approach, a vector network analyzer 
measurement has been carried out [6]. Initial results for the 
resistance and the inductance are also given in Table II. 
Improvements in terms of more suitable test fixtures are 
matter of the running activities and the corresponding results 
will also be presented in the full paper. 

B. 3D simulations 

The equivalent circuit parameters according to Fig. 2 can 
be obtained from a field simulation by evaluating the mean 
power loss Pl, the magnetic energy Wm and the electric energy 
We. If the voltage, U, of the circuit is prescribed, the following 
relationships are valid for the resistance RLoop, the inductance 
LLoop and the capacitance CLoop: TABLE II 

COMPARATIVE RESULTS 

2

2Loop Loop
l m

U
R j L

P j W
ω

ω
+ =

−
, (6) 

2

2 e
Loop

W
C

U

⋅
= . (7) 

If, on the other hand, the current, I, of the circuit is prescribed, 
RLoop and LLoop can be obtained as  

2

2l
Loop Loop

P j W
R j L

I

ω
ω

+
+ = m . (8) 

Type n RLoop (Ω) LLoop (nH) CLoop (fF) 
2D 1 7.1 104.5 - 
Full wave 1 8.6 94.7 330.7 
QSMF+QSEF 1 6.5 118.7 330.3 
QSMF ¼-model 1 7.3 113.1 - 
2D 2 14 238.9 - 
Full wave 2 17.5 223.7 615.9 
QSMF+QSEF 2 13.4 280.5 620.8 
QSMF ¼-model 2 14.3 255.2 - 
2D 14 82.5 2654.3 - 
QSMF+QSEF 14 79.8 2568.6 350.9 
QSMF ¼-model 14 77.7 2531.8 - 
Com. code 14 82.1 2416.6 - 
Measurement 14 57.5 2457.0 - 1) Full wave simulations 

The full wave simulations have been carried out with the 
voltage given and the circuit parameters have been obtained 
by (6) and (7). The results for full 3D models like the one 
shown in Fig. 3 are given in Table II. Since the convergence 
for the full wave simulation using an iterative solver is weak, 
only results for loops with one and two windings are 
available.
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The QSMF simulations have been done with the current 

prescribed and the QSEF simulations with the voltage 
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from (8) and QSEF analyses CLoop by (7). The results are 
presented in Table II, too. 
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Abstract — This paper deals with a original kind of planar coil 
model developed in the finite element method for non destructive 
testing applications. The model is constructed by the use of 
degenerated elements (shell elements). An example is 
implemented with two well known electromagnetic formulations 
in 2D. The accuracy of the model is established with analytical 
equations. 

I. INTRODUCTION 
Planar printed coils are increasingly used in eddy-current 

(EC) non-destructive testing (NDT) applications such as 
detection or material characterization [1-2]. The use of planar 
printed coils offers many advantages in NDT applications: 
capability to improve spatial resolution, sensitivity and if it is 
constructed on a flexible substrate, adaption to complex 
geometries.  

Numerical methods are adapted for the study of 
electromagnetic problems in EC-NDT applications with 
complex geometries. Among the numerical methods for the 
study of planar coils in NDT the finite element method (FEM) 
is one of the most adapted. However, in the discretization 
stage, the FEM make a considerable increase in the number of 
unknowns and, in consequence, in the computation time. 
These difficulties are related to the meshing process, such as 
for example, a strong density of elements (increase in the 
unknown number) or deformed elements in the thin area and 
its vicinity (ill-conditioned system). In order to eliminate these 
problems a kind of degenerated elements (shell elements) is 
used in this paper [3-4]. 

 In the meshing process, the planar coil is considered as a 
surface, since increase and deformation of elements are 
avoided. Then, in the stage problem formulation, the 
degenerated elements are introduced in order to model the 
planar coil. Finally, a linear equation system is solved and the 
fields are calculated in the “real” geometry. 

II. PROBLEM DESCRIPTION 
The basic geometric configuration is a classical problem in 

EC NDT: a coil placed above a metallic material (Fig. 1). The 
problem domain  is decomposed in three regions: the target 
material (conducting and/or ferromagnetic) , the planar 

coil domain  and the air region. The planar coil domain 

has a current density and a thickness denoted by d.  

Ω
cΩ

0Ω

0j

 
Fig. 1. a.Problem description. b.2D cut plane 

 
The planar coil is geometrically characterized by an aspect 

ratio L between its thickness d and a characteristic geometrical 
quantity Lg (in this case Lg is the inner radius): 

L
d

L
g

= .         (1) 

In the proposed example, the target material is conductive. 
Thus the field produced by the coil induces EC in the target. 
The thickness of the coil, d, vary between about 1 micron to 
10 millimeters. 

III. MAGNETODYNAMIC FORMULATIONS 

 The physical model of the EC problem is performed by 
the Maxwell reduced equations (without displacement 
currents: the capacitance effect is not significant). Among the 
models of EC problems, an approach based on dual 
formulations has been proposed by Ren and Razek [5]: the 
electric and the magnetic formulations. 

In the electric formulation, the electric field e is associated 
to a modified magnetic vector potential a*, in the form  

∫−=
t

dtea* .         (2) 

The weak formulation is based on the Ampere's law, for t > 0 
in the harmonic regime. 
     In the magnetic formulation, the magnetic field h is 
decomposed in two potentials, the electric vector potential t 
and the scalar magnetic potential φ, with 
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h = t - grad φ.         (3) 
The weak form is based on the Faraday's law applied in the 
conducting regions and completed by div b = 0 for all 
domains. 

IV. SHELL ELEMENTS 

The shell elements are a space degeneration of the finite 
elements. They are geometrical objects that have a D-1 
geometrical dimensions, where D is the model geometrical 
dimension (usually D=3 or 2). In the first stage of the 
discretization process (meshing) since the shell elements are 1 
dimensional geometrical objects (lines), the thin region is 
represented by a middle line (Γsh). Then, the edge and the 
nodes in Γsh are projected on two "virtual" lines (Γsh

+ and Γsh
-). 

The physical behavior inside the planar coil is represented by 
the shape functions in these lines. Additionally, these 
projections can be repeated many times in order to stratify the 
thin region. Using these approximations the formulations are 
transformed in linear systems in which, the unknowns are the 
vector circulation along the edges and the scalar quantities at 
the nodes.  

In the first stage of the modeling process, a triangular mesh 
is constructed. This mesh is highly refined to reduce the error 
originated by triangular elements. After that, the shell 
elements are inserted in the thin region. In the example the 
thin region is stratified in four layers in order to obtain a better 
approximation of the fields. In this way the error is strongly 
dependent on the shell elements. 

V. RESULTS 
The spatial distribution of the real part of magnetic field 

lines is shown in Fig. 2. A good agreement is observed with 
the physical behavior: the magnetic field lines encircle the 
currents. The resistance and reactance of the coil are 
calculated in the dual formulations and compared with Dodd 
and Deeds model [6]. The results are shown in Fig. 3.  

The field approximation which is made by the linear shape 
functions in the shell elements explain the different levels of 

accuracy in the results. The use of the a* formulation implies 
a linear variation of the electrical field. The magnetic field h, 

calculated by the curl operator, is then constant and the error 
is quite important on the reactance (Fig 3b.). In the t − φ 
formulation, the behavior of shell elements is analogue: the 
magnetic field h has a linear variation across the thickness. 
The variation is more realistic, and the relative error on the 

reactance is less important (Fig 3b.). 
The example developed in this digest show that the 

application of the shell elements in the simulation of planar 
coils for EC-NDT applications represents an interesting 
solution when meshing with classical elements is impossible 
to realize or requires a high number of elements. In the 
extended paper more details will be provided about the 2D 
model and a 3D model of the planar coil will be presented. 

 
a. 

 
b. 

Fig. 3. a. Resistance vs aspect ratio (L). b. Reactance vs aspect ratio (L). 

 
Fig. 2. Spatial distribution of the real part of magnetic flux density 

vectors and field lines obtained in the a* formulation. 
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Numerical Field Calculation in Support of
the Hardware Commissioning of the LHC

Bernhard Auchmann∗, Stephan Russenschuck∗
∗CERN/TE, Geneva, Switzerland, Email: bernhard.auchmann@cern.ch

Abstract—The hardware commissioning of the Large Hadron
Collider (LHC) required the testing and qualification of the
cryogenic and vacuum system, as well as the electrical systems for
the powering of more than 10000 superconducting magnets. Non-
conformities had to be resolved within a tight schedule. In this
paper we focus on the role that electromagnetic field computation
has played in the treatment of these non-conformities which
have required analysis of magnet quench, electromagnetic force
calculations in busbars and splices, as well as field-quality
predictions for the optimization of powering cycles.

Index Terms—Superconductors, Quench Calculation, Persis-
tent Currents

I. INTRODUCTION

W ITH the Large Hadron Collider (LHC), the particle
physics community aims at testing various grand uni-

fied theories by studying collisions of counter-rotating proton
beams with a center-of-mass energy of 14 tera electron volts
(TeV). Physicists hope to prove the popular Higgs mechanism
for generating elementary particle masses of quarks, leptons,
and the W and Z bosons. The LHC reuses civil engineering
infrastructure at CERN with a tunnel of 3.8 m in diameter
and a circumference of about 27 kilometers that straddles
the Swiss French border near Geneva. With a given radius
of the accelerator tunnel, the maximum achievable particle
momentum is proportional to the operational field in the
bending magnets. Superconducting dipole magnets cooled to
1.9 kelvin with a nominal field of 8.33 tesla, allow energies
of up to 7 TeV per proton beam.

During the design and construction of the LHC, an un-
dertaking of more than 20 years, various challenges had to
be met in all domains of physics and engineering. They are,
among others, material science for superconducting wires and
cables, mechanical engineering challenges for the construction
of magnets weighing up to 20 tons, the physics of superfluid
helium, vacuum technology for insulation and beam vacuum,
and electrical engineering challenges for power supplies, cur-
rent leads using high-Tc superconductors, superconducting
busbars, diodes operating at cryogenic temperatures, magnet
protection systems, etc. The requirements of field uniformity
in the superconducting magnets have also posed a challenge
to numerical field computation and optimization techniques.
Motivated by the magnet design, the CERN field computation
program ROXIE [1] has been developed which was also used
to trace manufacturing errors during magnet production.

After an ambitious hardware commissioning phase a first
beam was circulated on September 10, 2009. In this paper we

review the role that numerical field computation plays during
the hardware commissioning phase.

II. QUENCH SIMULATION

Above a certain limit on the temperature, current density or
magnetic flux density, the superconductor shows a transition
between the superconducting and normal conducting state
which is known as resistive transition or quench.

Quench detection and magnet protection against overheating
and voltages peaks during a quench is an important issue
in the design of superconducting magnets. We will show
that it is important to treat all involved phenomena (thermal,
electrical, and magnetic) in a coupled way. The integrated
numerical model allows to study the impact of different effects
such as quench-back, normal zone propagation, quench heater
performance, local field distribution, and iron saturation.

The simulation of thermal processes at cryogenic tempera-
tures is an intricate problem. Material properties at cryogenic
temperatures and under pressure are often difficult to know
to adequate precision. The highly nonlinear behavior of these
parameters lead to an ill-conditioned numerical problem in
quench simulations. Moreover the problem generally is ill-
posed, as there are more model parameters than validation
criteria such as measurements of the current decay and signals
at the voltage taps or quench antenna [2].

In the commissioning phase of the LHC a quench heater
developed an open circuit after the cool-down of the magnet
to the operation temperature. The aim of quench simulations
was to determine the best powering scheme for the remaining
quench heater circuits, while activating redundant heaters in
the low field region of the coil. In another case a quench
occurred in both apertures of a dipole magnet. The coincidence
caused significant delays in the quench detection. Simulation
efforts were directed at determining the worst-case scenario of
heat deposition inside the magnet, under which the measured
voltage signals could be reproduced.

III. 3-D FORCE- AND PEAK-FIELD-CALCULATIONS

Electromagnetic forces on interconnection busbars where
identified during commissioning to be an important issue for
the long-term reliability and the electro-mechanical integrity
of the machine. While field-quality calculations for long accel-
erator magnets can be carried out to highest precision in 2-D
calculations, the interconnect regions between magnet coils
and neighbouring magnets require a 3-D approach. Applying
the BEM-FEM technique, the finite-element modeling could
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12. DEVICES AND APPLICATIONS 2

be restricted to the nonlinear ferromagnetic yoke. The involved
layout of cosine-theta-type coilends and the busbar routing was
captured in a Biot-Savart type model built from straight line-
current segments.

The Biot-Savart model was generated from basic building
blocks such as easy- and hardway bend and twists. The
twist-pitch of the Rutherford-type cable is neglected. An
automatic connection routine computes the transformations
that are required for a continuous interconnection of individual
components. The complete BEM-FEM model consists of about
600,000 line-current segments in the BEM domain, and only
about 60,000 finite elements. The calculation of forces on the
interconnection busbars takes approximately two hours on a
2.8 GHz Xeon processor machine.

Despite the relatively low number of finite elements in
the model, the accuracy of peak-field calculations on the
superconducting cable exceeds by far the precision that could
be achieved in a pure finite-element model. The reason is that
the local field distribution in the cables is determined by the
current flow in individual strands, which cannot be adequately
represented in a FEM approach. Among the results that will
be presented in the full paper, we note that the forces pulling
in longitudinal direction (along the magnet axis) on the so-
called half-moon interconnects, see Fig. 1 (left) that connect
individual coils in a magnet assembly are on average 240 N.

Fig. 1. Electromagnetic model of the interconnections at the end regions of
the main-bending dipoles of the LHC.

IV. FIELD-QUALITY SIMULATION

The operation of the LHC requires that all field errors in the
superconducting magnets are compensated for by dedicated
corrector magnets, so that the integrated field error as seen by
the particle beam remains below a tolerated limit. Beam-based
measurements can serve as a feedback on the field quality and
as an input for automated controls of the corrector magnets.
Yet, for a large scale machine like the LHC, operators cannot
rely solely on feedback systems. For this reason, the Field
Description of the LHC (FiDeL) program collects measure-
ment data of all components in the the LHC and extracts
a fast online model, that yields the field quality at a given
time, magnet operating current, magnet ramp rate, magnet
temperature, and magnet powering history [3]. The modeling
is especially critical at very low currents, where the persistent
current magnetization of superconducting strands has a large
influence on the field quality. The FiDeL model is based
on measurements that were performed for quality assurance
during the production of the LHC magnets. Simulation is
performed if required for three reasons: 1) validation of the
FiDeL mathematical model; 2) counter-check measurement
data; 3) supply data where measurements are not available.

The FiDeL model is based on the identification and physical
decomposition of the effects that contribute to the total field in
the magnet aperture. Each effect is modeled by an appropriate
mathematical model. The physical behavior of the models
can be tested over the entire parameter space by means of
simulation. At the exception of decay- and snap-back effects,
the ROXIE software comprises all relevant effects. A database
of electromagnetic models of all LHC superconducting mag-
nets is used to compare model- and measurement results.
Suspicious measurement data can be tested and validated by
comparison. In the low-field region, where the persistent-
current effects on field quality are dominant, the ROXIE model
[4] can yield data for powering cycles that have not previously
been measured. Most demanding in this respect are nested
corrector magnets, where the persistent-current magnetization
depends strongly on the powering cycle of each of the nested
coil assemblies. In May 2009 the ROXIE vector-hysteresis
model [4] for persistent currents will be validated for the first
time by measurements of the MCBX corrector magnets, see
Fig. 2. Results will be presented in the full paper.

              
 

                                        

              
 

                                        

Fig. 2. Left: Cross-section through the nested MCBX corrector magnet.
Right: Persistent-current magnetization due to a rotating field in the magnet
aperture.

V. CONCLUSION

Numerical field computation is indispensable in the design
and manufacturing phase of accelerator magnets. Challenging
computations, however, are carried out through the commis-
sioning phase, in order to understand measured behaviour or to
work out fall-back solutions. As a side-effect of an additional
measurement campaign in 2009 we will be able to validate
the ROXIE vector-hysteresis model for persistent currents.
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Abstract — A non-invasive methodology to evaluate and 

classify the electrical system failures is presented in this work. It 

is based on the electrical system magnetic signature recognition 

using the wavelet signal decomposition and the resulting variance 

spectrum evaluation, respectively. The validation of the proposed 

methodology is carried out by comparison between theoretical 

and experimental results. The Finite Element Method is used in 

the numerical simulations of the magnetic flux density, and a 

post-processing approach is adopted in the signal decomposition 

and analyses. An experimental setup was built to obtain the 

magnetic signature regarding some pre-selected faults 

configurations.  

I. INTRODUCTION 

A methodology concerning the theoretical evaluation of 

fault detection in electrical systems was presented in the 

previous paper [1]. The proposed method is a non-invasive 

one based on the evaluation of the resulting magnetic signature 

of the electrical systems after applying the wavelet transform 

[2]-[3]. In this theoretical study, simulations were carried out, 

in order to obtain the fault current and the resulting magnetic 

field. In the present work, a new development is shown, 

including the fault classification approach and the validation 

based on an experimental setup. 

II. METHODOLOGY 

A brief description of the methodology used in this work is 

presented in this item. This methodology consists of two 

phases: The first is the experimental data acquisition (fault 

current and resulting magnetic flux density). Various kinds of 

faults were evaluated. Fig. 1 shows the experimental setup 

used. On the other hand, the fault waveforms are also 

introduced as current sources on corresponding electric circuit, 

and used to simulate the resulting magnetic flux density. The 

Finite Element Method is applied [4]. On the second phase, the 

decomposition of the magnetic flux signal through Wavelet 

Transform (WT), and the evaluation of the variance spectrum 

by the signals post-processing are carried out [5]-[7]. Critical 

analysis and discussion of the results are made, aiming to 

evaluate the suitability of the method for detecting and 

classifying the faults in electrical systems.  

Transformer
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Magnetic sensorT

1
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Autotransformer
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Y

 
Fig. 1 – Sketch of the experimental setup 

III. THEORETICAL ASPECTS 

The information about both time and frequency domain can be 

obtained by applying the WT. This is an intrinsic and suitable 

WT characteristic concerning the signal decomposition 

accuracy. The details on the theoretical and practical aspects 

of WT are carefully described in the literature, e.g., [2], [3]. In 

general, the decomposed signal x (t) can be expressed in a 

discrete form by: 

kj

k j

kjatx ψ 
∞

∞−=

∞

∞−=

=)(  (1) 

In (1), j and k are integer numbers, and ψ  are the Mother-

Wavelet functions. The so-called Daubechies Wavelet was 

assumed as the base function in this work. This function was 

chosen, based on previous studies that support its robustness 

and suitability for fault detection evaluation. Concerning the 

signal decomposition process, Multiple Resolution Analysis 

(MRA) was applied [5]-[9]. The variance spectrum can be 

obtained based on Parseval’s Theorem. It states that the 

distorted signal energy may be divided in terms of expansion 

coefficients [9]: 
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The variance can be considered as a measure of the average 

signal energy. Thus, the variance of the decomposed signal 

related to different resolution levels is proposed as merit index 

to the fault classification. The number of levels is selected 

according to the considered frequency range. 

IV. APPLICATIONS AND RESULTS 

In order to illustrate the proposed methodology, some 

theoretical and experimental results related to mono-phase 

faults are presented. The experimental setup (Fig.1) is a 

220/1V (Y/Y) three-phase circuit, in which the secondary of 

the transformer was designed to obtain current peak values 

around 60 A (Fault conditions). The conductors (16 mm
2
)

 
have 

a length equal to 4m, and are spaced by 0.50m. The clearance 

to the floor of the lab is 1.7m. The conductor phases are 

indicated by numbers 1, 2 and 3. By combining the switches 1 

and 2, different sorts of faults can be reproduced. A specially 

designed coil probe was calibrated, and used as magnetic 

sensor. The Cartesian system adopted, regarding the evaluated 

points, is represented in Fig.1. As an example, Fig. 2 presents 

the results related to the magnetic flux density at P (-0.5, -

0.25) m, for the Phase1-Ground faults. By inspecting the 

figure, besides the resulting peak values of the flux density, the 

fault durations can be noticed.  
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Fig.2 – Comparison between the simulated and measured magnetic flux 

densities Bx, at point P (-0.5:-0.25) m, for Phase 1-Ground fault (F1T). 
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Fig.3 – Experimental Results: Magnetic flux density variance spectrum for 

mono-phase faults - P (-0.50;-0.25) m. 

 

Fig. 3 shows the wavelet variance spectrum of the magnetic 

flux density for the experimental mono-phase fault values at 

P(-0.5;-0.25) m. 

 

It should be mentioned that the same variance spectrum profile 

can be observed when the theoretical approach is taken into 

account. Additional results will be presented in the full paper 

in order to illustrate and show the details of the method 

regarding fault detection and their classification.  
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Abstract — This paper deals with the modeling and design of 
magnetostrictive devices in dynamic regime. It starts from an 
approach which couples a physical model of magnetostriction 
with finite element electromagnetic field analysis of the entire 
device. A first study, developed under simplifying hypothesis of 
steady-state working conditions, is here extended to arbitrary 
supply conditions, including the mechanical coupling. A 
comparison between computed and measured results is 
presented. 

I. INTRODUCTION

Magnetostrictive (MST) devices exhibit interesting 
electro-magneto-mechanical properties for applications like 
the micro positioning and the active control of mechanical 
vibrations. Compared with piezoelectric devices, they show 
higher forces and have significant advantages (e.g. higher 
dynamic), avoiding the need of heavy electrical insulations, 
required by high voltages, which reduce the cooling 
efficiency. 

The prediction of the dynamical performances of MST 
devices is a fundamental step, both in the design phase and in 
the successive development of efficient algorithms for their 
real-time control [1-3]. To avoid a complex and wide 
experimental characterization, numerical tools are welcomed, 
allowing analysis under various working conditions (working 
frequency, excitation current, mechanical load, etc.). The 
modeling approach should be able to account for the 
electromagnetic phenomena arising in the device, as well as 
the complex magnetoelastic behavior of the active MST 
element. 

First approaches to the modeling of MST devices have 
been proposed in [4, 5], where the magnetoelastic models of 
the MST rod have been coupled with finite element tools, 
enabling the analysis of the main phenomena affecting the 
macroscopic behavior of these devices. Anyway, the 
aforementioned works were developed under the simplifying 
hypothesis of steady-state working conditions, enabling the 
study and design of a new device, but making not possible 
their use as computational engine in real-time control. In the 
present work, the coupled finite element – magnetoelastic 
model has been extended to work under arbitrary supply 
conditions, also including the coupling with simplified 
mechanical equations. In the following, some aspects of the 
modeling approach are detailed, considering both the physical 
model for describing magnetostriction, as well as their 

coupling with the finite element electromagnetic field 
analysis. 

II. MODELING APPROACH

To accurately modeling the MST rod, both magnetic and 
mechanical hysteresis has to be properly taken into account. 
The mechanical effects are introduced in the magnetic 
properties through an effective field He, which depends on the 
applied stress σ [6]. Magnetic flux density B is expressed as: 

( ) ( )eHHJHHB ζ+μ=+μ=Ψ= 00         (1) 

where the magnetic polarisation J, including reversible and 
irreversible contributions, depends on He. Hysteretic function 
ζ is described through the classical Preisach model (CPM). 
The effective field He depends on the applied field H, tuned by 
a corrector term ( )σξ ,J , function of the mechanical stress σ:

( )σξ+= ,JHHe             (2) 

At a given instant, the computation of magnetic flux density 
evolution by Eqn. (1) is performed by an iterative procedure 
based on Fixed Point (FP) technique. Assumed the applied 
stress σ and field H to be known, the effective field is written 
as: 

( ) ( )σ+υ=σψ+= ,, eHSeHHHH ee       (3) 

where function ψ is written as the sum of a linear term (with 
constant υ) plus a residual S. The constant υ is determined by 
the maximum and minimum slopes of ψ for the considered 
value of σ, and the nonlinear residual ( )σ,eHS  is updated 

during the iteration process, starting from a trial value. At the 
generic iteration (m-1), the sequence of operations is: 

υ−
+

=
−

1

)1(
)(

m
m

e
SH

H                  

( ))()( m
e

m HJ ζ=                 (4) 

( ) )()()( , m
e

mm HJS υ−σξ=               

The magnetoelastic model of a MST rod is coupled with a 
step-by-step finite element computational scheme, accounting 
for the electromagnetic phenomena within all the device. 
Taking advantage of the geometrical structure of these kind of 
devices (Fig. 1), the computations are performed in an axial-
symmetric domain with cylindrical coordinates { }zr ,,θ . By 

employing the FP iterative technique to handle the magnetic 
nonlinearities, the weak formulation becomes: 

Modeling the dynamic behavior of 
magnetostrictive actuators 
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where A is the magnetic vector potential, w is the test 
function, and Ω is the full domain. In (4) k indicates a generic 
conductor of resistivity ρk having trace kΩ , area Sk and turn 

number Nk, R is the FP residual and ( )A
k
&

ΩM  is the mean of 

A&  over kΩ . For the sake of simplicity, the dependency of the 

field quantities on time has been omitted. 

Fig. 1. MST device structure and simulations of the magnetic field distribution 
inside the device for different configurations. 

At each time step, nonlinear problem (5) is iteratively 
computed, starting from a trial value of the residual. At 
iteration j, the residual update is performed in two steps: 

( )

( ) ( ))()(

1)()(

~~

~

jjj

jjj

HH

BH

Ψν−=ℜ

ℜ+ν= −
            (6) 

where Ψ describes the relationship between magnetic field 
and magnetic flux density, here in bold type being vector 

quantities, and )(~ jH  represents a magnetic field estimate. 
The Preisach distribution function, which defines CPM 

model described in (1) by ζ, and function ξ are identified 
starting from a set of static B-H cycles measured at different 
stresses, following the approach described in [4]. Known the 
time waveform of J, the local strain λ of the magnetostrictive 
rod is approximated by the function:  

( )
J

JJ

e

J

Δ
−

−

λ
−λ=σλ

0

0
0,             (7) 

where J0 depends on stress σ and constants λ0, ΔJ, J0,1, J0,2,
and J0,3 are determined by a nonlinear minimisation algorithm. 

The computation of the local value of strain λ within the 
rod by (7) enables the determination of the total rod 
elongation. The coupling with a simplified mass-spring 
mechanical model enables the determination at each time step 
of the new value of the mechanical stress σ.

III. ANALYSIS OF A MST DEVICE

The coupled FEM-MM approach has been applied to the 
simulation of a device equipped with a Terfenod-D rod. A 
prototype of actuator is available for laboratory 

measurements, allowing the measurements of local and global 
electromagnetic and mechanical quantities. In the results 
reported in Fig. 2, the prediction of the total rod elongation, 
determined as average value of the local deformations over the 
entire rod, is plotted versus the excitation current and 
compared with experiments, showing discrepancies lower than 
22%. 

The dynamic response of the MST actuator is evidenced by 
the plots of Fig. 3, where the time evolution of the total rod 
elongation is plotted versus the supply current, for the rod 
with negligible preload and with a 13 MPa preload. Due to 
dynamic phenomena, simulations evidence how the area of the 
loop increases and the maximum elongation slightly decreases 
with frequency. 

The modeling details and its complete validation by 
comparison with experiments will be presented at the 
Conference. 

Fig. 2. Comparison between computed and measured total rod elongation. 

Fig. 3. Dynamic response of the MST actuator. Plots of the total elongation 
versus supply current for the unloaded and preloaded rod. 
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Abstract — In this paper, a new approach is presented for 

extracting saturated parameters Ld, Lq and permanent-magnet 

flux linkage md for interior permanent magnet machines. The 

procedure starts with the parameter extraction in actual abc 

reference frame based on transient finite element analysis in time-

domain. Then the parameters in abc reference frame are 

transformed to d-q axis reference frame. This approach is able to 

provide better accuracy and allow easy implementation because 

the parameters are derived from a realistic physical 

representation and the effects of the slot leakage and phase-

spread harmonic fields are included in the simulation.  

I. INTRODUCTION 

Interior permanent magnet (IPM) machines are widely 

used in various electrical devices due to their high torque-to-

current and power-to-weight ratios, and their high efficiency. 

The transient finite element analysis (FEA) coupled with 

driven circuits can provide a powerful design tool to take 

geometric complexity, high local magnetic saturation, induced 

eddy currents, dynamic core loss and mechanical movement 

into account [1]-[2]. However, the extraction of saturated d-q 

axis parameters is still highly desirable because in addition to 

providing good insight into the feasibility of a design [3],  d-q 

axis parameters are also fundamental parameters to many 

vector control algorithms in the d-q reference frame for fast 

and accurate response with quick recovery from a disturbance 

[4]. 

For computation of saturated d-q axis parameters, the 

conventional method considers neither the change of winding 

induced voltage with load nor the cross effects on field 

saturation between the d-axis and q-axis [5]-[6]. A method 

called the loading method was developed in [7] to consider the 

cross effects of d- and q-axis load currents on field saturation 

with improved accuracy. This method computes the d-q axis 

parameters based on the fundamental air-gap fluxes from two 

field solutions in terms of a specific load current and a small 

current increment at a fixed rotor position. However, this 

procedure may cause some uncertainty due to the arbitrary 

choice of a small displacement from the operating point, or the 

arbitrary alignment of the rotor pole center with the stator slot 

center, the tooth center, or in between. In addition, the effects 

of stator slot leakage and phase-spread harmonic leakage are 

not directly taken into account in the field simulation. 

In this paper, the saturated parameters and the flux linkage 

produced by permanent magnet (PM) at various load 

conditions are first directly extracted in actual (natural) abc 

reference frame based on the frozen method from the transient 

FEA solution. Then they are transformed to d-q axis reference 

in terms of the average values over one steady-state cycle. 

Thus, the extracted d-q parameters have taken into account the 

effects of the slot leakage and phase-spread harmonic field. 

This approach is able to provide better accuracy.  

II. PARAMETER EXTRACTION IN ABC REFERENCE FRAME 

The saturated parameters in the abc reference frame vary 

with the load conditions. When the three-phase windings are 

excited with constant three-phase AC voltages, these 

parameters can be extracted and expressed as a function of 

torque angle δ. Because the torque angle is the displacement 

by which the induced voltage phasor lags the applied voltage 

phasor, this modeling request can be easily realized in 

transient FE analysis by the following steps: 1) rotate the rotor 

to the initial position θ0 at which the negtive d-axis aligns with 

the positive phase-A axis as shown in Fig. 1; 2) apply three-

phase voltages in terms of a specific torque angle as 
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where ω is the angular frequency. With such scheme, phase-A 

will have the negative maximum flux linkage produced by PM 

at the initial position, which corresponds to zero crossing from 

negative to positive of the induced voltage in phase-A.   

 
Fig. 1 Initial rotor position where d-axis oppositely aligns with phase-A axis 

After solving transient FEA under a specific load condition 

at each time step, the FEA system’s coefficient matrix is 

frozen, which is equal to freezing the permeability of each 

element. Then the field is resolved with the frozen coefficient 

matrix together with different right-hand sides corresponding 

to the excitation of 1A current in turn in each winding with the 

exclusion of magnets and all other winding excitations. As a 

result, the calculated flux linkages provide the self and mutual 

inductances for all windings. Similarly, by enabling the 

excitation of magnets alone with zero currents in all windings, 

the flux linkage due to magnets for each winding is obtained. 

Determination of d-q Axis Parameters of 
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III. PARAMETERS IN DQ REFERENCE FRAME 

The transformation matrix from abc reference frame to d-q 

reference frame is 
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where θ, which is equal to ω t+π at the synchronous speed, is 

the angle from the phase-A axis to the d-axis in electrical 

radians. It can be verified that this transformation is able to 

keep the power and torque invariant, as well as to have 

identical transformation for both current and voltage. 

Therefore, the transformation of impedance is  
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where superscript T denotes the transpose of [C]. The 

transformation of flux linkage produced by PM alone is 
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The d-q axis inductances Ld and Lq, and flux linkages md 

and mq are computed for each time step. Figs. 2 and 3 show 

the variations of average values of these parameters over one 

steady-state cycle with the torque angle δ  for the application 

example to be discussed in the next section. 
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Fig. 2 Ld and Lq profiles with torque angle 
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Fig. 3 λmd and λmq profiles with torque angle 

IV. NUMERICAL VALIDATION 

As an application example, the proposed approach is 

applied to simulate the performance of 8-pole, 48-slot Toyota 

Prius IPM motor [8]. The rating of the prototype is 50kW at 

200V phase peak voltage and 3000 rpm.   

In order to validate the effectiveness of the proposed 

approach, let us to compare the torque value between two 

cases: the first one is that the torque value is obtained directly 

from transient FEA simulation; the other one is that the torque 

value is derived in terms of the above extracted parameters 

shown in Figs. 2 and 3 based on the lumped parameter model. 

From (1) and (2), the d-q voltage at the synchronous speed is 
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The voltage equation in the d-q reference frame is 
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where θ  is the synchronous speed in electrical radians per 

second, and R1 is the resistance of the phase winding. Thus  
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and the torque is 

[ ]qmdqdqde iiiLLpT λ−−−= )(                       (8) 

where p is the number of pole pairs. Fig. 4 shows the torque 

characteristics computed by (8) using the extrated lumpered 

parameters, compared with the results directly from FEA 

transient simulation. It can be seen they match very well. 
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Fig. 4 Torque characteristics from the lumped parameter model, compared 

with the FEA transient simulation results 
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Abstract — The stator winding overhangs of two permanent 
magnet (PM) synchronous machines are simulated using a 3D 
simulation program dedicated for calculation of special end 
effects in electrical machines. The main issues with simulation of 
the stator winding ends and the adopted solutions are presented 
in this paper. Two models with different type of winding 
overhangs are calculated to demonstrate the program 
functionality. 

I. INTRODUCTION

Numerical simulation of electrical machines is widely used 
especially by the calculation and optimization of PM 
machines. Often in the daily use, specialized 2D programs [1], 
which allow fast deploying of the model and offer the 
necessary results in a convenient manner, are preferred to a 
multipurpose general program, which may not be so time 
efficient. In order to expand the capabilities of an established 
2D FEM code, a special 3D program is developed for 
considering only 3D end effects in electrical machines. The 
program uses as the base for the mesh generation the 
established 2D mesh, which is extruded to create the three 
dimensional meshes. For solving the 3D numerical problems 
an open source software [2] is used. 

a) b)
Fig. 1. a) Tooth wound coil b) Two layers distributed coil (Source a) TU 

Darmstadt, b) VA Tech Andritz 

Simulation of electrical machines with 3D models is 
usually avoided due to the complicated model construction 
and increased calculation time. For many cases a 2D 
calculation is considered sufficient. However, if the simulated 
machine is relatively short like the disc type machines, or if 
the stator and rotor have big differences in length in the axial 
direction or the effects of the winding overhang are important, 
a 2D solution is not sufficient. In this paper the generation of 
the winding overhang as a special example of a 3D problem is 
discussed. The winding overhang can be complicated to 
implement, depending on the machine type. The tooth wound 
coils (Fig. 1 a)) are easy to implement, but the high voltage 
two layer distributed winding (Fig. 1 b)) features a 
complicated 3D structure, which must be considered by a 
special mesh generation. The developed 3D FEM code 
provides the user with an automatic generation of the winding 

overhangs in order to reduce the time, needed to prepare the 
simulation. 

II. WINDING OVERHANG MESH GENERATION

For the treatment of end effects the mesh is generated 
mostly by extrusion from the original 2D mesh of the 
previously investigated machine. The same procedure is 
applied also for the winding overhangs, where the extrusion 
path is chosen to be found in the center of the coil cross 
section. Thus the extrusion path is a 3D curve that needs to 
follow the winding overhang shape. One problem that arises 
during extrusion is that the coil can get skewed and the lateral 
cross section areas are not planar anymore. That requires the 
use of second order elements which are not supported by the 
used open source software. For this reason the winding 
overhangs mesh is not done with hexahedral or triangular 
based prisms, but with first order tetrahedral elements, which 
due to their triangular faces have always plane faces. A small 
geometrical discretization error (Fig. 2) appears for strong 
twisting, which can be reduced by an increase of the mesh 
density. 

Fig. 2. Skewed geometry with the non-planar quadrilateral surface A
approximated by two planar triangular surfaces A1 and A2

The extrusion path contains straight segments and circle 
arcs. In order to avoid unnatural deformation of the mesh 
during extrusion, straight segments are not usually connected 
directly, if they are forming an angle different of 180°. A 
procedure that connects two neighboring segments with an arc 
of a given radius is used to maintain a valid mesh. A simple 
application is a tooth wound coil, which only contains two 
straight segments and an arc, all found in the same plane. The 
example is an outer rotor PM machine, used as a fan motor 
(Fig. 3 a)). For this example the simulation of a 3D model is 
interesting, because the outer rotor is longer than the stator. 

III. TWO LAYER DISTRIBUTED WINDING

Distributed windings are used instead of tooth wound 
coils, because they are decreasing the harmonic content of the 
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stator field and so decrease the losses in the machine. The 
complicated manufacturing increases the manufacturing costs. 
Two layers distributed winding with a constant coil span are 
used as form wound coils in large machines. The coils are 
connected between the upper and the lower layer coil side 
without intersecting each other in the overhang region and 
having a regular arrangement of the end connections (Fig. 3 
b)). The presented example is a linear machine. In the case of 
rotating machines an additional bending is necessary to follow 
the machine cylindrical shape.  

a) b)
Fig. 3. a) One pole pair of the tooth wound coil outer rotor PM synchronous 

machine b) One pole of the two layers distributed winding linear PM machine 

TABLE I 
MAIN MOTOR PARAMETERS FOR SIMULATION

Parameter\Motor Tooth-coil Distributed winding  
Phase number 3 3
Turns / Phase 100 5
Iron stack length 5 mm 60 mm 
Magnet length 15 mm 60 mm 
Overhang length 12 mm 67 mm 
Iron relative 
permeability 

1000 (rotor)  
10000 (stator) 

1000

The modeling of this type of machine is difficult, when the 
symmetry is exploited and periodical boundary conditions are 
used to limit the calculation domain. For example, in Fig. 3 b) 
the mesh for only one pole of the motor is used and the 
winding must pass through the boundary. That can happen at 
an arbitrary angle and so care must be taken that the elements 
remain valid. Furthermore, the periodical boundary conditions 
require that the mesh on both sides (left and right in Fig. 3 b)) 
is identical. The solution adopted was to generate the entire 
preformed coil and to cut the part that surpasses the model 
boundary. The parameters used for the simulations are given 
in Table I. 

IV. CALCULATION RESULTS AND COMPARISON WITH

2D RESULTS

For validation of the results the calculations were done 
using the 2D software [1]. The model for the 3D software was 
based on an extruded mesh similar to the 2D model (a). For 
this purpose the end windings and end region were not 
simulated, and at the two boundaries in longitudinal direction 
(minimum and maximum z) a parallel flux Dirichlet boundary 
condition was used. The results of the 2D and 3D model are 
directly comparable in this case (Table II ). All presented 
simulations are no-load calculations without excitation current 
in the stator winding only the PM field of the rotor is 
considered. Due to yet limited post processing capabilities the 
only integral value available is the flux linkage Ψ integrated 
according to (1), where A is the magnetic vector potential, N

is the number of turns per phase and C is the curve on which 
the coil is extruded.  

 
C

NΨ dsA  (1) 

The full 3D simulation (b) considers also the winding 
overhang (Fig. 4). For the tooth wound coil PM machine the 
flux linkage increases about three times due to the longer 
magnets on the rotor. The length of the magnets is about 3 
times bigger than the stator iron stack. Also due to the linear 
calculation, which neglects the iron saturation. For the 
distributed winding machine the full 3D model uses the same 
magnet volume. The flux linkage decreases due to the fact that 
a part of the magnetic flux lines closes in the air at the motor 
end without contributing to the winding flux. 

a) b)
Fig. 4. Vector plot of magnetic flux density of: a) Tooth coil PM machine b) 

The distributed winding PM linear machine 

TABLE II 
COMPARISON OF CALCULATED FLUX LINKAGE IN WINDINGS 

FOR 2D AND 3D SIMULATION (IN 10-3·V·s) 

Program\Motor Tooth-coil Distributed winding  
Phase U V W U V W
2D 0.181 0.181 0.362 29.2 -43.0 9.8 
a) 3D as 2D 0.183 0.183 0.365 29.0 -42.8 9.8 
b) 3D 0.494 0.493 0.986 23.7 -34.6 7.8 

The results of the 2D model and the first 3D model are in 
good concordance and so the results of the 3D program are 
validated.

V. CONCLUSIONS

The first results obtained with a 3D electrical machines 
oriented program were presented in this paper. The generation 
of the winding overhangs model is done using the extrusion of 
the 2D mesh of the coil along an arbitrary path. Periodical 
boundary conditions require a special treatment of the mesh 
generation to ensure identical mesh on the master and slave 
sides of the boundary condition. 
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Abstract— This paper proposes a dynamic analysis method for 
a novel spiral resonant actuator with two-degree-of-freedom 
employing the 3-D finite element method (FEM). The effects of 
the slit structure on the performance of the actuator are 
quantitatively clarified using this method. 

I. INTRODUCTION 
We have been developing a novel spiral resonant actuator 

with two-degree-of-freedom based on the linear resonant 
actuator with active vibration absorber [1][2]. 

In this paper, we propose a dynamic analysis method for the 
actuator, in which motion equations of linear and rotation are 
simultaneously solved employing the 3-D finite element 
method (FEM). Consequently, the effects of the slit structure 
on the performance of the actuator are quantitatively clarified 
using this method. 

II. BASIC STRUCTURE AND PRINCIPLE OF OPERATION 
Fig. 1 shows the proposed spiral resonant actuator. It mainly 

consists of an armature (yoke A and shaft) and a stator (coil, 
permanent magnet, yoke B and case). The armature is 
connected to the resonance spring. The active vibration 
absorber, which decreases the vibration of case, is connected 
to the armature. 

Fig. 2 shows the magnetic circuit at the x-z section. The 
thrust is not generated on the armature when the coil is not 
excited because the magnetic flux by the magnet is balanced 
in two gaps. On the other hand, when the coil is excited, the 
thrust is generated on the armature because the total magnetic 
flux by the magnet and current becomes unbalanced. 

Fig. 3 shows the magnetic circuit at the x-y section. In order 
to achieve the spiral motion, both of the armature and the 
stator have slits (pitch θp, width w, depth d), and the upper and 
lower slits of the armature are shifted with θs and − θs against 
the stator slit. The clockwise torque is generated on the 
armature when the armature moves in the positive direction of  
 

 
 
 
 
 

Fig. 1. Spiral resonant actuator. 

z-axis because the torque generated on the upper part of the 
armature is dominant. On the other hand, the 
counterclockwise torque is generated on the armature when 
the armature moves in the negative direction of z-axis because 
the torque generated on the lower part of the armature is 
dominant. 

III. ANALYSIS METHOD 

A. Magnetic Field Analysis 
The equations of the magnetic field and the electric circuit 

are coupled using the 3-D FEM, which are given by the 
magnetic vector potential A and the exciting current I0 as 
follows [3]: 

MJA rot)rotrot( 00 νν +=  (1)

000 =−−=
dt

dΨ
RIVE  (2)

s
c

c I
S

n
nJ 00 =  (3)

where ν is the reluctivity, J0 is the exciting current density, ν0  
 
 

 
 
 
 

Fig. 2. Magnetic circuit (x-z section). 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Magnetic circuit (x-y section). 
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Fig. 4. Kinetic model of spiral resonant actuator.

is the reluctivity of the vacuum, M is the magnetization of 
permanent magnet, V0 is the applied voltage, R is the effective 
resistance,Ψ is the interlinkage flux of exciting coil, nc and Sc 
are the number of turns and the cross-sectional area of the coil 
respectively and ns is the unit vector along with the direction 
of exciting current. 

The kinetic model of this actuator is shown in Fig. 4. 
The linear motions of the armature, the active vibration 

absorber and the case are described as follows [3]:  
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(case) (6)

where mi, zi, ki   and ci (i=1,2,3) are the mass, displacement, 
spring constant and viscous damping coefficient of the 
armature, active vibration absorber and case, respectively. F is 
the electromagnetic force acting on the armature. 

The rotation of the armature is described as follows [3]: 

dt
dckT

dt
dI m

θθθ ′′ ++=2

2  (armature) (7)

where I is the moment of inertia of the armature, θ is the 
rotation angle, Tm is the torque acting on the armature, k' is the 
spring constant for rotation and c' is the viscous damping 
coefficient for rotation. 

B. Dynamic Analysis Method 
In order to simulate the dynamic behavior of the actuator, it 

is necessary to solve the motion equations of linear and 
rotation simultaneously. 

The detail of the procedure is shown as follows: 
(i) The meshes are modified according to the 

displacement of the armature for linear motion 
analysis. 

(ii)   The meshes are modified according to the rotation 
angle of the armature for rotation analysis. 

(iii)   The 3-D magnetic field analysis is conducted. 
(iv) The displacement of the armature, the active 

vibration absorber and the case are calculated by 
 solving (4)-(6). 
 
 
 
 
 
 
 
 

(v) The rotation angle of the armature is calculated by 
solving (7). 

IV. ANALYZED MODEL AND ANALYSIS CONDITIONS 
The magnetic circuit of the actuator is analyzed using the 3-

D FEM (Ref. Figs. 2 and 3). The analyzed region is 1/12 of 
the whole region because of the symmetry. The slit pitch θp, 
the slit depth d and the slit shift θs are 30.0°, 0.3mm and 7.5°, 
respectively. 

V. RESULTS AND DISCUSSION 
Fig. 5 shows the waveforms of current, thrust and torque in 

steady state. From this figure, the maximum thrust and the 
maximum torque are 2.9N and 1.8mN·m, respectively. Fig. 6 
shows the amplitude and rotation of the armature in resonance. 
From this figure, the resonance is synchronized with the 
rotation. The maximum amplitude and the maximum rotation 
angle are 0.36mm and 6.6°, respectively. The effectiveness of 
the calculated results will be confirmed through the 
comparison with the measured ones in the full paper. 
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Fig. 5. Waveforms of current, thrust and torque. 
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11. ELECTRIC MACHINES AND DRIVES

Abstract —Doubly fed induction generator is attracting 
attention among options in distributed wind energy harvest. 
Traditional design and analysis of Doubly Fed Induction 
Generator (DFIG) dominantly rely on lump-parameters and 
Finite Element models. Although Finite Element Analysis (FEA) 
method is available, the computational time limits its application 
in iterative optimal design practices of DFIG. This paper is based 
on the use of Field Reconstruction Method (FRM) which can 
greatly reduce the computation cost while maintaining 
acceptable accuracy. In order to conduct efficiency optimization 
the procedure to calculate flux density and core losses are 
described. Finally, an optimal design method of DFIG towards 
maximum annual energy production in a given area with 
available wind speed information is presented.   

I. FIELD RECONSTRUCTION METHOD IN DFIG

A.  Field reconstruction model of machine 

FEA is the mainstream tool in the design and analysis of 
electric machines. However, an optimal and iterative design of 
an electrical machine, using FEA, typically requires much 
more computation cost than lump-parameter model. In the 
absence of magnetic saturation, Field Reconstruction (FR) 
method [1] can offer the distribution of the flux density with 
acceptable accuracy using superposition of two pre-existing 
magneto-static FE field solutions. It is understood that 
distributed wind generators that are grid connected should not 
operate under saturated conditions to avoid emission of 
undesirable harmonics. Therefore, with the linearity 
assumption, the normal and tangential flux density in the 
airgap of DFIG can be viewed as the superposition of the 
stator and rotor contributions  

nrnsn BBB +=          (1) 

trtst BBB +=                                   (2) 

In (1) and (2), nsB , nrB , tsB , trB  denote the normal and 

tangential components of flux density generated by stator and 

rotor excitations respectively. In particular, nsB , tsB  can be 

obtained by adding the flux components created by 3 phases 

stator current asI , bsI and csI .  This can be expressed as 

ncsnbsnasns BBBB ++=                      (3) 

tcstbstasts BBBB ++=                          (4) 

Where nasB tasB can be defined as 

)( smnsasnas fIB φ=                            (5) 

)( smtsastas fIB φ=                              (6) 

In which, )( smnsf φ , )( smtsf φ are the basis functions only 

related with the geometry parameters of DFIG. The angle smφ
refers to angular position relative to stator axis. Due to the 
symmetry of stator, the flux component of stator can be 
expressed as 

)2()()( θφθφφ −+−+= smnscssmnsbssmnsasns fIfIfIB (7)

)2()()( θφθφφ −+−+= smtscssmtsbssmtsasts fIfIfIB   (8) 

Where θ is equal to 120 degree divided by number of pole 
pairs. Since the structure of rotor is similar to stator in DFIG, 

nrB , trB  can be defined as 

)2()()( θφθφφ −+−+= rmnrcrrmnrbrrmnrarnr fIfIfIB   (9) 

)2()()( θφθφφ −+−+= rmtrcrrmtrbrrmtrartr fIfIfIB   (10) 

B. Basis functions  

Magneto static Finite Element Analysis of DFIG Model in 
commercial Maxwell is used to compute the basis functions 

)( smnsf φ , )( smtsf φ , )( rmnrf φ , )( rmtrf φ . By setting the asI
=1A while other phases of stator and rotor are kept open, basis 

functions )( smnsf φ and )( smtsf φ can be obtained using a 

single FE field solution. Similarly, the basis functions of rotor 
flux density can be calculated.  Fig. 1 and Fig. 2 show the 
normal and tangential flux density of one 4 poles, 3 phases 
DFIG calculated by FR and FEA methods when the excitation 
is 30AT, -15AT,-15AT at stator phase a, b, c respectively. The 
rotor excitation is the same with stator. Our results show that 
FRM is typically two orders of magnitude faster than FEA and 
can have a high impact on computational time and resources. 

Fig. 1. Normal flux density in the airgap calculated by FR method and FEA 
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11. ELECTRIC MACHINES AND DRIVES

Fig. 2. Tangential flux density in airgap calculated by FR method and FEA

II. FLUX AND CORE LOSS CALCULATION

Starting from the knowledge of flux distribution in the 
middle of the airgap the flux at various parts of the DFIG is 
calculated by integration of flux density over the area of 
various stator teeth. Once the flux distribution is known, the 
core loss model of the ferromagnetic materials is applied to 
calculate the core loss. Since the normal and tangential 
component of magnetic field is already computed by FR 
method, the calculation of core loss distribution is straight 
forward according to (11). 

5.122 )()( memcmhv fBKfBKfBKP ++=    (11) 

In which, hK , cK , eK  refer to the hysteresis loss, eddy 

current loss and excess loss coefficients respectively, which 

only related with material properties and mB is the magnitude 

of flux density. Fig. 3 shows core loss of the DFIG model used 
in this paper when fed by 5A current at both stator and rotor. 

Fig. 3. Core Loss of the DFIG 

III. OPTIMAL DESIGN OF DFIG ACCORDING TO WIND SPEED 

DISTRIBUTION

A.  Wind Speed Distribution  

One drawback of the wind energy is that the available 
power relies heavily on the weather condition. There would be 
large fluctuation in wind energy due to the uncertainty of wind 
speed. To facilitate the optimal design, the Rayleigh 
distribution showed in Fig. 4, which has reasonable 
approximation of real wind speed condition, is applied in this 
paper. The probability density function is given by 

)4/exp()2/()( 22
aa uvuvvf ππ −=      (12)

In which, v is the wind speed, au  is average wind speed. 

However, in the practical design, it is better to take advantage 
 of specific site wind speed distribution data if it is accessible. 

Fig. 4. Rayleigh wind speed distribution under different average wind speeds 

B.  Optimal design  

Typically, the electric machines are designed to have the 
maximum efficiency at the rated operation condition. 
Nevertheless, DFIG always works at points apart from the 
rated condition due to the uncertain wind condition. The total 
output power of DFIG based on such design may not be the 
maximum in unit period.  Actually, it is more straightforward 
if the optimal design aims at highest overall efficiency or total 
annual power output. However, accurate simulation based on 
FEA is time consuming. Fig. 5 shows the proposed optimal 
design procedure of DFIG which only requires one single 
magneto statistic FEA evaluation in one optimization circle 
when new geometry parameters generated. This can be much 
less time consuming than optimal design based on FEA.  

Fig. 5. Magnetization as a function of applied field

IV. CONCLUSION

An optimal design method of DFIG based on FR and FEA, 
aimed at maximum annual energy production, is proposed in 
this paper. Using the proposed method, optimal design can be 
achieved while the computation cost would be significantly 
reduced with reasonable accuracy compared to FEA. An 
optimal design case will be presented in the full version of the 
paper.
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Abstract — In this paper, we investigated the iron loss of 
interior permanent magnet machines for high-speed operation. 
In the analysis, to consider the harmonic magnetic field and the 
rotational variation of flux vectors in the core of the machine 
effectively, we proposed a new harmonic iron loss calculation 
method based on variable loss coefficients due to their flux 
density and frequency. In order to verify the performance of the 
proposed method, we calculated the iron loss in interior-
permanent magnet synchronous machine (IPMSM) with 
conventional methods. Then, the estimated iron losses were 
compared with the experimental data. It was clarified that the 
proposed method is more effective than conventional methods at 
high-speed operation.  

I. INTRODUCTION 
With the increasing demand on high efficiency and high 

power density for energy saving, it is important to estimate 
iron loss of electrical machines accurately [1]-[5]. Until now, 
several models for harmonic iron loss in rotating machines 
using both Fourier transform and Epstein test have been 
developed [1]-[2].  

In [1] the authors showed an iron loss evaluation method 
(Conv. Method-1) considering elliptically rotating field and 
harmonic flux density distribution. The method used the 
constant loss coefficient which is acceptable for line-fed 
machines with magnetic circuit loaded at 1.5-1.8T. However, 
such strategy based on constant loss coefficients is not suitable 
for the machine using field-weakening control in which the 
frequency and the flux density of flux waveform are varied 
remarkably according to its driving condition [3]-[5]. 

In [2] the authors showed a simple iron loss calculation 
method (Conv. Method-2) without using loss coefficients. 
However, the method needs experimental data curves very 
much because the model can’t define the arbitrary loss curve 
used to calculate harmonic iron losses. 

In this study, we proposed a new iron loss model adopting 
the variable loss coefficients concept [3], [4]. In order to 
verify the performance of the proposed method, we calculated 
the iron loss in IPMSM with conventional methods. Then, the 
estimated iron losses were compared with the experimental 
data.  

II. PROPOSED MODEL 

A. Adaptive Loss Coefficients 
The conventional iron loss model with constant 

coefficients give rise to substantial error in specific frequency 
range and flux density, we adopt the concept of variable 
coefficients [3]-[5]. The iron loss model using the variable 
coefficients can be expressed as follows:  

2 2 2( , ) ( , )i e hw K f B f B K f B f B= + .                  (1) 

The coefficients of Ke and Kh are variables with f and B.  To 
attain the variable coefficients (Ke and Kh) with small relative 
error, we divided overall frequency range into two parts. One 
is low frequency (50-1000 Hz), the other is high frequency 
(1000-10000 Hz). And the determination of loss coefficients 
is shown in Fig. 3. 

The following fifth-order polynomials were employed for 
curve fitting of Ke and Kh: 

2 3 4 5
0 1 2 3 4 5e e e e e e eK k k B k B k B k B k B= + + + + +  ,        (2)  

2 3 4 5
0 1 2 3 4 5h h h h h h hK k k B k B k B k B k B= + + + + + .    (3) 

B. Rotational Iron Loss Evaluation 
Generally, the loss data obtained from Epstein test has been 

widely used to calculate iron loss [1]-[5]. The Epstein test is 
performed in alternating field conditions and the method give 
good precision in predicting iron loss in transformers where 
the alternating field is dominant. However, in case of the 
rotating machines, there exist rotational flux density variations 
with different degrees of polarization. In addition, it has been 
reported that the iron loss occurring in the rotational field is 
much larger than that of the alternating one [1]. 

The additional iron loss caused by the rotational field is 
assumed to be proportional to the circular degree of flux 
vector loci expressed by the short-axis-to-long-axis rate c (0 ≤ 
c ≤ 1). The evaluation of this additional iron loss can be 
expressed as follows [1]: 

_

i hys rot eddy rot

hys alt eddy alt add rot

W P P

P P P
− −

− −

= +

= + +
   ,      (4) 

( )

( )

short
add rot hys alt eddy alt

long

hys alt eddy alt

L
P P P

L

c P P

γ

γ

− − −

− −

= +

= +

   ,      (5) 

 
where Phys-rot and Peddy-rot is hysteresis and eddy-current loss 
respectively when rotational field considered, Padd_rot is the 
additional iron loss caused by rotational field, Lshort and Llong is 
the short and long axis of the flux vector trajectory ellipse, γ  
is the rate of iron loss increment under the circular rotational 
field to the loss in alternating field. The constant ‘γ’ varies 
with flux density and the kind of core material.  For simplicity, 
γ  is fixed to 1. 

Using FEM analysis, the flux density waveform at each 
element can be obtained. And then, Fourier transform is 
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13. EDUCATION 

performed to get fundamental and harmonics components. 
According to (4), total iron loss considering rotating field can 
be estimated as follows [1]: 

( ) ( )
, ,

2 2( ) ( ) 1
m n m n

a
i e h n

niron

W K D nf B K D nf B C dvγ= ⋅ + ⋅ ⋅ +∑∫ , (6) 

where Cn is the short-axis-to-long-axis rate of the flux vector 
locus at harmonic order n.  
Since using the constant coefficients may induce the large 

computational error, (6) is not suitable for the machine using 
field-weakening control in which the frequency and the flux 
density of flux waveform are varied dramatically according to 
its driving condition. 

Based on the equation (1), (2), and (3), we proposed a new 
iron loss model that employs the variable loss coefficients. 
The proposed model, based on (6), can be formulated as 
follows: 

(

) ( )

,

,

2 2
,

2
,

( , ) ( )

( , ) ( ) 1

m n

m n

i e m n
niron

h m n n

W K nf B D nf B

K nf B D nf B C dvγ

= ⋅

+ ⋅ ⋅ +

∑∫ .     (7) 

III. SIMULATION RESULTS AND DISCUSSION 

To verify our proposed method, an IPMSM having 3[kW] 
power rating prototype machine was selected. For validation 
of our proposed method, the estimated iron loss was compared 
with the measurements. In the experiment, the open-circuit 
iron losses were measured with an input–output test. Fig. 2 
shows the experimental equipments for measuring of iron loss. 
Fig. 3 shows the FE model and iron loss distribution of the 
machine at open-circuit operation. 
The comparison of computational results is presented in Fig. 

4. From the figure, we can see that our method agree well with 
the experimental ones compared with the conventional 
methods.  
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Fig. 1. Determination of coefficients of iron loss.  

 

 
Fig. 2. Measuring equipments. 

 

 
Fig. 3. FE model of IPMSM operating in open circuit at 5000 [rpm]. The 

distribution of iron loss is shown in shades of gray. 
 

 
Fig. 4. Calculated and measured iron loss at open-circuit condition. 
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Abstract — This study deals with the characteristics analysis 

and optimum design of Permanent Magnet Assisted 

Synchronous Reluctance Motor (PMASynRM) using Finite 

Element Method (FEM) and Response Surface Methodology 

(RSM). The focus of this paper is finding of optimum design 

solutions due to the characteristics analysis of d, q axis 

inductance according to the size and magnetizing quantity of 

interior permanent magnet for PMASynRM. Investigation on 

nonlinear characteristic of machine is performed by Preisach's 

theory application. The proposed optimum design procedure 

(RSM) & characteristics analysis allow to define the rotor 

geometric dimensions performed premium efficiency starting 

from an existing motor or a preliminary design. 

I. INTRODUCTION 

The performance of a synchronous reluctance motor 

(SynRM) in terms of torque and power factor depends on the 

two-axis inductance Ld and Lq of the machine. The large 

difference of (Ld - Lq) and Ld / Lq ratio are good for the 

machine's properties. Unless the high saliency ratio Ld / Lq is 

reached, the torque density, power factor and efficiency remain 

well below those of induction motors with an identical stator. 

Considerable attention has been paid in the past to improve 

rotor design of SynRM [1]-[3].  

By adding a proper quantity of permanent magnets the 

torque density and power factor of SynRM can be greatly 

increased. It is called Permanent Magnet Assisted 

mSynchronous Reluctance motor (PMASynRM).  

However, when a proper quantity of P.M. is chosen to 

counteract the quadrature mmf as shown in Fig. 1, 2 rotor ribs 

must be saturated by means of an additional magnet quantity. 

The effects of saturation and iron losses are often important 

issues in the performance of PMASynRMs. The saturation 

effect in the daxis of the rotor is very different from that of the 

q-axis because the nature of the magnetic paths is different. In 

the case of d-axis excitation, the saturation is the combined 

effect of saturation in the stator yoke, stator teeth, and rotor 

ribs, and can reduce the L, inductance by as much as 

50%.[4],[5] 

In high speed applications, iron losses can become the 

major cause of power dissipation. Therefore, whereas in other 

kind of machines a rough estimation of iron losses is 

acceptable, their importance in PMASynRM justifies a greater 

effort in calculating them more precisely.  

Finite element methods have the abilities to model the 

complicated internal structure within PMASynRM and to 

model magnetic saturation to a high degree of accuracy. 

This study deals with the characteristics analysis and 

optimum design of Permanent Magnet Assisted Synchronous 

Reluctance Motor (PMASynRM) using Finite Element Method 

(FEM) and Response Surface Methodology (RSM). The focus 

of this paper is finding of optimum design solutions due to the 

characteristics analysis of d, q axis inductance according to the 

size and magnetizing quantity of interior permanent magnet for 

PMASynRM.  

Investigation on nonlinear characteristic of machine is 

performed by Preisach's theory application.  

The proposed optimum design procedure (RSM) & 

characteristics analysis allow to define the rotor geometric 

dimensions performed premium efficiency starting from an 

existing motor or a preliminary design. 

 
Fig.1 Rotor cross-section of  PMASynRM 

 

 
Fig.2 Phasor diagram corresponding to PMASynRM 
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II. CONCEPT OF RESPONSE SURFACE METHODOLOGY 

The RSM seeks to find the relationship between design 

variable and response through statistical fitting methods, which 

are based on the observed data from system.  

The response is generally obtained from real experiments 

or computer simulations. Therefore finite element analysis 

(FEA) is performed to obtain the data of SynRM in this paper.  

There are many experimental designs for creation of 

response surface. In this paper the central composite design 

(CCD) is chosen to estimate interactions of design variables 

and curvature properties of response surface in a few times of 

experiments. The CCD has been widely used for fitting a 

second-order response surface. [6] 

 
TABLE  I 

ANALYSIS OF VARIANCE 

Source of 

Variation 

Degree of 

Freedom 

Sum of 

Squares 
Mean Square 0F  

Regression k RSS  
R

R

/SS k =

    MS
 R E/MS MS

 

Residual  n-k-1 ESS  
ESS  /(n-k-1)= 

EMS  
 

Total n-1 yyS    

 

It is always necessary to examine the fitted model to ensure 

that it provides an adequate approximation to the true response 

and verify that none of the least squares regression 

assumptions are violated. In order to confirm adequacy of the 

fitted model, analysis-of-variance (ANOVA), shown in Table I 

is used in this paper. In Table I, n is the total number of 

experiments and k is the number of parameters in the fitted   

model.  

III. OPTIMIZATION PROCEDURE 



















 
Fig. 3 the flow chart of optimum design procedure 

 

Fig3. shows the flow chart of total design strategy. 

Design procedure according to the flow chart is as follows; 

Step1 : Set the initial value (CAD file, Pre-processor data). 

And the initial model is assigned to Rated Wattage=3HP,  flux 

barrier=3, slot=24, P.M.=0.1~0.5[T] 

Step2 : flux barrier width (L1,L2) in rotor are adopted the 

design variables related to torque density in the SynRM. 

However, the ribs have a fixed value due to inherent 

manufacturing limitations. 

Step3 : The range of design variables and experiment 

frequency is established by using the central composite design 

(CCD). The experiment frequency is N. 

Step4 : Finite element analysis (FEA) is performed and Ld-

Lq is calculated. 

Step5 : The Ld-Lq obtained from FEA, are stored. 

Step6 : The experiment frequency (N) is finish? 

 Yes:P.M.=O.5[T].    No: N=N+1 

Step7 : When the rotor shape according to variables 

(L1,L2) is varied, they have a difficulty in performing a lot of 

the pre-processor for FEA. For this reason, the new CAD file 

is redrawn with regard to the change of the design variables 

automatically. Next the process of automatic mesh generation 

follows. In mesh generation, mesh data doesn’t change the 

node number, element number, region, boundary condition, 

etc., but only x, y coordinate data of the design variables. In 

this way, the proposed pre-processor procedure can be 

performed in a short period of time.  

Step8 :  P.M.=0.5[T] 

 Yes: Finite element analysis (FEA) is performed and 

Ld-Lq is calculated. 

 No: P.M.=P.M.+0.1[T] 

Step9 : The response surface model is created by data 

obtained from FEA according to an established range.  

Therefore, it is possible to get optimum torque density 

More detailed results and discussion will be given in final 

paper. And the mathematical expressions for response surface 

methodology and optimum design procedures will be also given 

in extended version. 
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Abstract —This paper presents the effective analysis method of 
irreversible demagnetization for line-start permanent magnet 
(LSPM) motor considering magnetic field produced by 
secondary conductor bars. By using Finite Element Analysis 
(FEA) in transient magnetic field, currents in primary and 
secondary conductors are estimated and used for 
demagnetization analysis in magneto-static field. Therefore closer 
condition to actual situation can be achieved. General 
demagnetization analysis using primary currents only and 
presented analysis methods are compared and verified by 
experiments.  

I. INTRODUCTION

LSPM motors have both conductor bars and permanent 
magnet (PM) in the rotor. Accordingly, line-start of induction 
motor (IM) is possible and operation in synchronous speed is 
possible at steady state by magnetic torque and reluctance 
torque. Therefore position sensor of general permanent 
magnet motor for starting and operation is not necessary, and 
conductor loss of general induction motor is small since 
LSPM motor operates at synchronous speed in steady state. 
Consequently, LSPM motor provides lower production cost 
than general permanent magnet motors and higher efficiency 
than general induction motors. The application of LSPM 
motor is suitable for home appliances which require low cost 
and high efficiency [1]. However, the large current at starting 
causes irreversible demagnetization of PM [2]. Generally the 
irreversible demagnetization of PM is decided by the 
operating point in B-H or M-H curve of PM when only 
primary part is excited. However, LSPM motor is operated as 
IM at starting and magnetic field by secondary conductors 
produced. This results in the reduced magnetic field acting on 
PM to be reduced. Therefore general demagnetization analysis 
leads to the over estimation of magnetic field acting on PM, 
and results in excessive PM usage.

This paper deals with demagnetization of LSPM motor by 
considering magnetic field by secondary conductor bars. By 
using FEA in transient magnetic field, currents in primary and 
secondary conductors are estimated and used for 
demagnetization analysis in magneto-static field. Therefore 
closer condition to actual situation can be achieved. General 
demagnetization analysis using primary currents only and 
presented analysis methods are compared and verified by 
experiments. 

II. STRUCTURE OF SINGLE-PHASE LSPM MOTOR

The configuration and winding connection of a single-phase 
LSPM motor with rare-earth PM are shown in Fig. 1(a) and 

(b) respectively. As shown in Fig. 1, both consist of main and 
subsidiary windings in the stator and conductor bars to 
produce the starting torque in the rotor. Starting capacitance 
Cs, running capacitance Cr, and positive temperature 
coefficient (PTC) are connected with the subsidiary windings 
to increase the starting torque and power factor. Accordingly, 
it could be considered as a two-phase motor. The motor has 2-
pole rotor with 28-slot stator for household appliance.  

Fig. 1. Single-phase LSPM motor and their stator winding connection 

Fig. 2. Characteristic curve of permanent magnet

III. DEMAGNETIZATION OF PM

A. Nonlinear analysis of PM 
The demagnetization analysis considers not only nonlinear 

characteristics of the core but also that of the PM on the B-H 
curve. Fig.2 shows an irreversible demagnetization curve of 
rare earth PM magnet each temperature. The equation (1) is 
approximate equation for Magnetization M [3]. 

                           0 ( ) ( )M B f B h Bμ= − = .                        (1) 

Where H is f (B) and μ0 is permeability. 

B. Calculation of demagnetizing current 
On designing the thickness of PM, demagnetizing current is 

calculated in equation (2). 
2 2

4 2
c

m
w

pHI h
m Nk

π
≤ ⋅ ⋅ .                           (2) 

Where Hc is coercive force, m is phase number, hm is PM 
thickness, p is pole-pair, kw is a winding factor and N is turn 
number. 
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13. EDUCATION

C. Analysis process 
General demagnetization analysis method (Method1) using 

primary currents only and presented analysis method 
(Method2) for LSPM motor are compared. Initially, 
irreversible demagnetization current of Method1 is calculated 
using equation (2) at the TABLE I, and then identical current 
is used to Method2 in order to consider the effect of secondary 
conductor bars current on the irreversible demagnetization of 
PM.

As shown in fig. 3, the analysis process of 
demagnetization for LSPM motor is as following. Firstly, 
using transient analysis, currents in primary and secondary 
conductor bars are estimated. Then calculated currents by 
transient analysis are applied to irreversible demagnetization 
analysis in every rotor position considering not only nonlinear 
characteristic of the core but also that of the PM on the B-H
carve. When the operating point of PM is below its knee point, 
the residual flux density of the PM is renewed. Finally, with 
renewed flux density of the PM elements, no-load back-EMF 
is calculated. By comparing no-load back-EMF before and 
after demagnetization field, irreversible demagnetization of 
PM is determined.  

Fig. 3. The process of Method 2

TABLE I 
INPUT CURRENT AT THE ROCKED-ROTOR STATE 

Temperature [℃] Magnetizing current [A] Magnetization ratio [%]
120 60 8.20 
150 28 12
165 15 8.81 

IV. RESULT AND DISCUSSION

Fig. 4 shows comparison of magnetic flux density from 
Method1 and Method2 when external demagnetization field is 
applied. Using Method2, magnetic field by primary current 
reduced by secondary conductor current can be observed. 
Experiments are conducted under identical current and 
temperature conditions. To verify results according to analysis 
method by the test, DC current is excited in Method1 and AC 
current is excited in Method 2. Fig. 5 shows the input current 
and temperature of conductor bars and PM at experiments. As 
seen in Fig. 6 and TABLE II, using Method1, 8.8% of PM is 

irreversibly demagnetized from analysis and experimental 
results. Meanwhile, no irreversible demagnetization occurs 
with Method2.  

The effect of reduced primary field by secondary 
conductor field is clearly shown, therefore Method2 is closer 
to actual situation. Using presented analysis method 2, 
effective estimation of irreversible demagnetization of PM and 
cost reduction of LSPM  motor reasonably can be achieved. 

Fig. 4. Current density by Method1 and Method 2 

Fig.5. Input current and temperature of PM and conductor bar 
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(a) Back-EMF before demagnetization (b) Back-EMF after demagnetization

Fig.6. Back EMF comparison of analysis and experiment result 

TABLE II
BACK EMF COMPARISON OF ANALYSIS AND EXPERIMENTAL 

RESULT

FEM result Experiments result 
Method1 Method2 Method1 Method2

Back EMF after 
demagnetization [Vrms]

81.99 81.99 78.42 78.42 

Back EMF before 
demagnetization[Vrms]

74.77 81.99 72.35 78.41 

Demagnetization 
ratio [%] 

8.80 0.00 7.74 0.00 
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10. SOFTWARE METHODOLOGY 

Abstract — This paper presents a method to speed up an 
accurate optimization of intercell transformers (ICTs). ICT 
design strongly relies on its associated leakage inductance, which 
is usually calculated by 3D or 2D FEM simulation. In an 
optimization procedure, introducing 3D or even 2D FEM 
simulation in the main loop considerably slows down the process. 
In order to speed up an accurate ICT optimization process, we 
use intensive 2D FEM simulation to generate an N-dimensional 
matrix containing the values of the leakage inductance related to 
N parameters which define the ICT geometry. In this way, the 
optimization loop simply performs an N-dimensional 
interpolation of the N-dimensional matrix to find the leakage 
inductance required in the design development. 

I. INTRODUCTION

Intercell Transformers (ICTs) are used mainly in 
interleaved converters to reduce conduction losses in the 
switches and copper losses in the inductors [1]. Depending on 
the application, the design of such transformers specially relies 
on the calculation of the leakage inductance. Analytical 
formulation of the field distribution inside the window is easily 
obtained under the assumption that the window is rectangular 
and its depth is infinite. However, some real components are 
far from this assumption, and the field outside the window 
(which cannot be easily modeled) has a very significant 
contribution to the overall leakage inductance. Consequently, 
the use of 3D FEM simulation is necessary to precisely predict 
the leakage inductance.  

 The use of 3D FEM simulation may result on accurate 
calculation of the leakage inductance, but it is very time 
consuming. 2D FEM simulation can be considered [2] if the 
procedure used in the simulation takes into account 3D effects. 

Even though 2D FEM simulations are much faster than 3D, 
it is sometimes impractical to make use of them inside an 
optimization process. The time necessary to the main 
optimization algorithm to call the FEM software, draw the 2D 
model, simulate it and acquire the resulting inductance values 
is enormous when comparing to a simple equation resolution 
or table reading. 

The idea is to speed up the process of obtaining the desired 
leakage inductance by simply interpolating pre-simulated 
values of such inductances. These values are stored in an N-
dimensional matrix where N is the number of geometrical 
parameters of the magnetic device which may modify the 
leakage inductance.    

II. SIMULATION OF SIMPLE INTERCELL TRANSFORMERS  

Let’s analyze the proposed method by taking as an example 
the transformer on Fig. 1a. The leakage inductance is due to 
the energy stored in the air inside the core window and also 
outside it. The energy outside the core may be simulated using 
2D FEM simulation. On the other hand, the energy inside the 
core window may be easily analytically calculated by making 
some assumptions which are acceptable for most of industrial 
transformers. In our analysis we will just deal with the energy 
outside the core and we will assume that the calculation inside 
the core is possible. When the calculation of the energy inside 
the core window cannot be done analytically, the proposed 
method may be used. 

      
  a) Physical aspect        b) Simulation Model

Fig. 1. Simple model for the simulation of the energy outside the window of 
an intercell transformer  

Concerning the leakage inductance related to the energy 
outside the core window, we may simulate it by using the 
model represented in Fig. 1b [3]. Note that both windings are 
represented only outside the core window and that, 
independently of the number of turns and conductor cross-
section shape, it is represented by a rectangular conductor with 
P turns. 

In Fig. 2 all the parameters which may change the leakage 
inductance are represented. By simulation, 3 conclusions could 
be stated: 

1. If we shrink or expand the transformer, maintaining the 
ratios between all parameters shown in Fig. 2, the 
leakage inductance per unit length remains the same.  

2. Parameter F (core leg width) has a negligible influence 
on the leakage inductance if it is greater than 8% of A
(core width). This is usually the case for regular 
transformers and cores available on the market. 

3. Leakage inductance is proportional to the square of the 
number of turns in the winding, independently of the 
shape of the core and winding. 

By conclusions 2 and 3, we assume that parameters F and 
P are not essential parameters when creating the N-
dimensional matrix containing the pre-calculated leakage 
inductance values. By conclusion 1, we observe that we just 

Pre-Processing of Inductances for Intercell 
Transformer Optimization

Bernardo Cougo*, Thierry Meynard*, François Forest**, and Eric Labouré*** 
*LAPLACE (Laboratoire Plasma et Conversion d’Energie) 
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10. SOFTWARE METHODOLOGY 

need to simulate a transformer normalized in geometry. We 
did it by fixing parameter A as the reference parameter. The 
other parameters (B, C, D, E) should be related to A, which 
lead us to a matrix with 4 dimensions (B/A, C/A, D/A, E/A). 

Fig. 2. Transformer parameters  

A. Number of Points 

 The number of points needed in each dimension must be 
wisely chosen in order to minimize the interpolation error and 
the size of the 4-dimensional matrix. For this purpose, 
simulations were performed by varying each parameter at once 
(starting from a standard shape) and using small steps. The 
result is shown in Fig. 3. Note that in fact parameter F does not 
significantly modify the leakage inductance. Also, since the 
other curves have a soft shape, a small number of points is 
needed to reliably represent the leakage inductance behavior 
related to the transformer geometry. 
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Fig. 3. Variation of the normalized linear inductance  

The number of points in each dimension was chosen to be 
equal to 10, which makes a 4-dimensional matrix with 10000 
values. The number of simulations needed is the same as the 
number of values in the matrix, and so the simulation mesh 
must be carefully chosen. A study about the mesh generation 
in this case will be shown in the full paper.    

III. SIMULATION RESULTS 

The 4-dimensional matrix was created and it took about 16 
hours to be completed with 10000 values. In order to compare 
the advantages of using this matrix in an optimization process 
instead of inserting the FEM simulation inside the optimization 
loop, the time consumed by the FEM simulation (using the 
software FEMM) and the multidimensional interpolation must 
be compared. This comparison is shown in Table I, where 
there is also an evaluation of the maximum error observed for 
each type of interpolation used in software MATLAB. The 
computer used has Windows Vista operational system and 
Pentium dual-core (1.46GHz) processor. 

TABLE I 
TIME AND ERROR COMPARISON 

Direct FEM 
Simulation 

Interpolation Method 

  linear cubic spline 
Time (ms) 12527 7.57 570 604 

Max Error (%) 0 1.07 1.24 1.24 

Note that the greatest maximum error exists when using cubic 
and spline interpolations and this error is only 1.24%. By this 
table we can see the great advantage of the proposed method. 
The fastest interpolation method (which is the most accurate) 
is 1655 times faster than direct FEM simulation.  

IV. CONCLUSION

Accurate prediction of leakage inductance is necessary in 
ICT design since its current ripple strongly depends on the 
inductance. The lack of analytical formulas to describe leakage 
inductance due to the energy outside the core makes necessary 
the use of 2D or 3D FEM simulation. The use of this type of 
simulation in an optimization process is impractical given that 
it very time-consuming task. 

In this paper, a method was proposed to speed up this 
process. It is based on the pre-processing of the desired 
leakage inductances and the storage of the essential values in 
an N-dimensional matrix. By multidimensional interpolation of 
this matrix, the desired leakage inductance value is found in 
few milliseconds. We showed that the slowest and the fastest 
interpolation methods are, respectively, 20.74 and 1655 times 
faster than 2D FEM simulation and they are both accurate. 

The proposed method can also be used to predict leakage 
inductance inside the core window when 2D and 3D effects are 
predominant and when the use of well-known 1D analytical 
formulas is not possible.       
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Abstract — This paper presents the hysteresis torque analysis 
method for the permanent magnet rotary motor using hysteresis 
loss separated from the measured core loss data. Principally, 
hysteresis torque is defined by hysteresis loss. In this paper, 
hysteresis loss to get the torque is computed flux density of each 
element of FEM which is used of the initial magnetizing curve. 
And the core-loss is calculated considering hysteresis model and 
tested material core loss. In this case, core-loss data is provided 
by manufacturing companies. And this method is tested in 
electric motor with lower cogging. The calculated hysteresis 
torque is compared to the experimental result.   

I. INTRODUCTION

Hysteresis phenomenon is become important in many 
areas of science and technology, such as magnetic recording, 
permanent magnets, hysteresis motor and so forth. Many 
models are known in literatures about hysteresis modeling [1]-
[2].  The Preisach model is general and provides precise 
prediction of magnetization in the various models for scalar 
hysteresis models [3]-[4]. Hysteresis phenomenon is 
inevitable in general electric machines and occurs even 
without electrical input in permanent magnet motor. 
Hysteresis loss produces loss torque and called hysteresis 
torque, and hysteresis torque is assumed to be maintained 
constant force like a mechanical friction. In order to analyze 
the hysteresis torque, the use of measured hysteresis loop 
using the Preisach model is reasonable and efficient, however, 
the method and process are complicate. Therefore, a simple 
calculation method of hysteresis loss torque is presented using 
hysteresis loss data separated from measured core loss data.  
The hysteresis torque causes the breaking torque in electric 
motor. In order to compute the hysteresis torque, FEM is used. 
After calculation of B(t)(magnetic flux density) in each 
element of core, hysteresis loss is calculated. The hysteresis 
loss data is separated from core loss by using Steinmets 
Equation. At the result, analysis results are compared to 
experimental results. 

This method is more convenient than the method using 
Preisach model and easy to understand the theoretical 
background. A surface permanent magnet motor for electric 
power steering system (EPS) is used for the hysteresis torque 
analysis and measurement of cogging torque.   

For the EPS motor, the effect of cogging torque is very 
important due to driving comforts, therefore, the cogging 
torque and hysteresis are important factors in EPS system[4].   

 In order to verify the accuracy of simulation result, 
hysteresis torque is tested.  

The experimental method of electric motor hysteresis 
torque is similar with cogging torque test. From the cogging 
torque test result, the offset of dc-bias component is defined 
hysteresis torque and friction torque. As a result, hysteresis 
torque is measurable considering cogging and friction in shaft 
torque.   

II. MODEL AND ANALYSIS METHOD

A. B-H curve and Hysteresis Loss 

In this paper, FEM simulation is used with initial b-h 
curve, also hysteresis curve are used for computation 
hysteresis loss.

Fig. 1 shows the b-h model and Fig. 2 shows the process 
of hysteresis torque analysis. This method can include some 
errors of magnetizing curve, but it is much simpler than 
Preisach model. 

Fig. 1. Initial B-H curve and hysteresis curve
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Fig. 2. Process of hysteresis torque analysis   
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11. ELECTRIC MACHINES AND DRIVES

B. Magnetic Field Analysis    
The static field FEM is used for the analysis of the magnetic 

field. The governing equation for 2-D FE analysis is given by  
(1).

0

1 1
m

A A
J J

x x y yμ μ
⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂

+ = − −⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
 (1) 

where,    is the z-component of magnetic vector potential,      
is the permeability,      is electrical input current density and     

is magnetizing current density. The input current    is not 
exists in hysteresis torque analysis. Therefore,        is equal to 
zero.

C.  Hysteresis loss data

Core loss date is provided by manufacturer. The data are 
measured with sinusoidal input source. But the magnetic field 
H is not sinusoidal in each element. Therefore, hysteresis loss 
is calculated by each harmonic component of each element. 
And hysteresis loss data is separated from the tested core loss 
data using Steinmetz equation as in (2). In this paper,   

2 2 2 1.5 1.5   [W/kg]core h e aP k fB k f B k f B= + +                  (2)

where kh, ke, ka is coefficient of hysteresis loss, eddy current 
loss, anomalous loss respectively.                      

D. Analysis Model   

Fig. 1 and Table I shows the cross-section and brief 
specifications of the analysis model.  
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Fig. 3. Cross-section view of 3-phase brushless motor 

III. RESULT AND DISCUSSIONS

Fig. 4 shows the FEM result and FFT result of flux density 
in P1. Hysteresis loss distribution is shown in Fig. 5.  High 
density hysteresis losses exist in tooth. And hysteresis loss of 
rotor is almost zero because there is few flux variation. Fig. 6 
shows comparison between the experimental result and 
simulation result. In the test result, cogging torque is very 
small about 2.5mNm and the offset of torque is 13.8mNm, the 
mechanical friction is included in the offset. The simulated 
hysteresis torque is 13.4 mNm. The difference between 
simulation result and tested result are expected to the friction 
torque.  

(a) Triangle mesh number : 12644 (b) Equi-potential distribution  

(d) Harmonic order of B in P1  (c) Flux density variation in iron  
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Fig. 4. FEM Result and Hysteresis loss distribution  
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 Fig. 5. Hysteresis loss distribution of permanent magnet motor  
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Fig. 6. Comparison experiment and analysis result 

IV. CONCLUSION

In this work, hysteresis torque is obtained from hysteresis 
loss which is separated from the core-loss experiment. This 
method is much simple than Preisach model and the result is 
similar experiment and analysis result. The proposed analysis 
method and experimental results will be reported in extend 
paper in detail.    
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TABLE I
BRIEF SPECIFICATIONS OF 3-PHASE BRUSHLESS MOTOR

Item Value Item Value 
Pole number  6 Magnet Br (T)  1.2 
Slot number  27 Recoil Perm.  1.05 
Stator outer dia. (mm) 85 Core-Material  S60 (0.5t)  
Airgap (mm) 0.8 PM direction  Radial  
Stack length (mm)  26 Voltage (Vdc) 12 

μA
0J

0J
0J
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Abstract — A progressive type of contactless torque 
transmission is effectuated by the innovation of a magnetic gear. 
The torque is purely transmitted by a selectable gear ratio via the 
magnetic fields inside the magnetic gear. Therefore, the 
assembly, the operating mode, the generation of the torque, and 
numerical field analyses by means of a FEM are presented, 
discussed and proven. 

I. INTRODUCTION 
An efficient design of the several components to obtain 

high torque and avoid harmonics in the torque is the main 
challenge. For lower rotational frequencies, the magnetic gear 
possesses a significantly higher efficiency than a mechanical 
gear due to no friction losses at all. The only occuring losses 
in the magnetic gear are caused by eddy currents that are only 
increasing by the frequency. 

The magnetic gear is above all a very good alternative to 
mechanical gears. Also the weight and treatment of the 
magnetic gear are advantageous as no attendance is needed. 
The magnetic gear holds an overload protection by the 
physical effects. For overloading forces it acts like a slipping 
clutch and no teeth can ever blockate or even never break. 

II. COMPOSITION OF THE MAGNETIC GEAR 
The magnetic gear consists of three major parts, a rotor, a 

modulator, and a stator, that are separated by air gaps. The 
rotor and the stator possess a specific number of magnetic 
poles ( Rp  and  respectively) while the modulator consists 
of a specific number of modulator segments (

Sp

Mp ) that are 
composed of a magnetizable material e.g. iron. The rotor 
contains a ferreous core. 

 
Fig. 1. Setup of the magnetic gear 

Figure 1 shows the schematical setup of the magnetic gear 
with its rotor, modulator and stator. 

The gear ratio is fixed and depends on the number of 
modulator segments and the number of magnetic poles in the 
rotor and the stator. 

III. THEORY OF THE OCCURING FIELDS AND WAVES INSIDE 
THE GEAR AND GENERATION OF THE TORQUE 

A torque is generated if the occuring waves in the 
magnetic gear are reacting with each other. One wave is 
effected by the permanent magnets of the rotor and another 
one by the magnets of the stator. The modulator’s ferreous 
segments are modulating the frequencies of the existing 
waves. 

A. Magnetomotive Force of the Stator 

The magnetomotive force SΘ  of the stator is calculated 
via Ampere’s Law. It leads to a 2 Spπ -periodic rectangular 

function with the amplitude S
′Θ as shown in Fig 2. 

 
Fig. 2. Magnetomotive Force of the Stator 

The Fourier analysis of this rectangular function leads to 

( ) ( ) ( )1 1ˆ cos cos 3 cos 5 ...
3 5S S S S Sp p pγ γ γ⎡ ⎤Θ = Θ + + +⎢ ⎥⎣ ⎦

(1)

with the fundamental wave 
( )ˆ cosS S Sp γΘ = Θ ⋅ (2)

and the amplitude ˆ
SΘ [1]. 

B. Magnetic Permeance of the Modulator 

For the modulator the modus operandi is similar, however 
instead of the magetomotive force the magnetic permeance of 
the modulator segments is examined. Figure 3 shows that also 
the magnetic permeance in the modulator follows a 
rectangular function; hence the period is 2 Mpπ  now. 
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+

IV. OPTIMIZATION 
For optimizing the magnetic gear, that means maximizing 

the transmittable torque, the harmonics of the torque waves 
have to be minimized. For erasing the seventh harmonic for 
example, the pole coverage of the rotor of 6 7  is used [2]. 
The geometric dimensions of the gear like radii, dimensions of 
magnets, air gaps and segments can be adjusted to ameliorate 
the performance of the magnetic gear. 

The Fourier analysis of this rectangular function leads to  

(3)
( )( )

( )( )
0

2

cos

cos 2 ...
pM M M

pM M M

p t

p t

γ ω

γ ω

Λ = Λ + Λ + +

Λ +

where ωM is the angular speed of the modulator. 
 

 

V. SIMULATION 

The development of the magnetic gear is based on 
numerical simulations. Therefore, the FEM software Ansys 
is used. A quasi-static analysis is performed while eddy 
currents are not considered. 
 

      

Fig. 3. Magnetic permeance of the modulator segments 

C. Magnetomotive Force of the Rotor 

Similar to the computation of the magnetomotive force of 
the stator the fundamental wave of the magnetomotive force 
of the rotor can be specified as 

(4)( )( )ˆ cosR R R Rp tγ ωΘ = Θ ⋅ +

where ωR is the angular speed of the modulator. 

D. Magnetic Air Gap Induction, Stator’s Part 
Fig. 4. Magnetic field        Fig. 5: Magnetic fluxlines The magnetic poles of the stator are causing a part of the 

total air gap induction, calculated via 
. (5)S SB = Θ ⋅Λ

As this is only a consideration of how the torque is generated, 
the harmonics can be neglected and the formula is simplified 
to 

( )

( )( )

( )( )

0
ˆ cos
1 ˆ cos
2
1 ˆ cos
2

S S S

S pM S M M M

S pM S M M M

B p

p p p t

p p p t

γ

γ ω

γ ω

= Θ ⋅Λ ⋅

+ ⋅Θ ⋅Λ ⋅ + +

+ ⋅Θ ⋅Λ ⋅ − −

. (6)

VI. CONCLUSION 
A prototype of the magnetic gear has been manufactured 

and is in use in a machine tool. It is in an endurance test and 
performs satisfying results. Another illustrative model 
prototype is available and will be presented in an augmented 
reality session with a camera-notebook setup. 

 

 

E. Generation of the Torque 

For generating the torque, the magnetic air gap induction 
of the stator is reacting with the magnetomotive force of the 
rotor. The comparison of the relevant waves leads to the 
following interrelationships between the number of poles or 
segments respectively of stator, modulator and, rotor: 

L S Mp p p= − . (7)
the gear ratio is simply calculated via 

Fig. 6. Picture of the illustrative model (the black and white papers are 
markers for the visualization system) M M

R L

p
gr

p

ω
ω

= = . (8)

The torque can be calculated via the transverse strain 
( )τ γ  [1] but therefore it is important to take into account that 

the magnetic induction  is only in rough approximation the 
sum of  and 

B

SB RB  as the whole system is not linear. 
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Abstract — This paper shows the simulation and tests activities 
developed to study some design aspects of a brushless permanent 
magnet motor regarding the torque production using the finite-
element method and static torque tests. 

I. INTRODUCTION

This paper regards a prototype of a converter fed brushless 
permanent magnet motor designed and manufactured at the 
Technological Centre of the Brazilian Navy. This prototype 
has similar characteristics to the drives presented in [1], [2] 
and [3]. An analytical method to get the main dimensions of 
the machine was used at the design stage. Several tests and 
simulations were already done with the prototype showed in 
[4], [5], and [6]. The full paper will show the simulations and 
tests results of the static torque characteristics which are very 
important to improve the efficiency and to minimize the noise 
and vibrations due to the cogging torque. The skewing of the 
stator slots are also taken into account in the simulations. The 
comparisons of the simulations and tests results have a good 
agreement, which assures the improvement of the design 
methods of this kind of drive.  

II. THE MOTOR PROTOTYPE

This variable speed drive prototype consists of a brushless 
permanent magnet motor with electronic commutation. The 
motor is fed by a DC lin by 6 PWM inverters and each phase 
has its own converter and the main characteristics are showed 
in Table 1. 

TABLE I 
MAIN CHARACTERISTICS OF THE PROTOTYPE 

Rated power 75 kW 
Maximum speed 600 rpm 
Number of phases 6 phases 
Number of poles 12 poles 
Rated voltage – DC link 600 volts 
Maximum current  29 A (peak per phase) 
Permanent magnets Sm2Co17 
Power converter type H bridge 

The prototype is an interior rotor motor with surface 
mounted permanent magnets and radially oriented magnetic 
field in the air gap. The magnetic induction waveform in the 
air gap is trapezoidal due to the configuration of assembling 
the permanent magnets. 

The stator stack laminations are of the silicon steel type 
and has 72 slots. The winding is distributed on the stator slots 
as a lap winding, single layer and full-pitch, with 6 slots/pole. 
The signals to switch the phases is generated by an 
incremental encoder attached to the machine axis. Fig. 1 

shows the cross section of the machine. This figure was 
depicted through the software FLUX2D [7], which is used in 
the simulations of this work, and shows also the flux 
distribution on the machine due to the permanent magnets. 
One can notice in this figure that the rotor of the machine has 
some pieces to guide the flux. 

Fig. 1. Machine cross-section  

III. STATIC TORQUE SIMULATIONS 

The FLUX2D software solves complex electromagnetic 
field problems by using the finite-elements method. In this 
paper the problem is a bi-dimensional magnetostatic problem. 
The domain of study comprehends 30 degrees of the motor 
cross section, which corresponds to one pole of the motor. A 
2D n-slice model, with n=10, was used to take into account 
the skewed slots of the stator. The axial length of the stator 
laminations is 160 mm and the simulations were done with a 
model of 16 mm length. The total torque is then calculated 
taking into account the angular displacements of the several 
slices of the model. The slots are skewed by the equivalent of 
one slot pitch, which means a skewing of 5 degrees regarding 
the longitudinal axis of the machine. 

The static torque characteristic of the machine is the torque 
obtained from the machine for one or a set of phases 
energized with constant DC current as a function of the rotor 
position. The simulations were done for one phase energized 
and for a set of 5 phases energized. The details will be 
discussed in the full paper. 

IV. STATIC TORQUE TESTS 

The torque transducer and a special device designed and 
manufactured for these tests are showed in Fig. 2. The details 
of the equipments, devices and test methods will be presented 
in the full paper. 

The static torque tests were developed with one phase 
energized by the following values of constant DC currents: 5, 

Tests and simulation results of the static torque 
characteristics of a brushless DC permanent magnet 

motor
P. P. de Paula and P. S. Ulian 

Technological Centre of the Brazilian Navy 
Av. Prof. Lineu Prestes, 2468, São Paulo, SP, 05598-000, Brazil 

pedro.pereira@ctmsp.mar.mil.br 
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10, 15 and 20 ampères. Another set of tests were done with 5 
phases connected in series for the same current values. 

Fig. 2 – Torque transducer and special device 

V. RESULTS 

Fig. 3 shows the tests results for one phase fed with the 
currents values of 5, 10, 15 and 20 ampères. The lower curve 
corresponds to the test results with no current in the phase. 
The other curves corresponds to the torques obtained to 
increasing values of the currents, the maximum torque regards 
the maximum current. One may notice that the waveform of 
the torque characteristic is the same of the magnetic induction 
in the air gap. 

Fig. 3 – Tests results for one phase energized 

Fig. 4 shows the test and simulation results of the static 
torque characteristic for one phase energized with a current 
value of 10 A and the good agreement between these results. 
The skewing was taken into account as explained before 
which assures the good agreement of the results. The full 
paper will show the details of these achievements. 

Fig. 5 shows the test and simulation results of the static 
torque characteristic for five phases energized with a current 
value of 10 A and the good agreement between these results. 
The skewing was taken into account as explained before 
which assures the good agreement of the results. The full 
paper will show the details of these achievements. 

Fig. 6 shows the simulation results for five phases 
energized for three different skewing values, which shows the 
importance of this feature on the performance. The full paper 
will discuss these achievements. 

Fig. 4 – Tests and simulation results for one phase energized 

Fig. 5 – Tests and simulation results for five phases energized 

Fig. 6 – Simulation results for some different skewing values 
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Abstract —The soft magnetic composite (SMC) is a new type of 
soft magnetic material made of insulated iron powders. Core loss 
is very important to SMC motor design. For accurate prediction, 
the rotational core losses model should be used. But rotational 
core loss coefficients derived form rotational loss data are 
difficult to get for most designers, because two dimensional core 
loss tester isn’t popular as 25cm Epstein frame. This paper 
presents an improved calculation model for core losses of SMC 
motors, which only uses alternating core loss coefficients. 
Compared under different standard loci, such as alternating, 
circular, and elliptical ones, the new model shows the sufficiently 
accuracy. Finally, the model is testified by experiments on a high 
speed motor with SMC material.  

I. INTRODUCTION

Made of insulated iron powders, the SMC is both 
magnetically and mechanically isotropic, and therefore is 
suitable for making electrical machines of 3D flux, such as the 
claw pole and transverse flux machines, which introduces 
many new design flexibilities in machine topologies and 
performance. To make the best use of the material for design, 
it’s important to calculate core loss accurately. 

There is an increasing need to develop high efficiency 
electrical machine nowadays for energy saving and the 
protection of the environment, which requires a more accurate 
prediction of core losses in the stage of design. Epstein test or 
single sheet test is performed with alternating fields where the 
core loss versus flux density is obtained. Designers use these 
data to calculate core loss of each part of the machine. This 
method has been proved to have a good consistence in the 
calculation of core loss in transformers, where the alternating 
field is dominant. In rotating machines, this method has a 
relative worse accuracy because the flux variation pattern is 
more complicated than in transformers. There exists a 
rotational flux component with different degrees of 
polarization besides the alternating components of flux 
observed in transformers. The loci of the flux in rotating 
machines may be line, circle, ellipse or other complicated 
pattern depending on location. It has been reported that core 
loss under a rotational field has a much larger value than that 
in an alternating field. In calculation of core loss in rotating 
machines, ignoring such additional loss caused by the 
rotational field will result in an excessively large value of 
error [1, 2]. 

Experience coefficients derived from a long-term 
production were used to modify the calculation of core loss. It 
is commonly used in the design of asynchronous machines, 
and gets good effects. But, for machines which have new 
materials or new structures, especially SMC motors, the 

experience coefficient is very difficult to get. Many 
researchers [3-5] used the three term model for alternating 
core losses and time-stepped finite element method. There is 
about 20% difference because the rotational core loss is 
neglected. As the occurring of two-dimensional core loss 
tester, more and more researches have been conducted in the 
area of rotational core loss in electrical machines. Zhu et al. [1, 
6, 7] studied core losses of core materials under 2-D and 3-D 
magnetic excitations, and proposed the rotational core loss 
model in electrical machines by combing FEA results with 
physical models of core loss. Stranges and Findlay[2] 
described direct approaches for coupling rotational core loss 
measurements with FEA results that yield the distribution of  
rotational flux in induction motor cores. Because the two-
dimensional core loss tester exists only several research 
institute, and the international standard is in draft, it makes the 
rotational core loss model is difficult to use widely. Nowadays, 
although it has been realized that a considerable amount of the 
total core loss of a rotating electrical machine is caused by the 
rotating magnetic field, alternating core loss models were 
generally employed due to the lack of rotational core loss data. 

This paper presents an improved calculation model for 
core losses, which only uses alternating core loss coefficients. 
Trough theoretic calculation and experiments on high speed 
SMC motor, it shows good accuracy. 

II. CORE LOSS MODE

A. Rotational core loss model 

Corresponding to various types of magnetizations and soft 
magnetic materials, a core loss model was developed[6]. In a 
soft magnetic material, the core loss with various typical 
magnetic flux patterns can be calculated by: 

Alternating flux: 
2/32 )()( maamae

h
mahalt fBKfBKfBKP ++=     (1) 

Circular rotating flux: 
2/32 )()( mramrerhrot fBKfBKPP ++=            (2) 

Elliptical rotating flux: 

altBrotBfe PRPRP 2)1( −+=       (W/kg)            (3) 

where RB=Bmin/Bmaj is the axis ratio; Bmaj and Bmin are the 
major and minor axes of the elliptical B locus. 

B. Improved model 

The elliptical B locus can be expressed as: 

)sin()cos( minmin wtBewtBeB majmaj +=           (4) 
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where, emaj and emin are unit vector along the major and minor 
axes of the elliptical locus. 

Eddy current loss under the elliptical B locus: 
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Anomalous loss under the elliptical B locus: 
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Hysteresis loss under the elliptical B locus: 
h

hh
h

majhellh BfKBfKP )()( min_ α+=               (7) 

where, when Bmaj<Bs, 2.1~1=hα , and Bmaj>=Bs, 1−=hα
The total core loss under the elliptical B locus: 

ellaelleellhfe PPPP ___ ++=         (W/kg)    (8) 

The detail will be presented in the full paper. 
The calculation flow can be seen form fig. 1. 
Compared under different loci (f=50Hz, Bmaj=0.7T), such as 

alternating (RB=0), circular (RB=1), and elliptical ones, as 
shown in Table 1, the improved model shows the sufficiently 
accuracy. 

TABLE I
COMPARED RESULT UNDER DIFFERENT LOCI

RB
Rotational

model 
Improved model Error (%) 

0 3.68 3.68 0 

0.2 3.89 4.01 3.12 

0.4 4.39 4.66 5.7 

0.6 5.19 5.51 5.8 

0.8 6.28 6.54 3.9 

1 7.67 7.72 0.7 

III. EXPERIMENT

Fig.2 compares the calculated and measured core losses of 
the high speed claw pole PM motor. As shown the maximum 
error is about 20%. This can be attributed to that the core loss 
coefficients were deduced from the core loss data of SMC 
measured up to 100 Hz while the operation frequency of this 
machine is 666.67 Hz, and the eddy current loss is under 
estimated. More results will be presented in the full paper. 

IV. CONCLUSION

In this paper, an improved model is proposed to calculate 
core losses of SMC motor, which only uses alternating core 
loss coefficients. Compared with the rotational core loss 
model and experiment results on a high speed SMC motor, it 
shows the sufficiently accuracy, and it can be also used to 
calculate core losses of motors which have special structure or 
materials. 

Fig. 1 Calculation flow chart of the improved model 

Fig. 2 Comparison of calculated and measure core losses in the high speed 
(20,000 rev/min) claw pole PM motor 
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Abstract — This paper investigates the influences of the two-
dimensional (2D) magnetic properties of silicon steel sheet on the 
performance of a very large-scale permanent magnet brushless 
DC motor. The 2D magnetic properties of a non-oriented silicon 
steel (50A1300) are measured by using 2D single sheet tester and 
modeled by using an extended B-H curve method to be applied to 
finite element method. Through the finite element analysis the 
influences of the two-dimensional magnetic properties of silicon 
steel on the motor performance are investigated. 

I. INTRODUCTION 
Recently, very-large scale permanent magnet brushless DC 

(BLDC) motors of which rating power is few MW have been 
employed for the propulsion system of electric trains, vessels 
[1]. The performances such as iron loss, back-emf and torque 
characteristics of the large scale motors are a lot affected by 
the magnetic properties of silicon steel sheets employed. A 
non-oriented silicon steel sheet for motor, conventionally, has 
been assumed to have independent magnetic characteristics on 
the direction of the applied magnetic flux density (B), i.e. the 
magnitude of magnetic field intensity (H) has been modeled as 
a function of only that of B, and the direction of H has been 
assumed to be exactly same with that of B without regard to 
the direction of B. With the development of two-dimensional 
(2D) single sheet tester (SST), however, it is found that even a 
non-oriented silicon steel has different magnetic properties 
according to the direction of B [2]. Fig. 1 compares the meas-
ured H-waveforms when constant magnitude (1.3T) of alter-
nating magnetic flux density is applied in the directions of 0o, 
15o, and 75o. The H-waveforms are measured at 50Hz by us-
ing 2D single sheet tester (SST) having waveform control 
function with the specimen of non-oriented silicon steel 
50A1300. It can be seen that both the magnitude and direction 
of H strongly depend on the direction of B. The 2D magnetic 
properties of silicon steel sheet, therefore, should be consid-
ered in finite element analysis (FEA) for more precise per-
formance analysis such as iron loss and cogging torque. 

In this paper, the 2D magnetic properties of non-oriented 
silicon steel sheet (50A1300) are measured by using 2D SST 
and numerically modeled with independent variables of the 
magnitude and direction of magnetic flux density to be applied 
to FEA of a large-scale permanent magnet BLDC motor. 

II. MAGNETIC RELUCTIVITY MODEL 
In this paper, the hysteretic H-waveform corresponding to 

an alternating B-waveform of which maximum magnitude and 

direction are B Bm and θB, respectively, is measured by using 2D 
SST with B-waveform control, and the relationship between B 
and H is represented, as shown in Fig. 2, as (BmB , θB)-(Hm, θH) 
where Hm and θH are magnitude and direction of H corre-
sponding to (BBm, θB) [3]. For various BmB  and θB, by repeating 
this procedure, the relationships between (BBm, θB) and (Hm, θH) 
are obtained as shown in Fig. 3. It is observed that the silicon 
steel has the smallest magnetic permeability around 50º~55º, 
and the biggest phase difference between B and H around 30º 
from its rolling direction. Since the B-waveform is represented 
as (BmB , θB), this approximation is referred to, hereinafter in 
this paper, (B Bm, θB) model, and this is a natural extension of 
the conventional B-H curve method.  

Through the measured 2D magnetic properties shown in 
Fig. 1 and Fig. 3, it can be seen that the catalog data which is 
measured along rolling direction (θB=0) and provided by 
manufacturer is not enough for precise modeling of the 2D 
magnetic properties even in non-oriented silicon steels. The 
2D magnetic properties should, therefore, be considered for 
accurate performance analysis of the motors. 

The magnetic reluctivity tensor for describing the relation-
ship between B and H considering the modeled 2D magnetic 
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Fig. 1. Measured H-waveforms for different directions of the applied mag-
netic flux density when BBm=1.3(T).   
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Fig. 2. B-H relationships approximated from measured H-waveforms corre-
sponding to alternating B-waveforms when θB=60º.  
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properties is derived based on the effective anisotropic reluc-
tivity as follows [3], [4]: 

[ ] 0 ( , ) 0
0 0 ( ,

x x m B x

y y

H B B
)m B yH B B

ν θν
ν

⎡ ⎤ ⎡= =⎢ ⎥ ⎢⎣ ⎦ ⎣ θ
⎤
⎥⎦

 (1) 

 
(a) conventional method                     (b) proposed method 

Fig. 5. Comparison of magnetic flux density distributions. 
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Fig. 6. Comparison of B-waveforms at the points P1 and P2 shown in Fig 4. 

W/kg

 
(a) conventional method                          (b) proposed method 

Fig. 7. Comparison of iron loss distributions. 

Conventional catalog data Conventional catalog data 

 
                 (a) magnitude of H           (b) phase difference between B and H 
Fig. 3. Measured 2D magnetic properties for non-oriented silicon steel sheet 
50A1300, where line marked by empty rectangular is catalog data.  
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Fig. 4. Specifications of 6MW PM BLDC motor (1/32 model). 

During the non-linear finite element analysis, in an element, if 
(B Bm, θB) is found, then the corresponding reluctivities can be 
obtained using (1) and Fig. 3.  

Using (1), the weighted residual and its derivative required 
in Newton-Raphson formulation for non-linear analysis is 
derived as follows:  

( )
02 2e

i x x i y y iR B d B c Jν ν= − − 3Δ  (2) 

( ) 4 0.5 0.5
e

yi
x i j y i j x i y i

j

R d d c c B d B cx

j jA A A
ννν ν
∂∂ ∂= + Δ+ −

∂ ∂ ∂
 (3) 

where ∆ is the area of an element (e), ci and di are the func-
tions of coordinates of nodal points, and A and J0 are magnetic 
vector potential and applied current density, respectively. The 
derivatives of the magnetic reluctivities in (3) are function of 
BBm, θB, Hm and θH, and expressed as follows: 

1 2 3 4 , ,k k k kk m m H H

j m B m B

H Hc c c c k
A B B
ν θ θ

θ θ
∂ ∂ ∂ ∂ ∂

= + + + =
∂ ∂ ∂ ∂ ∂

x y  (4) 

where ck is calculated from BBm, θB, Hm and θH, and the deriva-
tives are calculated by using Bezier surface spline of the 
measured data [5].  

III. ANALYSIS RESULTS OF 6MW BLDC MOTOR 
Fig. 4 shows a 6MW permanent magnet BLDC motor of 

which rating voltage is 720(V). The rolling direction of the 
stator and rotor is coincident with x-axis initially, and that of 
rotor rotates. Fig. 5 compares the distributions of the magnetic 
flux density obtained from the conventional and proposed 

analyses. It is observed that the proposed analysis distributes 
the magnetic flux more extensively with smaller maximum 
magnetic flux density than the conventional one. Fig. 6 shows 
the B-waveforms at the points P1 and P2 shown in Fig. 4. It is 
found that the two analyses give a lot different B-waveforms. 
Fig. 7 shows quite different distributions of iron loss between 
conventional B-H curve method and proposed method.  

In the version of full paper, the influences on the other 
characteristics such as cogging torque and Back-emf wave-
forms will be investigated. 
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Computation on Electromagnetic Torque of 
Solid Rotor Induction Motor 
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Abstract —A finite element method, coupled field-circuit, is 
applied to compute on electromagnetic torque of a solid rotor 
induction motor in this paper. And a field-circuit coupled model 
has been set up for considering the velocity effect, eddy current 
effect and non-linear property. A new end-region coefficient is 
presented to correct the effect of end region. It makes 
performance calculation more accurate. The method makes the 
period of design short and saves hardware from computing 
three-dimensional non-linear model. The comparison between 
tested and computed results proves that the method has higher 
accuracy and validity.  

I. INTRODUCTION

Since having high starting torque and small starting 
current, solid rotor induction motor is suitable for starting with 
heavy load. Its quality factor of starting is better than that of 
common squirrel-cage induction motor. But the low efficiency 
and power factor has limited its development. For a long term, 
in order to solve this problem, many scholars have been 
working on it. Due to so many hypotheses and approximate 
treatments, analytical methods are incapable of calculating 
rotor parameters accurately. So the analytical methods will 
result in huge error in design of solid rotor induction motor. 

In recent years, with the development of numerical 
arithmetic, finite element method has been used to compute 
the electromagnetic field in motor. Since the electromagnetic 
field in solid rotor is typically three-dimensional non-linear 
eddy field, there too many unknown quantities to be solved. 
And this will be restricted by the capability of computers. 
Actually, in the case of having no huge differences in   
structure and field distribution in axial direction, computing a 
two-dimensional model will get satisfied results. So a two-
dimensional coupled-circuit method is adopted to design and 
analyze solid rotor induction motor. Because of taking voltage 
source directly as the known quantity and it is unnecessary to 
calculate rotor parameters separately, the error caused by 
calculating rotor parameters has been avoided. But the effect 
of end region still exists and being ignored in this method, so 
a new end-region coefficient is presented to consider the 
effect caused by end region in this paper. The level of 
designing has been improved greatly. 

II. MATHEMATICAL MODEL

Considering saturation, the mathematical model of two-
dimensional non-linear sinusoidal eddy field can be written as 

( )
1

z 1 zj

| 0z

A s A J

A

υ ωσ

Γ

⎧ s∇× ∇× = −⎪
⎨

=⎪⎩
(1)

where υ  is magnetic resistivity,  is the boundary of model, 
 is slip ratio, 

1Γ
s 1ω  is angular velocity of stator current, σ  is 
conductivity, sJ  is current density of stator windings, 

z1js Aωσ  is eddy current density of rotor. And the unknown 

quantity sJ , which varies with different loads, can be obtained 
by the expression[1] as follows. 

s1 1
s

a

N IJ K
S

=                                  (2) 

where  is number of conductors in one slot,  is stator 

phase current, is effective area of conductors in one slot, 
 is coefficient represented the direction of current, it is 1 

along positive z-direction and -1 along negative z-direction. 

s1N 1I

aS
K

Voltage equation for one phase can be expressed as 

1 1 1 1 1 1jU E I R L 1Iω= − + +                     (3) 

where  is voltage of one phase, 1U 1R is resistance of one 

phase,  is leakage inductance of end region, is back 

electromotive force and can be obtained by 

1L 1E

zA [2].

There is no need to solve directly, the first step is to 
solve electromagnetic field by finite element method to get z-

component magnetic potential , and then  will be 

obtained by . At last, can be obtained by equation (3). So 
all we have to do is to apply actual sinusoidal voltage source 
to the finite model

1I

zA 1E

zA 1I

[2].

III. ELECTROMAGNETIC TORQUE AND END-REGION EFFECT

A. Electromagnetic Torque 

Z-component magnetic potential has been solved, and 
electromagnetic force and torque can be computed by Virtual 
work. The basal expression to calculate electromagnetic 
torque can be written as 

mWF
s

∂= −
∂

                                  (4) 

where  is stored energy of magnetic field. The air 
elements adjacent to rotor surface are effective in this 
method

mW

[3]. In order to calculate the total magnetic force, it is 
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necessary to summarize the force acting on each element by 
the expression as follows. 

e

T T
e

V
0

(
H

F
s s

∂ ∂
= −

∂ ∂∫ ∫
B

B B Hd )dV             (5) 

where  is s-component force acting on element e ,eF s  is 

displacement at x, y and z direction respectively[4],  is the 
volume of each element. For two-dimensional analysis, 
electromagnetic torque can be written as 

eV

a a

em t x e y e

1 1

( sin cos )
e e

E E

T F r F F rθ θ
= =

= = −∑ ∑      (6) 

where  is tangential magnetic force acting on element 

,  is x-component magnetic force,  is y-component 

magnetic force,

tF
e xF yF

aE  is the number of air elements 

selected, eθ and r  are the angle and radius location in 
coordinate system respectively.

B. End-Region Effect 

 By the rotor field analysis, it can be seen that as slip 
increases, rotor eddy current increases correspondingly. But 
the axial length of rotor is finite, and the direction of eddy 
current gradually changes from axial to tangential in end 
region. As a result, tangential current in end region increases 
greatly, skin effect becomes more intense and heat generation 
caused by power loss increases enormously. All this changes 
will have significant influence on performances of solid rotor 
induction motor. Therefore, the influence of slip should be 
included in the computation of end-region coefficient. 

All kinds of end-region coefficients[5] are given in Fig.1. 
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1

1.5

2
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Kem
Keu

KeF

KFE

Fig.1 All kinds of end-region coefficients versus slip 

None of them but eKK  and eFK  varies with slip, 

moreover, eyK , emK , eGK  and euK  are constant and have 
nothing to do with slip. 

As a matter of fact, none of them is suitable for the method 
used in this paper. So based on lucubrating of all kinds of end-
region coefficient and the variation with slip, a new end-
region coefficient is proposed. And it can be written in terms 
of slip: 

T
FE

s

2

K
K ⎛ ⎞= ⎜ ⎟

⎝ ⎠
                                 (7) 

where

T eG eK K K F= +                                (8) 
It is used to correct the performances of solid rotor 

induction motor influenced by end region. The curve of FEK
versus slip is shown in Fig.1. 

IV. COMPUTED RESULTS

By the proposed method, a solid rotor induction motor, 
rated power is 7.5kW, has been designed. Rated data are given 
in table I. Computed values and tested results are given in 
table Ⅱ. Comparison between the computed values and tested 
results shows that the computed values have very high 
accuracy. 

TABLE.Ⅰ
DATA OF SOLID ROTOR INDUCTION MOTOR 

Reted
voltage

connection pole
stator
slot

Core
length

rotor
steel

rotor 
radius

air
gap

380V Δ 4 36
145
mm

10#
210
mm

0.6 
mm

TABLE.Ⅱ
COMPARISON BETWEEN TESTED AND COMPUTED RESULTS 

slip performances tested computed error

/AIst 31.5 30.78 2.28﹪
s=1

m/NTst ⋅ 74 75.02 1.37﹪

s=0.0067
（no-load）

/AI0 5 5.084 1.68﹪

V. CONCLUSION

Field-circuit coupled method based on finite element 
theory is applied to design solid rotor induction motor. This 
method can not only consider velocity effect, but also the non-
linear property. Since there’s no need to calculate parameters 
of rotor separately, the errors caused by calculating parameters 
of rotor are avoided. At the same time, a new end-region 
coefficient is proposed to correct the influence of end region 
in this paper. It makes the performances computation more 
accurate and improves the level of designing. And the tested 
results prove the accuracy and validity of the proposed 
method. 
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Abstract — This paper deals with the PM performance  

evaluations in a pole changing memory motor (PCMM) using a 

coupled transient finite element method (FEM) and Preisach 

modeling, which is presented to analyze the magnetic 

characteristics of permanent magnets. The focus of this paper 

is the dynamic characteristics evaluation relative to 

magnetizing direction and the pole number of machine on re-, 

demagnetization condition in a pole changing memory motor. 

 

I. INTRODUCTION 

Electric drives in which discrete speed control is required 

are today equipped exclusively with squirrel-cage induction 

motors, due to the property of the squirrel cage to always 

have the same number of poles as the stator winding. 

Conventional permanent-magnet (PM) machines have a 

constant number of poles and can be operated from a 

constant frequency source only at one speed. If a PM 

machine is built after the principles of memory motors, one 

can change its number of poles as simply as in a squirrel-

cage machine.  

The operation of a memory motor is based on its ability 

to change the magnetization of its magnets with a low 

amount of stator current. It is illustrated how the 

magnetization of rotor magnets can be continually varied by 

applying a short pulse of stator current [1], [2].  

If the rotor of a memory motor is built following the same 

sandwich principle shown in [1], but with more than one 

magnet per pole one can group equally magnetized magnets 

in various manners. As a consequence, the number of rotor 

poles changes. This is the basic principle of operation of a 

pole-changing memory motor, as illustrated in Figs. 1 and 2.  

In Fig. 1, the cross-sectional view of a pole-changing 

memory motor with 32 tangentially magnetized magnets is 

shown. On the rotor side there are four magnets per pole, all 

of them being magnetized in the same direction. PMs along 

with iron segments build the rotor wreath which is 

mechanically fixed to a nonmagnetic shaft. After the stator 

winding is reconnected into six-pole configuration, a short 

pulse of stator current changes the rotor eight-pole 

magnetization into a six-pole one, as shown in Fig. 2. Since 

the number of magnets per pole is not any more an integer 

(32/6=5.333...), same magnets can remain demagnetized. 

Issues such as magnetizing direction and quantity are 

important in evaluating the performance of the memory 

motor. 

Such characteristics depend upon the characteristic of 

material and, therefore, require a numerical evaluation.  

Whereas in other kinds of machines a rough estimation of 

hysteresis and magnetizing characteristics can be accepted, 

their importance in a memory motor justifies a greater effort 

in calculating them more precisely. The Preisach model is 

now generally accepted to be a powerful hysteresis model, 

and is therefore intensively studied [3], [4].  

In this paper, a coupled finite element analysis and 

Preisach modeling for a PCMM are presented and dynamic 

characteristics analysis are performed under the situations 

of pole changing due to short pulse current.  

 
Fig. 1 8-pole magnetized PCMM 

 

 
Fig. 2 6-pole magnetized PCMM 

II. COUPLED FEM AND PREISACH’S MODELING 

A. Governing Equation of PCMM 

Maxwell’s equations can be written as 

∇× =
 

H J0                                                                                                           (1) 

∇ ⋅ =


B 0                                               (2) 

  

B H M= +
1

0υ
                                                                                      (3) 

 where, 


M is the magnetization of magnetic material with 

Dynamic Characteristics Analysis in A Pole 

Changing Memory Motor Using Coupled FEM 

& Preisach Modeling 
Jung Ho Lee, Member, IEEE, Yong Hyun Cho, Il Kyo Lee 
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respect to the magnetic intensity 


H . The magnetic vector 

potential 


A  and the equivalent magnetizing current 


Jm  are 

expressed as follows: 
 

B A= ∇ ×                                                                                                          (4) 


Jm = υ0 ( )∇×


M                              (5) 

 The governing equation derived from (1)-(5), is given by  

υ0 0( )∇×∇ × =
 

A J +


Jm                       (6) 

When the moving coordinate system is used, the 

governing equation in 2D is given as follows: 

∂

∂
υ

∂

∂

∂

∂
υ

∂

∂x

A

x y

A

y
J Jz z

z m0 0( ) ( )+ = − −           (7) 

J
M

x

M

y
m

y x= −υ
∂

∂

∂

∂
0 ( )                        (8) 

Where, A z   :  z component of magnetic vector potential 

       J z    : current density  

       υ0   :  magnetic resistivity 

xM , yM : Magnetization of magnetic material   

         with respect to the magnetic intensity xH , yH  

B. System Matrix 

The circuit equation is written as: 

{ } [ ]{ } [ ] { } { }V R I L
d

dt
I E= + +0              ( 9 ) 

Where,{ }E   : E.M.F. vector in the winding   

      { }V  : supplying voltage vector 

      { }I   : phase current vector 

      
[ ]L0 : leakage inductance 

To solve (7), we used the Galerkin finite element method. 

For the time differentiation in (9), a time stepping method is 

used with backward difference formula. Coupling (7), (8) 

and (9), the system matrix is given as follows: 

0

00

1 0 0υ [ ] [ ]

[ ] [ ]

[ ] [ ]

[ ] [ ]

{ }

{ }

S N

R t LG L
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T

t
I
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∆
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0∆ ∆t LG L
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I t t
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V t
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[ ] [ ]
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{ }

{ }

{ }
















 −









+    (10) 

Where, [LG] is coefficient matrix related to emf, the 

magnetization {M} is calculated by preisach modeling  

 

C. Application of Preisach’s Model 

 

The magnetization M can be expressed as a scalar model, 

because the rotor rotates according to the input current angl

e synchronously. Therefore, it can be supposed that the d

omain in stator is an alternating field with reference to x axi

s and y axis. B and H of the domain in rotor is constant and 

is a rotating field, but it is an alternating field with reference 

to x axis and y axis, also [5]-[7]. It is natural that M, H whic

h is calculated on the same axis has a same vector direction. 

 

M t H t d d( ) ( , ) ( ( ))=
≥ µ α β γ α β

α β αβ                  (11) 

= − −+  µ α β α β µ α β α β( , ) ( , )
( )( )

d d d d
S tS t

 

A more convenient treatment of this model is also to 

substitute the Everett plane for Preisach’s one as shown in 

(12). 

E H t d d( , ) ( , ) ( ( ))α β µ α β γ α β
α β αβ=
≥             (12) 

In the Everett plane, the distributions of M, which is 

accepted from experimental data of material S40 and ferrite 

magnet, are Gaussian ones. 

III. ALGORITHM OF COMPUTING 

Fig. 3 shows the block diagram of whole analysis 

mechanism.  

The field-oriented control algorithm with PWM fed 

inverter is applied to the proposed analysis model for the 

example of dynamic characteristics and magnet 

characteristic due to PWM input source, as shown in Fig. 3.  

Through the more detailed analysis, the variable 

performance of the pole changing memory motor will be 

represented in next extended version.

 

 
Fig3. Block diagram of analysis system 
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Abstract — this paper describes thermal analysis of eddy 
currents phenomena in a switchgear partition wall and 
determination of input parameters of numerical FEM model with 
particle swarm optimization (PSO) algorithm. The main 
intension of presented procedure is to fully calibrate numerical 
model, respectively calculate all necessary input parameters for 
analysis of eddy currents and thermal analysis. The goal of the 
optimization procedure is to achieve even better agreement 
between results of the numerical analysis and measured results 
(with thermovision camera). Numerical analysis presents a 
coupled problem of eddy currents phenomena through a thermal 
field observation. Both analyses are based on finite element 
method.  

I. INTRODUCTION TO THE NUMERICAL MODEL 
Partition wall is located between two medium voltage 

switchgear cells, where conductors (bus bars) go through. 
Partition wall consists of a metal plate and three bushing 
elements that go through it (model is shown in Fig. 3, which 
presents results). Beside insulation, the bushing elements 
contain cylindrical brass mesh (brass is any alloy of copper 
and zinc). Conductive areas, such as cylindrical brass meshes 
and metal plate, have an affinity towards eddy currents 
occurrence that cause Joule losses and affect temperature 
increase.  

Constants that present some material properties (for 
example, conductivity, permeability, heat transfer coefficient) 
are obtained from tables and are given under certain 
boundaries. For the exact calculation of the temperature values 
it is necessary to calibrate the numerical model. The 
calibration is carried out with an optimization algorithm, 
which estimates the correct input parameters of numerical 
model for the thermal calculation.  

Since the calculation is based on finite element method, it 
is crucial to define a proper numerical model. The numerical 
model consists of two components. First component considers 
eddy current density and magnetic field [1], meanwhile the 
other one takes into consideration thermal properties [2]. 
Finite element method is separately applied to eddy currents 
and thermal analysis, which means that the model is coupled 
[3].  

Eddy currents are not uniformly distributed since the 
origin of the phenomena is based on proximity effect. Due to 

the non-uniform eddy currents distribution, a numerical 
postprocessor is designed to calculate the average eddy 
current density value in each finite element, which belongs to 
the metal plate or cylindrical meshes. Joule losses are obtained 
from previous calculations, and are applied further on in the 
second part of the process (thermal analysis) [4].  

II. DETERMINATION OF FEM MODEL PARAMETERS WITH 
PARTICLE SWARM OPTIMIZATION ALGORITHM 

The complete procedure of calibration of the numerical 
model with measured parameter values is based on particle 
swarm optimization (PSO) algorithm [5]. Detailed analysis of 
the process is shown as a pseudo-code in Fig. 1. Numerical 
calculations evolve inside the optimization algorithm and 
compose the objective function. The objective function ft of 
the optimization algorithm is a sum of square differences 
(Euclidian norm) between calculated and measured 
temperature values in different points of interest: 

T
t t tf = e e ,                 (1) 

where the difference et in n points between measured and 
calculated results is given by  

[ ]t m c 1t t n= ×e -               (2) 

Temperature field distribution was firstly calculated by 
using initial parameters presented in Table 1.  

TABLE I 
Initial FEM model parameters 

Parameter index value 
Conductivity of metal partition wall σ 6·106 S/m 
permeability μ 300 
heat transfer coefficient (in air) ha 0.024 W/(m2K) 
heat transfer coefficient (in metal 
partition wall) hpv 64 W/(m2K) 

heat transfer coefficient (in cylindrical 
brass mesh) hm 80 W/(m2K) 

 
The complete numerical model is built with two 

parametric preprocessors, numerical postprocessor and a 
graphic postprocessor.  The preprocessors are written in 
Matlab and FEM calculations are carried out with EleFAnT3D 
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11. ELECTRIC MACHINES AND DRIVES 

solver [6]. The numerical model consists of 45,100 finite 
elements, which are 20-nodal isoparametric hexahedrals.  

 
Temperature measurements obtained with thermovision camera 
Parametrically written FEM model of partition wall 
Create initial population for particle swarm optimization (PSO) 

 While the stopping criterion is not reached Do
Create preprocessor_1 (materials, boundary conditions,  

                                            effective current 630 A in conductors) 
Solve the eddy current problem (current density in each FE) 
Create preprocessors_2 (materials, boundary conditions,  

                                             Joule losses in each FE) 
Solve the thermal field (temperature distribution) 
Evaluate the objective function ft (norm between calculated and 

                      measured temperature values in n points) 
        If (ft < required condition) Then 
    The numerical model is calibrated. 
        Else  
    Use of particle swarm optimization (PSO) algorithm 
    New values of optimization parameters (conductivity, 

                                   permeability, heat transfer coefficient) 
   EndIf 
      End 
Fig. 1.  Pseudo-code of the whole process for calibration of numerical model 

parameters. 
 
Temperature measurements of real metal partition wall 

were obtained with thermovision camera InfraTec VarioCam.   

III. RESULTS  

This digest describes results of the numerical analysis. 
Fully described results will be presented in the full paper.  

Eddy currents are caused when a moving or changing 
magnetic field intersects conductive areas, or when conductive 
areas move throughout magnetic field. The relative motion 
causes a circulating flow of particles or current. These 
circulating eddies of current create electromagnets with 
magnetic fields that is opposite to the main magnetic field. 
The stronger the applied magnetic field, or greater the 
electrical conductivity of the conductor, or greater the relative 
velocity of motion, the greater the currents developed and the 
greater the opposite field is.  

Eddy currents indirectly affect warming of medium 
voltage cell. They occur in metal plate and cylindrical brass 
meshes, because of the proximity of source conductors, which 
are placed in the middle of the bushing elements and carry 630 
A of effective current. Depending on conductivities and 
permeabilities of the metal plate and cylindrical meshes, eddy 
current density varies. The whole physical process could be 
explained with proximity effect. The source conductors 
generate time-harmonic magnetic field, which is assessed with 
Biot-Savart law. Variable magnetic field has an amount of 
influence on conductive materials. According to Faraday’s 
Law time-harmonic magnetic field that crosses materials 
induces voltage and consequently the current. The closer the 
source conductors are, the greater is the influence on the rest 
of the conductive materials. Effective current value of 
conductors is the second significant parameter that determines 
magnetic field impact on the conductive areas located near the 
source (bus bars). Values of eddy current density calculated 
on axis that go through all three conductors are shown on Fig. 
2a.   

Power losses in every finite element are a direct input in 
the numerical preprocessor for thermal analysis. Distribution 
(histogram) of the power losses magnitudes inside the finite 
element model is shown in figure 2b. 
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Fig. 2. a) Distribution of the eddy currents effective values in the metal plate, 

    b) Histogram of the average power loss values in finite elements. 
 
Temperature distribution, which occurs because of the 

eddy currents, is shown in Fig. 3. For the fully presented 
problem, it is important to take into consideration effective 
conductors’ current of 630 A, which contributes to the total 
temperature increase. The temperature increases in the metal 
plate for 0.3 0C extra. 

 
Fig. 3.  Temperature of the metal partition wall as a consequence of eddy 

currents. 

IV. CONCLUSION 

The aim of this research is to improve parameters of the 
numerical thermal model. Numerical model is calibrated when 
calculated and measured results achieve good agreement. 
Determined parameters (conductivity, permeability, heat 
transfer coefficients) can be used in further analysis and other 
calculations for medium voltage cell. 
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Abstract — This paper presents the field computation and the 
operating characteristics of a series-connected self-excited 
synchronous generator. Modeling for time-stepping coupled field 
–circuit analysis is explained. The proposed method is vigorously 
tested on a three-phase, 1.8-kW induction generator for various 
operating conditions. The computed results obtained by the FEA 
are found to be in good agreement with experimental results.  

I. INTRODUCTION 
Series-connected self-excited synchronous generator 

(SCSESG) is a wound-rotor induction machine in which the 
stator and rotor windings are connected in series, the phase 
sequences of the stator being opposite to that of the rotor. 
When driven by an external prime mover and a suitable 
capacitance is connected across the stator terminals, the 
machine will self-excite and deliver electrical power at a 
frequency equal to half of the rotor angular frequency. Steady-
state and transient D-Q theory have been used for analyzing 
the performance [1]-[3]. Performance of this type of machine 
based on field analysis, however, has not been attempted 
before. In this paper, we briefly address the field computation 
aspects with reference to the SCSESG and then, we present a 
comparison between the experimental results and the 
computed results based on FEA in order to verify the 
feasibility of the proposed approach.  

II. COMPUTATION METHOD 
In order to simulate the operating conditions of this 

generator the computation method presents the following 
features: 
 Due to the existence of magnetic circuits with saturated 

magnetic materials a nonlinear FEA was adopted.  
 The anti-periodic boundary condition was applied to the 

field analysis to decrease computation time. 
 Time-stepping FEM was employed in order to correctly 

evaluate the transient characteristic of the generator’s 
voltage and current changes due to its rotation. 

A. Governing Equations 
The governing system of equations for 2-D FEA is derived 

from the Maxwell equations 

VAA t
A

e  
  )(    (1)  

where A is the magnetic vector potential, ν is the reluctivity 
tensor, σ is the conductivity tensor, and ve is defined as one 
third of the trace of reluctivity tensor. In the analysis, the 
winding is assumed to be composed of stranded coils, each 

having many fine turns in series and with eddy current effect 
ignored. For a stranded coil, (1) becomes: 

JAA e   )(                   (2) 

with the current density given by 

 tiiJ s
n

n .                           (3) 

where Sc is the coil cross sectional area, n is the number of 
turns and i(t) is the current per turn. in is a unit to stand for the 
coil current in the z (axial) direction. 

B. Field Coupling to External Circuit with Periodic 
Boundary Condition 

Modeling of the external electric circuit was achieved by  
using the connectivity patterns between various circuit 
elements such as resistors, capacitor and inductors. Such 
elements consist of nodes having voltage potential DOF 
(degree of freedom). The stranded coil nodes possess magnetic 
potential Az, EMF and current DOFs in field region. The 
stranded coil represents a current source in the circuit loop, 
and it has three nodes. Two nodes carry the voltage potential 
DOF and these are used for connection with other circuit 
elements; the third node is any node in the field region for the 
stranded coil, and so this node carries current and EMF 
information. Since anti-periodic boundary condition is applied 
to the field region, the current source for the conductor regions 
in the remaining ¾ of the machine cross-section can be 
coupled to the modeling conductors’ nodes directly.  

 
 

Fig. 1. Computed flux line distribution at a rotor position of 60 electrical 
degrees under no load condition (C=120 μF, speed = 1143 rpm) 

Field Computation and Performance of a Series-
Connected Self-Excited Synchronous Generator  

T. F. Chan1, Weimin Wang1, and Loi Lei Lai2 
1Department of EE, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China 

2Energy Systems Group, School of Mathematics and Engineering Sciences, City University London, UK 
eetfchan@polyu.edu.hk 

925

PD1.13



11. ELECTRIC MACHINES AND DRIVES 

C.  Initial Conditions for Field Computation 

Modeling of the residual flux in the FEA computation 
presents some difficulties as the residual flux cannot be easily 
incorporated into the material properties in the machine model. 
To overcome this problem the initial current is specified 
instead. Computations showed that the initial current DOF 
value for the conductor region is important for successful 
simulation of voltage build up. It was found that the residual 
current magnitude should be about 1 A and its electrical angle 
should be approximately the phase difference between the 
stator and rotor current vector directions.  

III. RESULTS 

A. Field Computation Results 

The stator end-winding leakage inductance Les of the 
prototype SCSESG is 0.154mH, and the rotor end-winding 
leakage inductance Ler is 0.025mH, determined using an 
analytical method [4].  

Fig. 1 shows the computed no-load flux line distribution for 
a rotor position of 60 electrical degrees when C=120 μF and 
the rotor speed is 1143 rpm. Fig. 2 shows the computed radial 
flux density distribution for the same rotor position when the 
generator is under no load and when supplying a resistance 
load of 131.7 Ω per phase. It can be seen that the air gap flux 
density decreases when the generator is loaded. 
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Fig. 2. Computed radial flux density distribution at a rotor position of 60 

electrical degrees under no load and loaded conditions  
(C=120 μF, speed = 1143 rpm) 

   

B. Performance Characteristics 
The experimental slip-ring induction machine has the 

following ratings: 1.8 kW, 380/220V, Y/∆, four-pole 50Hz. 
TABLE I shows the number of unknowns and total computation 
time for a computation task. The computed and measured no 
load voltage versus speed is given in Fig. 3 when the excitation 
capacitance is 120 µF, 200 µF and 280 µF. It can be observed 
that the voltage increases with generator speed, and higher 
voltages are produced by a larger capacitance. For a given 
capacitance, the SCSESG cannot maintain the excitation below 
a certain cutoff speed. The load characteristic of the SCSESG 
is shown in Fig. 4. A fair agreement between computed and 
experimental results is observed.  
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Fig. 3. Variation of no-load voltage of SCSESG with speed  

with different excitation capacitances 
  

TABLE I 
COMPUTATIONAL COST PER ANALYSIS 

Total number of unknowns 
(Points)×Time Steps Computation time 

(9606)×360=3,458,160 about 10 hours 
 
(Based on Sun Microsystems Sun-Fire E6900 CPU 4x 900 MHz 64 bits 
Processor Memory 4 GB) 
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Fig. 4. Computed and experimental load characteristics at a  

speed of 1100 rpm when C = 200 µF 

IV. ACKNOWLEDGMENT 

The work described in this paper was fully supported by 
the Hong Kong Polytechnic University under grant G-U487.  

V. REFERENCES 

[1] A. L Mohamadein, H. A.Yousef and Y. G. Dessouky, “Series-connected 
self-excited synchronous generator: steady state and transient 
behaviors”, IEEE Trans.  Energy Conver., 14(4), pp. 1108-111, 1999. 

[2] A. L Mohamadein and E. A. Shehata, “Theory and performance of 
series connected self-excited synchronous generators”, IEEE Trans. 
Energy Convers., 10(3), pp. 508-515, 1995. 

[3] A. S. Mostafa, A. L. Mohamadein and E. M. Rashad, “Analysis of 
series-connected wound-rotor self-excited induction generators”, IEE 
Proceedings Electric Power Applications, 140(5), pp. 329-336, 1993. 

[4] J. F. Gieras, Permanent-magnet motor technology, 2rd ed., Marcel 
Dekker: New York, 2002. 

 

926

 



11. MOTORS AND GENERATORS

Abstract — The use of finite element analysis (FEA) to design 
electrical motors increased significantly last years due the better 
performance of modern computers. Even though the analytical 
software remains the most used tool, the FEA is widely used to 
refine the analysis and gives the final design to be prototyped. The 
power factor, a standard data of motor manufactures data sheet is 
important because it shows how much reactive power is 
consumed by the motor. This data became important when the 
motor is connected to network. However, the calculation of power 
factor is not an easy task. Due the saturation phenomena the 
input motor current has a high level of harmonics that cannot be 
neglected. In this work the FEA is used to evaluate the power 
factor of a small single-phase induction motor. 

I. INTRODUCTION

The analytical methodology remains as the most important 
daily work tool of motor designers at industry. The use of 
analytical tools is important to reduce calculation time 
especially during optimization. However some important 
phenomena cannot be evaluated in these methodology and then 
numerical methods are used. The use of finite element analysis 
is very important because it provides detailed simulation and it 
is more accurate regarding saturation and field distribution. 
Even though demanding more calculation time the use of FEA 
to simulate electromagnetic devices increased significantly last 
years due the better performance of modern computers. The 
literature is full of valuable works that finite element analysis 
to evaluate the performance of electrical motors [2][3]. Some 
of these works use software developed at academy and others 
use the available commercials software. No matter the 
software used the understanding of basic phenomena are 
required to make a good work. If motor designers do not know 
very well the theory of electrical motor they cannot evaluate 
correctly the results and may take wrong decisions.  

Induction motors consume alternative power and then 
consume both real power (P) and reactive power (Q). The 
vector sum of real and reactive power is the apparent power 
(S). The power factor of an electric motor is defined as the 
ratio of its real power P in Watts to the apparent power S in 
VA.  The presence of reactive power causes the real power (or 
useful power) to be less than apparent power, consequently 
induction motors have power factor less than 1. Motors with 
low power factor are undesirable load in the network [1].  
Even though the power factor of an induction motor can be 
easily obtained by tests, this is not true for simulations carried 
by the finite element method because it is not obtained directly 
at the end of calculation. The level of saturation can also 

distort the current curve and leads to false values of power 
factor. 

In this work the finite element method is used to evaluate 
the performance of a small industrial capacitor run, single-
phase induction motor. A method to extract the input power of 
a motor calculated from post-treatment of a finite element 
model, including consideration of saturation and harmonics, is 
proposed hereafter. The power factor is then deducted and 
calculated, but might be considered as an indicative value due 
observed distortion.

 Results of simulation are compared to experimental ones 
and the problem of power factor calculation discussed is. The 
analysis presented in this paper may be not new for skilled 
engineers that are used to run the finite element method in 
motor design. However, it is useful for the fresh ones that look 
for information normally not available in the literature.  

II. POWER FACTOR ANALYSIS 

To analyze the problem of calculation of power factor by 
the finite element method the single-phase run capacitor motor 
of 100W, 60 Hz, 2 poles of Fig.1 is used. The coupled electric 
circuit is shown in Fig.2.  

Fig.1. Design of analyzed single-phase motor   

  

The basic theory of single-phase induction motor shows 
that, the mean input power PIN of a run capacitor single-phase 
induction motor can be obtained by the equation (1). The 
Vsource, Imain, Iaux are the applied voltage, the current of main 
winding and the current of auxiliary winding, taken in one 
period of the time T respectively. The time T of calculation 
corresponds to one cycle (1/f) of input power where f is the 
frequency of applied voltage.  
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11. MOTORS AND GENERATORS

Fig. 2. Coupled electric circuit 

( )( )dtauxmainsourceT

Tt

tIN IIVP ∫ +×+
= 1                        (1)  

It is known that the input power of induction motors has 
several harmonics and they are more pronounced in saturated 
motors where the input current is strongly distorted as shown 
in Fig. 3. The high level of harmonics in the total current 
affects the correct calculation of power factor. 

Fig. 3. Curves of Vsouce and Itotal at steady state 

In the finite element method two ways are normally used to 
calculate the power factor cosϕ. The first way is the direct one 
where the vales of Vsource and Itotal (Imain+Iaux) are taken at each 
time of one analyzed cycle at steady state. This methodology 
requires a calculation with a very small time step. The time 
where the Vsource and Itotal became positive (or negative) is 
taken. The difference between then gives the angle of 
displacement and consequently the value of power factor cosϕ. 
Even though this academic method is easy and fast it may be 
avoided in analysis of saturated motors because the current 
curves are distorted. Additionally, as the time step increases 
the real time where the curves change the direction is lost as 
shown in Table I. This  easy  method  is   useful   only  in   
non-saturated motors and simulated with a very small time step  
(∆t <T/180).  

TABLE I 
POWER FACTOR FOR DIFFERENT TIME STEP CALCULATION 

Time step (ms) Cosϕ
0.092 1 
0.185 1. 
0.277 0.994 

The second way to calculate the power factor is by the use 
of equation (2). In this equation the power factor is deduced 
from the input power mean value PIN and the rms total current 
and rms Vsource. To have the input mean value PIN at first we 
calculate the PIN(t) by use of equation (3). Here the Vsource, Imain

and Iaux versus time are exported from Flux2D. Next, the main 
value of PIN is obtained directly  at  Flux2D  with Meanvalue

(PIN (t))=PIN. 
As shown in Fig. 3 the harmonic content of total current is 

high. From a Fourier point of view, the result obtained with 
equation (2) is not correct because PIN it is not limited to first 
harmonic. The value of power factor is then only an 
approximated value. 

effIIeffxV

P

auxmainSOURCE

IN

)(
cos

+
=ϕ                     (2) 

   ))()(()()( tItIxtVtP auxmainsourceIN +=                      (3) 

 As the power factor is only an approximated value the motor 
efficiency is calculated directly with equation (4). The output 
power is deduced from the shaft torque mean value TN (N.m) 
and speed mean value ωR (rad/s), that is POUT= ωR x TN. 

IN

OUT

P

P
eff =                                        (4) 

 In the full paper results of simulations with a capacitor run 
single-phase motor will be presented. The complete analysis 
will show the power factor value obtained by the different 
methods discussed above. The final paper will also discuss 
more deeply the effect of time step in power factor calculation 
and compare the calculated and measured motor efficiency. 
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Abstract —The vibrations of electric motors are mainly 
determined radial force excitation and stiffness of stator and 
frame. Stator shapes have a large influence on vibration 
performance. In this paper four different stator shapes were 
analyzed by using transient magnetic and thermal analysis and it 
was found that the “V” shape has the best thermal effect.  Modal 
analysis was carried out on precise mechanical models of 
prototype motor in three dimensional finite element method (3D 
FEM) software to study the structure borne transfer function.   

I. INTRODUCTION

The switched reluctance motor (SRM) has raised 
significant interest among the industry for several reasons, 
including a mechanically and thermally robust rotor, simple 
stator windings and ease of manufacture. The study of 
acoustic noise in SRM has attracted much attention due to the 
ever-increasing consciousness of environmental noise 
pollution.  

II. STUDY ON STATOR SHAPES

Based on the same inner structure of stator (inner side 
stator yoke diameter, pole and winding) and utilization of 
lamination, four shapes as proposed in [1] were used to design 
stators. The stator outer diameter is largest diameter of stator 
in ‘V’ ‘T’ shape model and the side in square shape. Modal 
analysis was also carried out. Comparing the modal frequency 
and modal shape, same conclusion could be obtained as [1], so 
it is skipped here. Dynamic finite element analysis of the 
motors with different stator shapes were carried out. The flux 
density distributions are shown in Fig. 1.  With the same turn 
on angle 1°, turn off angle 16° and rotating speed 3600rpm, 
the square shape and ‘V’ shape model have a lower efficiency 
whereas ‘T’ shape has highest efficiency. 

For a simple comparison of thermal effect of stators, a 
transient thermal analysis was carried out. During simulation, 
the environmental temperature and initial stator temperature 
was assigned to be 22°C. At t=0, the inside surface was 
assigned with a temperature of 80°C and the temperature of 
outside surface was checked after 5s. The temperature 
distributions are shown in Fig. 2. Performances were 
summarized in Table Ⅱ.Comparing the heat exchange rate of 
four models, it could be concluded that ‘V’ shape stator has 
the best thermal effect which dissipate the heat generated in 

the motor to environment, whereas the square shape has the 
worst one. 

 (a)         (b) 

(c) (d) 
Fig. 1. Flux density distribution of different stators: (a) circle shape; (b) ‘T’ 

shape; (c) ‘V’ shape; (d) square shape. 

           (a)                                                            (b)   

  (c)                                                     (d) 
Fig. 2. Temperature distribution of different stators: (a) circle; (b) ‘T’; (c) ‘V’; 

(d) square shape. 
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11. ELECTRIC MACHINES AND DRIVES

III. MODAL ANALYSIS OF FRAMES 

A modal analysis, or a free vibration analysis, is performed 
to obtain the natural frequencies and mode shapes of a 
structure. For a modal analysis, the natural circular 
frequencies iω and mode shapes iφ are obtained from the 

matrix equation:  

[ ] [ ]( )2 { } {0}iω φ− =Κ M                                (1) 

where the structure stiffness matrix [ ]K and the inertia matrix 

[ ]M are formed from elementary stiffness inertia matrix 

stiffness inertia matrix,  respectively [6]. Equation (8) has a 
nontrivial solution when the determinant of the coefficients 
vanishes, i.e. 

[ ] [ ]( )2det 0iω− =Κ M                                (2) 

The polynomial equation has n eigenvalues, which 
corresponds to n natural frequencies. 

After the stator core was studied, five frames with 
different structure and material to study the structure borne 
transfer function. The five models with same stator are shown 
in Fig. 3. The traditional circle shape stator is still used since 
the emphasis is frame in this part. Model I has an axial ribbed 
aluminum frame with 2.5mm thickness. In Model II, the 
thickness of frame increases to 5 mm. Model III has the same 
shape with Model II but uses gray iron cast.  Model IV has a 
radial ribbed aluminum frame, 5 mm thickness. The material 
of frame in Model V is changed to structural steel and there 
are no ribs on frame because manufacture of ribbed steel 
frame is a big problem. The end bells in these models are 
made of aluminum and have the same dimensions. The in-
plane flexural modes play important roles in electromagnetic 
vibrations while the bending, tensional, and out-of-plane 
flexural modes contribute to vibrations under unbalanced or 
fault situations [2], so only the in-plane flexural mode shapes 
are presented graphically in Fig. 4(a)-(e), which shows the 
2nd mode shapes and their associated frequencies. 

IV. CONCLUSION

This paper investigated the influence of stator shapes and 
frames to motor’s performance. Modal analysis of stator 
shapes was described in literature, electromagnetic and 
thermal analysis of stator shapes are the new contribution of 
this paper. Comprehensive study of frames with different 
shapes and materials using modal analysis is firstly proposed 
in this paper. Since the paragraph limitation, more results and 
experimental verification will be reported in full paper. 
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     (a) Model I                           (b) Model II & III 

(c ) Model IV                       (d) Model V 
Fig. 3. Five models with different frames. 

(a2) 1689Hz

(b2) 2265Hz                (c2) 2227Hz  

(d2) 2425Hz                (e2) 2605Hz 

Fig. 4. Second mode shapes and mode frequencies of different 
frames 
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TABLE Ⅱ
MOTOR’S PERFORMANCE ACCORDING TO STATOR SHAPE

Stator shape Circle ‘T’ ‘V’ Square 

RMS current  (A) 6.16 6.30 6.24 6.18 
Copper loss (W) 141.4 143.2 140.2 137.4 
Iron loss (W) 166 163 170 178 
Power (W) 1748 1763 1733 1763 
Efficiency 85.0﹪ 85.2﹪ 84.8﹪ 84.8﹪
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Abstract — This paper studies the influence of permanent 
magnet (PM) on the total motor system efficiency. Two PM 
synchronous motors with Nd-Fe-B and ferrite magnets which 
have the same Back electromotive force and output power have 
been designed. An indirect coupled field-circuit analysis is used 
in this paper to calculate motor losses and inverter losses. First, 
the electric circuit domain simulation is performed with the 
parameters of the semiconductor devices and these two motors. 
The current waveforms, copper losses and inverter losses can be 
evaluated in this process. And then, by means of the current 
waveforms, numerical methods and Epstein Frame, the iron 
losses of these two motors will be calculated. Finally, the sum of 
the inverter losses, copper losses and iron losses can be used to 
reflect the influence of the magnet on the total system efficiency. 
The analysis results will be verified by the experiment to show 
the validation of this analysis method.  

I. INTRODUCTION 
Ferrite magnet has been widely used in permanent magnet 

synchronous motors (PMSM) for a few decades. Recently, 
due to the superior remanent flux density and coercively force, 
the Nd-Fe-B magnet is gradually replacing the application of 
ferrite magnet. By using Nd-Fe-B magnet, the high efficiency 
and size reduction can be easily achieved. Considering the 
cost difference between the Ferrite magnet and Nd-Fe-B 
magnet, however, it is necessary to investigate the influence 
of magnet on the total motor system performance. As the 
same back electromotive force (Back-EMF) and output power, 
the motor with ferrite magnet may have higher inductance 
and resistance than the motor with the Nd-Fe-B magnet 
because of its larger number of winding turns and dimension. 
The different inductance and resistance may lead to the 
different time constant, which seriously affects the switching 
efficiency of the motor drive and current waveforms. 
Furthermore, the different current waveforms will produce 
different copper losses and iron losses in motors. 

In order to solve this coupled field-circuit problem, [1]-[3] 
proposed several methods. These methods can be classified 
into direct coupled field-circuit method and indirect coupled 
field-circuit method. In the direct coupled field-circuit 
method, the field governing equations are combined with the 
circuit state space equations, and solved simultaneously [1]. 
To obtain the accurate current waveforms, the computation 
step of this method should be small enough. Although [3] 
proposed a computation step optimization method, the 
convergence of each step still is in both field and circuit 
equations. The indirect coupled field-circuit method solved 
the time consuming problem of the direct coupled 

field-circuit method [2]. In the circuit domain calculation, the 
steady state could be achieved more quickly. Therefore, it 
does not need to spend much time into the transient process.  

Based on the mentioned above, an indirect coupled 
field-circuit method is used to evaluate the motor and inverter 
losses in this paper. Two PMSMs have been designed with 
the same Back-EMF and output power using the ferrite 
magnet and Nd-Fe-B magnet, respectively. First, the 
parameters of these two motors including magnet flux linkage, 
phase resistance and nonlinear inductance profiles are 
calculated by the magneto-static field finite element method 
(FEM). Then, using the parameters of the inverter and motors, 
the losses of the switching devices, current waveforms, and 
the copper losses of motors are calculated by an electric 
circuit domain simulation program considering pulse width 
modulated (PWM) current regulation. Next, a magneto-static 
FE model is computed with the current waveforms obtained 
from the circuit domain simulation. The obtained flux 
densities of all elements are decoupled into the temporal and 
spatial components by the Discrete Fourier transforms (DFT), 
and used to index the iron losses with the Epstein frame. 
Finally, the iron losses of motor can be calculated by 
summing the losses of all elements in the all harmonics. An 
experiment will be done to verify the validation of this 
method. The analysis results will give more suggestions to 
the application of ferrite and Nd-Fe-B magnets.  

II. MODELING IN CIRCUIT DOMAIN 

A. Modeling of PMSM 
According to the Park’s transformation, the state space 

equations of the PMSM can be described as (1)-(3). And the 
corresponding d- and q-axis equivalent circuits are shown in 
Fig. 1 (a) and (b), respectively. [4] 
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The parameters required in PMSM state space equations 

could be calculated in the numerical methods which have 
been introduced in [4]. 

931

PD1.16



11. ELECTRIC MACHINES AND DRIVES 

dv

di aR

cR

odi
oqqiLω

dL

cdi
odv

dv

di aR

cR

odi
oqqiLω

dL

cdi
odv

 

qv

qi aR

cqi

cR oqv

oqi
oddiLω

aΨω
qL

qv

qi aR

cqi

cR oqv

oqi
oddiLω

aΨω aΨω
qL

 
(a)                            (b)  

Fig. 1. Equivalent circuits of PMSM: (a) d-axis equivalent circuit, (b) q-axis 
equivalent circuit  

B. Modeling of Inverter 
The voltage source inverter is modeled by using of the 

switch function concept which is introduced in [5]. As the 
transistors switching-on or switching-off, four kinds of losses 
are produced [6]. They are current flowing losses and 
switching losses in transistors and freewheeling diodes, 
respectively. The calculation equations of these four losses 
are shown in (4)-(7). 

1 cos
8 3IO MP CES

MP I V θ
π

⎛= +⎜
⎝ ⎠

⎞
⎟                    (4) 

1 cos
8 3DO MP F

MP I V θ
π

⎛= −⎜
⎝ ⎠

⎞
⎟                     (5) 

( ) 1
IS on off SWP E E f

π
= +                        (6) 

1
4DS SW rrP f Q V= DC

)υμ

                           (7) 

where all variables will be explained in the extended paper. 

III. MODELING IN MAGNETIC FIELD DOMAIN  

A. Magneto-static Field FEM 
The 2D magneto-static field FEM is used to calculate the 

magnetic field distribution with the known current waveforms 
and time steps. Its governing equation, i.e. the nonlinear 
Possion equation, is described in (8). 

 
( ) ( 0υ× × = + ×A J M� � �                   (8) 

 
where all variable will be explained in the extended paper. 

B. Iron Losses Calculation 
The iron losses calculation is consisted of three processes, 

which is simplified in Fig. 2. The detail introduction of this 
method is presented in [4].  

IV. ANALYSIS MODEL AND RESULTS 

Two PMSMs with ferrite and Nd-Fe-B magnets have been 
designed to have the same Back-EMF and output power. 
Their d- and q-axis inductances are shown in Fig. 3 (a) and 
(b), respectively. Additionally, at 25oC the motor with ferrite 
magnet has 1.16Ω phase resistance and 32.13Vrms/krpm 
line-to-line Back-EMF, while the motor with Nd-Fe-B 
magnet has 1.09Ω phase resistance and 30.475Vrms/krpm 
line-to-line Back-EMF. 

The circuit domain calculation has been processed to both 
motors. And the current waveforms at 2000rpm and 0.35Nm 
operation condition are shown in Fig. 4. It is obvious that the 
current of the motor with Nd-Fe-B magnet is regulated more 
frequently, while the current of the other motor has more sm- 
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Fig. 2. Iron losses calculation process 
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Fig. 3. Inductance profiles: (a) inductances of Nd-Fe-B magnet motor, (b) 
inductances of ferrite magnet motor  
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(a)                            (b)  

Fig. 4. Calculated current waveforms: (a) current waveforms of Nd-Fe-B 
magnet motor, (b) current waveforms of ferrite magnet motor  
 
ooth waveforms. The motor specifications, more analysis 
results, experiment results and discussion will be presented in 
the full paper. 
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Abstract — This paper deals with reduction of torque ripple in 
a brushless DC motor with input voltage control. The 
commutation torque ripple can be controlled with varying input 
voltage, although cogging torque is independent on it. So, in this 
paper a strategy for minimizing torque ripple is proposed by 
offsetting the cogging torque with deliberate voltage control. The 
optimal condition is determined with various voltage levels and 
lead angles. As results, it is shown that the method causes 71% 
decrease of torque ripple.  

I. INTRODUCTION

Torque ripple of a brushless DC (BLDC) motor consists of 
one produced by a voltage commutation and the other due to 
magnetic cogging. Numerous studies have been proposed for 
reduction of the torque ripple [1]~[3]. Of these studies, a 
method reducing the ripple by a various voltage instead of DC 
voltage was presented [3]. It focused on eliminating the 
current ripple, however, strangely the method was not applied 
to a BLDC motor but to a sinusoidal wave motor, so it was not 
possible to look into the effect of cogging torque ripple.  
In this paper, reduction of a net ripple including cogging 

torque is focused. Since a cogging torque is inherent and 
unavoidable, we propose a method offsetting it with an input 
voltage control. For a given BLDC motor, equations to 
achieve a certain commutation ripple are analytically induced, 
and cogging torque is obtained with FE-analysis. With 
variance of voltage lead angle and commutation ripple, the net 
torque ripples are calculated in order to find the best voltage 
condition. 

II. PROPOSED METHOD FOR TORQUE RIPPLE MINIMIZATION

A. Components of Torque Ripple in a BLDC motor 

A 3-phase, concentrated wounded, surface PM BLDC 
motor is shown in Fig. 1. When it is driven with a DC voltage, 
the phase currents are obtained by using circuit analysis as 
shown in Fig. 2. The phase currents produce a commutation 
torque through interaction with a back EMF as given by 

a a b b c c
com

m

I E I E I E
T

ω
+ +

=                                                  (1) 

, where 
mω  is mechanical angular velocity and E is back-

EMF. Using (1) the commutation torque can be calculated as 
shown in Fig. 2. Both Fig. 1 and Fig. 2 show that the 
commutation torque ripple is due to current ripples and it is 
deeply related with falling time tf of each phase current.  

Magnet
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Vdc

S1 S3 S5
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Fig.1. Circuit of BLDC motor 
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Fig. 2. Current, voltage and back-EMF waveforms 

T0

tf
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Fig. 3. Commutation torque (equivalent circuit analysis) 

The actual net toque is obtained through FE-analysis as 
shown in Fig. 4. Since it includes both commutation and 
cogging torque ripples simultaneously, only a cogging torque 
is again analyzed by using FEM as shown in Fig. 4. The 
commutation torque is obtained by subtracting cogging torque 
from a net torque and represented in Fig. 5. It shows that the 
simulation results in Fig. 3 are very similar to the actual 
commutation ripples therefore, the analytic approach is valid. 

Fig. 4. Magnetic flux lines in BLDC motor (FE-analysis) 
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Net Torque

Cogging Torque

Fig. 5. Torque waveforms (FE-analysis) 

Fig. 6. Commutation torque (FE-analysis)

B. Cogging Torque Offset with Commutation Ripple  

The commutation ripples in current and torque can be 
controlled by adjusting the input voltage V1 and V2 as shown 
in Fig. 7. Especially the falling time of a phase current tf is 
expressed in terms of V1 and V2, given by 
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, where τ  is the time constant of a circuit, that is R/L
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Fig. 7. Waveforms in voltage control 

As previously shown in Fig. 2 and Fig. 3, the falling time tf

of each phase fairly affects the torque ripple. Therefore, the V1

and V2 are obtained by using (2) for various tf, and the 
commutation torques are calculated and depicted in Fig. 8. It 
shows that comparing with the cogging torque, the magnitude 
of commutation ripple changes so abruptly that it is very 
difficult to offset the cogging torque. Thus we select a lead 
angle of voltage as well as a falling time tf for control 
variables. From -300 to 300 for lead angle, the magnitudes of 
ripple in net torque are calculated according to variation of 
falling time, and the calculated results are plotted in Fig. 9. It 
shows that the best lead angle is 9.50 at which V1 and V2 are 

respectively 434.2[V] and 170.4[V]. The net torque produced 
by the determined voltage conditions is shown in Fig. 10 
which is reduced by 71% of that of a conventional DC input 
voltage. 

Cogging Torque

Commutation Torque

Fig. 8. Cogging torque and commutation torque for various tf
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Fig. 10. Comparison of torque waveforms  
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Abstract — This paper describes the development of a novel 
transverse flux linear motor (TFLM) excited by permanent 
magnets. It produces high thrust force with reduced normal force 
by combining the advantages of two different kinds of TFLMs. 
Magnetic field is analyzed by combining three-dimensional 
equivalent magnetic circuit network (EMCN) method with two-
dimensional finite element analysis. The experimental results of 
prototyped motors are in good agreements with the analysis ones, 
and show the possibility of the new suggested motor as a direct 
drive requiring relatively long displacement of a mover. 

I. INTRODUCTION 
In direct drive applications, the main issue is to increase the 

force and power density of the machine by improving 
constructional design of stator and mover constituents. This 
normally requires careful considerations in the designing of the 
magnetic topologies, which promotes significant weight 
reduction in the magnetic mass as well as improvement in the 
form factor of the magnetic design [1]. A number of novel 
forms of permanent magnet machines have been developed for 
such applications and transverse flux machines are considered 
as one of the candidates to achieve the highest force densities 
among them, especially at a low speed. In this research, two 
different kinds of TFLMs with PM excitation are compared, 
and a novel transverse flux machine is suggested by combining 
the advantage of the two structures.  

Fig. 1 shows the one phase of two different kinds of TFLM 
with PM excitation [2]. In each mover, the permanent magnets 
are fitted between the iron cores and magnetized with 
alternating polarity facing to each other. These arrangements 
produce a high air gap flux density in the air gap region 
compared to other permanent magnet motor types. The ends of 
the mover are skewed by one pole pitch each other, and form 
the path for three-dimensional flux flow with the adjacent teeth 
of the stator. With these features, it can produce unidirectional 
thrust force at the entire region by reversing the polarity of the 
applied current. The major differences between models are the 
positions of the armature windings and the presence of normal 
force. The first model has armature windings in the stator and 
the mover is inserted between the poles of the stator. In this 
case, normal force does not exist and lateral forces existing in 
the two air gaps between the teeth of stator and mover are 
cancelled out each other. However, some applications require 
long stroke of mover, and it is not practical to mount armature 
windings in the long stator considering the effective utilization  

   
(a)                                                      (b) 

Fig. 1. Conventional design of TFLMs (a) I-shaped mover core type (b) U-
shaped mover core type 

 
of windings and significant loss of flux linkage. The second 
model has U-shaped mover cores and the armature windings 
are inserted into the poles of the mover. This feature seems to 
be suitable for the applications requiring relatively long 
displacement of the mover comparing I-shaped mover core 
type. However, this type of motor produces much bigger 
normal force than the thrust force. This can limit the use of it 
due to the friction loss caused by the normal force. 

In the stocker system, which is used for transferring glasses 
in the LCD industry, there are great demands for linear direct 
drives to avoid drawbacks of traditional drives having rotary 
motor and mechanical motion conversion devices. In this 
application, the stator is installed up to 100 m and system 
requires thrust force of 10,000N. Thus, it is difficult to apply 
the I-shaped mover core type alone due to the leakage flux 
caused by long stator. Of course, U-shaped mover core type 
can be applied to this application, but it has also drawbacks of 
huge normal force.  

Fig. 2 shows the conceptual development process of the new 
model and Fig. 3 shows the one phase of it. It is developed by 
combining the advantage of the previous two models; non-
existent normal force of the I-shaped mover core type and 
effective coil arrangement of U-shaped mover core type. 
Basically, it can produce two times higher thrust force than the 
U-shaped mover core type by jointing it in parallel way. 
However, the normal force is just increased by 50% comparing 
the U-shaped mover core type that can produce the same thrust 
force. This is due to the fact that the extruding pole 
arrangement of E-shaped core type at the both ends of the 
mover provides only thrust force, and the attractive forces 
between stator and mover are cancelled out each other. It can 
also reduce almost 50% of the copper for windings. This 
implies that winding losses of the suggested motor can be 
substantially decreased. 
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Fig. 2. Development process of new type TFLM 

 
Fig. 3. Newly designed TFLM having E-shaped mover cores 

II. ANALYSIS AND EXPERIMENT RESULTS OF TFLMS 
Magnetic field is analyzed by three-dimensional equivalent 

magnetic circuit network (EMCN) method using a symmetry 
condition of flux distribution. Two-dimensional finite element 
analysis is also used to find the influence of the end effect of 
mover on the performance of TFLMs [2]. Fig. 5 shows the 
thrust and normal forces of TFLMs having U and E-shaped 
mover cores. For comparison, each value is corresponding to 
one-pole pair of each model when applying different 
magnitude of MMF. The E-shaped core type produces almost 
two times of the thrust force than the U-shaped core type at the 
all applied MMFs. But, in case of normal force, they have 
almost same peak levels due to the cancellation of attractive 
force between mover and stator at the both sides of mover in 
the E-shaped core type. The ratio of normal force to thrust 
force is decreasing with the increase of the applied MMF.  

 

 
        (a) 

 
     (b) 

Fig. 4. Comparison of thrust and normal force (a) average thrust force (b) 
peak normal force  

Fig. 5 and Fig. 6 show movers and stators of the U and E-
shaped core type TFLM for static experiments, respectively. 
Fig. 7 shows the comparison of the thrust force profiles for 
different MMFs during the displacement of the mover between 
stable and unstable equilibrium positions. The averaged thrust 
forces are in good agreement with experimental ones. At 50% 
and 100% of the rated MMFs, experiment shows that the 
average thrust force of E-shaped core type is 2.12 and 2.15 
times higher than that of U-shaped core type, respectively. 

 

    
(a)                                                        (b) 

Fig. 5. U-shaped mover core type TFLM (a) stator (b) mover 

    
(a)                                                        (b) 

Fig. 6. E-shaped mover core type TFLM (a) stator (b) mover 

 
(a) 

 
 (b) 

Fig. 7. Thrust force profile (a) U-shaped mover core type (b) E-shaped mover 
core type 
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Abstract — This paper presents the design strategy of interior 
permanent magnet synchronous motor for electric power 
steering (EPS) considering cogging torque and torque ripple 
using current harmonics. For the EPS motor, cogging torque 
and torque ripple reduction are important design factors. In 
order to reduce cogging torque and torque ripple, optimal 
design methodology, such as response surface methodology 
(RSM) can be used and design parameters can be pole angle, slot 
opening, notch, etc. However, it is shown that optimal design 
satisfying cogging torque and torque ripple does not exist by 
response surface methodology in the presented design. In order 
to satisfy both cogging torque and torque ripple, design 
parameters minimizing cogging torque is determined by RSM 
and torque ripple is reduced by harmonic current. Therefore, 
minimization of both cogging torque and torque ripple can be 
achieved. Presented design strategy is verified by finite element 
analysis (FEA) and experiments.  

I. INTRODUCTION 
Interior permanent magnet synchronous motors have 

higher torque density per volume than induction motor and 
reluctance motor with wide operating speed range with the 
help of field weakening control. Therefore, it is widely 
applied from small power to large power such as traction 
motor for electric vehicles. 

For the application of EPS, high power density, low torque 
ripple, and low cogging torque are required. To reduce 
cogging torque and torque ripple, various design topologies 
can be applied. Choice of fractional pole/slot combination or 
optimal geometry design etc. can be one of choice. Fractional 
pole/slot combination provides low cogging torque and 
torque ripple, however, unbalanced radial forces in air gap 
leads to high vibration and noise. For optimal shape design of 
magnetic circuit, even though computer system developed 
highly, huge computation time and efforts are required. 
Because many motor geometry parameters closely related to 
torque ripple and cogging torque. In addition, reduction of 
cogging torque and torque ripple simultaneously with shape 
optimization is difficult because minimum cogging torque 
design does not guarantee minimum torque ripple and vice 
versa. Therefore there should be compromise between 
cogging torque reduction and torque ripple reduction design. 
In addition, sometimes other motor characteristics should be 
sacrificed to satisfy cogging torque and torque ripple since 
both are the main constraints for comfortable driving. 

 
 

 
On the other hand, output torque ripple can be reduced by 

control strategy [1, 2]. By applying appropriate current, 
torque ripple can be reduced. Therefore, both geometrical 
optimization to reduce cogging torque and current harmonic 
injection are used in this paper. 

II. HARMONIC CURRENT ESTIMATION 
The input current of synchronous motor is assumed to 

sinusoidal wave and correspondent output torque is produced 
by interaction between magnetic field by permanent magnet 
and armature reaction. Due to non-linear characteristics of 
magnetic material, output torque and torque ripple are not 
proportional to input current. Therefore, output torque waves 
for various inputs current are estimated FEA and 
instantaneous current which provides constant torque are 
calculated. Calculated current wave is composed of various 
harmonic components, represented by a set of function of 
input current and harmonic order. Therefore, in ideal case of 
high response speed of microprocessors, nearly 0% of torque 
ripple can be achieved. The results of harmonic current are 
firstly examined by FEA. The main process of estimation of 
harmonic currents is summarized as follow; 

1. Calculation of output torque wave form by FEA for 
various sinusoidal input currents 

2. Instantaneous current for required constant torque 
are calculated. 

3. Harmonic analysis for instantaneous input current 
4. Development of function of harmonic current 

III. OPTIMAL DESIGN USING RSM 
Table 1 shows the main specification of analysis model. 

The model has 10pole and 15slots with concentrated 
windings. 

Fig. 1 shows the design variables for optimal design, and 
optimal design results. The IPMSM is chosen and 2 design 
variables of pole angle and rotor eccentricity are chosen. Like 
general IPMSM, permanent magnets are buried in the rotor 
core. To reduce cogging torque and torque ripple, notch and 
eccentricity are applied to stator teeth and rotor respectively. 
The model is optimized for cogging torque. Unlike general 
EPS motor, the developed motor has no skew for research 
purpose.  
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TABLE 1 BASIC INFORMATION OF DESIGN MODEL 
Motor type IPMSM 

Phase number 3 
Pole number 10 
Slot number 15 

Stator outer diameter (mm) 90 
Stack length (mm) 40 

Parallel circuit number 5 

 

(a)                        (b) 
Fig. 1 (a) design variables, (b) optimal design result 

 
Fig. 2 shows the effect of design variables on cogging 

torque and torque ripple. As shown in the figure, it is 
impossible with geometry design satisfying both cogging 
torque and torque ripple. The optimal value of pole angle and 
eccentricity are around 37 ۫ and 7mm respectively. 

     
(a)                     (b) 

Fig. 2 Equi-plot of (a) cogging torque and (b) torque ripple. 
 

Fig. 3 shows the output torque wave according to 
sinusoidal input current from 48 to 52Arms. In the figure, it is 
shown that the torque ripple varies with input current and 
rotor positions. In order to get constant torque, a straight line 
is drawn and current at each crossing point is estimated and 
overall current wave of one phase is shown in Fig. 3 (b). 
Unlike general current controlled synchronous motors, input 
current is distorted and contains large harmonic components 
and this is shown in Fig. 4 (a) 

 In Fig. 4 (b), comparison of output torque wave form 
between general current control and harmonic current 
injection is shown. In the figure, 8% of torque ripple is 
obtained with general current control and 0.7 % of torque 
ripple is obtained with harmonic current injection. The 
average torque is slightly reduced but the ratio is not 
significant and it is caused by calculation error of input 
current. It is expected that the current step in Fig. 3 is smaller, 
0% of torque ripple can be achieved without decrease of 
average torque. 

Fig. 5 shows the fabricated EPS motor. In the full paper, 
detailed design process and test results and verification will 
be included. 

IV. CONCLUSION 
This paper presented the design strategy of IPMSM for 

EPS to minimize both cogging torque and torque ripple. 
Cogging torque is minimized by optimal design of motor 
geometry and torque ripple is minimized by harmonic 
current. Presented design results are verified by experiments 
and could be effectively applied to the EPS motor design. In 
the full paper, motor control strategy, experimental 
verification, and other motor characteristics will be 
presented. 
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Fig. 5 Fabricated EPS motor 
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Calculate the Parameters of IPMSM according 
to distance of PM and Magnetic saturation. 
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Abstract — Interior Permanent Magnet Synchronous Motor 
(IPMSM) produces two kind of torque that Magnetic and 
Reluctance torque. The permanent magnet linkage flux and 
d-axis and q-axis inductances have an important influence on the 
torque characteristic of IPMSM. Thus their accurate prediction 
is essential for predicting performance aspect such as the torque 
and flux-weakening capabilities. In this paper, in many causes 
which affect the characteristic parameters, effect of distance of 
Permanent Magnets will be inquired. Nonlinear characteristic of 
inductances is considered as calculating inductances using finite 
element method. 

aΨ

 

I. INTRODUCTION 
Permanent magnet synchronous motor (PMSM) has many 

advantages, such as high torque density, high power density, 
high efficiency, among others. Advances in PMSM 
manufacturing and technology are primarily responsible for 
lowering the cost and increasing the applications of PMSMs. 
PMSMs are classified into sinusoidaly fed PMSMs and 
rectangular fed brushless PM motors (BLDC). The magnets 
are either mounted on the surface of the rotor, called surface 
mount permanent magnet synchronous motors (SPMSM), or 
placed inside the rotor, called interior permanent magnet 
synchronous motor (IPMSM). Because the magnets of the 
IPMSMs are embedded inside the rotor, magnets are protected 
from flying away from the rotor surface from the centrifugal 
force. IPMSMs produce not only the magnetic torque, but also 
the reluctance torque, which is due to the difference between 
the d-axis and q-axis inductance  by geometrical rotor 

structure. Therefore, it is possible to control the machine in 
the wide speed range control by means of flux-weakening 
control method. The air-gap flux can be weakened by 
applying large demagnetizing current in the d-axis of the 
permanent magnets. The steady-state performance analysis 
and precise control of the IPMSM greatly depend on 
determining the parameters accurately. The three essential 
parameters of the IPMSMs are armature flux linkage of 
PM( ), d-axis and q-axis inductances( ). The magnet 

flux linkage is usually estimated from the back electromotive 
force(EMF). It is possible to estimate accurate value of 
magnet flux linkage as long as rotor speed and induced 
voltage are measured precisely. However, estimation of d-axis 
and q-axis inductances needs more careful approach as it 
involves saturation and cross-coupling effects. There are 
various approaches to estimate d-axis and q-axis inductances 

such as analytical methods, finite-element analysis, and 
experimental measurements.  

qd ,LL

aΨ qd ,LL

This paper studies whether the distance of PM affects 
characteristic parameters. The inductances were estimated 
from the finite element method and measured by current 
vector control method considering saturation and cross-
saturation effects.  

II. INDUCTANCE COMPUTATION 
The voltage equation of IPMSM which is got to be 

transformed into d, q axis coordinate system can be written as 
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Where,  

efa ΨΨΨ 3
2
3

==  

eΨ : the effective value of armature linkage flux of u-phase 
by permanent magnets 

qd vv , : d, q elements of armature voltage  

qd ii , : d, q elements of armature current  

aR  : winding resistance 
 
In the steady state, the differential terms are eliminated in 

Eq. 1. 
The inductance parameters were computed from the finite 

element method. The finite element method is considered to 
be a very powerful tool to predict and estimate machine 
parameters. It can also give good insight into the saturation 
and leakage of flux inside the machine. It is available to 
estimate the d-, q-axis inductances in flowing procedure from 
flux linkage vector diagram shown in Fig. 3.1  

 
1) Assuming that the motor is driven by load, open the 

motor terminals and rotate the rotor by FEM. Calculate the 
variation of flux linkage or induced voltage on phase U 
winding.  

2) Assuming that current with magnitude and phase 
angle 

ai
β  is applied. Rotate the rotor in same way like 1), 

calculate the variation of flux linkage or induced voltage on 
phase U winding. 
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13. EDUCATION 

3) Calculate the phase difference and effective values , 

 of fundamental wave component for the waveform 
obtained through. 

uaΨ

uoΨ

4) Using the equation (2)~(4), compute parameters with 
values obtained through 3). 

 
βsinad Ii −=             βcosaq Ii =        (2) 

uaa ΨΨ 3=         uoo ΨΨ 3=        (3) 

d

ao
d i

ΨΨ
L

−
=

αcos     
q

o
q i
Ψ

L
αsin

=        (4) 

 

 
Fig. 1. Flux linkage vector diagram of IPMSM  

 

 
Fig. 2. Flux linkage waveform of phase U  

III. ANALYSIS MODELS 

Each Analysis model has same amount of PM. But it has 
different that distance of two magnets. Magnetic flux path of 
each model is different to each other. Thus it has different 
saturation region of rotor. 

 

 
Fig. 3. Analysis Models  

 

IV. TORQUE MECHANISM OF IPMSM 

In IPMSM, besides magnetic torque in SPMSM, also 
reluctance torque by saliency arc produced. If balanced 3-

phase currents flow through stator coils distributed by 120 
degree in space, rotating magnetic field is created with stator. 
The mathematical model of torques in IPMSM can be attained 
by the vector product between current vector  and armature 

linkage flux vector . 
ai

aΨ
 

qdqdnqan iiLLPiΨPT )( −+=              (5) 

 
IPMSM produce not only magnetic torque but also 

reluctance torque. Therefore, using flux-weakening control, 
IPMSMs can be driven at higher speed than surface mount 
permanent magnet synchronous motors(SPMSMs).  

V. RESULTS 

Fig. 2 shows inductance parameters of each model. Model 
(b), which has 2mm distance, has the largest Ld, Lq. But 
model (d) has the largest inductance difference Lq-Ld that 
produce reluctance torque. As shown in Fig. 3 model (e) has 
the largest torque because of it has the largest linkage flux 
between outer PM and stator coil. Model (d) has the largest 
Lq-Ld. Thus it has the largest reluctance torque and maximum 
speed is high. 

 

 
Fig. 2. d-axis, q-axis inductances 

 

 
Fig. 3. Torque and torque ripple of IPMSM 
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Abstract—The axial magnetic induction in the core ends of
a large induction machine, caused by the leakage flux of the
end winding, was analyzed. The analysis is based on 3-D finite
element method (FEM), involving the anisotropic property of the
core ends as well as the use of the standard impedance boundary
condition (SIBC) to model the eddy current in the end shield
and frame. The 3-D model is validated by measuring the axial
magnetic induction on the end surface of the core as well as
the induced electromotive force along a search coil. The analysis
results show that the eddy current, which flows in the radial-
circumferential planes of the laminations, is induced in the core
ends due to the presence of the axial magnetic induction. The
corresponding eddy-current loss is small and most of the loss
occurs within 50 mm from the end surface of the core in the
axial direction. In addition, the axial magnetic induction near
the tooth tips and the bottoms of the slots of the core ends is
much stronger than in the yoke.

I. INTRODUCTION

In the numerical analyses of electric machines, a 2-D cross-
section model is quite common because the magnetic field in
the core centre is basically parallel to the radial-circumferential
plane. However, due to the leakage flux caused by the end
winding, the magnetic field in the end region is definitely 3-D
[1]. The core ends may be affected by the leakage as well,
so the axial component of the magnetic induction may occur
there. The direct effect of the axial magnetic induction is the
eddy current in the laminations of the core ends. Under some
fault conditions, the eddy current may be large and lead to
considerable loss, which affects the efficiency of the machine
and goes further to cause hot spots in the structures [2, 3].

II. METHODS

A. 3-D Numerical Model and Finite Element Analysis

A 3-phase, 4-pole, 2.24-MW squirrel-cage induction ma-
chine with a form-wound two-layer diamond winding was
studied. Since it was impossible to test this machine at full
load in the laboratory, the rotor parts were taken away and the
stator parts were tested at the rated current 830 A.

The skin depth of the end shield and frame is 1 mm at
the rated frequency 50 Hz. However, if a mesh included such
small elements to model the eddy current in the end shield
and frame, it would be impossible to solve the large equation
system by the computer. Therefore, the standard impedance
boundary condition (SIBC), also called the Leontovich bound-
ary condition, was imposed to model the eddy current in
these parts. The model of the anisotropic, 150-mm-long (axial

length) core end was cut into 15 slices in the axial direction,
and the axial thickness of each slice was 10 mm. Fig. 1 shows
the 3-D numerical model of the induction machine.

Fig. 1. The 3-D numerical model of the induction machine (without the air
region and end shield). Only the first 10 slices of the total 15 slices are used
in the calculation and slice 1 is the one nearest to the end surface of the core.

A series of time-harmonic numerical analyses were carried
out. The governing equation was

∇× [ν ·(∇×A)]+ jωσ·A− J s = 0, (1)

where A and J s are complex vectors of magnetic vector
potential and source current density, respectively; ν and σ
are tensors of reluctivity and conductivity, respectively; ω is
an angular frequency; and j is the imaginary unit.

The SIBC, as shown in Fig. 1, was imposed according to

E − (n ·E)n = Zsn×H, (2)

where E and H are complex vectors of electric field strength
and magnetic field strength, respectively; n is the outward-
directed normal unit vector on the surface; Zs is the standard
surface impedance of a medium.

The mesh of the core end was made into many layers and
the axial thicknesses of the three layers close to the end surface
were 0.25 mm, 0.45 mm, 0.9 mm, to model the skin effect.
Galerkin’s method was used in the weak form of the method of
weighted residual to construct the finite element discretization.

B. Validation of 3-D Numerical Model

To validate the model, two types of measurement were done.
Firstly, a search coil was built along a coil end, and the induced
electromotive force (EMF) was measured and compared. The
rms value of the measured EMF was 0.61 V, and the simulation
gave 0.59 V. Secondly, the magnetic induction on the end
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Fig. 2. The five measured points used in the validation are distributed evenly
along the middle line (dash line) of each tooth. In addition, the six positions
used in the calculation are marked as A, B, C, D, E, and F.
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Fig. 3. The rms values of the axial components of the magnetic induction.
Dash lines: simulation results; solid lines: measurement results.

surface of the core was measured. Six successive teeth in one
phase belt were chosen to be measured. Along the middle line
of each tooth, five points were measured. Fig. 2 illustrates the
positions of the five measured points along the middle line
(dash line). The results are shown in Fig. 3. The measured
values are consistent with the simulated ones. Therefore, the
measurement validated the numerical model.

III. RESULTS OF FINITE ELEMENT ANALYSIS

To fully analyze the axial component of the magnetic
induction in the core ends, different positions were chosen.
They were A, B, C, and D in the tooth between two successive
phase belts, and E near the bottom of a slot and F in the middle
of the yoke, respectively, as marked in Fig. 2. Because the core
end was cut into 15 slices of equal length in the axial direction,
the axial magnetic induction was calculated in the middle of
the axial thickness of each slice. The corresponding results in
slices 1–10, as marked in Fig. 1, are shown in Fig. 4.

In addition, the eddy-current loss caused by the axial
magnetic induction was calculated in each slice by

P
calc

Ft =
1
2



Ω

Re


1
σx

JxJ
∗
x +

1
σy

JyJ
∗
y


dV , (3)

where P
calc

Ft is the time average value of the eddy-current loss
over a period; Jx and Jy are the phasors of the components of
the eddy current; σx and σy mean conductivity. Fig. 5 shows
the eddy-current loss, calculated by (3), in slices 1–10.

The total eddy-current loss in one core end was calculated
as 144.2 W. In the core end within the skin depth 1.6 mm in
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Fig. 4. The maximum values of the axial magnetic induction in slices 1–10
of the core end.

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

Index�of�Slice

E
d
d
y
-C

u
rr

e
n
t�
L
o
s
s
�(

W
)

Fig. 5. The time average values of the eddy-current loss in slices 1–10 of
the core end.

the axial direction, the loss was 30.2 W. Besides, in Fig. 5,
most of the loss is concentrated in slices 1–5, that is, 50 mm
from the end surface of the core in the axial direction.

IV. CONCLUSIONS

The axial magnetic flux and the eddy-current loss in the
core ends of a 2.24-MW induction machine, caused by the end
winding leakage flux, was studied. The anisotropic property of
the core ends was taken into account and the eddy current in
the end shield and frame was modelled as well.

The analysis results show that under the normal working
condition, the total eddy-current loss in the core ends is
small, by comparison with, for example, the stator copper
loss, 5.4 kW. The stator end winding leakage causes the axial
magnetic induction in the core ends, and it is enough to cause
some loss within 50 mm from the end surface of the core in
the axial direction. In the radial-circumferential planes of the
laminations, relatively large axial magnetic induction occurs
in the core ends near the tooth tips and the bottoms of the
slots (positions A and E in Fig. 2). Moreover, there is a slight
difference in the axial magnetic induction among different
teeth in a phase belt. By the validation, the 3-D model proves
to be feasible in analyzing both the end region and core ends.
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Abstract —This paper present a study on magnet reduction in 
a single-phase line-start permanent magnet motor(LSPMM) by 
utilizing the advantage of multi-layer rotor structure. Based on 
an existing single-layer interior-PM design LSPMM, a double-
layer interior-PM rotor design is adopted for reducing the buried 
PM material without deteriorating motor torque and efficiency 
performances. The double-layer interior-PM rotor can create 
higher rotor saliency that benefits to reluctance torque 
generation, which is utilized to compensate the decreasing of 
magnet torque production since the PM usage reduction. The 
unique hybrid torque attribute benefits to torque and efficiency 
improvement are emphasized in this study. Finite element 
analysis and test results confirmed the validity of the presented 
analysis method. 

I. INTRODUCTION

The single-phase line-start permanent magnet motors 
(LSPMM) are widely used in household appliance, such as the 
compressor of air-condition, due to its feature operating 
characteristics that fed directly from the commercial electricity, 
without additional power electronic switching devices and 
position sensor [1].  

Due to the conductor bars and assisted PMs buried inside 
rotor core, the LSPMM has the beneficial attribute of high 
starting torque by means of a line-start induction motor and 
high efficiency, high torque performance at steady state as an 
interior-PM synchronous motor(IPMSM).  

From a cost standpoint, the reduction of magnetic material 
in PM motor is desired on the premise of keeping the main 
machine performances, such as torque and motor efficiency. 
In this study, the falling of machine performance of a 
prototype single-layer LSPMM caused by the PM usage 
reduction is predicted to be improved by adopting double-
layer IPM rotor structure. For maintaining the maximum 
torque and efficiency performances, the hybrid torque 
characteristic is enhanced by changing the balance ratio of the 
hybrid torque components generated from the IPM rotor, that 
the reluctance torque production increased by creating a 
higher rotor saliency is utilized to compensate the decreasing 
of magnetic torque production due to less magnet usage[2]. 

With the help of response surface methodology(RSM) 
simulation, an optimized double-layer IPM rotor structure is 
built and almost 30% PM is saved. The equivalent circuit 
method(ECM) coupled with finite element analysis(FEA) is 
performed, and the torque and efficiency performance can be 
predicted. The experiment results of prototype single-phase 
LSPMM confirmed the validity of presented analysis method. 

II. MODEL AND ANALYSIS METHOD

A.   Prototype Single-phase LSPMM 
In this study, an existing single-phase LSPMM used as air 

compressor is given as prototype model, in Fig. 1 shows. The 
single-phase LSPMM has main and auxiliary winding 
arranged in the stator slot regions. In the rotor part, the 
conductor bars and PM segments are buried in the iron core.  

B.  ECM coupled with FEA in Single-phase LSPMM 
In Fig. 1, the stator windings circuit shows the single-

phase LSPMM taking a time difference by capacitance and 
spatial phase difference of main and auxiliary windings, 
generating an unbalanced magnetic field, which can be 
considered to be a two phase motor. The FEA is performed by 
converting single-phase LSPMM to an ideal two-phase motor 
that has equal turns orthogonally on d-q plane[1].
C.   PM Reduction Design 

The reduction of PM usage results in the decreasing of 
machine performances, such as torque and motor efficiency. 
On the other hand, the motor performance can be improved by 
taking advantage of unique rotor structure, such as multi-layer 
IPM design. In this study, a double-layer IPM rotor design is 
chosen for simple manufacture. In steady state, the single-
phase LSPMM is dealt with a classical IPMSM. Therefore, 
hybrid torque characteristic can be expressed as following[2]: 

fangliang@hanyang.ac.kr, hongjp@hanyang.ac.kr

TABLE I
SPECIFICATION OF PROTOTYPE SINGLE-PHASE LSPMM MODEL

Item Value Unit

Pole / Slot number 2 / 28 

Br [75 oC] 1.168 [T] 

Magnet volume/pole (4.7×19.0)×2 [mm3]

Stack length 90 [mm] 

Air gap length 0.5 [mm] 

Input voltage 220 [Vrms]

Rate Speed 3000 [Rpm] 

Rated torque 6.5 [Nm] 
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The torque equation above emphasizes that the hybrid 
torque is composed of magnet Tm torque and reluctance torque 
Tr, as Fig. 2 illustrates, in which the same amplitude of hybrid 
torque Te_Max. is achieved with different balance ratio of 
reluctance torque and magnet torque production, in term of 
β(=Tm/Tr). The increase of β suggests the higher rotor saliency 
effect. It is predicted that the “New” LSPMM model with ratio 
β(7:6) can saving almost 30% PM material compare to the 
prototype LSPMM with ratio β(10:3). In another words, the 
higher rotor saliency of IPM rotor helps to reduce the PM 
usage for achieving the identify torque performance. 

By performing ECM, the motor torque-efficiency is mapped 
with different saliency ratio(Lq/Ld). The torque and motor 
efficiency performances are predicted according to the 
variation of the significant motor parameters Back-EMF and 
d-axis inductance, as Fig. 3 shows. It is found that the closed 
triangle region satisfying both torque and efficiency enlarged 
with the increasing of saliency ratio. According to the 
predicted higher saliency ratio, the design objectives of Back-
EMF(line-to-line) and d-axis inductance are determined for 
the double-layer IPM design with less PM material. 

III. OPTIMIZATION OF DOUBLE-LAYER LSPMM

RSM is a collection of statistical and mathematical 
techniques used for developing, improving and optimizing 
process[2]. It is applied to determine an optimum structure of 
double-layer IPM rotor for PM reduction in LSPMM. 

As the torque-efficiency map prediction, the rotor saliency 
ratio enhance from 2.5 to 3.0, corresponding to the decrease of 
Back-EMF and inductance. Therefore, the double-layer design 
of LSPMM model is built for satisfying the predicted “New” 
point characteristics. Fig. 5 illustrates the basic model of 
double-layer IPM rotor structure with design variables and 
their experiment ranges are given in Fig. 4. The Back-EMF 
(line-to-line) and rotor saliency ratio in steady operating 
condition(@3000rpm, Im=8A, β=40o ) are chosen as objective 
functions in RSM. The optimal double-layer LSPMM is 
obtained, as Fig. 5 shows. The main machine characteristics of 
prototype and optimized models are confirmed by FEA. 

IV. RESULT ANALYSIS

The torque performance of prototype single-layer LSPMM 
is tested and well proved the validity of presented analysis, in 
Fig. 6. The optimized double-layer LSPMM model has lower 
Back-EMF and higher rotor saliency characteristics, in Fig. 7, 
but almost same torque and efficiency performances are 
achieved with saving 30% PM, as TABLE II compared. 

V. CONCLUSION

This paper studied on the PM reduction design in a single-
phase LSPMM. By improving the reluctance torque 
generation to compensate magnet torque production, the 
dependency of magnet usage is lowed. The optimized double-
layer design LSPMM model is built with using 70% of PM 
used in prototype LSPMM, but achieving similar torque and 
efficiency performances. In conclusion, the double-layer IPM 
rotor design is an effective approach for improving IPM motor 
performance, further to realize magnet usage reduction. 
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TABLE II

COMPARISON BETWEEN PROTOTYPE MODEL AND OPTIMAL DESIGN MODEL

Model 
Back-EMF

@3000(rpm) 
L-to-L[Vrms]

Saliency ratio 
[Im=8(A), 
β=40o]

Max. 
Torque 
[N*m] 

Motor 
Efficiency

[%] 
Prototype 

[100%]PM 
160.0 2.54 13.1 89.0 

Optimal design
[70%]PM

123.1 3.0 13.0 88.8 
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Abstract：A new partial discharge (PD) location 
method in oil is presented based on ultrasonic phased 
array and wideband array signal processing in this paper. 
Firstly, a set of partial discharge detection system based 
on ultrasonic phased array is built. And the wideband 
array ultrasonic signals of PD are received directly and 
formatted through this system. Secondly, the method of 
RSS (Rotational Signal Subspace) is used to focusing 
processing to the wideband array ultrasonic signals of 
PD. The focused processing is to search the focusing 

matrix jT  and convert the signal direction matrix 

( )iA f  under different frequencies to the same one 

center frequency, which can realize the information 
accumulation of wideband signal. Then we can realize 
estimating of direction of arrival (DOA) and locating of 
PD source by MUSIC (Multiple Signal Classification) 
only for narrow band signals processing. Lastly, the 
results of experimental research indicate the method is 
corrective with smaller errors. 

I. BACKGROUND 
The partial discharge (PD) is an important reason for 

the insulation deterioration of electric power equipments. 
The accurate PD location can provide scientific information 
and guidance for the state maintenance and is favorable to 
rapidly remove the fault, avoid the occurrence of fatal 
accident, reduce the losses by blackout accident and cut 
down the maintenance cost, so great attentions have been 
paid by the electric power operation departments.  

At present, the PD location methods adopted at home 
and abroad mainly include ultrasonic method, electric 
method and UHF method, which have been deeply studied 
[1]. Xi’an Jiaotong University has firstly brought forward 
the ultrasonic phased array technology based on 256 array 
elements and beam-forming algorithm for PD location, 
which has improved the low sensitivity deficiency of 
traditional single sensor, but this method needs too many 
array elements to cause the great difficulty in hardware 
implementation and the beam-forming algorithm is 
restricted by the “Rayleigh limit” with poor location 

accuracy. North China Electric Power University has 
brought forward the PD location based on MUSIC 
algorithm, which can prevent the restriction of “Rayleigh 
limit” in the beam-forming location algorithm and improve 
the location accuracy. Based on this, a new PD location 
method based on 4×4 ultrasonic plane phased array and 
wideband array signal spectrum estimation algorithm is 
brought forward in this paper.  

II. PARTIAL DISCHARGE DETECTION SYSTEM OF

ELECTRICAL EQUIPMENT BASED ON

ULTRASONIC PHASED ARRAY 
The PD detection system of electrical equipment based 

on ultrasonic phased array is mainly consisted of ultrasonic 
phased array sensor, preamplifier, high-speed synchronous 
data acquisition device and laptop computer (as in fig. 1).  

Fig.1 PD detection system

 

Fig.2 The model of 16-array elements ultrasonic phased array 

The ultrasonic phased array sensor[2] is 16-array 
element and 4-row×4-column plane structure (as in fig. 2), 
the single array element is 4×4×15mm cuboid column, the 
space between the array elements is 5mm, the material is 
piezoelectric ceramics and the center frequency of its 
received signal is designed as 150kHz. A charge 
preamplifier is adopted in this paper, which is a wideband 
sensor with frequency covering 3 kHz~10MHz and gain of 
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Phased Array and Wideband Array Signal Processing 

Xie Qing 1, Li Yan-qing 1, Lu Fang-cheng 1, Li Cheng-rong 2, Wang Nan 1 
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up to 40dB. The signal detected by the sensor is accessed 
into the acoustic emission preamplifier through the BNC 
interface and is output through BNC interface after being 
amplified. The amplifier is supplied by 12V DC power 
supply. The high-speed data acquisition system integrates 
the computer control (program-controlled amplification and 
band pass filtering), data acquisition and high-speed serial 
data transmission functions. The high-speed data 
acquisition device has 16 channels and the amplification 
factor of single channel is 1 to 256 times controlled by the 
software in 16 shifts. The cut-off frequency of band pass 
filter is 20 kHz to 300 kHz and the sampling frequency is 
512 kHz to 10MHz. The high-speed data acquisition device 
is connected with the computer via USB interface to realize 
the high-speed data transmission.  

III. LOCATION ALGORITHM OF ULTRASONIC

WIDEBAND ARRAY SIGNAL OF PARTIAL

DISCHARGE

The focused processing is the precondition for the DOA 
of wideband array signal and essentially is to search the 
focusing matrix jT  and convert the signal direction 
matrix ( )iA f  under different frequencies to the same one 
center frequency. The RSS [3] is to derive the focusing 
matrix based on the least-error principle between the 
directional matrix after focusing and the directional matrix 
of the center frequency point.  

Then, the MUSIC [3] algorithm is adopted for the 
direction-of-arrival estimation of the acquired narrowband 
signal. The MUSIC algorithm builds the spatial spectrum 
function with the orthogonality of signal subspace and 
noise subspace and detects the DOA of signal through the 
search of spectrum peak.  

Finally, on the basis of the accurate estimation of the 
direction-of-arrival of single PD source, the accurate single 
PD source location is realized through the crossing of two 
directions of arrival in the space with the spatial 
information of PD source received by two ultrasonic 
phased array sensors A and B. 

IV. EXPERIMENTAL STUDY

The pin-to-plate discharge model is adopted in the 
experiment, which is put into an oil tank full of mineral oil 
with dimensions of 100cm×100cm×120cm to simulate the 
PD situation in oil and generate the ultrasonic signal. The 
phased array sensor is placed on the outer wall of the oil 
tank and is close to the outer wall with the butter. The 
16-array element ultrasonic signal acquired by the data 
acquisition device is shown as in Fig.3 and the direction 
finding spectrogram is shown as in Fig.4. With the PD 
source location error of less than 10cm, the experimental 
results verify the correctness of the method in this paper.  

 
Fig3.  Signal wave 

 
Fig.4 spectra of sensor arrays A     spectra of sensor arrays B 

V. CONCLUSION

A pair of plane ultrasonic phased array sensors are 
developed, which can directly detect and generate the 
ultrasonic wideband array signal of partial discharge in oil.  

The RSS algorithm, MUSIC algorithm and crossover 
location principle are combined to realize the focusing 
processing, DOA estimation and geometric location of the 
wideband ultrasonic array signal of PD and overcome the 
limitation that the traditional algorithm can not directly 
process the actual wideband ultrasonic array signal of 
partial discharge.  

The experimental platform for partial discharge location 
in oil is built for the experimental study. The location error 
is less than 10cm in the experiment, which verifies the 
correctness of the location method and provide perfect 
foundation for the further engineering application. 
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Abstract — In order to analyze noise of interior permanent 
magnet (IPM) motor, this paper deals with relation between 
deformation of stator and noise from motor. The resonance 
frequency is calculated by Ansys P/G and resonance frequency 
band based on 1/3 octave band is determined. In order to 
calculate deformation of stator, current considering load 
condition is calculated from dynamic simulation and normal and 
tangential force which affects on the tooth are computed by 
equivalent magnetizing current (EMC). After harmonic analysis 
for the computed forces is performed, the harmonic component 
of each force in the resonance frequency band put in the surface 
of tooth, respectively. And then, the quantity of deformation of 
stator is calculated and compared. Finally, the relationship 
between the quantity of deformation of stator yoke and noise 
spectrum is analyzed. 

I. INTRODUCTION

Noise of motor can be classified into three sections. First 
of all, there are higher space and time harmonics eccentricity, 
phase unbalance, slot opening, magnetic saturation, and 
magnetostrictive expansion of the core laminations in 
electrical noise. Secondly, there are mechanical noises 
associated with the mechanical assembly. Thirdly, there are 
aerodynamic noises associated with flow of ventilating air 
through or over the motor [1].  

The noise and vibration of the motor structure are the 
direct response of the excitation by these forces. For example, 
if the frequency of the radial magnetic force is close to one of 
the natural frequencies of the stator system and the factor 
order r is the same as the circumferential vibrational mode m
of the stator system, significant vibration and acoustic noise 
can be produced [2].  

For studying on the relation between deformation of stator 
yoke and acoustic noise in IPM motor, modal analysis, this 
paper deals with calculation of exciting force which is 
composed of tangential and normal force on the tooth, 
harmonic analysis for the exciting force, the quantity of 
deformation of stator yoke, and the comparison between 
calculated the quantity of deformation of stator yoke and 
acoustic noise.  

In order to calculate electrical exciting forces which affect 
on the acoustic noise, the current is calculated by dynamic 
simulation considering load condition. The tangential and 
normal forces which affect on tooth of stator are calculated 
using finite element method (FEM). Especially, equivalent 
magnetizing current (EMC) method uses magnetizing current 
which exists on element boundary and it can directly calculate 

the electromagnetic force which affects the surface of tooth 
[3].  
The exciting forces are put in the surface of tooth of stator and 
the quantity of deformation of stator yoke is calculated. 
Finally, the tendency of calculation of the quantity of 
deformation of stator yoke and measured acoustic noise of 
analysis model is compared.  

II. THEORY

A. Equivalent magnetizing current (EMC) 

The differentia of tangential component of field intensity 
between two materials is equal to the magnetizing current on 
element boundary. On the element boundary, magnetizing 
current is calculated by eq (1). 

1 2
0 0

1 1
( )m t t ijI M d s M M l

μ μ
= ∇× ⋅ = −∫

uur r
                                (1) 

where, M1t and M2t are the tangential components of 
magnetization on element boundary, lij is the distance on 
element boundary.  

The electromagnetic force fij which affect on i, j element on 
the element boundary is written as [4]  

extij ijf I B= ×
uur uur ur

                                                                     (2) 

Flux density value of extB
r

 is given as the average value for 
each element.

B. Spectrum analysis 

The noise near the resonant frequencies, which affect 
harmonics of electrical exciting forces, is lager than other 
natural frequencies.  Therefore, modal analysis for stator is 
performed and then center frequencies for 1/3 octave band 
based on the resonant frequencies of stator is designated. The 
center frequencies is defined by eq. (3) 

c u lf f f= ⋅                                                                        (3) 

where fc is center frequency, fu and fl are the upper and 
lower half-power frequencies.  

III. ANALYSIS  MODEL 

The specifications of analysis model are shown as Table I. 
The analysis model which consists of 4-pole/6-slots and 
concentrated windings is driven by BLAC operation and rated 
speed and torque are 1800rpm and 1.0 Nm, respectively. In 
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addition, pulse width modules (PWM) frequency is 4.0 kHz, 
respectively.  

TABLE I 
Specifications and resonant frequencies of stator

Contents Values 
Number of poles slots 4/6 
Rated current  (Arms) 1.5
Series turn number per phase (turns)  65 
Rated speed (rpm) 1800 
Rated torque (Nm) 1.0 
PWM frequency (kHz) 4.0 

IV. ANALYSIS  METHOD AND RESULTS 

In order to study on the relation between deformation of 
stator and acoustic noise, analysis method is divided into 4 
steps.

Firstly, modal analysis for the stator of analysis model is 
performed. Fig. 1 shows that circumferential mode (m) 2 and 
3 of the stator with resonant frequency. And then, center 
frequencies and band widths for 1/3 octave band based on 
modal analysis for stator are designated.  

Secondly, exciting forces, which are composed of 
tangential and normal force, on the stator tooth versus rotor 
position are calculated by using the equivalent magnetizing 
current (EMC). And then, the harmonic components of 
exciting forces are calculated through harmonic analysis. It is 
shown in Fig. 2. 

Thirdly, harmonic component of tangential and normal 
force versus harmonic order is assigned at the surface of tooth, 
respectively. It is shown in Fig. 3. It should be considering 
phase difference because each the harmonic component 
according to the change of rotor position is changed such as 
sinusoidal.  

Finally, the quantity of deformation of stator yoke is 
calculated by harmonic analysis using the harmonic 
components of exciting force and the result of deformation of 
stator yoke as shown in Fig. 4. And then, the quantity of 
deformation of stator yoke in the band widths is summated.  

The analysis results and comparisons of measured 
acceleration and acoustic noise will be presented in extended 
paper.   
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              (a) m=2  (@ 3525 Hz)                               (b) m=3 (@ 4300 Hz) 

Fig. 1. Circumferential mode m=2, 3 of the stator) 
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Abstract — This paper investigates the vibration and musical 
scale emitted from the brushless DC motor by introducing the d-
axis current with a sound frequency. First we analyze the 
vibration acceleration of the motor and verify the calculation 
method by comparing with the measured ones. Next, we clarify 
the vibration characteristics by changing the sound frequency, 
the motor speed and the output power.  

I. INTRODUCTION 
Brushless DC motors with permanent magnets are widely 

used in industrial applications and computer peripheral 
devices, and they become smaller size and higher power by 
use of high-grade magnet. Since the permanent magnet is 
higher grade and the encasing is less stiff, the motor becomes 
more sensitive to the vibration and acoustic noise. Several 
papers have been published on the vibration and acoustic 
noise emitted from the brushless DC motor. For example, the 
vibration and noise of the interior permanent magnet motor 
have been analyzed by finite element method [1], [2], and an 
active noise control have been proposed to cancel the acoustic 
noise by adding the other noise with a phase shifted by 
π [rad] [3]. However, the perfect reduction of noise is very 
difficult.  

The authors have proposed a method to convert the 
meaningless electromagnetic noise into a comfortable melody, 
and have emitted experimentally a desired melody by 
sequentially generating the musical scale from a brushless DC 
motor [4]. This paper investigates numerically the vibration 
and musical scale emitted from the brushless DC motor fed by 
a PWM inverter. First we analyze the vibration acceleration of 
the motor, and compare with the measured vibration 
acceleration and musical scale. Next, we clarify the vibration 
characteristics by changing the sound frequency, the motor 
speed and the output power.  

II. ANALYSIS METHOD 
The d-axis current of the brushless DC motor with surface 

permanent magnets (SPM) is usually controlled to be 0, 
because the output torque can be linearly controlled by the q-
axis current. However, the sinusoidal d-axis current can 
generate the sinusoidal flux density, resulting in the sinusoidal 
radial magnetic force and then the sinusoidal vibration. 
Therefore, the authors have proposed the generation method 
of the musical scale from the brushless DC motor with SPM 
by controlling the d-axis current as follows,  

) 2sin( tfIi ssd π=                                             (1) 
where sf  is a sound frequency.  

In this paper, we investigate theoretically the vibration and 
musical scale emitted from the brushless DC motor. First, the 
magnetic field in an experimental brushless DC motor is 
calculated by 2D non-linear finite element method, and the 
electromagnetic force is calculated by the Maxwell's stress 
tensor method. Next, the vibration acceleration of the motor is 
calculated by solving the following equation with 2D finite 
element method.  

}{}]{[}]{[}]{[ fxxx =++ KCM &&&                              (2) 
where, }{x  is the node displacement, }{ f is the 
electromagnetic force, and ][M , ][C  and ][K  are the global 
mass matrix, viscous friction matrix and stiffness matrix, 
respectively. 

III. SIMULATION AND MEASUREMENT 

The experimental motor used for verification purpose has 
1kW power, 4 pole-pairs and 7.8A stator current. Fig.1 shows 
the calculated vibration acceleration when Hz349=sf  
corresponding to a music scale of "fa", and the motor speed is 
675min-1, that is, the rotating frequency Hz90=mf . There are 
big vibration accelerations at the frequency of 

sm fpf ,2 and ms pff 2± , where p is the number of pole pairs. 
Fig.2 shows the measured vibration acceleration and sound. 
The vibration acceleration was measured with a piezoelectric 
accelerometer placed at the top of the stator and a preamplifier 
and a signal analyzer. The sound was measured with a noise 
level meter and the signal analyzer. Fig.2 (a) shows the 
measured vibration acceleration when 0=di . There are many 
peaks at mnpf and sourcemf , where sourcef is the frequency of 
the line source 50Hz and n and m are the integer. Fig.2 (b) 
shows the vibration acceleration when )3492sin( tIi sd ×= π . 
We can find the big vibrations at Hz349=sf and 481Hz. The 
frequency of 481Hz is ms ff 12+ , therefore it is the frequency 
of rotor vibration, which is produced by the number of stator 
slots 12 and the sound frequency. It is shown from fig.2(c) 
that there is a big sound at the frequency of “fa”. Therefore, 
the simulation has verified that the d-axis current with a sound 
frequency generates the musical scale.  

Fig.3 shows the vibration acceleration by changing the 
sound frequency sf . It is shown that this motor can generate 
bigger vibration acceleration and thus bigger sound at higher 
sound frequency. Fig. 4 shows the vibration acceleration by 
changing the motor speed. It is shown that the vibration 
acceleration does not depend on the motor speed very much, if 
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the rotating frequency does not match or close to the sound 
frequency.  

IV. CONCLUSIONS 

This paper has analyzed the vibration acceleration of the 
brushless DC motor, and has verified that the d-axis current 
with sound frequency generates the musical scale. In addition, 
a desired melody can be generated by sequentially generating 
the musical scale, and the generation of musical scale does not 
affect the speed response of the brushless DC motor with SPM.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Spectrum of the calculated vibration acceleration when 
)3492sin( tIi sd ×= π  

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 (a). Spectrum of the measured vibration acceleration when 0=di  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 (b). Spectrum of the measured vibration acceleration when 
)3492sin( tIi sd ×= π  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2 (c). Spectrum of the measured sound when )3492sin( tIi sd ×= π  

  
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. The vibration characteristics by changing the sound frequency 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. The vibration characteristics by changing the motor speed 
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Abstract —A novel model based on winding function theory are 
presented for the simulation of major internal faults in the long-
stator linear synchronous motor (LSM) of maglev train. The 
potential internal faults of LSM generally contain single-phase, 
double-phase short circuit and single-phase open circuit, etc. 
When different fault occurs, the impedance matrix related to 
inductance is accurately computed with winding function. 
Through the comparison of the simulation results under different 
fault conditions, the proposed method has showed that it is useful 
to diagnosis of internal faults. 
Index Terms—Winding function, linear synchronous motor, 
internal faults. 

I. INTRODUCTION

High-speed maglev train system is a new transportation 
system which first appeared in Shanghai for the commercial 
use in 2003. The advantages over its high speed, low noise 
and non-pollution make it suitable to long distance 
transportation. However, as the critical technology of maglev 
train system, the internal faults of long stator linear 
synchronous motor will cause serious consequences of 
endangering the passengers on the trains. So quickly 
simulating and diagnosing the faults of LSM become very 
important to prevent from extensive failure and make 
preparations for further uses.

In order to establish an appropriate mathematical model 
for LSM, a more accurate method, for calculation of the 
inductances of windings in the stator and moving parts, is very 
necessary. Most of the literature introduces the traditional dq0 
model, but it’s not suitable for the stator internal faults 
modeling. So this paper presents a new method based on 
winding function theory, which can take into account of the 
effect of all space harmonics and the asymmetry armature 
windings in case of internal faults of LSM.  In the fault 
conditions, the faulty armature phase can be separated into 
two or three parts to simulate the effects brought by faults so 
that the fault models can easily be established.

The paper is arranged as follows. In section Ⅱ, a new 
formulation  for inductances calculation  is derived  and the 
voltage equations  under normal condition are  set up  based  
on the winding function theory. In section Ⅲ , the current 
waveforms under three kinds of internal faults are obtained by 
calculating the corresponding inductance matrix and linear 
equations. The results show that electromagnetic forces are 
not stabilized under internal fault conditions. 

II. SIMULATION MODEL

A. Winding function theory 

In a conventionally rotational machine, the mutual 
inductance of two armature windings a and b can be written, 
using winding function, as follows [1]-[4]: 

2
1

0

0

( , ) ( , ) ( , )ab a bL rl g N N d
π

μ ϕ θ ϕ θ ϕ θ ϕ−= ∫          (1)

where
0μ is the permeability of air, r is the average radius of 

the air-gap, l  is the axial stack length of the armature, and 
1( , )g ϕ θ−  is the inverse air-gap length function, ( , )N ϕ θ  is the 

winding function. In the case of LSM, equation (1) should be 
modified, because the winding function of LSM isn’t the 
function of the rotor angle any more but the function of the 
relative position of the secondary. It can be expressed   
as , which is the function of displacement of the stator 

and mover, the inverse air-gap function should be modified 
accordingly. The modified formula is used to calculate the self 
inductances of LSM and the mutual inductances between 
stator and excitation windings, shown in fig.1. 

'( , )N x x
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Fig .1  The mutual inductances between stator and excitation windings 

B. Voltage equation 

For   the  purpose of   establishing   the  exact coupled   
mathematical model for LSM,  we need  to make some  
appropriate   simplifications  such as neglecting the effects of  
iron  saturation  and  magnetic hysteresis. Under the normal 
condition, the LSM is usually described as a system with   
three-phase circuit loops in stator and an excitation loop in the 
secondary. The voltage equations of  LSM can be written as：

[ ] [ ][ ] [ ] [ ] [ ][ ]d d
U R I L I L I

dt dt
= + + (2)

And
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where the inductance matrix contains the self and mutual 
inductances between the armature windings and the mutual 
inductances between armature and excitation windings. (a) under normal condition;                  (b)  double-phase short circuit 

condition under 50% ratio; Equation (2) can also be written as: 
Fig .3 The simulation results of the propulsion and levitation forces  

1[ ( )]
dI dL

L R I L U
dt dt

−= − + + 1−                 (3) In Fig.3 (a), it can be seen that when the maglev train 
system operates in steady-state, that is to say the speed and the 
system power angle keep constant, the propulsion and 
levitation forces also tend to stabilize. However, the 
electromagnetic force can’t keep stable when double-phase 
short circuit occurs shown in Fig.3 (b). 

       With substituting the corresponding calculated inductance 
and resistance parameters into (3), the differential equation 
can be solved by using the numerical integration method, and 
hence the current waveforms, the propulsion and the levitation 
forces can all be obtained.  When the internal fault occurs, we 
only  need to recalculate the inductance and resistance  matrix  
according to the different  fault  type and the short  circuit  
ratio,  but the mathematical model keeps  the same, the 
simulation  results in section Ⅲ are derived from this method. 

According to the simulation results of LSM under normal 
and internal faults conditions, the fault law can easily be 
found. Whatever the fault happens, the waveforms of fault 
currents and electromagnetic forces all appear a certain extent 
oscillation. Through specific wavelet packet transforming, the 
harmonic components can be obtained, which can also be used 
for fault diagnosis.III. SIMULATION RESULTS

It’s likely to occur three typical types of internal fault in 
LSM, single-phase and double-phase short circuit and single 
phase open circuit. As an example, the double-phase short 
circuit is discussed here. The internal fault voltage equation 
can be described as: 

' ' ' ' ' 'd d
U R I L I L I

dt dt
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

'

where                       (4) '
1 2 1 2, , , , ,

T

a b b c c fU U U U U U U⎡ ⎤ ⎡ ⎤= ⎣ ⎦⎣ ⎦

IV. CONCLUSIONS

In this paper, a useful internal fault model is proposed 
based on the winding function theory. This method has 
distinctive advances compared to the previous ones. The 
calculation of the impedance matrix mainly including 
inductances under normal and internal fault conditions is not 
only simpler but also accurate. Furthermore, the programmed 
software package for LSM internal fault simulation and 
analysis can realize the man-machine conversation. 

'
1 2 1 2, , , , ,

T

a b b c c fI I I I I I I⎡ ⎤ ⎡ ⎤= ⎣ ⎦⎣ ⎦
An equivalent circuit of the faulty coil is formed. The 

corresponding inductance matrix should be recalculated due to 
the short circuit ratio of phase .bc
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Abstract — In spindle motor for disk memory devices, constant 
torque is very important. There are three kinds of source for the 
torque ripple viz. harmonics, cogging torque, reluctance torque. 
Because the motor has uniform airgap and a permanent magnet 
for the motor is magnetized on the special fixture, the effect of 
harmonics and reluctance torque is not considerable but cogging 
torque is the most influence to the torque ripple. However, when 
the ferromagnetic material is saturated, we get unexpected 
results such as torque fluctuation. In this paper, effect of 
magnetic saturation on spindle motor is presented. FPM is used 
to consider the saturation in FEA simulation.  

 

I. INTRODUCTION 
M brushless DC motors are widely used for the spindle 

motor in disk memory devices such as a CD-ROM drive 
system. In current disk drive system, the motor with slotted 
laminations and NdFeB magnets is the most common for use 
as the spindle motor [1]. Because an ODD speed and torque 
characteristics depends on spindle motor, it is very important 
the spindle motor has constant torque independent of the rotor 
position.  

There are three sources for torque pulsation. First is the 
field harmonic torque due to non-ideal spatial distribution of 
flux density in the airgap and another is cogging torque or 
detent torque and third is reluctance torque, produced due to 
unequal reluctances of the d- and q- axis [2]–[4]. Because a 
magnet for the spindle motor is magnetized very sinusoidal, 
spatial distribution of flux density in the airgap is also 
sinusoidal. Moreover most of them have a fractional pole-slot 
combination which results in filtering high frequency 
component of induced voltage. Besides it has uniform airgap 
and equal reluctances of the d- and q-axis therefore it doesn’t 
have reluctance torque. In conclusion, the most important 
source in the spindle motor is cogging torque in three of them. 

There are several researches about cogging torque 
reduction in [5][6]. However they don’t take into account 
magnetic saturation. As known, an important part of electrical 
machines is made of ferromagnetic materials. These materials 
consist of nonlinear magnetic characteristics. When the total 
magnetic motive force in the machine increases saturation of 
the ferromagnetic parts appears [7]. The result of the 
saturation effects is a variation of the stator and rotor 
inductances. For an optimized design of electrical machines, it 
needs designing the machines near the saturation point. 
Therefore the magnetic saturation effects should be 
considered.  

Kwak et al. suggests Fixed Permeability Method (FPM) to 
get more accurate motor parameters (d- and q-axis inductance, 

back-EMF constant) by dividing the total magnetic flux 
linkage into the flux linkage due to the PM and to the stator 
current in [8]. The method can be also applied in a magnetic 
saturation effects. In this paper, an effect of the magnetic 
saturation on the motor characteristics is investigated using 
the FPM. 

II. STUDY MODEL 
Fig. 1 shows the spindle motor for the study. The motor 

has 16 poles and 12 slots and the NdFeB bonded magnet is 
mounted on the rotor inner surface. Ring magnet is used for 
cost reduction and it is magnetized on a special magnetizing 
fixture for sinusoidal distribution. Actually the magnet has 
both of radial and tangential components on its body, but only 
radial component is considered in the study because influence 
of the tangential component is very lower than that of the 
radial component. The radial component of the magnetization 
is defined as (1) 
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μ μ
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 (1) 

 
where 0μ  and rμ is permeability of the free space and relative 
permeability of the magnet respectively, rB  is residual flux 
density of the magnet and pN  is the number of poles. 

III. TORQUE CONSIDERING MAGNETIC SATURATION 
Voltage equation for a phase is given by 
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Fig. 1.  Spindle motor for the study. It has 16 poles and 12 slots 
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v Ri e

d d d d die
dt d dt di dt
λ λ θ λ

θ

= +

= = +∵
 (2) 

 
where e  is back-EMF, R  is a resistance of the phase and λ  is 
a flux linkage.  

The flux linkage λ  is varying to the rotor position but not 
to the current when magnetic saturation is not considered. 
However, in condition of saturation, λ  is varying to the 
current and it makes distortion of back-EMF. Output power is 
a product of back EMF and input current thus it makes torque 
ripple. The effects of saturation can be considered by fixed 
permeability method (FPM). The procedure is presented 
below. 

 
1. Calculating permeability when motor operates in given 

condition.  
2. Calculating torque remaining only field excitation 

sources with the permeability calculated previously. 
 
Fig. 2 shows torque waveform considering magnetic 

saturation. In the figure, torque produced by input current is 
not considered but only represent torque by permanent magnet 
with saturation core. Negative torque is produced when the 
core is saturated by input current. This can be explained with 
the Fig. 3. In the figure, the rotor is positioned to the 3.75 deg 
and therefore the tooth in a circle is aligned to the center of 
two poles. In the condition of unsaturated, the tooth has 
symmetric flux distribution.  

Force on an object is calculated by 
 

 
( ) ( )0

, H

V
i const

dW s i
F d dV

ds s
=

∂ ⎡ ⎤= = ⋅⎢ ⎥⎣ ⎦∂ ∫ ∫ B H  (3) 

 
where W(s,i) is the magnetic coenergy of the system. The 
current, i, is held constant. 

Calculating force on the rotor including permanent magnet, 
it is canceled by symmetry condition. But in case of saturated 
condition, the distribution is not symmetric. Right side of the 
tooth is more saturated than left side therefore the rotor has 
attraction force to the right direction and negative torque is 
produced.  
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Fig. 2.  Torque waveforms considering magnetic saturation. The effects of 
external current are not considered but only torque by the magnet with 
saturated core is represented. 

Fig. 3.  Flux distribution under the condition of (a) unsaturated and (b) 
saturated 
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The Optimal Design of the Secondary Reaction 
Plate Shape of Single-Sided Linear Induction 

Motor for Urban Maglev Train 

Abstract — The edge effect of the secondary reaction plate 
is influenced on performances of single sided linear induction 
motor(SLIM). Considering shapes of the secondary reaction 
plate, it will be optimized thrust force and efficiency-power 
factor product of SLIM. Thickness and overhang length of 
reaction plate are weighty design factors for optimal design. For 
the optimal design, magnetic equivalent circuit is used [1]. Two 
and Three dimensional finite element analysis is applied for 
validation of design parameter. And SLIM testing machine is 
used for validity of design optimization. 
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 Introduction 
In recent decades, there have been many researches for a 

linear motor in urban maglev. And single-sided linear 
induction motor (SLIM) with reaction plate that covered the 
secondary solid or laminated core is widely used for 
propulsion in urban maglev because of its linear motion 
characteristics [2]. SLIM for railroad system can provide 
higher efficiency of the total system and smaller construction 
cost in tunnel than traditional system.  

Conventional trains using a rotational motor are faced with 
difficulty for complicated structure of power transmission 
from rotational torque to linear thrust force. As rapid 
development of power electronics and switching devices, 
SLIM replace the rotating motors with a gear. However SLIM 
have unique characteristics like a longitudinal end effect and a 
transverse edge effect. Because of these reasons, the optimal 
design of SLIM is very difficult. In this paper, we will archive 
the optimal design for high thrust force and efficiency-power 
factor product by reducing a transverse edge effect. Main 
influence of a transverse edge effect is increasing the 
equivalent resistance of secondary reaction plate. And in 
general, length of reaction plate is longer than length of 
primary core. Eddy current of surface on secondary reaction 
plate is non-uniform by transverse edge effect (Fig.1).  

I. METHODS FOR OPTIMIZATION

Many methods for optimization of SLIM are existed. 
Among of them, we analyze the characteristics by changing 
shapes of the secondary reaction plate. Shape of reaction plate 
affects performance through changes in the effective 
secondary impedance [3]. The secondary impedance, consist 
of impedances both reaction plate and secondary core, is 
determined from the electromagnetic field distribution at the 
surfaces of that [4]-[5].  Thrust force and efficiency – power 

factor product of SLIM are usually the most important 
performances in urban maglev train, thus the optimal design is 
focused on these two characteristics by changing of reaction 
plate shape. Thickness and overhang length of reaction plate 
are important design factors for optimal design..   

Active 
region

Active 
region

overhang

overhang

Center
line

(b) without overhang(a) with overhang
Fig. 1 Overhang effect on secondary reaction plate 

And Using single-stator test, no-load test, and blocked-rotor 
test by 2D FEM analysis, we estimated the parameters of 
equivalent circuit of a common induction motor.  
Winding resistance and leakage reactance of primary is 
calculated by single-stator test. By no-load test, magnetizing 
reactance is estimated. And winding resistance and leakage 
reactance of secondary is calculated by blocked-rotor test. 

Fig. 2 2D FEM model of LIM 

And design of experiments is applied for optimizing design 
factors. Design specifications of LIM are shown in table I.  
For analyzing the equivalent circuit, 2D FEM model (Fig.2) is 
applied. 
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II. VARIATION OF DESIGN PARAMETER 

For validation of design parameters, the two dimensional 
(2D) and the three dimensional (3D) finite element analysis 
(FEM) is applied. The 2D FEM is used for analyzing the 
influence by changing the thickness of reaction plate, because 
the 3D FEM is very complicated and time consuming. Arc 
type model is used for matching the testing machine [6]. The 
3D FEM is employed to analyze the overhang effect by 
changing the shape. Fig.3 is the 3D FEM model and this 
model has only one pole for reducing calculation time. Fig. 4 
is shown the LIM testing machine for validity of design 
optimization. And LIM testing machine is a reduction model 
in the ratio of ten to one for retrenching the cost and the space. 
An experiment using LIM testing machine is going in progress 
with Korea Railroad Research Institute (KRRI). In the course 
of time, the results of experiment will be derived and then we 
will compare the result with simulation. 

TABLE I 
DESIGN SPECIFICATIONS OF LIM 

Item Value Unit
Continuous rated power of LIM 110.6 kW 
Rated frequency 21.2 Hz
Rated Speed 8.333 m/s 
Rated slip 0.22 - 
Number of phases 3 - 
Number of poles 8 - 
Length of primary 2181,5 mm 
Laminated width 250 mm 

Fig. 4 Testing Machine of LIM 
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Abstract — This paper deals with the effect of static 
eccentricity on the rotor current dispersion when the motor 
operates with a broken rotor bar. Even if the induction motor has 
the reputation to be a world-beater for its robustness, such a 
defect sometimes occurs. Moreover, it presents a natural 
asymmetry due to the construction of the machine. It can 
accelerate the damage of the motor, leading it to the breakdown 
of a process. We only focus our attention on the alteration 
depending on the eccentricity severity. The study of this type of 
faulty condition is significant for the condition monitoring of 
induction motors and for better understanding the ageing 
acceleration of the motor. 

I. INTRODUCTION

Even if the induction motor has been studied for a long 
time either in healthy or faulty conditions, as far as we know, 
few or none researches have been made considering the 
presence of broken bar and static eccentricity. In that case, the 
induction motor operates in strongly environment. Many 
researches have been made for the last two decades on the 
analysis of particular faults, but none on the simultaneous 
faults. It is obvious that faults generate specific signatures 
allowing the diagnosis and the estimation of the State Of Heath
(SOH) of the induction motor. They are generally well known 
in case of an individual fault but the conjunction of two or 
more faults is actually a huge challenge. 

The monitoring of the SOH of the induction motor has 
been based on the Motor Current Signature Analysis (MCSA) 
for a long time [1]. This is a passive technique in comparison 
with specific signals injections in the stator current. 
Nevertheless, all techniques outline on the electric signals due 
to the magnetic disturbance or magnetic asymmetry in faulty 
conditions [2-3]. 

In this paper, we point out the distribution of the rotor bar 
currents when the motor operates under one broken bar and a 
static eccentricity. The main idea is to highlight the growing 
rate of ageing due to the dispersion of the rotor bar currents 
which depends on the static eccentricity severity. 

II. STATIC ECCENTRICITY AND BROKEN BAR

For this study, the induction motor operates at nominal load 
condition and has one pair pole. The magnetic field 
distribution is evaluated thanks to the FEMM 4.0 software. It 
depends on the mechanical dimension of the electric motor and 
on the material used. The static eccentricity is one of the  

Fig. 1. Magnetic field distribution: the 8th rotor bar is broken and the static 
eccentricity is equal to 90% 

three types which are: static, dynamic and mixed. In case of 
static eccentricity, the rotational axis of the rotor is a little bit  
displaced from the stator axis. Consequently, the air-gap is not 
constant (Fig. 1).  The broken bar is showed in green. The 
entire machine is considered as to obtain the magnetic field 
because there is no geometrical symmetry.  

The diffusion equations for the stator and for the rotor are 
respectively: 

0
1

( )
r

j A A Jωσ µ
µ

+ ∇× ∇× =                          (1) 

1
( ) 0

r

j s A Aω σ
µ

+ ∇× ∇× =                             (2) 

where: µr is the relative magnetic permeability, A is the 
magnetic vector potential, σ is the conductivity of the material, 
ω is the supply frequency and J is the complex current density. 
The slip s is considered as equal to 4.6% at the nominal load. 
A broken rotor bar is considered as an increased value of its 
resistance. So its conductivity is characterized as being equal 
to the healthy case divided by a huge scalar. In case of healthy 
consideration, σ is equal to 4.45Ms/M for the aluminum. The 
currents flowing in the stator are as follows: 

, , (0, 2 / 3, 4 / 3)( ) I cos(  )A B Ci t t π πω ϕ= + .                   (3) 

The impact of static eccentricity on rotor bar 
current distribution in case of one broken bar in 
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III. SIMULATION RESULTS

The model of the induction motor as it was established 
allows an accurate estimation of the magnetic field in the case 
of mechanical and electrical rotor asymmetry. Moreover, the 
rotor current distribution clearly appears whatever the rotor 
fault severity is. 
 In order to highlight the impact of the eccentricity, we 
present some relevant figures. The first one (Fig. 2) shows the 
magnitude of all the 28 rotor bar currents in function of the 
static eccentricity, which varies from 0% to 95% of the air-
gap. The first consequence of the broken bar is the 
modification of the rotor current distribution at its 
neighborhood (Fig. 3). Moreover, when static eccentricity 
occurs, all the rotor current distribution is modified. The 
greater the eccentricity is, the greater the dispersion is. The 
dispersion of all rotor bar currents is represented in Fig. 4. It 
shows that the dispersion could be close to 10% at 95% of 
static eccentricity. Figure 5 illustrates the dispersion under a 
different angle of view. As a consequence, rotor bars at the 
neighborhood of the broken one have higher current and the 
static eccentricity modifies their values as well. The results 
obviously depend on the broken bar relatively to the rotating 
field. There are given here for a quadrature position, which 
corresponds to the 8th bar. 

Fig. 2. Module of the rotor bar currents in function of the eccentricity  

Fig. 3.The rotor bar currents in function of the eccentricity  

  
Fig. 4. Dispersion of the rotor bar currents in function of the eccentricity  

Fig. 5. Dispersion of the rotor bar currents in function of the eccentricity  

IV. CONCLUSION

This study emphasizes the influence of the static 
eccentricity on the currents flowing in each rotor bar in the 
presence of one broken bar. The magnitude of the current in all 
rotor bars are altered and more especially at the neighborhood 
of the broken bar. This study used the software FEMM 4.0 in 
order to estimate the magnetic field inside the motor and the 
rotor bar currents. This approach, without discussion, shows 
that the dispersion of each rotor bar currents is important. As a 
consequence, the magnetic field distribution and the 
asymmetric rotor current dispersion in case of static 
eccentricity accelerate the ageing of induction motor. Thus, 
other rotor bars will be defective earlier. Consequently, early 
fault detection is necessary in order to prevent from disastrous 
failures. 
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Abstract — It is necessary to modify the state-of-the-art of 

speed control theory because of the phase asymmetry in the 

Linear Induction Motor (LIM) and in order to the constant 

speed control of mover (aluminum plate) using single vector 

control inverter system, it is important that primary stack is 

located in appropriated intervals in the 3D conveyer system 

using LIM because of control parameters are varied. 

The dynamic characteristic analysis method of the vector 

controlled LIM using coupled FEM and control algorithm 

taking into account the movement is proposed.  

Moreover, in order to obtain the detailed intervals, 

optimization algorithm, sequential unconstrained minimization 

technique (SUMT) is used. 

The focus of this paper is the analysis relative to selecting 

primary stack intervals in order to constant speed control in 

the 3D conveyer system using LIM. 

To prove the propriety of the proposed method, the Digital 

Signal Processor (DSP) installed experimental devices are 

equipped and the experiment is performed. 

I. INTRODUCTION 

Linear Induction Motor (LIM) has been developed for 

use in the industry, transportations, OA, FA, because of the 

merits of direct drive and simple structure. 

This paper deals with the three dimensional conveyor 

systems for light objects out of the auto conveyor systems. 

In this system, since LIM is turn on only when carrier is 

over it, it can be reduced much energy and obtained many 

merits of high speed, automation (acceleration and 

deceleration control, the control of precision position), and 

removing the power supply cable or lead wire. 

For the constant speed control of mover using single 

vector control inverter system, it is important that primary 

stack is located in appropriated intervals. And for a LIM, 

the constants of each phase are different due to the motor 

structure.  

Thus, it is difficult, especially in moving secondary plate 

system, for the accurate speed control of LIM by the state-

of-the-art of rotating machine theory.  

The finite element approach has been gaining 

progressively greater importance than the equivalent circuit 

method in solution of non-linearity, anisotropy 

characteristic and motion analysis, especially selecting 

appropriated motor intervals of this paper, etc.  

These approaches, which are coupled with control 

algorithm and  

numerical analysis method, have an interest for 

researchers now [1]-[3].  

In this paper the dynamic characteristic analysis method 

of the controlled LIM sets of 3D conveyer system using 

coupled FEM and control algorithm taking into account the 

movement is proposed and it has been selected a 

appropriated interval of primary motors in order to constant 

speed control through the optimization algorithm (SUMT).  

II. ANALYSIS MODEL 
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Full periodic
boundary condition

A A A
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B B B
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a
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b
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Back Iron
Aluminum

Moving mash area
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Fig. 1 Analysis model of LIM 

The two dimensional model of LIM is shown in Fig.1  

The primary stack intervals increasing (2m, 1.6m, 1.2m, 

0.8m, 0.6m, 0.4m) are considered by enlarging full 

boundary condition of both sides to x direction. 

The mesh should be changed according to the movement 

of the mover in moving mesh area. A moving line is 

introduced to save computing time and to perform the 

process efficiently in FE analysis. 

III. ANALYSIS METHOD 

Fig. 2 shows the block diagram of system. Asymmetrical 

slip angular velocity algorithm is applied to the control 

logic for the comparison with flux angle of FEM. 

The proposed analysis method is applied to the step 

velocity commend (2.0 m/sec) in the vector control logic 

part using 10( µ sec) sampling time. 

 

 
 

Fig. 2. Block diagram of the system 
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IV. SIMULATION & DISCUSSION 

Fig.3 show the flux plot of analysis model example 

considered movement out of numerous data. 

Fig 4 (a) – (e) shows the primary stack intervals (2m, 1.6m, 

1.2m, 0.8m, 0.6m, 0.4m) due to the enlarging full periodic 

boundary condition of both side. 

In the case of each primary stack intervals, it is observed 

that whereas speed responses highly oscillate as motor 

intervals is wider, speed responses in the 0.4m and 0.6m 

motor interval is nearly match constant speed commend 2 

m/sec as shown in Fig. 5.  

Fig. 6, Fig.7 represents forward-reverse speed response 

characteristics of each primary stack intervals. 

It is observed that whereas speed responses in the 0.4m 

motor interval is nearly match constant speed commend, 

others highly delayed as motor intervals is wider and 

constant speed responses (2 m/sec) in 0.6m motor interval is 

nearly match, but especially, forward-reverse speed 

response is delayed as shown in Fig. 6, Fig. 7.  

Therefore stator stack interval between 0.4m and 0.6m 

can be defined as the optimum ones for the speed vector 

control of the 3D conveyor system. 

Moreover, in order to obtain the detailed intervals, 

optimization algorithm, sequential unconstrained 

minimization technique (SUMT) is used as shown in Fig. 8. 

The more detailed optimum procedure and discusses will 

be represented in next extended version. 

To prove the propriety of the proposed method, the 

Digital Signal Processor (DSP) installed experimental 

devices are equipped and the experiment is performed. 

 

 
Fig.3.  Flux plot example of analysis model considering movement 

 

 
(a) Primary stack interval ( 2 m ) 

 

 
(b) Primary stack interval ( 1.6 m ) 

 

 
(c) Primary stack interval ( 1.2 m ) 

 

 
(d) Primary stack interval ( 0.8 m ) 

 

 
(e) Primary stack interval ( 0.4 m ) 

 

Fig.4. Primary stack interval increasing considering periodic boundary 

condition 
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Fig. 8. Flow chart of total design procedure 
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Abstract — This paper suggest a novel magnetic circuit method 
for simualting permanent magnet motors without time-
consumming numerical methods. Generally, because the 
conventional magnetic circuit method gives us period average 
values like average torque, average power, getting instantanious 
characteristics like cogging torques, torque ripples are very hard 
with the magnetic circuit method. But the convolution operations 
according to relative angle variations of stator magnetic circuits 
and rotor magnetic circuits can make considering instantanious 
values possible. The authors compare the novel mothod with the 
finite element method and verify the simulation results with the 
measured cogging torque profile. 

I. INTRODUCTION 
Since permanent magnets were adopted in motors, many 

researchers have been studied on the analysis method of 
motors and the methods can be divided into two ways roughly. 
The first one is so-called “lumped-sum parameter method” in 
which method, the magnetic system is considered as a circuit 
and average magnetic flux values per pole are calculated for 
obtaining the average torque or power. This method is very 
convenient and simple to calculate but not easy to get 
instantaneous torque or back-emf values. 

The other method is the distributed parameter methods like 
finite element method (FEM). This method is suitable for 
analyzing instantaneous values and can consider the magnetic 
saturation effect of the iron steel core so that the analysis of 
motors using this method is getting popular these days.  But 
the method takes a lot more times than the lumped-sum 
parameter method and needs experiences of experts in the 
industry[1][2]. 

For improving these methods, some researchers have 
studied several new methods like Electro-Magnetic Circuit 
Network (EMCN) method but this improved method has same 
problems of taking a lot of times to obtain the results[3]. 

II. METHOD DESCRIPTION 
In this study, the authors proposed a novel method for 

analyzing permanent magnet motors using divided magnetic 
circuits and convolution method. This new method can 
calculate permanent magnet motor characteristics like cogging 
torque and back-emf values which were considered as very 

difficult characteristics to get without using some special 
methods or techniques.  

This method is very powerful because the finite element 
analysis of the permanent magnet motors which is a laborious 
and time-taking job cannot be finished in minutes while this 
method can be done in several minutes. 

A pole-pair structural period of motor rotor is divided into 
several parallel magnetic circuits and the stator magnetic 
circuits of one tooth period including various airgap 
permeances are also composed as parallel circuits. The 
convolution calculation of these two groups of parallel circuit 
values can give us the motor characteristics of cogging torques 
or back-emf values. 

Fig. 1 shows the HDD spindle motor which uses outer-rotor 
type permanent ring magnet and back-yoke outside of the 
magnet.  

 

 
Fig. 1. HDD spindle motor 

 
 
Fig.2 shows the inside of the spindle motor.  There are the 

stator teeth and the ring-type magnet and backyoke rotor in the 
spindle motor. To strengthen the mmf of the magnetic circuit 
and prevent the leakage flux, the backyoke is supposed to be 
outside of the magnet. 

Novel method for analyzing the Permanent 
Magnet Motors 
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Fig. 2. The stator teeth and the ring-type magnet and backyoke rotor of the 
spindle motor  

 
Fig.3 shows the stator and rotor magnetic circuits of the 

spindle motor and concept of convolution method. Because the 
magnet is not segmented, there are dead-zone between magnet 
poles and these dead-zone must be considered in analyzing the 
motor characteristics also. 

 

 
Fig. 3. Stator  and rotor magnetic circuits of the spindle motor and concept of 
convolution method 

 
The most strong point of this method is that when the design 

parameters are changed, the design result can be obtained very 
easily. For an example, the cogging torque profile changes can 
be easily checked out instantaniously when the slot open 
width(length between a tooth and neighbor tooth) is changed 
from 1mm to 1.5mm. Fig. 4 shows the calculated cogging 
torque when the slot open is 1mm and fig. 5 shows the result 
when the slot open is 1.5mm.  

The changes in the magnetization profile and the changes in  
tooth shape are also can be considered by this method very 
easily. 

The extended paper will contain more detail method and the 
comparison with the finite element analysis and the measured 
values. 

Cogging Torque[Nm]

-0.01

-0.005

0

0.005

0.01

0 20 40 60 80

 
Fig. 4. Calculated cogging torque when the slot open is 1mm. 

 

 
Fig. 5. Calculated cogging torque when the slot open is 1.5mm. 

 

III. CONCLUSION 

The permanent magnet motors are very important devices in 
modern industry. So, it is important to find out new method of 
predicting the performance of the permanent magnet motors 
much faster than finite element analysis. This paper is very 
useful to the researchers who search the method to analyze the 
permanent magnet motors. 

IV. REFERENCES 

[1] Seung-Chan Park, Byung-Il Kwon, Hee-Soo Yoon, Sung-Hong Won, 
Young-Gyu Kang, “Analysis of Exterior-rotor BLDC Motor 
Considering the Eddy Current Effect in the Rotor Steel Shell”, IEEE 
Trans. Magn , vol. 35, no. 3, pp.1302-1305,  May. 1999. 

[2] Seung-Chan Park,Tae-Ho Yoon, Byung-Il Kwon, Hee-Soo Yoon, Sung-
Hong Won, “Influence on Brushless DC Motor Performance Due to 
Unsymmetric Magnetization Distribution in Permanent Magnet”,
 Trans.on Magentics, vol.36, no.4, pp.1898-1901, Jun. 2000. 

[3] Yon Do Chun, Jae-Eung Oh, Yasushi Fujishima ,Shinji Wakao, Yun-
Hyun Cho, Ju Lee, “Comparison between three-dimensional .3D. 
equivalent magnetic circuit network method and 3D finite element 
method for magnetic-field computation”, Journal of Applied Physics, 
vol. 97, no. 10,  pp.10E105-10E105-3, May, 2005.  

 

962

 



11. ELECTRIC MACHINES AND DRIVES 

Abstract — This paper describes design of rotor slot of single 
phase induction motor with copper die-cast rotor cage for high 
starting torque. We applied die-cast copper rotor cage to single 
phase induction motor for premium level high efficiency. But 
Efficiency increases slightly and starting torque is extremely 
reduced due to higher conductivity of copper rotor bar. 
Therefore we design the optimal shape of copper rotor bar of 
single phase induction motor for high starting torque and high 
efficiency. This study is base on the FEM analysis.  

I. INTRODUCTION 
Recently the oil price is continuously increasing and the 

natural resources are getting reducing so that the attention of 
the energy saving and environmental protection is getting 
higher. Therefore, it is not a future problem for us to make the 
motors have a high efficiency. The single phase induction 
motor is used widely by all the industrial, residential and 
commercial applications in the present day and we need to 
develop high efficiency induction motor [1]. 

In recently, there has been an effort to make high 
efficiency induction motor. The copper die-cast rotor bar has 
been also applied to high efficiency induction motor for 
higher efficiency [2, [3]. In case of single phase induction 
motor, it needs to have high starting torque as well as high 
efficiency. But there is trade-off between efficiency and 
starting torque. Therefore we study design shape of rotor slots 
of the single phase induction motor using FEM analysis for 
high efficiency and high starting torque.  

II. COPPER DIE-CAST MOTOR 
First, we design high efficiency single phase induction 

motor with aluminum die-cast rotor bar. The specification of 
motor is 1.12 kW, 4 pole and capacitor - run & start type. To 
make premium efficiency level motor, copper die-cast rotor 
bar is applied this motor. It is important to note that the 
improvements in motor performance by substituting copper 
for aluminum in this rotor were made without re-design for 
the copper die-cast. Table I. shows characteristics of 
aluminum die-cast motor and copper die-cast motor using 
FEM analysis and experiment result.  

TABLE I 
EFFICIENCY AND STARTING TORQUE OF TWO TYPES SPIM 

Material of die-cast Efficiency [%] Starting torque [Nm] 
Aluminum (FEM) 85.4 11.39 
Aluminum(Exp.) 84.2 11.5 
Copper (FEM) 86.4 8.09 

 

Though just only experiment of aluminum die-cast motor 
is performed but we can estimate results of copper die-cast 
motor from FEM analysis. The copper die-cast motor has 
higher efficiency but far lower torque than the aluminum die-
cast motor. This motor should be satisfied twice of rate torque, 
6[Nm]. Figure 1 shows that adjustment starting capacitance 
has limit to improve starting torque. Therefore, to improve 
starting torque, the double cage bar is chose for copper die-
cast rotor bar. Because we can achieve both of high starting 
torque and high efficiency using double cage rotor bar [4]. 

 
Fig. 1. Starting torque according to start capacitance  

III. DESIGN PROCESS OF SPIM WITH COPPER DIE-CAST ROTOR 
BAR 

Figure 2 show design process of SPIM with copper die-
cast bar for high efficiency and starting torque. First, the stator 
and basic rotor shape of high efficiency SPIM is designed 
using magnetic equivalent circuit. Next, we should choose and 
design the basic shape of double cage bar using numerical 
method. Finally, we can obtain optimal shape of double cage 
bar through parametric analysis using FEA. 

 
Fig. 2. Design process of double cage bar for premium efficiency level SPIM  
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11. ELECTRIC MACHINES AND DRIVES 

IV. BASIC DESIGN OF DOUBLE CAGE ROTOR BAR 

There are various types of double cage rotor. Among them, 
the basic model is shown in Figure 3. First, the basic shape of 
model is designed considering of rotor resistance and leakage 
reactance [4]. The starting resistance is at start 
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And from the equivalent circuit at start, rotor leakage 
inductance at start(S=1) is 
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Using (1), (2), the resistances of working bar and starting 
bar can be calculated. And we can calculate working bar and 
starting bar cross section as following equation (3). 

be

Co
sw R

LA 
,

                                    (3) 

Here, L is length of stack, Rbe,bs is working bar and starting 
bar approximate resistance. The middle bar is designed using 
parametric analysis in chapter V. 

x1

x2

x4

x5

x6

x3

Starting bar

Middle bar

Working bar

 
Fig. 3. Basic shape of double cage bar and design parameter for optimization 

V. OPTIMAL DESIGN OF ROTOR SLOT OF SPIM WITH COPPER 
DIE –CAST BAR 

Figure 3 shows design parameter for optimization using 
parametric analysis. Also, main effects of design parameters 
are analyzed for starting torque and efficiency by FEM 
analysis in shown figure 4. 

 
Fig. 4. Parametric analysis of design variable 

Through the parametric analysis, we may choose the 
design main parameters x1, x2, x4. Other variables are fixed at 
their optimal values. The selected parameters are optimized by 
parametric analysis again. Through the design process, we can 
obtain the optimized model shown Figure 4.  

 

 
Fig. 4. Optimal shape of double cage rotor slot 

 
Finally, we need to adjust the starting capacitor to make 

higher starting torque. Through adjustment of starting 
capacitance, starting torque increases by 11.8 Nm. Figure 5 
shows experiment instrument of load test. And table III shows 
FEA result and experiments result. The optimized motor has 
higher efficiency and starting torque. Here, there is the 
difference of efficiency between two methods due to copper 
die-cast skill.  

In this paper, we designed premium level high efficiency 
single phase induction motor with high starting torque using 
FEA method. 

TABLE II 
THE RESULTS OF OPTIMIZED DOUBLE CAGE BAR SPIM WITH 

COPPER DIE-CAST BAR 

Method Efficiency [%] Starting torque [Nm] 
FEA method 87.59 11.8 
Experiments 89.2 12.01 

 

 
Fig. 5 Experiment instrument of load test 
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Abstract — In this paper, we proposed a simulation algorithm 
for driving characteristics considering nonlinear parameters of 
interior permanent magnet synchronous motor (IPMSM) for 
electric vehicle such as d-axis and q-axis inductances. D-axis and 
q-axis inductances are changed according to both current 
magnitude and current angle between q-axis and current axis 
because of nonlinearity of magnetic flux density in rotor core. 
Therefore, the calculation of d-axis and q-axis inductances with 
nonlinearity of magnetic flux density is performed by using FEM. 
We can get precise driving performance of traction motor for 
electric vehicle adopting nonlinear d-axis and q-axis inductance 
table.  Finally driving performance by proposed algorithm was 
verified by experiment of proto type. 

I. INTRODUCTION

It is important to calculate the exact value of d-axis and q-
axis inductances at the design step of interior permanent 
magnet synchronous motor (IPMSM) because these 
parameters are related to torque and speed characteristics of 
IPMSM closely if it is controlled by flux weakening control 
mode [1], [2]. It is very difficult to calculate the exact d-axis 
and q-axis parameters in an application area which is needed 
for compact and high power density design owing to magnetic 
flux saturation effect in its core. Analytical method by using 
equivalent magnetic circuit makes the error of d-axis and q-
axis inductance values maximize under the extreme magnetic 
saturation area [3]. Therefore, d-axis and q-axis inductances 
considering nonlinear characteristics according to current 
angle between q-axis and current axis as well as magnitude of 
armature current should be analyzed by FEM.  

In the paper, a simulation algorithm for driving 
performance of IPMSM considering nonlinearity of d-axis and 
q-axis inductances according to current angle and current 
magnitude is studied. Moreover, the algorithm is very 
effective for performance analysis with field weakening 
control which needs the information on the d-axis and q-axis 
inductances according to current angle. The driving 
performance considering constant value of d-axis and q-axis 
inductances is compared with proposed one. Finally, the 
validity of proposed algorithm is verified through the 
experiment of proto type. 

II. INDUCTANCE CALCULATION

Fig. 1 shows analysis model of IPMSM for the paper. It is 
a 4kW traction motor of small automobiles whose power 
source is 48V battery.  

There are several methods for the calculation of d-axis and 
q-axis inductances [4]. In the paper, we adopted the 
inductance calculation method derived from two-axis vector 
diagram of IPMSM as shown in Fig. 2. In the figure, we can 
calculate d-axis and q-axis inductances by using following 
equations, respectively. 

where,  is linkage flux of phase winding at load 
operation,  is linkage flux of phase winding at no load 
operation and  is angle between  and .

D-axis and q-axis inductances are changed according to 
both input current magnitude and current angle between q-axis 
and current axis. The inductance calculation results by using 
FEM are showed in Fig. 3(a) and Fig. 3(b), respectively. The 
conditions for the analysis of Fig. 3(a) are fixed load angle 
and variable input current . On the other hand, the conditions 
for the analysis of Fig. 3(b) are variable load angle  and fixed 
input current  which is rated current at continuous mode, 
46.5A. 

(a) Analysis model for FEM.                         (b) Proto type 
Fig.  1.  Analysis model and proto type of IPMSM for electric vehicle. 

Fig.  2.  2-axis Vector Diagram of IPMSM for the calculation of inductances.
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11. ELECTRIC MACHINES AND DRIVES

(a) Inductance characteristics according to input current. 

(b) Inductance characteristics according to load angle(or current angle) 
Fig.  3.  The analysis results of d-axis and q-axis inductances by FEM.

III. ALGORITHM FOR DRIVING PERFORMANCE OF TRACTION 

MOTOR FOR ELECTRIC VEHICLE 

In general, IPMSM for electric vehicle is controlled with 
maximum power control mode. However, d-axis and q-axis 
inductances have nonlinearity due to magnetic saturation in 
the core. Therefore, we proposed driving performance 
algorithm of IPMSM considering nonlinear d-axis and q-axis 
inductances in the paper. Fig. 4 shows the flowchart for 
driving performance algorithm which is divided into two 
control modes of constant torque and constant power. It is 
important to deal with inductance table between load angle 
and current magnitude in order to consider nonlinearity of d-
axis and q-axis inductances. From the algorithm, we can 
calculate voltage, current, efficiency, power factor, torque, 
output power according to motor speed.  

If we ignore nonlinearity according to load angle, we have 
remarkable errors, especially near high speed region. The 
comparison results of driving performance considering 
between linear value of inductances and nonlinear ones are 
shown in Fig. 5. It corresponds to the torque and power 
characteristics according to motor speed in case of intermittent 
operation with input current,120A. 

IV. CONCLUSION 

In the paper, FEM analysis method of nonlinear d-axis and 
q-axis inductances of IPMSM and the algorithm of driving 
performance with maximum power control mode considering 
the nonlinear d-axis and q-axis inductances are proposed and 

verified through experiment. The proposed algorithm can 
make efficiency map of IPMSM with ease which is main 
design target of traction motor for electric vehicle. 

Fig.  4.  Algorithm for driving performance of IPMSM according to control 
modes(constant torque and constant power modes) 

Fig.  5.  Comparison results of torque and power parameters calculated with 
linear value of inductances and with nonlinear table of inductances at 
intermittent mode.
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Abstract — This paper deals with the characteristics analysis & 

optimum design of Synchronous Reluctance Motor (SynRM) with 

anisotropy rotor using a coupled Finite Element Method (FEM) 

& Response Surface Methodology (RSM). The focus of this paper 

is the characteristics analysis & optimum design relative to the 

output power on the basis of rotor materials of a SynRM. The 

coupled Finite Elements Analysis (FEA) & Preisach model have 

been used to evaluate nonlinear solutions. Comparisons are given 

with characteristics of normal synchronous reluctance motor and 

those of anisotropy rotor SynRM (ANISO-SynRM), respectively. 

The feasibility of using RSM with FEM in practical engineering 

problem is investigated with computational examples and 

comparison between the fitted response and the results obtained 

from an analytical solution according to the design variables of 

rotor in anisotropy rotor SynRM. 

I. INTRODUCTION 

The performance of a synchronous reluctance motor 

(SynRM) in terms of torque and power factor depends on the 

two-axis inductance Ld and Lq of the machine. The large 

difference of (Ld-Lq) and Ld/Lq ratio is good for the 

machine's properties. Therefore, Considerable attention has 

been paid in the past to improve rotor design of SynRM [1] – 

[3]. 

However the mechanical problems related to a segmented 

type of rotor have been disregarded up to now. A relevant 

advantage of the segmented structure (with respect to the 

axially laminated one, for example) is the rotor laminations 

can be punched, as in an induction motor: of course, thin ribs 

have to be left between adjacent segments. 

 The presence of these ribs introduces an additional q-axis 

flux and the torque performance is lowered. 

In construction, the simplest way is to accept this loss of 

performance and to reduce it by accurately proportioning and 

positioning the rib width. Another solution is to proceed as 

before (punching), then cast the rotor of a suitable material and, 

finally, machine-out the ribs. The casting material should be 

non-conduction in order to avoid eddy currents and related 

effects. A plastic material can be used but some problems arise 

because of the low elasticity module.  

By adding a proper quantity of permanent magnets the 

torque density and power factor of SynRM can be greatly 

increased. It is called Permanent Magnet Assisted 

Synchronous Reluctance Motor (PMASynRM) [4]-[5].  

New solution is to use as anisotropy materials, then wire cut 

the rotor of a suitable material and, finally, removed flux of the 

ribs.  

This paper deals with the characteristics analysis & 

optimum design of Synchronous Reluctance Motor (SynRM) 

with anisotropy rotor using a coupled FEM & RSM. 

II. ANALYSIS MODEL 

The approximation consists of a priori imposing the working 

flux density of the rib iron Bs: this depends on the applied mmf 

and on the rib length, of course, but cannot increase beyond a 

certain (practical) limit because of the iron saturation. 

Moreover, equal width ribs can be supposed as shown in Fig. 

1. Each width would follow from the mechanical (finite 

element) design; however, a practical limit exists in cutting 

very thin ribs, and an equal width seems a reasonable 

hypothesis, at least for small machines.  

Owing to the above hypotheses, the flux flowing in a rib is 

given by (1). The torque equation is modified, in this case, as 

in (3), showing the torque loss due to rib flux of (2) 

wk sB wlφ =                                                                            (1) 

4
3

r swlNBλ =                                                                    (2) 

3 ( )
2 2 dq md q r d

PT k i iλ λ= −                                                   (3) 

By using a proper anisotropy material of rotor the torque 

density and power factor of SynRM (removed second term of 

(3)) can be greatly increased as shown in Fig. 2. 
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Fig. 1. Rib profile & path of rib flux        Fig. 2. Rib flux path of anisotropy                                                                   

model 

III. ANALYSIS USING COUPLED FEM  AND PREISACH 

MODELING  

Fig. 3, 4. show the effects of anisotropy rotor structure that 

the q axis rib flux is assumed to completely cancel at some 

positions (except ribs from 0 degree to 5 degree and from 175 

degree to 180 degree, no all rib) as shown in Fig. 5, 6. Flux 

distribution for q-axis excitation, for the normal SynRM and 

ANIRO-SynRM with a conventional stator having 24 slots and 

two poles, are shown in Fig. 5, 6. 
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Whereas the rotor rib tangential flux is appeared in a 

normal SynRM, the rotor rib tangential flux would have nearly 

zero since the spatial anisotropy in an ANIRO-SynRM is 

constructed, resulted in Fig. 3, 4. 
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Fig. 3. Radial rib flux density distribution of SynRM 

and ANIRO-SynRM 
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Fig. 4. tangential rib flux density distribution of SynRM 

and ANIRO-SynRM 

 

            
Fig. 5. q-axis plots of SynRM           Fig. 6. q-axis plots of ANIRO  

                                                                          SynRM 

IV. OPTIMIZATION PROCEDURE 

 
Fig.7. The  flow chart of design procedure 

 

 
Fig.8. Design variables and variation direction of the SynRM 

Fig. 7 shows the flow chart of total design strategy. 

Fig. 8 shows design variables and variation direction for the 

shape transformation according to flux barrier width.  

Design procedure according to the flow chart is as follows; 

 Step1. : Set the initial value (CAD file, Pre-processor data). 

And the initial model is assigned to flux barrier=4, slot=24. 

Step2. : flux barrier width (L1~L4) in rotor are adopted the 

design variables related to torque density in the SynRM. However, 

the ribs have a fixed value due to inherent manufacturing 

limitations. 

Step3. : The range of design variables and experiment 

frequency is established by using the central composite design 

(CCD). The experiment frequency (N) is 31
th

.  

Step4. : Finite element analysis (FEA) is performed and Ld-

Lq is calculated. 

Step5. : The Ld-Lq obtained from FEA, are stored. 

Step6. : The experiment frequency (N) > 31? 

 Yes: Search a optimum torque density.      No: N=N+1 

Step7. : The example of the point variables and variation 

direction of flux barrier rotor is well shown Fig. 9. 

When the rotor shape according to variables (L1~L4) is 

varied, they have a difficulty in performing a lot of the pre-

processor for FEA. For this reason, the new CAD file is 

redrawn with regard to the change of the design variables 

automatically. Next the process of automatic mesh generation 

follows. In mesh generation, mesh data doesn’t change the 

node number, element number, region, boundary condition, 

etc., but only x, y coordinate data of the design variables. In 

this way, the proposed pre-processor procedure can be 

performed in a short period of time. In this way, this procedure 

goes on until N=31. 

Step8. : The response surface model is created by data 

obtained from FEA according to an established range. 

Therefore, it is possible to get optimum torque density. 

The RSM seeks to find the relationship between design 

variable and response through statistical fitting methods, which 

are based on the observed data from system.  

More detailed results and discussion will be given in final 

paper. And the mathematical expressions for response surface 

methodology will be also given in extended version 
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Abstract  — Permanent magnet electromagnetic devices 
generate induced voltages (EMF) at any electrical conductor 
submitted to its magnetic field. These induced voltages are 
proportional in module and frequency to the rotational speed. 

Low impedance circuits crossing this magnetic field can 
generate high induced currents, and, since the direction of the 
field is always opposed to the source field, in some cases the 
magnet can be irreversibly demagnetized. 

The irreversible demagnetization degenerates the startability, 
reduces the efficiency and overheats the motor, so it must be 
avoided by all means. 

The main goal of this study is the evaluation of this 
phenomenon, trying to reproduce it by analytical and FEA 
analysis. 

I. INTRODUCTION

The electrical motors can be classified in terms of quality 
mainly by its performance, cost, robustness and reliability. It 
means the product attractiveness cannot be measured only by 
its performance, but also for how good it can cope with 
overloads, voltage fluctuations, high or low temperatures and 
other environmental issues. Also, the reliability is related to 
the product ability to predict and prevent possible problems, 
which can come from an external source or even a not 
previewed fail mode of the motor and its control. 

Regarding permanent magnet motors, many fail mode are 
covered by the control, and most of them are easy to be 
detected since the current can be monitored. In the other hand, 
some problems can occur internally on the motor, generating 
closed loops that are difficult to be detected by the control.  

The specific fail mode to be analyzed by this study is the 
stator closed loop generated by a short circuit between the 
stator turns. At first, an analytical approach will be suggested 
for didactic reasons and, finally, a FEA analysis example will 
be presented.  

II. DEMAGNETIZATION BASICS

A permanent magnet as show in Fig.1a has a 
demagnetization curve as shown in Fig.1b. 

Fig. 1a - Example of magnetic circuit with magnet and source coil 

  

Fig. 1b - Magnetization curve for Fig.1a circuit 

The effective air gap g in Fig.1a represents the magnet 
thickness plus the air gap thickness. B0 is the magnetic 
induction in the air gap generated by the magnet at operation 
point. N is the number of turns and I is the demagnetization 
current. 

The demagnetization can take place when is applied a 
current to the winding so as to generate a reverse field to the 
magnet, moving the magnet operation point beyond Hc 
(Hc=H(P1)-N.I/g). In this case, even when the source current 
is removed, the magnet original remanent induction will not be 
restored (point P2 in Fig.1b). The new P2 point location will 
depend on how severe was the demagnetization. The induction 
value at this point can even be zero or lower (reverse 
magnetization). The solid line in Fig.1b shows the normal 
operation region and the dashed curve shows the behavior of 
the magnet during the demagnetization procedure, caused by 
the reverse field. 

The demagnetization phenomenon depends on the 
following factors: 

- Magnet class (Hc and Br are related only to the magnet 
class); 

- Demagnetizing field magnitude; 
- Effective air gap thickness (magnet thickness + air gap 

thickness). 
B0 and H0 values (which are constant at any point of the 

magnet, since rectangular magnets do not have significant flux 
fringing) depend on the magnet thickness, air gap thickness 
and Br (remanent induction), according to the following 
relations: 
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 B0 = Br . Lm / (Lm + g)  
 H0 = (Br - B0) / µ0

 where, 

 Lm = magnet thickness 
 µ0 = 4.µ.10-7

For permanent magnets which have radial field orientation, 
mounted externally on rotor surface, the B0 value varies as a 
function of the magnet radius. In the full version of the paper 
the equations that describe the variation of B0 will be shown in 
a simplified form. These simplified equations lead to a good 
precision for almost all cases where the magnet thickness is 
less than 30% of the rotor radius. 

III. GENERATED EMF AND DEMAGNETIZATION CURRENT 

Now let us suppose a short-circuit coil is placed on the 
circuit as shown in Fig.2 

Fig. 2 - Example of magnetic circuit with with a short-circuit coil 

The short-circuit coil, which is linking the alternating flux 
generated by the source coil will produce an induced voltage, 
proportional to the frequency and magnitude of the flux. This 
voltage will generate currents which setups a magnetic flux in 
opposed direction to the source field (Lenz´s Law). Fig. 3a and 
fig. 3b shows the field map for both cases. 

Fig. 3a - Field map for fig.1a circuit 

Note that in fig.3b, the demagnetizing effect is clearly seen 
(red arrow). Note only the pink color denotes a magnetic 
induction above Bc (minimum induction to prevent 
demagnetization). By the same principle, the demagnetization 
can take place on most permanent magnet motors, as can be 
seen on figs.4a, 4b and 4c. 

Fig. 4 - Demagnetization effect on a brushless-DC motor 

IV. CONCLUSION

The previous examples show how a short-circuit fail can 
lead to demagnetization in permanent magnet devices. In the 
full paper version a theoretical approach will be used to 
calculate the minimum induction value, in order to quantify the 
risk of demagnetization on a didactic motor.  
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Abstract — This paper presents useful improvements of FE 

Post-processors for machine designer, specially in the case of PM 

fractional slot machines with sinusoidal current supply. The 

computation of maximal flux densities on each stator mesh during 

one half of electrical period provides more information than 

instantaneous values of magnetic fields. Implementation method is 

detailed for linear and non-linear solving process to perform fast 

analysis of iron losses with flux weakening operations and 

efficiency optimization. As an example, a 12 slot-10 pole PM 

machine with concentrated winding is presented to illustrate this 

method and compare different iron loss models.  

I. INTRODUCTION 

Design of electrical machines is often based on an 

analytical method with an estimation of no-load flux densities 

in the air-gap to calculate the dimensions of the magnetic 

circuit. Next step is to perform a Finite Element Analysis 

(FEA) to optimize geometry, to compute the equivalent circuit 

parameters and to validate performances of the machine for 

rated operation. Well-known post-processors [1] can be 

applied for conventional machines, but some improvements is 

required to study fractional slot machines because the 

magnetic field pattern under load is not repetitive for each 

rotor pole. Indeed, the distribution of magnetic flux densities 

for a given rotor position or a given simulation time step does 

not provide useful information for designer and is not 

significant. It's better to compute the maximal flux densities in 

each stator mesh on a half electrical period, with movement of 

the rotor and sinusoidal rated current supply. The method is 

efficient to investigate possible stator modifications, to 

compare different winding configurations and to analyze the 

effect of different supply current control angles for flux 

weakening operation. Same approach is used to investigate 

iron loss. 

II. MACHINES WITH FRACTIONAL SLOT WINDING  

Some synchronous machines have a fractional number of 

slots per pole and per phase to reduce the EMF harmonic 

content (hydraulic alternators [2]), to simplify winding 

realization (machines with concentrated winding [3]) or to 

minimize cogging torque ripple (permanent magnet machines 

[3]). In such a case, the phase coil arrangement in the stator is 

not repetitive under every pole of the rotor and this generates 

some MMF sub-harmonics when the machine is fed by 

sinusoidal currents [2]. This phenomenon is very important in 

PM machines with concentrated windings because there is only 

a single coil per pole. When the stator magnetic reaction is 

greater than 0.5 pu, there are local magnetic saturation zones 

in the yoke that increase the magnetic losses and torque ripple. 

The distribution of the flux densities is very different from that 

obtained during no-load operation and this modification must 

be taken into account in the design of the machine. However, 

saturated zones are difficult to identify when one uses 

drawings and computations from instantaneous values of 

magnetic field. 

III. POST-PROCESSOR IMPROVEMENTS 

The calculation of the values of maximal flux densities is 

very easy to implement with a non-linear solving approach, as 

illustrated by Fig.1. However, very fast analysis can be 

performed with post-processors using results from linear 

solving method and a single matrix inversion. It is possible to 

calculate separately, the field of permanent magnets for 

different rotor positions and the field of stator phase windings 

using a constant value of current density. Linear combinations 

of these results with a post-processor is particularly powerful 

to simulate flux weakening with sinusoidal current waveforms 

and compute a large number of steady state operation points to 

perform efficiency analysis. This method also permits to 

estimate the magnetic losses in each mesh with an analytical 

expression for the specific magnetic losses density [4]. In this 

case, one can apply a constant value of maximal flux density 

limit to simulate magnetic saturation effect. Generally this 

assumption is valid during flux weakening operation of a 

surface mount PM machine if magnetic circuit is not saturated 

during a maximal torque control (Id=0). These methods will be 

detailed in the final paper. 

IV. ANALYSIS OF A 12 SLOT-10 POLE MACHINE WITH 

CONCENTRATED WINDINGS   

We have selected a 3 phase, 12 slot and 10 pole PM 

machine to illustrate analysis of flux weakening operation 

using post-processing approach. Fig. 2 shows the distribution 

of full-load instantaneous magnetic flux densities for a given 

rotor position and a given supply current with a small amount 

of flux weakening. This data is difficult to use in design 

process because of variable values of flux densities in each 

stator part. Fig. 3 shows the distribution of the maximal values 

of the magnetic flux densities computed with results from 

several rotor positions, during no-load operation. In this case, 

it is easier to measure maximal flux densities in any part of the 

machine (tooth tips, teeth, yoke) for a validation of magnetic 

saturation effect. Fig.4 shows the distribution of maximal 

Improved FE Post-Processors for 

Design of PM Fractional-Slot Machines  
Jérôme Cros, Mehdi Taghizadeh and Philippe Viarouge 
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values of full-load flux densities calculated by the same 

approach for the same machine with a single layer winding. 

One can see important modifications of flux density pattern in 

the yoke compared to Fig.3. Stator magnetic reaction 

decreases maximal flux densities in the teeth and tooth tips but 

increases flux densities in some parts of the stator yoke. This is 

a particularity of fractional slot machine revealed by maximal 

flux densities drawings. Fig.5 shows the distribution of the 

local magnetic loss densities with conventional laminated 

material. The combined hysteresis and eddy current losses per 

kg are calculated using following equation [4]: 

 2 2 2

,i j h Max ij e MaxijPmag k f B k f B= ⋅ ⋅ + ⋅ ⋅  (1) 

The loss density distribution is similar to maximal flux 

density pattern. Some parts of stator yoke have high losses and 

it will be interesting to increase the section of magnetic circuit 

in these regions and decrease sections in the others. Table I 

shows a comparison of iron losses in different parts of 

magnetic circuit with no load and flux weakening operation. 
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Fig.1 : Flowchart of maximal flux density calculation 

 

Fig.2: Distribution of instantaneous full-load flux densities 

(Flux weakening operation with Id=0.577.Iq) 

 

 
Fig.3 : Maximal no-load flux densities computed on a half electrical period  

 

 
Fig.4 : Maximal flux densities with a single layer stator winding 

(Flux weakening operation with Id=0.577.Iq) 

 

 
Fig.5 : Iron Losses with a single layer stator winding 

(Flux weakening operation with Id=0.577.Iq) 

 

TABLE 1 

COMPARISON OF IRON LOSS (NO-LOAD AND FLUX WEAKENING OPERATIONS) 

 
Torque 

(N.m) 

Yoke 

(W) 

Teeth 

(W) 

Tooth 

tips (W) 

Total 

(W) 

No-load - 39 72 27 138 

Id=0.268.Iq 47.6 51 75 30 156 

Id=0.577.Iq 44.7 46 63 28 137 

Id=Iq 38.4 39 49 25 113 
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11. ELECTRIC MACHINES AND DRIVES 

Abstract —This paper describes a combination of Direct Torque 
Control (DTC) and Space Vector Modulation (SVM) for an 
adjustable speed sensorless induction motor (IM) drive. The 
motor drive is supplied by a two level SVPWM inverter. The 
inverter reference voltage is obtained based on input-output 
feedback linearization control, using the IM model in the stator 
d-q axes reference frame with stator current and flux vectors 
components as state variables. Moreover, a robust full-order 
adaptive stator flux observer is designed for a speed sensorless 
DTC-SVM system and a new speed-adaptive law is given. By 
designing the constant observer gain based on LMI, the stability 
of the observer systems is ensured. Finally, the effectiveness and 
validity of the proposed control approach is verified by computer 
simulation results. 

I. INTRODUCTION 
Direct torque control based on space vector modulation 

(DTC-SVM) preserve DTC transient merits, furthermore, 
produce better quality steady-state performance in a wide 
speed range. At each cycle period, SVM technique is used to 
obtain the reference voltage space vector to exactly 
compensate the flux and torque errors. The torque ripple of 
DTC-SVM in low speed can be significantly improved. 

In this paper, SVM-DTC technique based on input-output 
linearization control scheme for induction machine drives is 
developed. Furthermore, a robust full-order speed adaptive 
flux observer is designed for a speed sensorless DTC-SVM 
system and a speed-adaptive law is given. The constant 
observer gain, which is obtained by solving two bilinear 
matrix inequalities (BMIs) using LMI Toolbox in MATLAB 
[1], can overcome the real-time computational complexity of 
the adaptive observer gain in [2]. The stability of the speed 
adaptive stator flux observer is also guaranteed by the 
constant gain in very low speed. The proposed control 
algorithms are verified by extensive simulation results.  

II. DTC-SVM BASED ON INPUT-OUTPUT LINEARIZATION 
The DTC-SVM scheme is developed based on the IM 

torque and the square of stator flux modulus as the system 
outputs; stator voltage components defined as system control 
inputs and stator currents as measurable state variables. 

Define the controller objectives e1 and e2 as 
erefe1 TTe −=                                    (1) 

2
sref

2
s2 ψψ −=e                             (2) 

where, erefT , eT  , srefψ , sψ are reference and real value of  
electromagnetic torque, stator flux respectively. 

According the model of induction, the time derivative of e 

is as (3), 
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where Dψ , Qψ , uD, uQ, iD, iQ are respectively the d-q axes of 
the stator flux, stator voltage and stator current vector 
components, ωm is the rotor electrical angular speed, Ls, Lr, Lm 
are the stator, rotor, and magnetizing inductances, respectively, 

)(1 rs
2
m LLL−=σ and Rs, Rr are the stator and rotor 

resistances, respectively. ( )( )rrss //1 LRLRc +−= σ  
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From (4), D is a nonsingular matrix since the inner 
product of stator flux vector and rotor flux vector can not be 
physically zero. 

Based on input-output feedback linearization, the 
following control inputs are introduced. 

⎥
⎦

⎤
⎢
⎣

⎡
+−
+−

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∗

∗

y

x

ug
ug

inv
u
u

2

1

Q

D )(D                  (5) 

where, ux, uy are the auxiliary control inputs and are defined 
based on the pole placement concept of the linear control 
systems so that 

11ecux −= ,    22ecu y −=                        (6) 
where, c1 and c2  are positive constants.  

III. SPEED ADAPTIVE STATOR FLUX OBSERVER 
The state observer, which estimates the state current and 

the stator flux together, is given by the following equation[2]. 

( )ss
ˆˆˆ

d
ˆd iiGBuxAx

−++=
t

               (7) 

xCi ˆŝ =                                      (8) 
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11. ELECTRIC MACHINES AND DRIVES 

where ^ denotes the estimated values and G is the observer 
gain matrix which is chosen so that the stability of the flux 
observer can be guaranteed. In order to derive the adaptive 
scheme, Lyapunov theorem is utilized. Now, let us define the 
following Lyapunov function 

( ) λˆ 2
rr

T ωω −+= PeeV                            (9) 
The time derivative of V along error equation (4) becomes: 
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if we select observer gain matrix G so that the validity of the 
inequality  

( ) ( ) 0)( T
r1

T
1 <++−+− ωωω PAPAGCAPPGCA      (12) 

can be guaranteed, the state observer is stable. 
The adaptive scheme for speed estimation is given by 
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By the Lyapunov stability theory, the state observer is 
asymptotically stable if there is symmetric positive definite 
matrix P and matrix G such that (12) hold. 

Suppose maxω is upper bound of permitted rotor speed. For 
ensuring system with a certain reliability and robustness, 

maxω is selected larger than rated speed of IM in general. 
When the speed changed in the interval [- maxω , maxω ], the 

state observer is stable can be guaranteed by the following two 
matrix inequalities: 

( ) ( ) 0)( T
max1

T
1 <++−+− ωωω PAPAGCAPPGCA     (14) 

( ) ( ) 0)( T
max1

T
1 <+−−+− ωωω PAPAGCAPPGCA     (15) 

Inequality (14) and (15) are bilinear matrix inequalities 
(BMIs) about matrix variables P and G. Noticing that if fixed 
matrix G, BMIs (14) and (15) will become linear matrix 
inequalities (LMIs) about matrix variable P; and if fixed P, 
BMIs (14) and (15) will become linear matrix inequalities 
(LMIs) about matrix variable G. So, the feasible solution of 
BMIs (14) and (15) can be obtained by LMI toolbox in 
MATLAB [1]. 

IV. SIMULATIONS 
To verify the DTC-SVM scheme based on input-output 

linearization and adaptive observer, simulations are performed 
in this section. The block diagram of the proposed system is 
shown in fig.1. The speed and torque response curves of 
conventional DTC and DTC-SVM are shown fig. 2. The 
command speed value is 5 rpm in both two systems. At startup, 
the system is unloaded, the load torque is changed to 17Nm at 
t=1s, then the load torque is changed from 17Nm to 10Nm at 
t=1.5s. In order to highlight validity of the sliding-mode 
observer, the stator resistance and rotor resistance are set to 
twice of the rated value in simulation. The stator flux observer 
curve is shown in fig.3. Compared with conventional DTC, 

the DTC-SVM has much smaller torque ripple. From fig.3, it 
can be seen that the adaptive observer can estimate the stator 
flux well and truly. 

 
Fig.1 The block diagram of the DTC-SVM system 
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                a) Conventional DTC                           b)  Proposed DTC-SVM 

Fig.2 Speed and torque response curve 
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a) DQ-axes stator flux                            b) Stator-flux trajectory 

Fig.3 Stator flux curve 

V. CONCLUSIONS 

A new DTC-SVM scheme has been presented for the IM 
drive system, which is on the basis of input-output 
linearization control. In this control method, a SVPWM 
inverter is used to feed the motor, the stator voltage vector is 
obtained to fully compensate the stator flux and torque errors. 
Furthermore, a robust full-order adaptive flux observer is 
designed for a speed sensorless DTC-SVM system. By 
designing the constant observer gain based on LMI, the 
stability of the observer systems is ensured. Compared with 
the conventional DTC, the proposed drive system has much 
smaller torque ripple in very low speed and exhibits good 
dynamic and steady-state performance.  
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Abstract — This paper presents an application of a new per-
manent magnet MAGFINE, polar anisotropic bonded NdFeB PM, 
to a small size DC motor. The new PM gives very high residual 
magnetic flux density and energy product with lower cost than a 
sintered NdFeB PM. An application of this PM to a small size DC 
motor shows it can reduce the volume and weight of a motor up 
to fifty percent.   

I. INTRODUCTION 
DC motors employing sintered ferrite permanent magnets 

(PMs) have, so far, been widely used in automotive applica-
tions such as seat, blower and sunroof. These days, PM mo-
tors are required to have higher efficiency for energy saving, 
better performance with smaller volume and lighter weight, 
and even higher power density. In the design of DC motor, 
therefore, PMs having high energy density, such as NdFeB, 
are more attractive to get high power to volume ratio [1].  

The NdFeB magnets are usually classified into sintered 
and bonded PMs according to their manufacturing process, 
and also isotropic and anisotropic PMs by their microstructure. 
The popular types, however, are limited to isotropic bonded 
PMs having (BH)max of 80(kJ/m3) and anisotropic sintered 
PMs of 400(kJ/m3) due to some technical difficulties. Conven-
tionally, for small size DC motors, isotropic bonded NdFeB 
PM, made by compression process of the NdFeB powder and 
binders, is preferred to a sintered one because it gives lower 
assembling costs and more flexibility.  

Very recently, anisotropic bonded NdFeB PM, named 
MAGFINE having high energy product up to 200(kJ/m3), has 
been developed by Aichi Steel Corporation and Jahwa Elec-
tronics [2]. Comparing with a sintered NdFeB PM, the 
MAGFINE gives little bit lower residual magnetic flux den-
sity (1.0T) and costs around 40(%) cheaper. Since the anisot-
ropic bonded NdFeB PM has high energy product and resid-
ual magnetic flux density and is cheaper than the sintered 
NdFeB PM, it is expected to give higher air-gap magnetic flux 
density and power density with low cost when it is applied to 
a DC motor. The PM, furthermore, gives precise dimensions, 
roundness and concentricity after housing assembly process. 
The research on its application to PM motor, however, is still 
in early stage, and more discussions and researches are 
strongly required.  

In this paper, a ring-type anisotropic bonded NdFeB PM is 
applied to a small size DC motor by replacing the conven-
tional segment-type sintered ferrite PM to achieve a high 
power to volume ratio of the motor. In the application, anisot-
ropic directions of each part of the ring-type anisotropic 

bonded NdFeB PM were investigated, and the shape of rotor 
teeth are optimized.  

II. 4 POLE POLAR ANISOTROPIC BONDED NDFEB PM 
A 2-pole 10 slot ferrite PM DC motor, of which maximum 

output is 25(W) and specifications are shown in Table I, for 
the sunroof of a car is taken as a model. In order to develop a 
high power density motor, the anisotropic bonded NdFeB PM, 
JHMF23 made by Jahwa Electronics Co. Ltd., KOREA, of 
which magnetic performances are B Br=1.0(T), iHc=0.96(MA/m), 
bHc=0.6(MA/m) and (BH)max= 175(kJ/m ), respectively, is 
selected. It is a ring-type 4 pole polar anisotropic PM as 
shown in Fig. 1. The PM is manufactured as follows:  

3

Step 1. The anisotropic bonded NdFeB compound contain-
ing 2(wt%) of resin is prepared through the blending process 
under Ar atmosphere. 

Step 2. With the compound, a mold for compression with 
magnetic fields is filled with a filling density of 4000 (kg/m3) 
as shown in Fig. 1(a). In order to align the magnetic particles 
in polar anisotropic directions, the magnetic powder is ex-
posed to a magnetic field of 1200 (kA/m) while keeping the 
mold temperature in the range of 120~150℃, and then com-
pressed under the pressing pressure of 4 (ton/cm2). Fig. 1(b) 
shows the distribution of the magnetic flux density, obtained 
from a transient FEM analysis at moment of peak current, and 
Fig. 1(c) the maximum applied magnetic field intensities, dur-
ing the compression process, at the compound. The final di-
rections of the magnetic particles, obtained from that of mag-
netic fields, are shown in Fig. 1(d), and the anisotropic 
bonded NdFeB compound is ready to be magnetized in 4-pole 
polar anisotropic PM.  

Step 3. The PM, compressed compound, is magnetized by 

TABLE I 
SPECIFICATIONS OF FERRITE PM AND PROPOSED MOTORS 

Section Item 
Ferrite PM 

motor 
Anisotropic 
bonded PM 
motor 

Number of pole 2 4 
Br (T) 0.4 1.0 
Outer diameter (mm) 36.6 25.8  
Inner diameter(mm) 26  23.8  

PM 

Axial length(mm) 54 27  
Outer diameter(mm) 25 23.2 
Number of slots(mm) 10 10  Armature 
Axial length(mm) 44 25  

Return yoke Thickness(mm) 1.7 2  
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using magnetizing fixture.     

III. CONSTRUCTION OF A MOTOR AND TESTS 
A DC motor employing the proposed PM is initially de-

signed with air-gap of 0.3(mm) as shown in Fig. 2, and its 
specifications are compared, in Table I, with those of a model 
motor. Fig 3 shows the distributions of the magnetic flux den-
sity generated by the proposed polar anisotropic boned 
NdFeB PM with and without an armature core where teeth 
width and slot opening are set to 2.2 (mm) and 1.6 (mm), re-
spectively.  

In order to decide the teeth width (Tw) and slot opening 
(So) optimally, the parametric analyses using FEM are per-
formed over the range of 1.3(mm)≤Tw≤2.2(mm) and 
1.2(mm)≤So≤3.0(mm), respectively. The upper limit of the 
teeth width is decided considering an enough winding space. 
During the analyses the air-gap between the PM and armature 
is fixed to 0.3(mm).  

Fig. 4 shows that the torque constant increases as the teeth 
width increases. It is partially because the armature core is 
easily saturated in the narrow teeth, and means the proposed 
PM provides sufficient magnetic flux. With regard to the slot 
opening, the optimum condition is found at 1.6(mm). Through 
these analyses, the thickness of PM, teeth width and slot open-
ing are decoded as 1(mm), 2.2(mm) and 1.6(mm), respectively.  

Fig. 5(a) shows a comparison of the motor performances, 
measured at supplied voltage of 12(V), and sizes between the 
proposed 4-pole polar anisotropic bonded NdFeB PM motor 
and 2-pole conventional Ferrite DC one. It can be seen, from 
Table I and Fig. 5, that the proposed motor gives almost same 
performances with 50% reduced volume and weight.   

IV. REFERENCES 
[1] V. S. Ramsden, “Application of rare-earth magnets in high performance 

electric machines”, Proc. 15th Int. Workshop on REM and Their Applica-
tions, pp. 623-625, 1998. 

[2] N. Hamada, C. mishima, H. Mitarai, and Y. Hunkura, “Development of 
Nd-Fe-B anisotropic bonded magnet with 27 MGOe”, IEEE Trans.  on 
Magn., Vol. 39, No.5, pp. 2953-12955, September 2003.  

 

            (a) without rotor core                           (b) with rotor core      
Fig. 3. Magnetic flux distributions. 
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Abstract —This paper deals with optimum design criteria for 

premium efficiency of 250kW traction induction motor using 

response surface methodology (RSM) & finite element method 

(FEM). The RSM has been achieved to use the experimental 

design method in combination with Finite Element Method and 

well adapted to make analytical model for a complex problem 

considering a lot of interaction of design variables. 

The proposed procedure allows to define the rotor copper bar 

shape, stator slot and stator, rotor dimensions starting from an 

existing motor or a preliminary design.  

I. INTRODUCTION 

Recently, saving energy is a most important task in the 

world. Thus, obtaining high efficiency electrical machines and 

apparatus is a very important task. 

Induction Motors are very important in industry. For many 

years, the efficiency of three-phase induction motors has been 

the subject of numerous investigations aimed at increasing 

efficiency values by minimizing losses during the operation. 

Induction motor design principles have not changed 

dramatically over the years, whereas the tools and the 

knowledge of engineers have improved considerably. 

This better understanding has led to continuous 

improvements for reducing losses in electric motors. 

Systematically analyzing the root causes of losses and the 

possibilities for improvements requires a complete and new 

approach, looking into not only the electrical area but also 

mechanical areas such as cooling, temperature levels, and 

outer diameter (OD) versus length ratio, etc. In this article, we 

apply a systematic and optimized new design approach for 250 

kW Traction Induction Motor. 

The electromagnetic factors for improving efficiency are as 

follows: 

1) increase the amount of active material 

2) utilize high-performance lamination materials 

3) optimize the stator/rotor geometries 

4) optimize the air gap dimensions 

All the factors have to be carefully looked at and inves-

tigated, because most of them are not independent from each 

other and may negatively influence the efficiency gains in one 

case or the other. Secondly, the commercial impacts have to be 

strongly considered, since with higher efficiency the premium 

paid may limit the savings seen. 

The RSM has been achieved to use the experimental design 

method in combination with Finite Element Method and well 

adapted to make analytical model for a complex problem 

considering a lot of interaction of design variables [1]-[3]. 

The focus of this paper is found firstly a design solution 

through the comparison of torque and losses according to rotor 

bar shape and stator, rotor dimensions variations and, 

Secondly, a mixed resolution with central composite design 

(CCD) is introduced and analysis of variance (ANOVA) is 

conducted to determine the significance of the fitted regression 

model. 

II. DESIGN ALGORITHM AND MODEL 

The variables for optimization design are shown in Fig.1. 

In Fig. 1, design variables that are slot depth and width of 

stator, slot depth and width of rotor and air gap width, are 

determined to improve torque performance of 250kW traction 

induction motor. 

Analysis data is obtained through finite element method 

based on central composite design mostly used in RSM, and 

optimum point is determined through analysis of the data.  

Finally, it can be obtained the maximum torque density & 

minimum loss of 250kW traction induction motor. 

Fig. 1 shows the point variables and variation direction 

example for the shape change according to slot depth and 

width of stator and rotor. 

Points of W1-W8 and P1-P8 move as a condition that slot 

depth and width. 

 
Fig. 1.  The initial model, design variables and variation direction of 250kW 

traction induction motor 

Optimum Design For Premium Efficiency of 

250 kW Traction Induction Motor Using 

Response Surface Methodology & FEM 
Jung Ho Lee, Member, IEEE, Sung Ju Mun, Tae won Yun 

Dept.of Electrical Engineering, Hanbat National University 

 Dukmyung-Dong Yuseong-Gu, Daejeon, 305-719, KOREA 

E-mail: lucasmsj@nate.com 

977

PD2.17



11-(A) 

III. CONCEPT OF RESPONSE SURFACE METHODOLOGY 

TABLE  I 

ANALYSIS OF VARIANCE 

Source 

of 

Variation 

Degree 

of Freedom 

Sum of 

Squares 
Mean Square 0F  

Regression k RSS  
R

R

/SS k =

    MS
 R E/MS MS  

Residual n-k-1 ESS  
ESS  /(n-k-1)= 

EMS  
 

Total n-1 yyS    

It is always necessary to examine the fitted model to ensure 

that it provides an adequate approximation to the true response 

and verify that none of the least squares regression 

assumptions are violated. In order to confirm adequacy of the 

fitted model, analysis-of-variance (ANOVA), shown in Table I 

is used in this paper. In Table I, n is the total number of 

experiments and k is the number of parameters in the fitted   

model. 

IV. OPTIMIZATION PROCEDURE 

W1-W8 and P1-P8)

rotor slot = 46
stator slot = 36

?

?

 
Fig. 2.  Flow chart of design procedure 

 

Fig. 2 shows the Flow chart of design procedure. 

Design procedure according to the flow chart is as follows; 

Step1 : Set the initial value (CAD file, Pre-processor data). 

And the initial model is assigned to rotor slot=46, stator 

slot=36. 

Step2 : Width and depth in rotor and stator are adopted the 

design variables related to torque density in 250kW traction 

induction motor. However, the ribs have a fixed value due to 

inherent manufacturing limitations. 

Step3 : The range of design variables and experiment 

frequency is established by using the central composite design 

(CCD) shown Table I and II. The experiment frequency (N) 

is ?
th

. 

Step4 : Finite element analysis (FEA) is performed and Ld-

Lq is calculated. 

Step5 : The Ld-Lq obtained from FEA, are stored. 

Step6 : The experiment frequency (N) > ?. 

 Yes : Search a optimum torque density. 

 No : N=N+1. 

Step7 : The example of the point variables and variation 

direction of flux barrier rotor is well shown Fig. 2. 

When the rotor and stator shape according to variables is 

varied, they have a difficulty in performing a lot of the pre-

processor for FEA. For this reason, the new CAD file is 

redrawn with regard to the change of the design variables 

automatically. Next the process of automatic mesh generation 

follows. In mesh generation, mesh data doesn’t change the 

node number, element number, region, boundary condition, 

etc., but only x, y coordinate data of the design variables. In 

this way, the proposed pre-processor procedure can be 

performed in a short period of time. In this way, this procedure 

goes on until N=?. 

Step8 : The response surface model is created by data 

obtained from FEA according to an established range. 

Therefore, it is possible to get optimum torque density. 

The RSM seeks to find the relationship between design 

variable and response through statistical fitting methods, 

which are based on the observed data from system. 

The response is generally obtained from real experiments or 

computer simulations. Therefore finite element analysis (FEA) 

is performed to obtain the data of 250kW traction induction 

motor in this paper. 

There are many experimental designs for creation of 

response surface. In this paper the central composite design 

(CCD) is chosen to estimate interactions of design variables 

and curvature properties of response surface in a few times of 

experiments. The CCD has been widely used for fitting a 

second-order response surface. [4] 

More detailed results and discussion will be given in final 

paper. And the mathematical expressions for response surface 

methodology will be also given in extended version. 
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Abstract — This paper presents the design process of 
permanent magnets to enable a wide range of constant-power 
operation and reduce the torque ripple by using analytical and 
numerical methods in PMA-SynRM. For a wide range of 
constant-power operation, the minimum d-axis flux-linkage of 
the permanent magnet is designed to be close to zero. Moreover, 
the unbalanced flux density in each segment is adjusted by 
changing the size of each permanent magnet to reduce the torque 
ripple. Finally, control simulations and experiments will be 
conducted to prove the validity of the suggested process. 

I. INTRODUCTION 
Existing permanent magnet designs, such as the BLDC 

and IPM, were designed after the D2L method to determine 
the outer diameter of the rotor first. However, for the 
permanent magnet assisted synchronous reluctance motor 
(PMA-SynRM) design, in which the permanent magnet is 
inserted into the existing SynRM, many parameters have been 
designated, and therefore the existing methods can't be applied. 

This paper presents the design process of permanent 
magnets to enable a wide range of constant-power operation 
and reduce the torque ripple by using analytical and numerical 
methods in PMA-SynRM. 

 
Fig. 1. Flowchart for the magnet design of PMA-SynRM 

II. PERMANENT MAGNET DESIGN PROCESS 
The most important factors when converting the existing 

SynRM into PMA-SynRM are the magnet location and 
designing the size. For wide constant-power operation, the 
magnet designing process is divided into three steps in this 
thesis. Prior to designing the magnet, the SynRM model was 
selected and the stator, windings, and rotor core were 
considered as the base models. After the base models were 
selected, the equivalent magnetic circuit method is used to 
largely design the permanent magnet. Additionally PM design 
is conducted for the correction of the unbalanced flux density 
in segments. Finally, in order to meet the ideal condition to 

acquire no power limit, maximum power scope and constant-
power operation scope, optimized designing for the permanent 
magnet is conducted. Follow contents give a full detail of 
three steps. The designing process is shown in Fig. 1. 

 
Fig. 2. Equivalent magnetic circuit of the PMA-SynRM 

III. EQUIVALENT MAGNETIC CIRCUIT METHOD 

The location of the permanent magnet can be limited upon 
the shape of barriers because the permanent magnet is inserted 
to the existing SynRM, therefore, the thickness of the 
permanent magnet is limited to the thickness of the barriers. 
Thus, width designing of the permanent magnet is focused in 
this thesis. For the model of this thesis, the shapes that allow 
inserting three magnets in the center were adopted and 
magnetic circuit of this model is shown in Fig. 2. 
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.      (1) 
Formula (1) shows the equations related width of the 

permanent magnet by summarizing the magnetic circuit, and 
value is assumed by considering the machine parameters of 
existing SynRM and target specification and finally the 
approximate size of the permanent magnet is determined by 
applying the value on the formula. 

IV. DESIGN CONSIDERING THE UNBALANCED FLUX 

All the magnet sizes are assumed to be same in the above 
hypothesis. However, Fig. 3(a), which shows the flux density 
distribution calculated through FEM, shows that segment-1, -4 
have saturation but there is almost no magnetic flux in the 
segment-2, -3. This phenomenon increases the use of 
permanent magnet unnecessarily and also can cause problems 
such as torque ripple due to the unbalanced flux in each 
segment. To solve this problem, the width of the permanent 
magnet located in the layer-2 was increased and the width of 
the permanent magnet located in the layer-1,-3 were decreased 
to balance the flux in the overall segments. During this 
process, the sum of magnet sizes were maintained as same as 
the existing. Fig. 3(b) shows the flux density distribution of 
the model with the optimized ratio of permanent magnets. In 
addition, torque ripple decreased significantly compared to the 
existing model in Fig. 4. 

Optimal PM Design of PMA-SynRM 
for Wide Constant-Power Operation and Torque Ripple Reduction 
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Fig. 3. Flux density of the conventional and proposed model at 15A, 500rpm 

 
Fig. 4. Torque of the proposed model and conventional model@500rpm, 15A 

V. PM DESIGN FOR WIDE CONSTANT-POWER OPERATION 
If the voltage and current limitation are considered, the 

maximum power scope can be acquired by properly 
controlling the current vector. In order to broaden the scope of 
the constant-power operation, the optimized design for 
permanent magnet is conducted to meet Ψa = LdIam. [2] At this 
time, width ratio of the permanent magnet that was designed 
in the above is used. 

 
Fig. 5. Reluctance and magnetic and total torque@500rpm, 10.5A 

A. FEM Analysis 
In order to accurately calculate the inductance by 

considering the non-linear characteristics, RMS value of EMF 
and flux-linkage at no load, RMS value of flux-linkage when 
the current is applied, and phase difference between two flux-
linkage were acquired through FEM. 

In Fig. 5, reluctance torque and magnetic torque were 
calculated separately by means of the calculated inductance 
and result of Maxwell stress tensor method to prove the 
validity of the inductance calculation method in Fig. 5. 

B. Maximum Power Control Simulation 
The parameters that considered the calculated non-linear 

characteristics were used to conduct the maximum power 
control simulation. Constant-torque mode is controlled by 
means of Maximum Torque / Current Control Method and the 
formula for the reference current is shown in Formula (2). 
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.        (2) 
In the constant-power torque, the Flux-Weakening Control 

Method is used to control and the current vector formula that 
is required during the flux-weakening is shown in Formula (3). 
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.  (3) 
Based on this, the locus of the current phase angle 

according to the speed of the final model is expressed in Fig. 6 
as well as the limitation for voltage and current. Fig. 7 shows 
the torque and power versus speed. 

 
Fig. 6. Locus of the current phase angle in proposed model 

 
Fig. 7. Torque and power versus speed of proposed model 

VI. EXPERIMENT AND CONCLUSION 
The final model is manufactured for experiment and 

evaluation. The experiment results are shown Fig. 5 to prove 
the validity of the simulation. Finally, this model has 
simulated parameter Ψdmin=0.003 and measured parameter 
Ψdmin=0.004. This results shows the validity of the proposed 
design method. 
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Abstract — This paper deals with the study of static and 
dynamic rotor eccentricities of a synchronous generator using 3D 
FEM. First, both eccentricity cases are introduced as well as the 
used approach. Then, the model of the structure, based on the 
vector potential formulation is presented. Results obtained for 
magnetostatic case related to both defects and their combination 
are presented and discussed. The saturation effect is highlighted. 

I. INTRODUCTION

Synchronous generators are widely used in high power 
conversion plants and their predictive maintenance constitutes 
a very important task in order to avoid an interruption of 
production. Therefore, the forecast and/or the detection of 
eventual defects are essential. 

A very common defect in the rotor of such generators is 
eccentricity. Many techniques for diagnosis of this type of 
failure have been proposed, including analysis of the current in 
parallel windings [1], analysis of the rotor and stator vibrations 
[2], analysis of the shaft voltage, use of capacitive sensors [3] 
and use of flux probes in the stator iron stack [4]. Another 
approach is based on the measure of the magnetic field density 
in the air gap of the machine [5]. The last method is employed 
in this work. Thus, it is useful to arrange signatures of 
eccentricity defects to detect them. 

In this paper, we present the study of the rotor static and 
dynamic eccentricities of a synchronous generator using 3D 
finite element analysis. Once both defects and the detection 
method presented, we introduce the used 3D-FEM model 
which is based on the potential vector formulation. Finally 
results for a specific synchronous generator are given for both 
defects and their combination. The effects of the steel 
saturation in the machine are highlighted. 

II. ECCENTRICITY CASES AND MEASUREMENT METHOD

Generally, we can distinguish two eccentricity cases. In the 
static case, the rotor rotates around its own rotation axis but 
this one is displaced with regard to the stator axis (Fig. 1.a). 

a) b)
Fig. 1: Eccentricities:   a) static   b) dynamic.  

In the case of dynamic eccentricity the center of the rotor 
axis is the same as the center of the stator one but it does not 
correspond to the rotation axis of the rotor (Fig. 1.b). These 
cases can be found alone or combined. When they are 
combined, the center of the rotor is not the same as the center 
of the stator and the rotor rotation axis is displaced. 

It must be noticed that, in the experimental detection of 
these defects, when measuring the induction signal on only one 
point of the machine air-gap, it is impossible to verify whether 
there is a static eccentricity or not, because there is no 
variation of the radial flux in only one point. To overcome this 
problem, two 90o spatially shifted signals are subtracted and a 
Fast Fourier Transform (FFT) of the obtained waveform is 
analyzed. 

III. FINITE ELEMENT METHOD APPROACH 

To study the structure, we use three dimensional finite 
element method. In the magnetostatic case, the computation is 
carried out with the magnetic vector potential A formulation: 

JrotA
µ

rot =1                                      (1) 

with µ  the magnetic permeability and J  the  current  density. 
For the conductive region (damper windings), A-ϕ formulation 
is used to compute the eddy current: 

      0)(
1 =+

∂
∂+ ϕσ grad

t

A
rotA

µ
rot                  (2) 

with σ the electrical conductivity and φ the electrical scalar 
potential. Furthermore, the magnetic materials are modeled 
taking into account the non-linear B(H) curve. At last, the
movement is implemented through the locked step method. 

To take into account the static eccentricity, all the nodes 
inside the slip surface (i.e. the nodes of the rotor, of the inner 
part of the air gap and the ones on the slip surface) must be 
moved (Fig. 2.b) with the same distance. In the case of the 
dynamic eccentricity, only the nodes of the rotor have to be 
moved while the slip  surface  remains at its initial position 
(Fig. 2.c).

Fig. 2: Eccentricities techniques:   a) healthy machine   b) static   c) dynamic. 

To simulate the combined eccentricities (static and 
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11. ELECTRIC MACHIES AND DRIVES

dynamic) the slip surface and the node of the rotor must be 
moved but not with the same distance. 

IV. APPLICATION 

A. Description of the machine 

To validate the approach, we study a turbo-generator of 
small size, similar to a French nuclear plant generator. This 
machine, of about 26.7 kVA at 50 Hz, has four poles, 48 slots 
in the stator and 36 slots in the rotor. Besides, the rotor has 36 
short-circuited damping bars. The constant air-gap thickness is 
1,5mm. The used mesh is constituted of 29160 nodes and 
29014 elements. A cross section view is given in Fig. 3. 

Fig. 3. Cross section view of the turbo-generator mesh. 

B. Results 

For each type of eccentricity, with the same 0.3 mm
magnitude, simulations are carried out at no load conditions. 
Two cases are investigated: a non-saturated case with an 
excitation current Iex of 5A and a very saturated case with 
Iex=30 A. 

Fig. 4. Subtraction of the two signals in the air-gap, Iex = 5A. 

  
Fig. 5. FFT of the subtraction of the two signals in the air-gap, Iex = 5A. 

Figures 4 and 6 show the subtraction of the two signals in 
air-gap for Iex=5A (Fig.4) and Iex=30 A (Fig.6). In figures 5 

and 7, the FFT of these signals are shown. While the signals of 
the healthy machine are harmonic free, for both cases, the 
static eccentricity induces a significant 50Hz-harmonic while
dynamic eccentricity yields harmonics of 25 Hz and 75 Hz. 
Furthermore, the saturation introduces much more harmonics 
than those present in the linear case. 

Fig. 6. Subtraction of the two signals in the air-gap, Iex = 30A.    

Fig. 7. FFT of the subtraction of the two signals in the air-gap, Iex = 30A. 

V. CONCLUSIONS 

In this paper, we studied the static and dynamic 
eccentricities at no load using 3D-FEM. Two 90o shifted 
magnetic induction signals in the air gap, can lead to the 
detection of the eccentricities and to differentiate their type by 
studying their harmonic content. 

In the final paper, more details related to the numerical 
model will be given. Furthermore, results in magnetodynamic 
case will be presented and discussed in order to quantify the 
effect of the damper windings currents. 
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Abstract —An FE-circuit coupled high frequency model is 
proposed to simulate electromagnetic interference (EMI) due 
to terminal overvoltage and ground current of electric 
machines and their driving circuits. The high frequency effects 
due to PWM drive were considered in the transient FE-circuit 
coupled model of the motor using a two-step procedure. First, 
the resistance in each individual winding turn is evaluated by 
time harmonic FE analysis considering skin and proximity 
effects. The capacitances between the winding were calculated 
by an electrostatic FE analysis to form a distributed 
parameter model of the winding in each conductive region. 
Second, a lumped parameter model for the conductive regions 
was obtained through matrix reduction technique. The 
lumped models of the distributed coils were connected in 
series to form a per phase winding model. The FE-circuit 
coupled model of the motor is laboratory tested in a motor 
drive to evaluate the terminal over voltages and ground 
currents. The numerical results were successfully verified by   
laboratory testing. 

I. INTRODUCTION

High frequency motor models play important roles in 
the evaluation of EMI in an integrated motor drive system. 
In earlier work by these authors, the high frequency phase 
variable model of PM synchronous motor was developed 
and implemented in Simulink environment [1]. In this 
model, the per phase distributed winding circuit was 
developed considering the high frequency effects and then 
lumped to form the high frequency winding branch. This 
branch was connected in parallel to the low frequency 
phase variable model to form the high frequency phase 
variable model which can be used for dynamic simulations.  

In this paper, the full FE model was used directly to 
couple the driving circuit rather than creating the phase 
variable model first. This can be used when the high 
frequency interactions are needed to evaluate EMI issues 
without the need for including low frequency effects. The 
model can also be used for new motor design development 
when the motor is utilized in a developmental driving 
circuit as Hardware-in-the-loop. This model can be used to 
further verify the accuracy of the previously developed 
high frequency phase variable  

The model is coupled to an external circuit to include 
various capacitances dominant under high frequency 
operation. The circuit is excited by an external voltage 
source modeled in Simulink. To simplify the circuit, the 
machine windings were divided into several sections. Each 
coil represents one section. A 2D magnetodynamic analysis 
was performed to find the resistance of each turn of the coil 
as a function of frequency while an electrostatic analysis 
was performed to find the capacitance between the various 

parts of the coil. The coupled circuit-FE model was 
exported to Simulink environment for use in the integrated 
drive system.  

II. DISTRIBUTED PARAMETER MODEL OF THE COIL

Simulations were performed on a small 3-phase, 42-V, 
10-pole, 0.28-HP, 3600-rpm, 7.8-A PM synchronous 
motor. The simulated motor model was built based on its 
actual geometry information. The individual turns in each 
coil were considered. The motor has double layer windings 
with random winding arrangement. There are four coils per 
phase; each coil has 13 turns. Therefore, each half slot 
contains 13 conductors. Each turn is made of wire gauge 
number 22. All the slots were modeled so that the effects of 
geometrical variation in the magnetic circuit on the 
machine circuit parameters can be considered. The machine 
was modeled to take into consideration the conductor skin 
and proximity effects. The resistance value at high 
frequency can be much higher than the low frequency 
value. The inductance value decreases with an increase in 
the operating frequency while the capacitance effect comes 
into effect at high frequencies.  

(a)                                           (b) 

Fig. 1 Mesh details (a) in individual turn (b) in half geometry model 

Fig. 1(a) shows the FE mesh inside each individual turn 
used to solve magnetodynamic analysis while fig. 1 (b) 
shows the FE mesh inside the half geometry model used to 
solve the transient FE analysis. The current is supplied to 
each individual turn in a coil with a set of frequency value 
ranging from 5 kHz to 1 MHz. The voltage of each turn 
was obtained to provide the impedance. Using the 
impedance, the resistance was calculated at the 
corresponding applied frequency. The same procedure was 
repeated for the turns in all other coils. The frequency range 
mentioned above covers the PWM practical switching 
frequencies and their associated harmonic components. 
Since the capacitances are dependent only on the geometry 
of the motor and less dependent on the covered PWM 
frequency range, an electrostatic analysis was performed 
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for its calculation. The machine’s core was considered as 
ground for the calculation of capacitance values to ground.  

Fig. 2 shows the distributed parameter model a coil 
where N represents the number of turns in the coil. The self 
and mutual capacitances between the various turns of the 
coil were considered. Each turn has a self capacitance and 
mutual capacitances with other turns in the coil. The 
lumping of the turns parameters in each coil was performed 
to reduce the order of the model [2]. The lumped winding 
model for each phase is shown in fig.3. In this figure, A1, 
A2, A3, A4 represent the coils in each phase. These coils 
were assigned to the FE domain to consider the high 
frequency effects in the coupled FE-circuit model. 

Fig. 2.  The distributed parameter model of a coil 

Fig.3 Lumped winding model for each phase 

The coupled field and circuit equations were solved 
simultaneously during the magnetodynamic and transient 
problems. The equations used for the coupled problem are 
as follows: 

s eH J J                               (1) 

  d
[ ][ ] [ ] [ ] (1/ ) [ ]

dtm m m m m m m mE R I L I C I dt     (2)

Where, H  is the magnetic field intensity, sJ  is the source 

current density, eJ  is the induced current density. In 

equation (2), mR  represents the resistances matrix, mL  is 

the inductances matrix, mC  is the capacitances matrix, m is

the matrix of non-linear voltage drops, mI  is the matrix of 

currents. mE  is the matrix of voltage sources.  

The resistance value of the coils was obtained from the 
FE solutions to account for the skin and proximity effects 
of each turn in the lumped model. Small value resistances 
were added to capacitances for numerical stability.  

The capacitances C1 to C5 represent the coil to ground 
capacitance while C6 to C9 represent mutual capacitances 
between different coil sections. The coil capacitances were 
obtained by lumping the turn capacitance network. The 
matrix reduction technique was used for lumping the 
parameters [2].The resulting matrix is of the order 2N 
following a process of shifting internal capacitances 
towards pre-established section nodes. Once the 
capacitances are moved to section nodes, the conductor 

resistances were lumped. Similar winding model was 
formed for each phase. 

III. EXPERIMENTAL AND SIMULATION RESULTS

A real time distributed simulation environment with the 
actual motor and drive implemented on PC-cluster was 
used for performing the experimental verification.  Results 
for overvoltage and ground current were obtained and 
compared with the simulation results.  

 (a)                                                        (b) 

Fig. 4. (a) Experimental overvoltage (b) simulation overvoltage

For simulation, the high frequency models of the 
integrated system components including inverter and cable 
in addition to the motor were built and implemented in 
Simulink. The model was tested for the motor terminal 
overvoltage and ground current. During transient 
simulation, the FE model, drive and control equations were 
solved simultaneously with the same time step. Fig. 4 
shows a comparison between experimental and simulation 
results of overvoltage. The magnitude of overvoltage is 
about 75 volts. The time period of 2µs shows the same 
number of oscillations. Thus the results show good 
agreement in terms of magnitude and frequency of 
oscillations. Both results are captured with different time 
steps since the same time step can not be maintained in 
experiment and simulation and at different instants of time. 
However, the correspondence between two is satisfactory. 
Complete results will be given in full paper. 

IV. CONCLUSION

The coupled FE-circuit electric machine model for 
simulating EMI issues in a motor drive was presented. The 
model can accurately predict the EMI caused by ground 
current and motor terminal overvoltage. Use of this 
procedure could prove economical as it would help 
designers develop new motor designs for low and high 
frequency operating conditions numerically. Using the 
proposed model, this is achieved without the need for 
repeated build and test procedures in the development 
stage.
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Abstract — The inducting coils typically used in Eddy Current 
Testing (ECT) of tubular structures, dominated by longitudinal 
dimensions, are much more effective for azimuthal than for 
longitudinal defects. This paper shows how azimuthal inducting
currents are well suited for longitudinal defects. In addition, the 
paper proposes a new concept of exciting coils, azimuthally
shaped, longitudinally displaced and suitably powered; it is 
showed how, by suitably driving the coils current, the resulting 
excitation field can be controlled in position, shape and speed in 
such a way to optimize the defect searching and sizing.

I. INTRODUCTION 
Eddy current testing is one of the most diffused methods for 
nondestructive inspection of metallurgical products. It uses a 
time varying magnetic field, designed to induce in the sample a 
suitable current pattern. Of course, the actual current 
distribution is affected by defects, eventually located in the 
sample. As a consequence, the analysis of either the resulting 
magnetic field or the impedance of the coils could provide 
useful information for the defect characterization. 

A relevant field of application of ECT is the testing of 
tubular metallic structures. The practical solution firstly 
proposed was based on the use of rotating components [1], or 
encircling coils [2]. Successively, fixed systems generating 
rotating fields have been proposed [3]-[8], and finally multi-
frequency currents have been introduced [9]. 

Most of the proposed layouts were based on the use of 
longitudinal currents, whose shape match the main direction of 
the tube. Such driving systems are well suited to localize 
azimuthal defects, because the currents they induce are in the 
longitudinal directions. 

In this paper an azimuthal induction system is illustrated and 
its effectiveness for catching longitudinal defects is 
investigated. In addition, a flexible strategy is proposed to 
drive the inducting currents with the aim of patrolling the 
suspected region, to try to localize the defect and to identify its 
main characteristics. 

It is well known that a rotating field can be created by 
driving a suitable set of longitudinal coils with a poliphase set 
of currents [11]; in similar way, here it is shown that a sort of 
traveling field can be easily produced by a poliphase set of 
currents driving a suitable set of azimuthal coils. Of course, 
each actual coil has to include both longitudinal and azimuthal 
coils, because of the needs for current closure. In the full paper 
a suitable 3D short “saddle” coil, able to highlight azimuthal 
effects, will be analyzed, while in this short version, a 
simplified 2D azimuthal coil system is used to assess the 
effectiveness of the method. 

II. PRELIMINARY RESULT 
The mathematical formulation of the problem has been 

previously reported, and can be considered rather standard [3]. 
Therefore, its description with some details will be given in the 
full version while reserving here a larger room for the system 
description and for the discussion of the preliminary results. 

In order to assess the proposed technique, a conductive 
non-magnetic tubular structure ha been considered and a set of 
18 circular coils has been introduced to induce eddy current 
maps in the tube (see Table I and Fig. 1) 

TABLE I 
GEOMETRICAL AND ELECTROMAGNETICAL CHARACTERISTIC 

Parameter Value 
Tube length 10 m 
Tube diameter 0.3 m 
Tube thickness 0.03 m 
Tube conducibility 6.0e7 S/m 
Tube permeability 1.27 10-7 H/m 
Number of coils 18 
Coils cross section 12 cm2 
Coil distance 0.1 m 
AC current frequency 200 Hz 
Current amplitude 65 A 

 
It should be noticed that the tube is long enough to neglect 

the effect of longitudinal boundary effects. In addition, the 
frequency has been fixed in such a way to provide a 
penetration depth (in order of 0.15 m) much higher than the 
tube thickness. 

 

 
Fig. 1. – Overview of the excitation system. The phase of each coil is also 

shown. 
 

When connected in opposite series, three couples of coils 
form a “three phase longitudinal polar couple”. Of course 
several polar couples can be generated by juxtaposing suitable 
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sets of six coils. In the case here described, the 18 coils are 
combined to create three longitudinal polar couples  (in Fig.1 
just one of them is reported). Such a system, if driven with a 
symmetric three-phase currents system, is able to generate a 
magnetic field traveling in longitudinal direction. 

In order to evaluate the capability of such a system to 
perform an effective ECT, the Ohmic power density related to 
the eddy currents induced in the tube has been calculated in a 
number of tube positions (Fig. 2), and it is reported in Fig. 3 
for each evaluation point. Of course, the power density shows 
a doubled frequency, because of the square of the current 
density in the power expression, and reaches its maximum just 
near the coils. Note that the higher the power density is at the 
suspected defect location, the more sensible the detection 
system becomes to perturbations induced by defects. 

 

 
Fig. 2 Test points in the tube. 

 
Fig. 3 Ohmic power density  in the test points for a travelling field 

 
However, a more general power supply system can generate 

a magnetic field distribution characterized by different shape 
and velocity. For example, the traveling field can be stopped 
if, instead of a set of three-phase currents, three in-phase 
currents are used with suitable amplitudes, and the actual 
position of the stopped field depends only on such current 
amplitudes. As an example, in Fig. 4 the power density time 
variation is shown for a field stopped in correspondence of the 
point P2 (see for comparison Fig. 3). 

 

 
Fig. 4 Ohmic power density  in the test points for a stopped field 

III. CONCLUSION  

An effective use of longitudinal and azimuthal inducting 
currents combined with independent control of the driving 
currents allows to increase the ECT performance in testing 
tubular structure. In the full paper, a detailed description of the 
mathematical model for the proposed excitation system will be 
given, and 3D saddle coils will be used. 
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12. DEVICES AND APPLICATIONS 

Abstract — Many different converter topologies have been 
developed to reduce the converter construction cost by using 
minimum number of switches. Among of the solutions, four-
switch converter topology with a novel PWM control technique 
based on the current controlled PWM method is treated as a 
good solution. In this paper, one introduces a two dimensional 
time-stepped voltage source finite-element method (FEM) to 
analyze the characteristics of a Flux-Reversal Machine (FRM) 
with the 4-switch converter. To prove the proposed 
computational method, the digital signal processor (DSP) 
installed controller and the prototype FRM are built and 
experiments are performed. 

I. INTRODUCTION 
Because the principle of operation is similar to the brushless 

DC machine (BLDCM), 3-phase Flux-Reversal Machine 
(FRM) needs quasi-square current waveforms, which are 
synchronized with the back-EMF to generate constant output 
torque and have 120° conduction and 60° non-conducting 
regions. Also, at every instant only two phases are conducting 
and the other phase is inactive. This control action can be 
realized using 6-switch converter topology. However, these 
days, many different converter topologies have been 
developed to reduce the converter construction cost by using 
minimum number of switches. One of them is 4-switch 
converter topology, which is shown in Fig. 1 with a novel 
PWM control technique based on the current controlled PWM 
method [1]. However, the FRM under 4-switch converter is 
supplied by different voltage level, so that the load current are 
reduced by 3 with respect to the current obtained when the 
same voltage and the 6-switch converter is used. Also, due to 
supplying voltage irregularity and lack of a phase control 
freedom, the phase current can be much more fluctuated, 
resulting in torque ripple. Therefore, when the 4-switch FRM 
is used for a certain application, one should understand and 
analyze the overall performance with respect of torque ripple 
and iron losses, compared with 6-switch FRM. 

In this paper, the authors introduce the computational 
method to analyze the characteristics of the FRM under the 4-
switch converter using a two dimensional time-stepped 
voltage source finite-element method (FEM). To produce the 
4-switch converter and perform the experiment, the digital 
signal processor (DSP) installed controller and the prototype 
FRM are built. From the analysis and experimental results, it 
can be verified that the proposed analysis method is suitable to 

analyze a FRM under 4-switch converter. 

+

−

+

−

 
Fig. 1. 4-switch 3-phase FRM drive system  

II. FINITE ELEMENT FORMULATIONS 
At each instant, the interaction between the 4-switch 

converter circuitry and electromagnetics is achieved by 
defining the winding current in terms of the electrical circuit 
parameters [2]. The actual phase currents of the 4-switch FRM 
are controlled by hysteresis current controller. Therefore, the 
detailed voltage equations taking account of the current 
regulation using hysteresis controller should be derived. 

A. Voltage Equation when current is flowing through 
phases B and C 
With reference to Fig 1, consider a 60-degree period when 

current is flowing through phases B and C. The switch S4 is 
turned on and off according to the current regulation in this 
mode, so that the flow of current can be categorized into four 
cases as shown in Figs. 2. Fig. 2(a) and (b) show the current 
flows at the commutation instant when switch S4 is turned on 
and off, respectively. In these cases, the current continues to 
flow in open phase A due to its inductance L . As the result, 
two voltage equations can be derived as: 

 

1V
dt

d
dt
diLiR

dt
d

dt
diLiR bb

lbbb
cc

lccc =
Φ

−++
Φ

++        (1) 

2V
dt

d
dt
diLiR

dt
d

dt
diLiR aa

laaa
cc

lccc =
Φ

−++
Φ

++        (2) 

 

where R is the resistance of phase winding, lL  is the 
leakage inductance of the stator coil ends and Φ  is the flux 
linkage of phase winding. 1V  and 2V  represent voltage and 
Table II shows there values. CEV  and FV  are the forward 

A Study on the FE Analysis of a Flux-Reversal 
Machine under 4-switch converter 

Hyun-Soo Kang1, Tae Heoung Kim2, and Byoung-Kuk Lee1 
School of Information and Communication Engineering, Sungkyunkwan University 

Suwon-si, 440-746, Korea 
Department of Electrical Engineering, Engineering Research Institute, Gyeongsang National University 

Jinju-si, 660-701, Korea 
Ktheoung@gnu.ac.kr 

987

PD3.2



12. DEVICES AND APPLICATIONS 

voltage drop across the transistor and the diode, respectively. 
If the current in the open phase A decays to zero and switch 

S4 is turned on and off, only the main voltage equation exists 
as shown in Figs. 2(c) and 2(d). In these cases, the voltage 
equations are identical to (1). 

  

 
(a) S4=On, Ic≠0                                  (b) S4=Off, Ic≠0 

 

 
(c) S4=On, Ic=0                                  (d) S4=Off, Ic=0 

Fig. 2.  The flow of current 

B. System Matrix 
After deriving the circuit voltage equations at each Mode, 

the backward difference method is adopted to treat the time 
derivative terms and to construct system matrix. 

In the case there is one current loop as shown in Figs. 2(c) 
and (d), the system matrix can be expressed as (3). In the case 
of having two circuit voltage equations as shown in Figs. 2(a) 
and (b), the system matrix can be obtained as (4). 
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where, S is the stiffness matrix, Q and F are the matrix 
related to the stator winding and back-EMF, respectively. G is 
the forcing term by a magnet. 

III. RESULTS AND DISCUSSIONS 
Fig. 3 compares the measured and the calculated current in 

each phase. It is noted that the experimental results closely 
match the simulation ones of the proposed analysis method. 
As phases A and B are activated, these phases are supplied by 
the full of dc-link voltage, so that during one PWM period, the 

current is increased more than the other operating modes. 
Moreover, independent control of phases A and B results in 
current ripple in phase C during the silent periods, resulting 
from the difference between the phase A and phase B currents. 
Even though it contains more current ripple than case of the 
six-switch converter, it can be acceptable and also can be 
reduced by controlling the hysteresis band size. From the 
detailed investigation of the experimental results, it is noted 
that the authors successfully utilize the four-switch converter 
topology to drive the 3-phase FRM and the validity of the 
developed direct current controlled PWM is fully verified. 

 

   
(a) Simulation (Phase A)                (b) Experimental (Phase A)  

 

   
(c) Simulation (Phase B)                (d) Experimental (Phase B)  
 

   
(e) Simulation (Phase C)                (f) Experimental (Phase C)  
Fig. 3.  Comparison of current waveforms (0.5A/Div.) 

IV. CONCLUSION 

In this paper, a 2-dimensional time-stepped voltage source 
finite element method in 4-switch converter system has been 
proposed. To prove the propriety of the proposed analysis 
method, the prototype FRM and a DSP installed experimental 
devices were equipped and the experiment has been 
performed. As a result, accurate solutions can be obtained by 
the proposed method and the 4-switch converter topology with 
a direct current controlled PWM can be successfully utilized 
to drive the 3-phase FRM. 
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Abstract—In this paper, we propose a novel method that
improves the accuracy of the estimation of neural electrical
dipoles when solving the EEG inverse problem. A spherical head
model is used where we limit the influence of the unknown
conductivity brain-skull ratio on the inverse problem. We redefine
the cost function that is used in the EEG problem where only
relevant information is taken as input in the inverse problem.
In contrast to previous approaches, weighting factors are used
so that the impact in the inverse problem of each electrode is
strategically chosen in order to reduce the error made on EEG
dipole source localization. The proposed method enhances the
source localization accuracy from approximately 9mm to 1mm
for dipoles near the edge and from 2.1mm to 0.4mm for dipoles
near the center of the brain.

I. INTRODUCTION

ELECTROENCEPHALOGRAPHY (EEG) is a medical
imaging technique that neurologists use to investigate

neurological disorders. Using metal electrodes, brain activity
can be recorded non-invasively. EEG source analysis is par-
ticularly useful in the diagnosis of neurological disorders like
epilepsy. Indeed, the determination of the origin of specific
EEG waveforms helps neurologists to pinpoint the origin of
the epilepsy and to evaluate the patient for resective surgery.
However, when coupling the non-invasive EEG measurements
to a numerical method, inaccuracies in the neural source
localization are introduced. Indeed, the accuracy of EEG
source analysis is mainly determined by the noise in the
measurement and the accuracy of the numerical head model
parameters. Also, the source modelling of the brain activity
introduces an error. Since the brain electrical activity of
patients suffering from epilepsy are characterized by a limited
number of electrical dipoles [1], we do not investigate the
influence of the used source model. The head model on the
other hand has a large impact on the solution of the EEG
inverse problem where important errors are introduced by
the uncertainties of the values of the electrical conductivity
of the brain and the skull. The quantitative values of the
electrical conductivity of the brain and the skull remain a very
important parameter that attract a lot of debates in EEG source
analysis field, see e.g. [2], [3]. In numerical methods, the brain
to skull ratio of the conductivity is the important parameter
and may vary between 1/9 to 1/60. This paper presents a
novel numerical scheme, the so-called Reduced Conductivity
Dependence (RCD) method, that minimizes the influence of
the conductivity uncertainty on the localization errors. This
method introduces a selection procedure of the EEG electrodes

that are minimally influenced by the conductivity values. We
validate the method onto a widely-used approximation of the
head: the semi-analytical spherical head model. Comparisons
are made with traditional least-squares minimization methods.
For simplicity of analysis, we impose that the neural activity
is represented by a single electrical dipole.

II. EEG SOURCE ANALYSIS

A. Forward problem

The forward problem starts from a given electrical dipole
and calculates the potentials at the electrodes. For this, the
brain to skull ratio of the conductivity X needs to be provided.
The spherical head model is a widely-used approximation
of the head where the head is represented by three spheres:
the inner sphere represents the brain, the intermediate layer
represents the skull and the outer layer represents the scalp.
The forward problem needs to solve the Poisson’s equation:

∇ · (σ(r)∇V(r)) = d δ(r − rd) (1)

with σ(r) the place dependent conductivity determined by X ,
V(r) the place dependent potential, d the dipole orientation
vector (with intensity I = �d�) and rd the dipole location
vector. δ(.) is the three-dimensional delta Dirac function. An
analytical expression for the potential values can be calculated
using [4]. In this study, a standard configuration of m = 27
electrodes is used. For given rd and dipole orientation d,
the electrical potential values at the given electrodes can be
calculated: Vm(rd,d) ∈ R

m×1. The potential values are a
linear function of the dipole orientation: Vm = L(rd) · d with
L ∈ R

m×3 the so-called lead field matrix.

B. Traditional solution of EEG inverse problem

The aim of the EEG inverse problem is to start from
measured EEG potentials Vmeas ∈ R

m×1 and to recover the
neural dipole location r∗d and orientation d∗. This is carried out
by minimizing a cost function, the so-called relative residual
energy (RRE):

{r∗d,d
∗} = arg min

rd,d
RRE(rd,d) (2)

with

RRE(rd,d) =
�Vmeas − Vm(rd,d)�

�Vmeas�
(3)

where ||.|| is the L2 norm. The number of parameters in
this least-squares cost function can be reduced by considering
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the optimal dipole components: dopt = L† · Vmeas with L†

the Moore-Penrose pseudo inverse of the lead field matrix.
Equation (3) becomes then, see e.g. [5]:

RRE(rd) =
�Vmeas − L(rd)L(rd)†Vmeas�

�Vmeas�
. (4)

The widely Nelder-Mead simplex method is used here to find
the global minimum of the Relative Residual Energy (RRE).

III. REDUCED CONDUCTIVITY DEPENDENCE (RCD)
METHOD

A. Description of the method

The RCD method proposes an alternative cost function that
needs to be minimized for EEG source analysis. The main
idea lies in the selection of electrodes that provide useful
information in the sense that the electrodes which are selected,
are minimally affected by the unknown conductivity in the
forward model. Indeed, depending on the location of the
electrical dipole and its orientation, some potentials are highly
affected by X and others are not. The selection procedure
needs to be performed in each iteration k of the minimization
scheme, in this case the Nelder-Mead simplex method. In
the following, we explain the basic steps taken by the RCD
method.

Step 1: Start value r(0)

d is evaluated in the forward model,
yielding the lead field matrix L(r(0)

d ), and simulated potential
values Vm(r(0)

d ) = L(r(0)

d )L(r(0)

d )†Vmeas. Initialize k = 0.
Step 2: Calculate the sensitivity W and the normalized

sensitivity w of the simulated electrode potentials to the
conductivity for a certain conductivity ratio X0:

W =
∂Vm(r(k)

d )

∂X
|X=X0

, w =
|W|

�W�
(5)

In the case of the spherical head model, W and w can
be calculated analytically. When considering more complex
realistic head models, this can be calculated by numerical
differentiation.

Step 3: Selection of least sensitive electrodes, based on (5).
Largest values are not considered in the EEG inverse problem,
since their potential values are affected by the conductivity. A
new set of potential values are obtained: Sm ∈ R

N×1 and the
corresponding set of measured EEG potentials are considered
Smeas ∈ R

N×1. N is the number of selected potentials.
Step 4: Calculation of RCD cost function:

RCD(r(k)

d ) =
�Smeas − Sm(r(k)

d )�

�Smeas�
(6)

Step 5: Based on (6), the next iterate r(k+1)

d can be
calculated. If the termination criteria of the minimization
procedure are met, i.e. RCD(r(k)

d ) reaches tolerance, then stop
the algorithm. Otherwise, go to step 2.

B. Results and discussion

The efficiency of the RCD method is illustrated by perform-
ing Monte Carlo simulations. Starting from known dipole lo-
cations �r and a given conductivity ratio X0, we compute EEG
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Fig. 1. Plot of Conductivities vs Error with X0 = 1/25 (left) and for several
noise levels (right) at X=1/40, for dipoles located near the center of the head.

potentials. Gaussian noise is added to these potentials in order
to simulate real measured EEG potentials. Dipole locations �r
are then estimated using the traditional method, i.e. solution
of (2), and estimated using the RCD method, explained in
III.A. The accuracy of both methods is determined by the
error E = ��r−�r� for different values X and noise levels. The
white zero mean Gaussian noise with standard deviation Σ has
a noise level defined as n = Σ

VRMS

with VRMS the root mean
square of V. Fig. 1 illustrates the decrease in localization error
due to the use of the RCD method (with varying number of
selected potentials N=4, 6, 8, 10 in step 3 of III.A.) compared
to the traditional method (N=27). A reduction of the error is
introduced due to the use of the RCD method.

For dipoles located near the center of the head, the loca-
lization error can be reduced from 2 mm to 0.4 mm, while
for dipoles located near the edge of the head from 9 mm
to 1 mm. These results are obtained when using X0 = 1/25
for constructing the “measured” electrode potentials and when
assuming X = 1/40 for solving the inverse problem. The
influence of noise has almost no effect on the relative locali-
zation error between the RCD and the traditional RRE method.

IV. CONCLUSION

This paper proposes a method that decreases the error
introduced by the uncertainties of the conductivity. The results
show that the EEG inverse problem can be solved with
considerably improved quality, as compared to the traditional
inverse solutions.
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Abstract — One of the most dominant parasitics causing even 
fatal problems in PWM inverters is the parasitics of IGBT 
modules. In this paper, the parasitic parameters of a high-power 
multi-chip IGBT module are modeled and extracted. The 
extraction approach is verified by comparing the S-parameters of 
the proposed network model with the S-parameters of the 
electromagnetic model of the module.  

I. INTODUCTION

PWM inverters are nowadays the most commonly used 
adjustable speed drives (ASDs) mainly because of superior, 
dynamic performance benefit of low cost, fast switching 
insulated gate bipolar transistors (IGBTs). High switching 
speed of IGBTs, however, induces high rates of change of 
voltage and current with respect to time 

which, in turn, increase the action of parasitic components in 
printed circuit boards (PCBs) and packages of power 
inverters. These parasitics are reported to have severe negative 
effects on the electrical efficiency and electromagnetic 
compatibility of ASDs [1]. Therefore, it is necessary to obtain 
high frequency (HF) electrical models of ASDs including 
dominant parasitics at the early design stage.  

( / ,  / )dv dt di dt

Parasitic elements of IGBT modules are one of the major 
parasitics deteriorating the good performance of PWM 
inverters. In this paper, these parasitics are modeled for an 
IGBT module.  

II. MODELING AND EXTRACTION OF PARASITICS

A. Six-pack IGBT Module 

An IGBT module consisting of six chips, three IGBTs and 
three anti-parallel diodes, is studied. Fig. 1 shows a picture of 
the module. 

Fig. 1. Six-pack IGBT module  

B. High Frequency Electromagnetic Analysis 

The electromagnetic (EM) analysis is conducted using the 

frequency domain solver of CST MW Studio® capturing the 
3D geometrical effects and the high frequency effects, such as 
skin and proximity effects, of the design. Table I summarizes 
the details of the computational analysis. The simulation 
model is illustrated in Fig. 2. 

TABLE I 
HIGH FREQUENCY ELECTROMAGNETIC ANALYSIS 

MICROWAVE STUDIO® 
Solver Type Frequency Domain Solver 
Mesh Type Tetrahedral Mesh 

Adaptive Mesh Refinement Yes
Number of Mesh Cells 9 5e≈ +

Frequency Range from 0.1 MHz to 10 MHz

IGBT chip

Diode chip

Terminal Leads

Discrete Ports

Ceramic
Substrate

Packaging 
(Drawn as Wireframe)

Copper Traces

Wire Bonds

Copper
Baseplate

Fig. 2. EM model of the IGBT in CST MW Studio® 

C. Modeling and Parasitic Extraction Approach 

The parameter extraction tool of CST MW Studio® based 
on the transmission line method is employed to compute the 
parasitics of the structure. This tool extracts a SPICE-
compatible network model consisting of lumped R, L, C, G, 
M elements from previously calculated S-parameters [2]. As 
S-parameters represent the high frequency behavior of a 3D 
EM model equivalently, it is expected that the derived 
circuitry responses nearly the same as physical device at the 
input/output terminals. The proposed network model of the 
module is depicted in Fig. 3. Table II gives the extracted 
parasitics. The typical values of the two circuit parameters 
reported in the data sheet of the module are displayed in Table 
III [3]. The computed inductances are consistent with the 
typical value of the stray module inductance. The typical lead 
resistance is obviously smaller than the extracted ones. The 
HF effects can lead to such large differences in the ac 
resistance as the frequency increases.
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Fig. 3. Parasitic network model 

TABLE II 
PARASITIC PARAMETERS COMPUTED AT 1 MHz 

First Phase Leg Second Phase Leg Third Phase Leg 

1T
R 1.94 2 e − Ω

3T
R 6.94 3 e − Ω

5T
R 1.38 2 e − Ω

1T
L 3.21 8 He −

3T
L 2.45 8 He −

5T
L 2.92 8 He −

1T
C 4.43 11 Fe −

3T
C 4.93 11 Fe −

5T
C 4.97 11 Fe −

1D
R 2.02 2 e − Ω

3D
R 7.26 3 e − Ω

5D
R 1.44 2 e − Ω

1D
L 3.37 8 He −

3D
L 2.60 8 He −

5D
L 3.09 8 He −

1D
C 4.43 11 Fe −

3D
C 4.93 11 Fe −

5D
C 4.97 11 Fe −

1G
R 9.83 3 e − Ω

3G
R 8.49 3 e − Ω

5G
R 1.06 2 e − Ω

1G
L 2.59 8 He −

3G
L 2.48 8 He −

5G
L 2.69 8 He −

1G
C 9.21 11 Fe −

3G
C 10.2 11 Fe −

5G
C 10.3 11 Fe −

2T
R 3.42 2 e − Ω

4T
R 3.11 2 e − Ω

6T
R 4.65 2 e − Ω

2T
L 3.72 8 He −

4T
L 3.64 8 He −

6T
L 3.95 8 He −

2T
C 1.78 11 Fe −

4T
C 2.34 11 Fe −

6T
C 2.4 11 Fe −

2D
R 3.44 2 e − Ω

4D
R 3.15 2 e − Ω

6D
R 4.63 2 e − Ω

2D
L 3.81 8 He −

4D
L 3.76 8 He −

6D
L 3.97 8 He −

2D
C 1.78 11 Fe −

4D
C 2.34 11 Fe −

6D
C 2.4 11 Fe −

2G
R 1.82 2 e − Ω

4G
R 1.21 2 e − Ω

6G
R 9.73 3 e − Ω

2G
L 3.34 8 He −

4G
L 2.75 8 He −

6G
L 2.57 8 He −

2G
C 1.12 11 Fe −

4G
C 1.04 11 Fe −

6G
C 0.38 11 Fe −

TABLE III 
LUMPED ELEMENT PARAMETERS OF THE IGBT MODULE UNDER 

CONSIDERATION

Stray inductance module sCEL 35 nH

Chip module lead resistance, terminals CC'+EE'R 4 mΩ

A. Verification of Parasitic Extraction Approach 

As the analytical calculation of parasitics for such a 
complex geometry is too complicated, the constructed 
parasitic circuit model is verified numerically. For this 

purpose, the circuit model is implemented in CST Design 
Studio™. The S-parameters for the case, when the transistor 
labeled as T1 is on and the current flows from the power 
supply to the AC motor, are computed. These results are 
presented in Fig. 4 together with the S-parameters of the EM 
model for the same case. The network parameters extracted at 
1 MHz are used. Thus, the agreement between the results is 
best at 1 MHz. At higher frequencies, the agreement is less 
good due to the frequency dependence of the extracted 
lumped element parameters. 

P CD5 CT1  CT3  CT5 CD1 CD3 
 RD1  RD3   RD5  RT3 RT1    RT5 

 LD1   LD5    LD3   LT1 LT3   LT5 

(a)

(b) 

Fig. 4. S-Parameters of (a) the EM model and (b) the parasitic network model 

III. CONCLUSIONS

A parasitic network model of an IGBT module is 
developed using the network parameter extraction tool of CST 
MW Studio® based on transmission line models. The 
electrical model and the extracted parameter values are 
verified by comparing the S-parameters of both the 
electromagnetic and the circuit model. A more detailed 
discussion of the parasitic extraction technique and further 
results will be presented in the full paper. 
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Abstract — Different methods for modelling the motions, 
torques and losses in a permanent-magnet shaft coupling are 
studied. The containment shroud of the coupling is a 
homogeneous conducting cylinder. Its motion can be modelled 
using the motional electromotive force, i.e. the v×B term. The 
moving-band technique is used for modelling the relative motion 
of the magnet cylinders of the coupling. Using the motional 
electromotive force for the shroud gives reliable results while the 
computational effort is kept at minimum. The stiffness and 
damping coefficients of the coupling are obtained from a 
numerical impulse response test. 

I. INTRODUCTION

Fig. 1 show a cross-sectional view of a magnetic shaft 
coupling. These couplings are used when pumping a reactive 
fluid and absolutely hermetic handling is required. The 
outermost cylinder is composed of a ferromagnetic yoke, 
permanent magnets and a stainless steel cover over the 
magnets for their protection. Typically, the outer part is 
mechanically connected on the shaft of an electrical motor and 
rotated say at 1500 rpm. The thin stationary cylinder in the 
middle is the containment shroud. It makes the hermetic seal. 
The shroud material is stainless steel resistant to the 
aggressive fluid. It should also have a large specific resistance 
to reduce the eddy-current loss. The innermost cylinder is a 
mirror image of the outermost one and made of the same 
materials. The inner part is typically connected on a rotor shaft 
of a pump. The field from the permanent magnets provides the 
magnetic coupling and torque transfer from the electrical 
motor to the pump. The magnets are either of NdFeB or SmCo 
type depending on the operation temperature of the coupling. 

Fig. 1. Cross-sectional view of a permanent-magnet coupling. The thin shroud 
in the middle is moving with respects to the other parts at a speed of 13 m/s 
(downwards). 

This cylindrical coupling arrangement has some challenge 
from the modelling point of view as all the three cylinders 
may be in relative rotation with respect to each other. The 
shroud is a simple homogeneous cylinder, and there are 
several ways of modelling its motion. Davat et al. [1] have 
studied motion within finite element analysis, and Sadowski et 
al. [2] have studied the torque computation, among others. 
Similar methods are also studied in the present paper in 
association with the permanent-magnet shaft coupling.  

The aim is to find the most efficient methods of magnetic 
field analysis for the structural optimisation of this type of a 
coupling. In addition, the torsion oscillations of the coupling 
and the passive electromagnetic damping of these oscillations 
are studied. 

II. METHODS OF ANALYSIS

A. Magnetic field analysis 
The length to pole-pitch ratio of the coupling studied is 

about 16. Thus, the magnetic field of the coupling can be 
assumed to be two-dimensional. The magnetic vector potential 
A and finite element method are used. 

B. Modelling motion and computing the torques 
The motion of the shroud is modelled either by using the 

motional electromotive force v×B or by applying the moving-
band technique [1] in the air gaps on both sides of the shroud. 

Fig. 2 shows a finite element mesh for the moving-band 
technique. It is built up of five sub-meshes, rigid ones for the 
three cylinders and changeable ones for the two air gaps. The 
vector potentials of the sub-meshes are coupled through 
periodic boundary conditions. Thus, the field of each sub-
mesh region is modeled in its own frame of reference and the 
vector potential is forced to be continuous from mesh to mesh 
by the periodic boundary conditions. The air gaps on both 
sides of the shroud are discretised in two layers of elements. 
One of the element layers is used for the rotation, the other 
one for torque computation. 

The torques are calculated applying the equation [3] 

ag
0 o i( ) r

S

lT rB B dS
r r φµ

=
− ∫  (1) 

on the non-changing finite element layers chosen for the 
purpose (Fig. 2). l is the axial length, ro the outer radius and ri

the inner radius of the air gap. Br and Bφ are the radial and 
circumferential components of the flux density and r is the 
radius. Sag is the cross-sectional area of the air gap. 
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Element layers for 
torque computation

Element layers for
rotating the rotors

Fig. 2. Second-order isoparametric elements were used for the analysis. 

C. Analysis of losses 
The eddy-current losses induced in the conducting 

structures of the coupling are obtained by integrating the 
eddy-current loss density 

2
2

e
1p

t
σ

σ
∂⎛ ⎞= = − + ×⎜ ⎟∂⎝ ⎠
AJ v B  (2) 

over the conducting volume. The eddy-current loss is the only 
component of loss included in the present analysis. 

D. Torque stiffness and damping 
To study the damping characteristics of the coupling 

within numerical analysis one can either apply harmonic 
torsion-angle excitation or a numerical impulse response test 
[4]. In the harmonic excitation, the inner magnet cylinder is 
forces to torsion oscillation at a single frequency. In the 
impulse test, the innermost cylinder is displaced from its 
stationary position for a short period of time and returned back 
to its original position. The excitation and response signals are 
recorded and Fourier transformed, and when the transformed 
signals are divided frequency by frequency, a frequency 
response function based on numerical analysis is obtained. 
The advantage of the impulse response test is that a wide 
range of frequencies is excited and modelled in a single 
simulation. The harmonic excitation test has to be repeated for 
each frequency of interest. 

The stiffness of the coupling K (spring constant) is related 
to the real part of the frequency response function and the 
damping coefficient C to the imaginary part [4]. 

III. RESULTS

Table 1 shows the results computed for the rated steady-
state operation point of the coupling. In a reference frame 
fixed to the outer cylinder, the field is a dc field and it can be 
solved by a dc solver using the motional electromotive force 
for the shroud. In addition, both the electromotive-force 
formulation and moving-band technique can be used within 
time-discretised analysis. The three methods give almost 
similar results. The power balance seems to be fulfilled 

slightly better by the two cases in which the motional 
electromotive force is used. The time step used was 0.1 ms. 
The power balance of the moving-band technique can be 
improved by using a shorter time step but the simulation time 
increases accordingly. 

Fig. 3 shows the frequency response function obtained 
from the numerical impulse test. This type of a coupling has 
very little dynamics within the range of its potential torsion 
oscillations. The stiffness coefficient K is about 8000 Nm/rad 
and the damping coefficient C is only 0.17 Nms/rad2.

TABLE I 
RESULTS FOR THE RATED STEADY-STATE OPERATION OF THE COUPLING.

dc solution time-
discretised

time-
discretised

motional emf motional emf moving band

Torque in the outer air gap [Nm] 320.58 320.58 320.65 
Torque in the inner air gap [Nm] 298.73 298.73 298.67 

Shaft power on the shroud [W] 3431.98 3431.98 3452.87 
Resistive loss in the shroud [W] 3432.1 3432.1 3411.44 

Error in power balance [W] –0.12 –0.12 41.43 
Error percent [%] 0.00 0.00 1.21 
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Fig. 3. Frequency response between the torque transmitted by the coupling 
and the torsion angle. The continuous curves are from the numerical impulse 
test, the dots from time-harmonic torsion-angle excitation. 

IV. CONCLUSION

The motional electromotive-force formulation gives good 
results when modelling the motion of the shroud of a magnet 
coupling while the computational effort is kept at minimum. 
The results from the moving-band technique, a method 
validated by measurements in several other problems, verify 
the results of the motional electromotive-force formulation. 
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Via Gradenigo 6/A, 35100 Padova, Italy

bettini@uniud.it, ruben.specogna@uniud.it, stella@unipd.it,trevisan@uniud.it

Abstract— We present a model of the cathodic region in a Pro-
ton Exchange Membrane (PEM) fuel cell, where a segmented elec-
trode is considered. The model, based on the discrete geometric
approach, couples a discrete formulated steady state current con-
duction problem in a non isotropic medium with electrochemical
reaction at the catalyst layer described by means of the Boutler-
Volmer equation. The model allows to analyze either the constant
voltage operation or the constant current operation of the fuel cell.

Index Terms—PEM fuel cells, Steady state current conduction,
Discrete geometric approaches.

I. INTRODUCTION

During the last decade the idea of a sustainable development
based on eco-compatible technologies has taken more and more
relevance, with particular attention to the energy production by
clean, efficient and low impact processes, such as the chem-
ical processes within the fuel cells, [1], [2]. These devices
produce electric power by direct conversion of hydrogen or an
aqueous solution of methanol. Fuel cells are an important tech-
nology for a potentially wide variety of applications including
auxiliary power, transportation power, and stationary power for
buildings and other distributed generation applications. These
applications are encountered in a large number of industries
worldwide. Among a variety of fuel cells available, proton ex-
change membrane (PEM) fuel cells are considered to be most
suitable for transportation and portable applications due to at-
tractive features like low operation temperature, high energy
density and efficiency. In this context, a correct acquisition in
situ of the parameters that determine their functioning, requires
the implementation of mathematical models that could remark-
ably contribute to the interpretation of experimental results and
to the determination and optimization of useful geometric con-
figurations to further optimize their performance.

One of the aspects that needs to be improved in a typical
PEM fuel cell is to achieve an higher average current density at
any given operating cell voltage. On the other hand, uniformity
of current density distribution across the entire active area is
crucial for performance optimization.

In the electrochemical reactions of the PEM fuel cells, hy-
drogen (or methanol) at the anode provides protons, freeing
electrons in the process that must pass through an external cir-
cuit to reach the cathode. The protons, which remain solvated

with a number of water molecules, migrate, through the mem-
brane, to the cathode to react with oxygen and the returning
electrons. Water is subsequently produced at the cathode. In a
PEM, Nafion is used as the membrane placed between the an-
ode and the cathode. Furthermore, it is also employed as an
important component of the active layer, where the catalyst is
present.

The aim of this paper is to develop a numerical simulation
model, based on Discrete Geometric Approach, [3], [4], [5], of
the electronic conduction in the so called Gas Diffusion Layer
(GDL) region of the PEM fuel cell attached to a segmented
graphite current collector region, concurring to analyze the po-
tential distribution in the cathodic region, [6], [7]. From the po-
tential distribution it is straightforward to compute the current
density distribution in order to estimate its degree of uniformity
through the entire active area of the electrodes. In this way, it is
possible to increase the current density for a given working cell
potential.

II. A DISCRETE GEOMETRIC MODEL

We propose a 2D discrete geometric model of the cathodic
region, where electronic conduction occurs; we model a por-
tion of the periodic structure corresponding to a segmented
electrode fuel cell. We denote with D the domain of interest,
consisting of a GDL region DGDL and one half of two adja-
cent graphite current collectors plates Da, Db respectively sep-
arated by an insulating region Di, Fig. 1. The upper part of the
boundary of DGDL region is in contact with the catalyst layer,
where electrons react with protons during the electrochemical
reaction; the catalyst layer is modeled here as a zero-thickness
region. We introduce in DGDL ∪Da ∪Db a pair of interlocked
grids, one dual of the other, where the primal grid consists of
nodes n, edges e, faces f and volumes v, [4], [5]; the volumes
are prisms with a triangular base. The dual grid is obtained
from the primal by means of the barycentric subdivision and it
consists of dual volumes ṽ, dual faces f̃ , dual edges ẽ and dual
nodes ñ. Since the problem is 2D and electric E and current
density J vector fields are in a plane, we consider the projec-
tion on a plane of such a pair of interlocked grids; therefore the
primal volumes coincide with the triangles of the mesh and the
primal faces coincide with the edges of the mesh.
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Fig. 1. Geometry of the 2D model of a portion of the periodic structure corre-
sponding to a segmented electrode fuel cell; the draw is not to scale.

The electron current Isn across a dual face f̃n, in a one to one
correspondence with node n in the catalyst layer (refer to Fig.
1), can be modeled according to Boutler-Volmer equation1 [6],
[7]

Isn(Vn) = −|f̃n|J0(10[(Vn−E0)/ηc] − 10[−(Vn−E0)/ηc]), (1)

where E0 is the equilibrium potential characteristic of the elec-
trochemical reaction, ηc is the cathode Tafel slope at 30 C, J0

is the apparent exchange current density and |f̃n| is the area of
the dual face f̃n; Isn(Vn) is a non linear function of the electric
potential Vn in a neighborhood of node n.

Next, we can formulate the steady state current conduction
problem according to the Discrete Geometric Approach, [8],
[9] as

−(GTσGV)i − (Is(V))i = 0, (2)

where V is the array of the electric scalar potentials Vi associ-
ated with a primal node ni, G is the incidence matrix between
the orientations of the a primal edge and a primal node, σ is a
square matrix of dimension N2 –N being the number of primal
nodes– representing a discrete counterpart of the constitutive re-
lation at continuous level J = σE, [8], [9], [10]; in the case of
DGDL region, it is important to note that the conductivity tensor
σ is diagonal, but it represents an anisotropic conductivity along
orthogonal directions (σxGDL = 0.785 S/cm, σyGDL = 3.14
S/cm), while the conductivity of the bulk graphite collector re-
gions Da, Da is isotropic, σDa,b

= 670 S/cm. The subscript
(x)i denotes the i-th entry of the array x, in a one-to-one cor-
respondence with the node ni; if the node ni belongs to the
catalyst layer, then (Is(V))i is the current crossing the dual
face f̃i corresponding to the node ni; the entries of (Is(V)) are
null for any node not belonging to the catalyst layer. Boundary
conditions must be considered in addition along the la, lb lines,
Fig. 1; the potential is unknown along the catalyst layer. Sym-
metry boundary conditions on the pair of lateral sides of D are
considered in addition.

III. NUMERICAL RESULTS

We will analyze the potential distribution in the cathodic re-
gion of a segmented electrode cathode of a PEM fuel cell, by

1This model accounts for various factors like local membrane hydration state,
reactant and product concentration, temperature, etc. affecting the electrochem-
ical reactions in a fuel cell.

considering a portion D of the periodic current collector struc-
ture with the geometry given in Fig. 1. We solved the non-
linear system (2) by means of a Newton-Raphson method. As
boundary condition we implemented the so called constant volt-
age operation of the fuel cell, where the potential of the primal
nodes on la, lb is imposed as Vla = Vlb = 0.695 V. In the full
paper, we will also show the so called constant current opera-
tion, where the total current crossing dual faces along la, lb are
imposed and consequently the potential Vla , Vlb of the equipo-
tential interfaces la, lb is computed.

The final potential distribution in DGDL∪Da∪Db is shown
in Fig. 2. The obtained results are in a good agreement with
those reported in literature, but obtained by means of a finite
difference method, [7].
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Fig. 2. Part A): The resulting potential distribution along the catalyst layer
is shown. Part B): the resulting overall potential distribution in the 2D region
DGDL ∪Da ∪Db is depicted.
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12. DEVICES AND APPLICATIONS 

Abstract — This paper presents a magnetic circuit modeling of 

closed loop Hall-effect current sensors based on a magnetic 

equivalent circuit which could be simulated with a circuit type 

simulator software (PSPICE model). First, the principle of 

measurement of the closed loop Hall-effect current sensors is 

presented, Then, the magnetic equivalent circuit (MEC) modeling 

justified by the engineers’ model needs is elaborated. Finally the 

parameters identification protocol based on 3D Finite-Elements 

(FE) simulations and simplex optimization method is explained.  

I. INTRODUCTION 

The closed loop Hall-effect current sensors [1] can 

measure all kinds of current from DC to several tens of kHz 

with a galvanic insulation between the primary current and the 

measuring signal. The current sensor must have a measuring 

signal directly proportional to the current to be measured. In 

order to improve current sensors accuracy, frequency 

bandwidth or magnetic immunity, engineers require specific 

models able to reproduce signals with a good accuracy in a 

short time in order to test many improvement ideas. A specific 

model which can be implemented in circuit-type simulator 

software has been created in order to help engineers to 

improve the sensors performances. 

II. PRINCIPLE OF MEASUREMENT 

The current sensor main parts are represented in Fig.1. 

 

Fig. 1 : Current sensor main parts 

The primary current ( pI ) passing through the sensor creates a 

magnetic flux φ . This magnetic flux is concentrated by the 

magnetic core. The Hall probe placed inside the air-gap of the 

core provides a voltage proportional to the magnetic flux 

denisty. The electronic board converts this voltage into a 

secondary current. This secondary current is then, at any time, 

proportional to the primary current following (1), ( pN , sN : 

primary and secondary coil number of turns respectively): 

sspp ININ =                       (1) 

III. MAGNETIC CIRCUIT MODELING 

A. Engineers’ needs 

The electronic board, necessary to create the secondary 

current proportional to the primary one, contains many 

electronic components (diodes, resistors, capacitors…). In 

order to test the whole system (magnetic circuit and electronic 

board), engineers need a model of the magnetic circuit able to 

be implemented in a circuit-type simulator software. The 

magnetic behavior non-linearities (hysteresis and dynamic 

effects) excludes a linear electric equivalent model (R,L,C 

model). A magnetic equivalent circuit or reluctance network 

model offers a good compromise between accuracy and 

rapidity. The final model must take into account all the 

phenomena (geometric effects, hysteresis, dynamic effects) 

that can create signal distortion. These different phenomena 

occured by the magnetic circuit can be studied separately. 

B. Modeling of “geometric effects” 

The air-gap, where the hall probe is placed, induces flux 

leakages which lead to local saturation of the magnetic circuit. 

The Fig. 2 shows the results of a 3D finite elements simulation 

in magnetostatic. It can be seen that the modulus flux density 

B inside the magnetic circuit is greatly inhomogeneous. This 

means that there are a lot of flux leakages. 

 
Fig. 2: Flux density modulus inside the magnetic circuit. 
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The model must take into account these flux leakages, so 

the magnetic circuit is decomposed into several flux tubes like 

shown on Fig. 3 

 

Fig. 3: Magnetic equivalent circuit scheme 

With: 

• 1ℜ , 2ℜ , 3ℜ : magnetic circuit flux tubes 

• leakℜ : leakage flux tube 

• agℜ : air-gap flux tube 

• IN .1 , IN .2 , IN .3 : fictitious magneto motive 

forces sources 

• 1φ , 2φ , 3φ : magnetic fluxes. 

After analysis, and in order to represent accurately the 

geometric effects (flux leakages, air-gap), three specific 

parameters that can not be identified analytically have to be 

determined. These three parameters are:α , the angular 

position of the leakage flux tube, agS  the cross-section of the 

air-gap flux tube, leakS , the cross-section of the leakage flux 

tube. 

In order to identify these parameters, an optimization 

algorithm [2] based on the simplex method is used. The 

criterion used here is the mean quadratic error between the 

flux density modulus calculated by a 3D FE simulation in 

magneto static and the flux density modulus calculated by the 

magnetic equivalent circuit along the mean length of a half of 

the magnetic circuit. In order to find constant parameters and 

make a compromise between linear and saturated behavior, 

two objective functions ( 1OF , 2OF ) are evaluated. Then, 

these two objective functions are used to make a single 

objective function OF  so as to: 

( ) ( )22

2

1 OFOFOF +=                (2) 

OF is the simplex optimization algorithm criterion to 

minimize. Results of the optimization are shown on Fig. 4. 

C. Magnetic material dynamic effects modeling 

The magnetic material dynamic effects are represented with a 

differential equation. This model is based on (3). 

( )
dt

dB
BHH statapp γ=−                       (3) 

appH  is the applied excitation field, ( )BHstat  represents 

a fictitious static excitation field for a given flux density B  

and γ  is a constant coefficient that represents the whole 

dynamic effects (eddy currents, wall motion). Assumption, 

limits and rules of use are described in [3]. This model can 

easily be introduced in the MEC seen before. γ is determined 

by comparing simulated and measured hysteresis loops. 

 

Fig. 4: flux density modulus versus position angle for a half 

magnetic circuit and air-gap. (MEC: Magnetic equivalent 

circuit, 3DFE: 3 dimensions finite elements, lin: linear, sat: 

saturated) 

IV. RESULTS 

After identification of all the parameters, the model is 

tested without the electronic card (the measuring resistor is 

directly linked to the secondary coil) for different current 

amplitudes and frequencies. Fig.5 shows an example for a 

current of amplitude 800A and frequency 100Hz. The 

measured primary current is imposed to the simulation, and the 

measured and simulated secondary currents are in good 

agreement. 

 

Fig. 5: imposed primary current and secondary current  

V. CONCLUSION 

In the extended paper, more details about the parameters 

identification protocol will be given. The present protocol will 

be applied for different magnetic circuit sizes and different 

materials. 
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Abstract — In this study, we examined three dimensional 
magnetic flux distributions in the case of single and three phase 
power transformers. The method of flux distribution inside every 
packet and also between them has been studied. However, total 
flux which passes through core limbs may be sinusoidal, but local 
flux density in some regions of core is distorted and has higher 
additional harmonics along with fundamental one. In this work, 
local harmonic flux density is identified. The three dimensional, 
time-stepped edge-based finite element method is used for 
modeling power transformer cores. Anisotropy and nonlinear of 
Laminated steel have been considered in this analysis. The 
accuracy of this method have examined by experimental results.

I. INTRODUCTION

Power transformers have a very important role in 
transmission of electrical energy in power systems. The quality 
of core has large effect on transformer performance and 
efficiency. Therefore, many researches have been done for 
investigation of flux distribution in core and improving its 
characteristics [1, 2].  In previous works, studies are performed 
by experimental method on a scaled sample core [1] or by 
numerical two dimensional methods [2]. The disadvantage of 
experimental methods is that by changing core material or its 
dimensions, the early results will not be valid. In addition, the 
test sample is a scale of large power transformer cores and thus 
its results are not completely correct for actual one. In most 
cases, core cross section tends to be of roughly circular or 
semi-circular shape. For this purpose, core is made of several 
packets that have different widths and depths. In numerical 
two dimensional methods, we can not model this packet design 
and the core is taken as one packet with rectangular cross 
section.

In this paper, we modeled single and three phase three-
limbs power transformer cores with 3-dimensional geometry 
(Fig.1). In order for analyzing, we applied 3-dimensional time-
stepped edge-based finite element method. Packet design, 
nonlinear and anisotropy characteristics of laminated steel has 
been considered in this model. The skin effects in very thin 
laminated steels which core is made from are completely 
negligible in power frequency conditions [3].

We examined 2, 3 and 4 limbs single phase and 3 and 5 
limbs three phase power transformers and compared them 
together.

II. FINITE ELEMENT METHOD

Analysis of flux distribution in power transformer cores is 
a complex electromagnetic problem. Since the core has a three 
dimensional structure and its medium is anisotropy and 
nonlinear, therefore, in this paper we used 3-D finite element 
method (FEM) with edge based vector potential formulation. 
Inaccuracies in FEM analysis of 3-D magnetic field problems 
with nodal based continuous vector potential in present 
inhomogeneous media are shown in [5]. These shortcomings 
can be eliminated by applying edge element method. In this 
method, we considered both anisotropy and nonlinear B_H 
curve.

For arbitrary voltage supply, first total magnetic flux must 
be pass through the winding is calculated in term of time. Then 
in each time step a magneto static analysis is done in such a 
way that total passed flux across winding equals with 
calculated one in same time. The current flow from windings 
in each time step is computed by an iterative algorithm.

After doing this analysis in a time period, we could 
determine the distribution of magnetic flux density in terms of 
time and place.

Fig. 1. Three dimensional geometry model of a three phase, three limbs 
power transformer core with ¼ symmetry

III. RESULTS

Generally, the flux and loss profiles showed a trend to 
exhibit the following features:

The magnetic flux in limbs and yokes of each packet has 
higher density near core window; by increasing flux and 
reaching to saturation state, the flux distribution tends to take 
uniform shape in limbs and yokes.
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In low flux densities, flux distributions between packets 
have great variety, but by reaching to saturation state, 
distribution would be uniform.

For example, flux distribution in low and high average flux 
densities for a 4-limbs single phase power transformer are 
shown in Figs. 2 and 3, respectively.  

The most flux distortion is observed in T-joint region.
In core types that have return path, the total flux distortion 

can be seen in return limbs, too. 
The detailed findings and results of modeling the 

commercial power transformers will be presented in our 
complete article.

We examined 2, 3 and 4 limbs single phase and 3 and 5 
limbs three phase power transformers and compared them 
together.  Furthermore, the results of flux distribution obtained 
from modeling, is compatible with the results of measurement 
which is reported in [1] for a sample core.

Fig. 2. Flux distribution in low average flux density for single phase, 4-
limbs power transformer in 1/8 symmetry

Fig. 3. Flux distribution in high average flux density (near to saturation) 
for single phase, 4-limbs power transformer in 1/8 symmetry
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(2)       

(a)      
(1)     

(b)      

(b)      

(a)      

Abstract —automotive ignition coil acts as a transient voltage 
transformer in spark process. A lumped circuit model is 
proposed in this paper to predict the wideband characteristics of 
ignition coil. This model separates the winding into individual 
sections that simulate winding impedance quality. The parameter 
capacitance and inductance in circuit are derived from Finite 
Element Method (FEM) analysis. Calculated results are
compared with the measured data in frequency and time-domain 
and the reliability of the presented model in this paper is verified. 

I. INTRODUCTION

The basic function of an ignition coil is to convert low-
voltage DC source into very fast high voltage at the spark plug 
gap [1]. Due to primary and secondary coil inductance, stray 
capacitance, core eddy current loss, the ignition coil terminal 
characteristics become more sophisticate than stationary state. 
      The objective of this paper is to predict the wideband   
characteristic of ignition coil. A wideband, lumped equivalent 
circuit model topology for ignition coil is proposed. And the 
parameters in the circuit model are calculated using FEM. The 
measured and the simulated frequency- and time-domain 
results are presented. These results show that the proposed 
model accurately predicts the ignition coil terminal responses 
in the 100Hz to 10MHz frequency range. 

II. COMPUTATION MODEL

Ignition coil 2D cross-section is described in the Fig.1 (a). 
Fig.1 (b) shows a single section in secondary winding, which 
consists of hundreds of coated copper wires.  

Fig.2 shows equivalent circuit model. This model 
separates the winding into individual sections.  Each section 
of the circuit consists of capacitance C, inductance L and 
resistance R. Ten sections were used in this paper.   

III. PARAMETER CALCULATION 

A.  Capacitance  
For calculating the ground capacitance Cg and the 

section-to-section capacitance Cp, simplified solid winding 
substitutes the virtual winding section, as shown in Fig.3 (a). 
The capacitance matrix can be obtained from the electrostatic 
3D FEM analysis, which is based on (1). Fig.4 (a) shows the 
3D meshes of ignition coil.  

1 1

1

2 = =

= ∑ ∑
n n

ij i j
i j

W C U U        

Where W is electrostatic energy; Cij is capacitance between 
section i and j; Ui、Uj is voltage to ground of section i、 j; n
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 per section 

Cp :  section-to-section capacitance 

Cg :  ground capacitance per section 
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Fig.2 Equivalent circuit model of ignition coil 

is the number of sections. For calculating the turn-to-turn 
series capacitance Cs, simplified sheet winding substitutes the 
virtual winding section, as shown in Fig.3 (b). Capacitance 
matrix is derived from electrostatic 2D FEM analysis. Fig.4 (b) 
shows the 2D meshes of single section when sheet winding 
layers number is 20. Then using the matrix data, the 
capacitance Cs can be calculated with (2). 

Virtual winding per section Equivalent solid winding

         per section
Virtual winding per section Equivalent sheet winding

           per section

Fig.3 simplified model of virtual winding 
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(a)      (b)      

Where Cs is turn-to-turn series capacitance; Cij is capacitance 
between sheet i and j; N is the number of sheet winding layers.  

   R

Z

20  Layers

Fig.4 2D/3D mesh in FEM analysis 

B.  Inductance  

In this work, for converting nonlinear problem to 
linear, the varying relative permeability ur of steel 
lamination was substituted by the constant and magnetic 
saturation phenomenon was also ignored. The inductance 
matrix can be extracted from the magnetostatic 3D FEM 
analysis, which is based on (3).  

= ⋅∫
ur uur

i jij i jL N N B H dΩ                                      (3)       

Lij is mutual inductance between section i, j; Ni、Nj is the 
number of winding turns in section i、 j.   

Inductance value follows the frequency varying, 
because of skin effect. Hence, steel lamination ur=2800 is 
adopted for low frequency range, and in this case the 
inductance matrix is defined as LL; ur=0.001 is for high 
frequency range, and the inductance matrix is LH, as shown 
in Fig .5. 

 (m
H

)
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 (m
H

)
HL

Section_i
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n_

j Section_i Sect
ion_

j

 
Fig.5   Inductance Matrix in low-frequency (left) range and high– 

frequency range (right)

C.  Resistance  

In circuit model, Rs represents the winding resistance; 
RCs/RCp represents the capacitance dielectric loss and their 
calculation methods are presented in [2]; Re represents the 
steel eddy current loss and its calculation method is 
proposed in [3]. 

IV. SIMULATION AND EXPERIMENT 

A.  Frequency-domain  

To invest the secondary winding terminal impedance 
response from 100Hz to 10MHz, the following simulation 
cases are studied: Case A-the inductance matrix LL is
adopted as series inductance L; Case B-the inductance 
matrix LH is adopted as series inductance L; Case C-
ignoring the turn-to-turn series capacitance Cs. As shown in 
Fig.6, in case A, the simulation matches well with the 
calculation from 100Hz to 10MHz; and in the other two 
cases, the simulations only partly agree with measurement.  

Fig.6 measured and simulated magnitudes of secondary winding impedance 

B. Time-domain  

Fig.7 shows the transient voltage test circuit principle.  
In time-domain test, the above-mentioned case A is 
performed. The primary winding current and secondary 
winding voltage are measured and calculated, and the 
results show a reasonable agreement, as shown in Fig.8 
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     Fig.7 time-domain test circuit principle for ignition coil
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Fig.8 measured (upper-part) and calculated (under-part) current of           
primary winding and voltage of secondary winding 

V. CONCLUSION 

This paper has presented an equivalent lumped circuit 
model for predicting wideband characteristics of automotive 
ignition coil. The main parameters in the circuit are calculated 
with FFM field analysis. This circuit model was validated by 
experiment in both frequency and time domains. 
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7. Material Modelling 

Abstract- In large permanent magnet motors, the permanent 
magnet in the motor is segmented into parts in order to reduce 
the eddy current loss in permanent magnet. It is reported that 
the insulation between sintered Nd-Fe-B magnets is possible only 
by contacting the segmented permanent magnets without 
insulation. But the mechanism for such a phenomenon has not 
been clear. We have already reported that the analysis 
considering the resistance of the contact part is possible by 
defining the contact resistance coefficient K. In this paper, the 
effects of number of segments of magnet, exciting frequency, 
contact resistance between magnets  and the permeance of 
magnetic circuit on the eddy current loss of a magnet are 
investigated. It is shown that the property of eddy current loss in 
a magnet at high frequency is different from that at low 
frequency, and the tendency is changed by the contact resistance 
and the permeance (surrounding iron core). 

I. INTRODUCTION 
It is reported that the eddy current loss of the segmented 

Nd-Fe-B sintered magnet can be reduced even if magnets are 
not insulated[1]. We measured the resistance between magnets 
under various compressive stresses, then, the effect of stress 
on the contact resistance between magnets is clarified. 
Moreover, the eddy current analysis is performed using the 3-
D finite element method by considering a contact resistance 
between magnets. But, the examination was limited to one 
kind of frequency (=10kHz) and a case of six segmented 
magnet in an open circuit. As the carrier frequency of the 
inverter used for the control of PM motor is sometimes more 
than 10 kHz,  and the magnet in a motor is surrounded by the 
iron core, a systematic investigation of the effects of the 
exciting frequency etc. is required.   

In this paper, the effects of the number of segments of 
magnet, the exciting frequency, the contact resistance between 
magnets etc. on the eddy current loss are investigated. 

II. MEASUREMENT  AND  EXAMINATION  OF  
CONTACT  RESISTANCE 

We measured the resistance of the contact part between 
magnets by putting two magnets in a vice and by impressing a 
compressive stress. As the length   ΔL  of the contact part is 
unknown, the following contact resistance coefficient K is 
defined: 
 

'* SRLK =Δ= ρ                                             (1)                                                    

 

where ρ* is the resistivity of contact part, S is the cross 
sectional area of the contact region, R ‘ is the resistance of 
the contact part. The relationship between K and the stress is 
shown in Fig.1. The figure denotes that the contact resistance 
coefficient is decreased with the stress.  

III. EFFECT OF SEGMENTS, FREQUENCY AND CONTACT 
RESISTANCE 

The eddy current analysis considering the resistance of the 
contact part is carried out.  Fig.2 shows the examined model. 
A large magnet (50mm×50mm×10mm) is segmented into n 
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7. Material Modelling 

parts.  The magnetic field is impressed in the z-direction. 
The magnetic flux density is 13.5mT when there is no 
magnet.  
    Fig.3 shows the relationship amang the eddy current loss, 
the exciting frequency (10kHz, 40kHz), the number of 
segments (n=1-6), and the contact resistance (compressive 
stress) when there is no iron core.  The figure denotes that 
the eddy current loss We decreases with the decrease of 
contact resistance (with the increase of stress) at 40kHz. 
This is, because most of eddy current flows along the edge 
of magnet due to the remarkable skin effect, and the length 
of eddy current path is decreased when the contact resistance 
is decreased (when the stress is increased) as shown in Fig. 4. 
On the contrary, the eddy current losses We at n=3-6 are 

increased with the decrease of contact resistance at 10kHz. 

This is, because the amplitude of eddy current density at 
6MPa is increased compared with that at 0MPa as the 

apparent area of magnet is increased due to the decrease of 
contact resistance. From the above-mentioned results, it can 
be found that the eddy current loss is not always reduced 
when the contact resistance is increased (or magnets are 
insulated). 
   Fig.5 shows the eddy current loss We when iron cores are 
put in both sides of magnet as shown in Fig.1. As the skin 
effect is remarkable when iron cores are put, We  increases 
with n and has a peak value due to the same reason discussed 
in the case of 40kHz in Figs. 3 and 4. When n is larger than 
about eight, We at 10kHz is decreased by segmenting the 
magnet at 10kHz, but We at 40kHz is increased by the 
segmenting. The figure denotes that We can be reduced if 
adjacent segments are connected by the contact resistance. 
Therefore, the segmented magnet without insulation has an 
advantage that We at a high frequency of more than the carrier 
frequency can be reduced. 

REFERENCE 
[1] N. Takahashi, H. Shinagawa, D. Miyagi, Y.Doi, and K.Miyata,” Analysis 

of eddy current losses of segmented Nd-Fe-B sintered magnets considering 
contact resistance”, IEEE Trans. Magn., vol.45, no.3, pp.1234-1237, 2009. 
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12. DEVICES AND APPLICATIONS

Abstract — these studies will describe the electromagnetic 
analyses of different configurations of the so called 
“Integrated Production Umbilical” (IPU), or simply umbilical 
cables. Modern IPU can have more than 4 independent 3-
phase power circuits as well as steel tubes physically inside the 
same cable. There is no 2-D symmetry for these cable 
configurations and the 3-D simulations are very undesirable 
since they can have more than 10 km. The adopted 
methodology is a combination of 2D-finite element analyses 
(coupled with electric circuit) and the transposition technique. 
The cable performance (voltage drops and modulation) will be 
investigated to determine the appropriate configuration. 

I. INTRODUCTION

The oil exploration on offshore platforms represents an 
activity of high investment, where the risk of fails must be 
minimized. On the oil exploration process, there are cables 
composed by hydraulic steel tubes, independent 3-phase 
power circuits, signal conductors, etc., integrating an 
“Umbilical Cable” (UC). Nowadays, the new concept of 
umbilical cables requires more than only one independent 
power circuit. The power circuits are required to operate in 
a wide range of voltage and frequency levels, with strong 
power quality requirements. The UC configuration aspects 
can affect the magnetic coupling between the UC 
components derating the ampacity of the UC [1]-[3] and 
also degraded the power quality on the load terminals. The 
main objective of the electromagnetic analysis presented in 
this paper is to calculate mutual coupling effects between 
power conductors, power shields, metal tubes and armors 
(metallic parts inside the cable) to determine the terminal 
voltage at the load terminals. Moreover, an original 
combined methodology was developed to make the 
simulations less time consuming than the 3D-model. 

The sections are organized as follows. In section II, one 
presents the main geometric and electrical characteristics of 
the analyzed configuration of UC. The original 
methodology is presented in section III. In section IV, 
partial results are shown. 

II. DESCRIPTION OF THE UC’S SYSTEMS

The configuration of the analyzed umbilical cables 
consists of four 3-phase power circuits (Circuit #1, Circuit 
#2, Circuit #3 and Circuit #4). Each circuit feeds 
independently one submerged oil pump. The main electrical 
characteristics of the variable voltage supplied by the 
converters (C1, C2, C3 and C4) are: frequency range (F = 
30-80 Hz); supply voltage (V = 1200-3200 V); V/F 
constant; constant current (I = 280 A). 
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Cross-sections  

1 2 3 n... 
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Fig. 1. Unifilar diagram of the 3-phase system

(a) Configuration A (b) Configuration B 

Fig. 2. Cross-sections number 1 of the two analyzed UC configurations. 

The cross-sections number 1 of the two analyzed UC 
configurations are shown in Fig. 2. One can see the 4 
power circuits on the inner layer (configuration A) and in 
the outer layer (configuration B) of the cables with their 
respective phases A (dark grey), B (black) and C (white). 
Each power conductor has its own copper shield. There are 
8 steel tubes in the outer layer (configuration A) and in the 
inner layer (configuration B) used to transport fluid. Both 
have an external metallic armor mainly used for mechanical 
purposes. The outer diameter of both configurations is 
280 mm and its length is 10 km.  

For better structural resistance, the internal structure of 
the UC must rotate in relation to the center along its length. 
In this specific case, the entire inner layer rotates in 
anticlockwise direction (1 turn every 1000 mm), while the 
entire outer layer rotates in clockwise direction (1 turn 
every 1500 mm). As can be seen, these cables have only 3D 
model. In addition, a configuration C is derived from the 
configuration A including the rotation of each power circuit 
in relation to its own center completing one turn every 
750 mm. The full paper will evaluate the power quality of 
the supply voltage at the oil pump terminals for all the three 
configurations by a developed methodology to represent the 
3D characteristics of the UC’s using a combination of 2D 
finite element analysis and the transposition technique 
[1],[4].  
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12. DEVICES AND APPLICATIONS

III. THE COMBINED METHODOLOGY  

As indicated in section II, the analyzed cables has no 
2D symmetry, once the metallic elements (conductors, 
shields, tubes and armors) of the UC change their relative 
position along the cable length, performing an helicoidally 
path. Therefore, it is not possible to represent the cables 
performance simulating only one cross section presented in 
Fig. 2. In order to avoid the use of the 3D models, one has 
developed a combined methodology using 2D models and 
the transposition technique.  

As described in section II, the inner layer of these UC’s 
completes 1 turn every 1000 mm while its outer layer 
completes 1 turn every 1500 mm. The Least Common 
Multiple (LCM) between layer lengths is then 3000 mm. 
This means that at each 3000 mm, the cable pattern repeats. 
The concept of transposition is addressed in classical 3-
phase high voltage transmission line (TL) theory [4].  More 
details will be given in the full paper. 

IV. PARTIAL RESULTS

The evaluation of the UC performance regarding to the 
power quality was performed using the methodology 
described in section III for two configurations: A (the 
power circuits do not turn around their own centers) and C 
(the power circuits turn around their own centers). The 
configuration B will be analyzed in the full paper. The 
supplied voltage of the circuits consider one of the worst 
operation conditions considering the modulation criteria: 3 
circuits (#1, #2 and #3) were supplied on 80 Hz, while 1 
circuit (#4) was supplied on 30 Hz. These two cases were 
analyzed to verify the impact of circuit rotation on 
modulation results. 

A. Induced Voltage at the Load Terminal 

Fig. 3 (a) shows the equipotential lines obtained from the 
steady-state analysis of the circuits #1, #2 and #3 supplied 
on 80 Hz, while Fig. 3 (b) shows the other separately 
analysis of the circuit #4 on 30 Hz, both for the cross 
section number 1 of 50. These two separately analyses are 
necessary to analyze the power quality. For each cross 
section, the real and the imaginary components of terminal 
voltage in the pump connected to circuit (#4) were kept 
separately. As in the transposition technique, the average 
values of real and imaginary components were calculated. 
The terminal voltage of case A and C obtained by the 2D 
FE steady-state analysis are discussed below.  

In Fig. 4, the average of voltage values is used to 
compute the power quality characteristics. Moreover, one 
can verify that the values are almost constant because of the 
fact that the power circuits do not rotate around their own 
centers resulting on a fixed relative position between them 
with almost constant induced voltage. From Fig. 5, one can 
verify that these values are not constants. The rotation of 
the power circuits around their own centers results on a 
variable induced voltage that compensates itself. 

                          (a) 80 Hz                                          (b) 30 Hz 

Fig. 3. Equipotential lines of magnetic potential obtained in the cross 
section number 1 of configuration A. 

0 10 20 30 40 49
88

88.14

88.3

88.5

cross section number (N)

te
rm

in
al

 v
ol

ta
ge

 (
V

)

N cross sections value
average value

Fig. 4. RMS real components of induced voltage (80 Hz) in phase C 
 of circuit #4 – configuration A 

0 10 20 30 40 49
-100

-50

0
6.07

50

100

cross section number (N)

te
rm

in
al

 v
ol

ta
ge

 (
V

)

N cross sections value
average value

Fig. 5. RMS real components of induced voltage (80 Hz) in phase C 
 of circuit #4 – configuration C 

B. Power Quality Analysis 

The induced voltage on the oil pump terminal of circuit 
(#4) by the 80 Hz circuits were computed and compared 
with its terminal voltage feed on 30 Hz. Configuration A 
presents the highest modulation values of 7,2 % over the 
phase C while configuration C only 0,45 %. 

The full paper will present more specific results and will 
include the analysis of the configuration B. This 
configuration can be built physically in a less complex 
machine than configuration A and C.  
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12. DEVICES AND APPLICATIONS  

Abstract —An approach to analyze signal-to-noise ratio of 
radio frequency coils in low-field magnetic resonance imaging 
systems is presented. The integral equation method (IEM) is 
proposed and used to calculate with high accuracy the coil self-
resistance that accounts for much higher percentage of the 
equivalent noise resistance in low field MRI than that in high 
field MRI. A two dimensional model is built and the analysis of a 
simple surface RF coil for a 0.3T permanent MRI system is 
performed. The results show that the coil self-resistance is 
comparable with the sample resistance, which indicates the 
importance of accurate coil self-resistance analysis. With IEM 
for calculating the coil self-resistance, the coil geometries can be 
easily optimized to obtain the optimal SNR in the region of view.  

I. INTRODUCTION 
The performance of radio frequency (RF) coils, which are 

used to pick up magnetic resonance signal, is significant for 
imaging quality [1]. The signal-to-noise ratio (SNR) and 
sensitive distribution of RF coils are the targets to optimize 
coil structure for better imaging quality and higher imaging 
speed.  

The noise voltage picked up by RF coils is proportional to 
the equivalent noise resistance, which consists of coil self-
resistance, sample resistance and dielectric loss in the sample 
[2, 3]. In low-field magnetic resonance imaging (MRI) system, 
the dielectric loss can be reduced remarkably by using 
distributed tuning capacitors and neglected due to the quasi-
static assumption. The equivalent noise resistance is therefore 
dominant by coil self-resistance and sample resistance, which 
are closely related to current distribution in the conductor and 
induced current in the sample respectively. 

The finite difference time domain (FDTD) method is a 
widely used numerical method to calculate RF field 
distributions, power dissipation and tuning capacitor value of 
the RF coils in high-field MRI because the sample resistance 
is much larger than the coil self-resistance at 64MHz and 
above [4]. However, in low-field situation when the coil self-
resistance is comparable with the sample resistance, the 
accuracy of the current density distribution in the conductor 
calculated by the FDTD method is limited by the Cartesian 
grid. Although the finite element method (FEM) can achieve 
accurate results of RF field distribution in both coil conductor 
and imaging sample, it is limited by the calculation efficiency 
when used to optimize coil geometries. 

This work proposes an approach to calculate coil SNR in 
low-field MRI system, in which coil self-resistance is 
calculated by the integral equation method (IEM) and both 
coil sensitivity and sample resistance are calculated by the 
magnetic vector potential. In addition, an optimization design 
approach to improve the SNR of a RF surface coil is presented 

as example. The geometry of the circular coil is optimized to 
achieve the highest SNR with sensitivity homogeneity 
constraint in the region of interest. 

II. ANALYSIS APPROACH 
According to the concept of reception, the SNR of RF coils 

is defined by the following equation [3] 
4 eSNR kT fRω= ⋅ Δxy 1M B          (1) 

where Mxy is the magnetization vector, B1 is the magnetic 
field generated by RF coil, Re is the equivalent noise 
resistance, T is the temperature, k is the Boltzmann constant 
and ∆f is the band width. Coil self-resistance and sample 
resistance are proportional to current density integration and 
the power absorbed by the sample respectively. Generally, 

coil sampleSNR R R∝ +1B              (2) 

where Rcoil and Rsample are coil self-resistance and sample 
resistance respectively. 

The magnetic field B1 and electric field E(r) can be 
calculated by Biot-Savart’s law and magnetic vector potential 
respectively [5]. Coil self-resistance is estimated by current 
density in conductor at resonance frequency, which is given 
by 

( )tσ ϕ= − ⋅ ∂ ∂ +∇ ⋅J A                (3) 
where J is the current density, A is the vector potential 
and φ is the scalar potential. Since the conductivity of the 
conductor is much higher than that of the sample, the 
influence of eddy current in the sample on current density in 
the conductor is neglected. Under the quasi-static assumption, 
the variation of current density along current direction is 
neglected. Thus, the two dimension current density 
distribution is given by  [6] 

0ln
S

J j f J rds Jσμ= − −∫∫               (4) 

where σ and μ are the conductivity and the permeability of the 
conductor respectively, f is the resonance frequency, r respects 
to the distance between ds, S is the cross section, and J0 
=σ·∂φ/∂z is a constant in this case. 

This integral equation is solved by numerical method which 
changes integral equations to matrix equations [6]. The cross 
section of conductor is discretized on an M × N grid. 
Assuming the current density of each cell on the grid is 
constant, (3) is expressed as following linear integral 
equations 
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where Ji and si are current density and area of the ith element 
respectively, and I is the current in conductor. The above M×
N+1equations can be represented in the matrix-vector form. 

The proximity effect can be analyzed as well as the skin 
effect by this method. All the cross sections of conductor are 
meshed by the same way, which is shown in Fig. 4. The scale 
of integral equations shown in (5) increases to (M×N+1)×n, 
including all the elements in the conductors. 

 
Fig. 1. The cross section mesh for proximity effect analysis 

The current density distribution is obtained by solving the 
above linear equations. AC resistance coefficient kac is defined 
as (6) to describe skin effect and proximity effect on coil self-
resistance. 

2 2

1

M N

ac ac dc i i
i

k R R S s J I
×

=

= = ⋅ ∑       (6) 

In order to obtain homogeneous images, the sensitivity 
homogeneity S in the region of interest should be considered 
as constraint. S is related to the magnetic field generated by 
RF coil, which is defined as 

max min max min
1 2 ( ) ( )S = − × − +1 1 1 1B B B B    (7) 

where |B1|max and |B1|min are the maximum and minimum 
magnetic field of the RF coil in the region of interest. 

III. EXAMPLS 

The imaging sample is human body, which is simplified as 
a cylinder (σ = 0.5 S/m and μ = 0μ ) with length L=15 cm, 
diameter D=30 cm. The conductor is copper tape with a 1.2 
cm width, a 0.018 cm thickness and σ = 5.3×108 S/m. The 
region of interest is a 2 cm diameter sphere of which the 
center is 4cm from the right end of the cylinder. The RF coil is 
a circular surface coil and the gap between the RF coil and the 
cylinder sample is 1 cm. The geometries of model are shown 
in Fig. 2. The coil is designed for a 0.3T permanent MRI 
system of which the resonant frequency is 12.72 MHz.  

 
Fig. 2. The geometries of sample and RF coil 

A. Current Density Distribution Analysis 
The penetration depth at 12.72 MHz is 0.023 mm. As 

shown in reference [6], the current density in centre region of 
conductor is much more uniform than that of edge region. The 
mesh of the conductor is formed by a non-uniform rectilinear 
grid with higher densities in the edge region.  

The current density distribution is obtained by the IEM. The 
contour of current density on cross section is shown in Fig. 3. 

Fig. 3. Contours of current density. 

B. Coil Geometry Optimization 
The geometry variable of the surface coil is the radius R 

shown in Fig. 2, which is optimized to achieve the highest 
SNR in the region of interest with the homogeneity constraint.  

The optimized radius R is 4.0 cm. In this case, the 
sensitivity homogeneity in the region of interest is 81.7%. The 
coil self-resistance and the sample resistance are 43.8 mΩ and 
45.1 mΩ respectively.  

IV. CONCLUSION 

In the present paper a method to analyze SNR of RF coils in 
low-field MRI systems is presented. By using IEM, the 
calculation efficiency of coil self-resistance analysis is 
improved with good accuracy. Also, it is relatively easy to 
combine the proposed approach with the optimization problem 
to improve coil performance.  

The results of the sample analysis show that the coil self-
resistance of a surface RF coil for a 0.3T permanent MRI 
system is comparable with the sample resistance, which 
indicates the importance of accurate coil self-resistance 
analysis. 
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12. DEVICES AND APPLICATIONS

Abstract — A symmetrical 3-port lumped element circulator 
is designed by the use of a numerical time domain method. It is 
shown, that the application of the numerical time domain method 
is essential for the numerical analysis of very compact circulator 
devices built by using thin film technology.  

The circulator performance is numerically calculated and 
optimized to some extend, providing valuable information about 
important device performances. A comparison with measured 
scattering parameters shows good agreement with the numerical 
simulation.  

I. INTRODUCTION

Nowadays circulators and isolators are very important 
components in radio frequency and microwave systems due to 
their unique non-reciprocal characteristics. Their design and 
principles of operation have been discussed in some detail for 
many years now. Among the various kinds of realizations the 
lumped element approach shows the most promising 
properties for miniaturization.  

However, in opposite to most other types of circulators 
and isolators, to the knowledge of the authors a lumped 
element circulator will not be examined with numerical 
methods in detail. One reason may be the difficulties arising 
from the adverse aspect ratios of the structure features. With 
the availability of powerful solvers for EM problems this is no 
longer an obstacle.  

The simulation results presented in this paper are obtained 
from the commercial numerical tool MICROWAVE STUDIO 
(CST), because the necessary algorithms for gyromagnetic 
media are included using the finite integration technique, a 
time domain approach based on solving the integral form of 
Maxwell’s equations by discretization in time and space. 
Complex media such as ferrites can be included. This is a 
prerequisite to model the circulators in discussion.  

Numerical results are compared with measurements to 
proof the results. For the experimental setup a hybrid setup is 
chosen due to the advantage of using a standard industrial 
process for the production of printed circuit boards to realize 
the coupling network, which is essential for the device 
operation.  

II. DESIGN CONSIDERATIONS

In opposite to commonly used distributed 
circulators, lumped element types are 
independent from the wavelength to some 
extend. The only prerequisite is that the 
wavelength is much larger than the element. 

For lumped element circulators, a size-reduction of a factor of 
5-10 [1] can be achieved with adequate performance. 
Distributed devices have been examined in detail inter alia by 
Bosma [2] and Fay [3]. For them it is necessary to satisfy the 
condition kR=1.84 [2], [4] for the normal mode excitation of a 
ferrite disc with its radius R. k is the wave number within the 
ferrite [2]. The most interesting part of a lumped element 
circulator certainly is the magnetic circuit. 

II. DEVICE UNDER TEST 

Two different technological concepts are used for the time 
domain simulation and desribed in the following. The first one 
is a double sided standard process printed circuit board 
process with drilled via-holes. The second one is a sequential 
layer build-up process allowing for a very thin insulation layer 
between the conductor layers. The device structure under test 
is shown in Fig. 1. 

dielectric film

port 1

port 2 port 3

shielding

series

capacitor

parallel

capacitors

magnetic coupling

network with insulated

crossovers

Fig. 1. Three dimensional view of the device showing the interwoven 
conductor structure, ports and some additional lumped capacitors  

A. Double Sided Standard Process 

The substrate materials used for in this case, FR4 glass 
reinforced epoxy (140 µm) or MylarTM (DuPont) polyester 
film (175 µm), is drilled (250 µm diameter) to form the 
necessary via-holes first. Thin layers of titanium and copper 
are sputtered on both sides. Furthermore, the vias are activated 
for later electroplating implicitly. A 25 µm dry film 
photoresist FP325 (Elga Europe) is laminated on both sides 
and structured with a MA56 mask aligner (Suess). 
Electroplating is now used to grow copper into the resist 
grooves and form the conductors. After electroplating, the 
resist is stripped and the seed layers are removed through 
chemical etching.  

B. Sequential Layer Build-Up Process 

First, the substrate is coated with titanium and copper on 
one side through sputtering to provide a seed layer for later 

Time Domain Analysis Of Compact Lumped 
Element Circulators 

Robert Stonies, Dirk Schulz 
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schulz@hft.e-technik.uni-dortmund.de 

1009

PD3.13



12. DEVICES AND APPLICATIONS

electroplating. Then, the FP325 dry film resist is laminated 
and structured. Copper is electroplated to a height of 15 µm 
into the grooves. The resist is stripped and the seed layers are 
etched. Now, a second layer of FP325 is laminated on top. It 
is structured by the via and feed-line pattern before the surface 
is completely sputter-coated with titanium and copper again. 
An additional electroplating process enhances the layer 
thickness to 15 µm. Finally, AZ-3210 (ALLRESIST), a thick 
film positive photo resist, is spin-coated onto the sample and 
structured to protect the later bridges and vias of the top layer 
from being etched. In contrast to the first example interdigital 
lumped capacitors are used for matching and tuning.  

III. SIMULATION AND OPTIMIZATION 

The parasitics appear to influence the characteristics in 
particular. Especially the crossover capacities are responsible 
for a significant decrease of the operating frequency. To speed 
up the calculation, the lumped capacitors may be substituted 
through idealized capacitors, virtually connected between two 
mesh points. Once the necessary capacity is evaluated, a 
separate parametric simulation model including singe 
capacitor model is used to obtain the exact geometries. To be 
more exact with that capacitors, a full three-dimensional 
electrodynamic calculation can performed at the design center 
frequency. Finally, the geometries of all simulations are 
combined into one CAD-file and masks are generated. As can 
be concluded from Fig. 3 and is expected, fringing fields tend 
to increase the capacity to an amount that does not allow to 
neglect them. Another interesting observation, already 
predicted in [7] is, that the magnetic field is not at all 
homogenously distributed in the ferrites. It is rather clearly 
concentrated around the conductors (Fig. 2). The ferrites bulk 
shows a magnetic field that is less than 10 percent of the field 
close to the conductor. 

Fig. 3. Magnetic field (in a plane) concentrating in the vicinity of conductors, 
normalized to 1 W input power at 2.5 GHz  

IV. VERIFICATION 

To verify the calculated performance, the structures are 
mounted into a jig containing the ferrites and providing the 
SMA connectors to the interface of a vectorial network 
analyzer. The dc magnetic field is generated by a current-
controlled electromagnet with a slittet yoke.  

For the double sided processed structure including drilled 
vias, Fig. 4 shows a comparison between the calculated and 
measured performance. It ought to be reminded that the layout 
for the structure only consists of the isoductor conductors. 

No capacitors are included and hence there is only the 
small parasitic capacity of the line crossings that act as a 
tuning element for the device. This leads to a much higher 

resonance frequency close to the gyromagnetic resonance 
frequency. This reduces bandwidth and implies higher 
insertion losses. The inclusion of explicit lumped tuning 
elements is no problem at all and similar to the sequential 
layer build up. 

Fig. 4. Calculated and measured scattering parameters  

For the second structure the scattering parameters are also 
measured and compared with the calculated ones. In evidence 
from Fig. 5, the measured data agree well with the data 
resulting from a numerical calculation but the center 
frequency is slightly shifted to lower frequencies. The authors 
assume that the reasons for this shift are inaccuracies in the 
calculation and in the technological process. First, the ferrite is 
treated as to be completely homogenous magnetized, which is 
not true in reality. Magnetostatic calculations show, that the 
magnetic field is much stronger close to the circumference 
than it is in the middle of the thin disc. Second, thin layers are 
represented by one mesh-cell in height to keep the time for 
calculation short. This may lead to some inaccuracies, 
especially concerning the field distribution at edges. 

Nevertheless, the comparison shows a quite good 
agreement and with some correction and modifications it will 
be possible to predict the behaviour of a lumped element 
circulator with high accuracy by use of numerical calculations. 
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Fig. 5. Calculated and measured scattering parameters  
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13. DEVICES AND APPLICATION 

Abstract — We present an approach to determine a correction 
factor for core losses due to joints in power transformers. Its 
determination is carried out by finite element analysis in two 
dimensions.  The influence of two kinds of joints, namely with and 
without step-lap, are investigated, as well as three airgaps. Results 
are validated by comparison with other authors, and also by 
experimental data.  

I. INTRODUCTION 

The determination of core losses in power transformers is 
usually carried out with the aid of the curve W/kg versus T for 
a given frequency, provided by the steel manufacturer. This 
curve includes both hysteresis and eddy current losses.  

However, other effects not predicted by those curves, 
which are mainly due to core manufacturing process, such as 
burr, localized poor insulated lamination, airgaps due to joints 
and so on, also give rise to additional, not-predicted losses and 
local heating in transformer cores. Most of those effects are of 
difficult estimation, owing to their randomness. Therefore, the 
estimation of actual core losses is always a troublesome, 
difficult task. 

Manufacturers of power transformers make use of a 
building factor (BF) to correct the calculated core losses. This 
BF is obtained statistically from historical, experimental data 
sets, which can lead to either an over or an underestimation of 
the losses, with resulting cost penalization [1]. 

This work thus proposes a correction in the BF in order to 
improve the estimation of the total core losses by means of a 
correction factor (CF). This CF takes into account the increase 
in the core losses due to the presence of joints in the core of 
power transformers.  

It is well known that core losses in transformer can be 
considerably reduced by an improved joint design, which can 
be achieved by an accurate knowledge of the local flux density 
distribution, both in the corners and in the limbs. Then, the 
proposed approach to calculate this CF is based on two-
dimensional (2D) finite element analysis (FEA). The 
methodology is outlined in the following sections. 

II. TRANSFORMER CORE JOINT CONFIGURATIONS 

   Two configurations of core transformer joints will be 
analyzed. Fig. 1 depicts a typical transformer core, in which 
regions of joints appear dark-grayed. Fig. 2 illustrates the two 
joint configurations, with and without step-lap, used in the 
analysis. 

  

 
Fig. 1  A 3-phase transformer core showing regions with joints (in dark gray). 

 
 

Fig. 2  Transformer core joints: (a) without  step-lap; (b) with step-lap.      

III. FEA OF CORE JOINTS 

To estimate the increase in no-load core losses due to the 
core joints, a CF, kc, has been defined, as follows: 
 0 0c jk P P= ,  (1) 

where P0j and P0 stand for losses in cores with and without 
joints, respectively. These core losses are determined through 
a FE modeling of the joint regions. 
 Two FE simulations were carried out with the aid of a trial 
edition of commercial FE-package for electromagnetic design. 
By means a of a 2D magnetostatic simulation, the package 
calculates the power losses from the computed flux density 
distribution in the domain.  

In order to overcome the modeling restrictions of this FE-
package, the joint regions are modeled as a 2D periodic 
domain, excited by a hypothetical current source coil.  

The 2D FE models are illustrated in Fig. 3. No 
simplification was adopted in the core model, such as shell 
elements or stack-homogenization, since no such facilities 
were available in the package. Therefore, all steel sheets of the 
laminated stack, as well as their insulations, have been 
represented in the geometrical model of the core. Two 
simulations were performed, for the two configurations (with 
and without joint), to calculate P0 and P0j. 

The magnitude of the current to excite the hypothetical 
source coil was determined by trial and error, in order to yield, 
close to the periodic boundaries, the required, typical average 
values of peak flux density, present in joint-free parts of the 
core (i.e. limbs and yoke). 

Determination of a correction factor due to joints for 
core losses in power transformers by 2D FEA  
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13. DEVICES AND APPLICATION 

 

 
      (a)              (b) 

Fig. 3 2D FE domains with laminated core (cyan) and source coil (brown) to 
model the transformer core joints. (a) Without joint. (b) With joint. 
 

The adjusted no-load core loss, including the correction 
factor, can then be estimated as follows: 

( )[ ])1(0 jcjFe FkF
kg
W

mP −+⋅⋅







⋅= .                 (2) 

In (2) the factor Fj was introduced in order to correct the 
losses only in the joint-parts of the transformer core (see Fig. 
1) and is given by the ratio between two areas: the total area of 
the joint regions (sum of dark-grayed areas in Fig. 1) and total 
area of transformer core (sum of light- and dark-grayed areas 
in Fig. 1). The quantities mFe and [W/kg] stand for the core 
mass and the core loss density, respectively. 

IV. RESULTS 

A set of FE simulations were performed with the following 
values of airgaps and average peak flux densities: 0.5/1.0/1.5 
mm and 1.0/1.2/1.4/1.73/1.77 T.  
 Figs. 4 and 5 show color maps of flux densities in non-step-
lap and step-lap joints, respectively, where it can be seen that 
the latter exhibits a significant reduction in saturated spots, and 
hence iron losses, as expected. These results were obtained 
with a 1.73T flux density and a 1.5mm airgap. 
 

 
Fig. 4. Color map of flux-density distribution in a non-step-lap joint (1.5mm 
airgap, 1.73 T). 

Fig. 5. Color map of flux density distribution in step-lap joint (1.5-mm 
airgap).  
 

A comparison of the computed CFs for joints without and 
with step-lap is presented in Fig. 6. 

 
Fig. 6. CF determined by FEA for joints without (V1) and with (V2) step-lap. 

 
 These results are in accordance with other authors [1],[4]-

[5], since they confirm the reduction in the CF yielded by the 
step-lap joint with respect to that without step-lap. 

The methodology was applied in the transformers of a 
manufacturer data set. The newly estimated core losses, with 
the proposed correction, led to a better agreement with the 
measured losses than those adjusted by the original, 
conventional BF.   

V. CONCLUSION 

A correction factor was proposed to account for the 
increase in no-load transformer core losses due to core joints, 
thereby improving its estimation. This more accurate 
adjustment was accomplished by applying a 2D FEA of a 
reduced, equivalent model of core joint region. The 
effectiveness of step-lap joints in reducing core losses was 
confirmed, when compared to non-step-lap joints, although the 
latter proved to be less sensitive to variations in the airgap. 
Additional experimental verification and results are intended 
to be presented in an extended version of this digest. 
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Abstract—Because of a strong magnetic field in magnetic flux 

type NDT system, the object itself is magnetized so that it shows a 
hysteresis characteristics during the sensing, which might cause a 
distortion of the defect signals. In this research, the 
magnetization characteristics of a pipeline in the magnetic flux 
leakage type non-destructive testing are analyzed. Effects of a 
magnetic hysteresis of a pipeline are analyzed. Magnetic flux 
density due to a remanent magnetization of gas pipeline is 
computed and verified by real measurement.  

Magnet 
Yoke

Gas Pipe
Sensors 

Defect 

Brush 

 
Index Terms—magnetic flux leakage, magnetic sensor, non 

destructive testing, nonlinear finite element analysis  
 

I. INTRODUCTION 

 
The magnetic flux leakage type non-destructive testing 

system is widely used to detect metal losses of the 
underground pipe in gas pipelines [1]. In the system, the 
sensor modules are consisted of permanent magnet, magnetic 
yoke and Hall sensors to detect the metal loss, corrosion 
defect and any other damages of the gas pipeline. The object 
pipeline is magnetically saturated by a magnetic system with 
permanent magnet and yokes as in Fig. 1. Hall sensors detect 
the stray leakage fields in the metal loss region.  

In the system, a magnetization level is designed to be high 
enough to saturate the pipeline in order to increase the 
sensitivities of the systems [2]-[3]. So, in most cases, pipes are 
to have remanent magnetizations that have distorted the 
sensing signals to reveal the metal losses [4]-[6]. To detect the 
defects precisely, the sensing signals need to be compensated 
to eliminate the distortions coming from the media hysteresis. 
In this paper, the magnetizations of the pipeline in MFL type 
NDT are analyzed by 3 dimensional finite element analysis 
and the distortions of the sensing signals are compared with 
measurement. 
 
 
 
 

 
 

 
 
 
 
 

Fig. 1 Diagram of a MFL type NDT 
 

II. MAGNETIZATION IN MFL TYPE NDT 
 

The relations between magnetic field intensity H, magnetic 
flux density B and magnetization M of the magnetic material 
could be represented as follows, 

 

 

)( '
0 MHB += μ

AB

                       (1) 
 

= ∇ ×                               (2) 
 

JH∇ × =                              (3) 
 

The main source of the magnetic field in this system is 
permanent magnet so the magnetization 'M  is represented 
by the sum of reversible component ( Hχ ) and irreversible 
component ( M ) as in (4).  
 

MHM += χ'

MvvBH r

                     (4) 
 

The magnetic field in this case is represented as follows, 
 

= −                        (5) 
 

rrr vv

 

where μμμμμ /1,,/1 0 = μ = + χ==  , 1r

MvJAv r ×∇+

. 
From substituting these equations into (1) and (3), Coulomb 
gauge and vector relation gives  
 

∇ × ∇ × =)(

MvJAv r ×∇+=∇⋅∇− )(

∫∫ ⋅=
vu

dudvtHvuPtM
,

)(),()(

}{}{}]{[ mv ffAK

            (6) 
 

              (7) 
 

In this equation, M is not constant in hysteresis problems. The 
classical Preisach modeling [3] is adopted in this system.  
 

            (8) 

where P(u,v) is Preisach density function. To solve the 
hysteresis problem, this modeling is solved with finite element 
solution simultaneously. Finite element analysis gives the final 
matrix equation as follows, 
 

+=                       (9)  
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In this equation, [Kν ] includes the geometry and material 
constant information whereas {fm} includes the magnetic 
hysteresis characteristics of the materials. The iterative 
algorithm to solve the scalar Preisach modeling is included in 
the computations. 
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III. HYSTERESIS EFFECTS ON THE SENSING SIGNALS 
 
To measure this, we made a measuring coil in the pipeline as 

in Fig. 2. The magnetization level of the pipeline could be 
measured from the flux linked in the coil. As the PIG passing 
again, the remanent magnetization level becomes decreased as 
in Fig. 3. Fig. 4 shows the decrease of the sensing signals of a 
defect 2t x 2t x 0.8t. The remanent magnetic field according to 
the remnant magnetization of the object could be summarized 
as in Fig. 5. So, the compensating data as a function of 
pigging events are successfully obtained. For the exact 
estimation of the defects, the sensing signals needs to be 
corrected by using this data according to the numbers of 
sensing events.  

 
 Fig. 5 Remanent magnetic fields according to the pigging numbers 

 

IV. CONCLUSIONS 
 

In MFL type NDT system, a magnetization level is 
designed to be high enough to saturate the pipeline in order to 
increase the leakage field under the defect region. So, in most 
cases, pipeline is to have remanent magnetizations according 
to the movement of the PIG so that the sensing signals are 
distorted to reveal the metal losses. In this research, the 
dynamic characteristics of magnetization in MFL type NDT 
system are analyzed. Effects of a remanent magnetization is 
computed by using 3 dimensional finite element analysis 
including hysteresis characteristics. The results show that the 
effects of axial components of magnetization are increasing 
the MFL signals. In case of re-magnetization, the magnitudes 
of magnetization level become increased because of magnetic 
hysteresis, which are agreed well with measurement. So, it is 
necessary to include the magnetic hysteresis of the pipeline for 
the precise analysis of the MFL type NDT. 

 

 
 

Fig. 2 Search coil for the measurement of remanent magnetic flux  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Remanent magnetization according to the pigging events 
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12. DEVICES AND APPLICATIONS

Abstract — This paper investigates the effect of an adaptive 
mesh refinement strategy for the force computation in Micro 
Electro Mechanical Systems (MEMS). First, the error is 
estimated in the whole domain and then the refinement is 
applied in specific regions of the system. The results given by 
the refinement are compared with those of a reference problem 
issued from a system with a fine mesh. 

I. INTRODUCTION

Micro Electro Mechanical Systems (MEMS) consist 
mostly of movable and fixed parts subjected to an electric 
potential difference to create an electrostatic force. Thus, to 
describe such systems, an electro-mechanical model can be 
useful [1]. In the case of a weak coupling between 
electrostatic and mechanical models, the coupling term is 
the electrostatic force which must be determined with 
accuracy. To this purpose, the finite element method (FEM) 
is a useful tool but it requires a suitable mesh construction, 
especially for high field gradient regions. 

In this paper, the electrostatic force involved in a simple 
MEMS structure is computed for different positions of the 
movable part. The approach consists in an adaptive mesh
refinement strategy. This one is based on the error due to the 
discontinuity of the normal component of the electrical flux 
density when using the scalar electric potential formulation 
in the FEM. As a result, the refined mesh will have higher 
granularity where it is needed. 

A common MEMS actuator is the linear comb drive that 
consists of interlocking teeth on which a voltage is applied. 
To study this type of actuator, a unit cell, i.e. a segment 
representative of the entire system, is defined. 

First, we present the FE formulation. Then, we introduce 
the chosen error estimator. Some results are presented for 
the studied device. 

II. MATHEMATICAL MODEL

Considering an electrostatic problem with free charge 
region, the distribution of the electric field in a domain D of 
boundary Γ is given by the Maxwell’s equations such as, 

div D = 0  with D.n =0 on ΓD

curl E = 0  with E×n =0   on ΓE

(1) 
(2) 

with E the electric field, D the electric flux density and ΓD, 
ΓE complementary boundaries of the studied domain D. The 
electric behavior law of the material is given by, 

D = ε E (3) 
with ε the electric permittivity. To solve the problem 
constituted by the relationship (2), the scalar electric 

potential (ϕ) formulation can be used and the electric field 
can be written such as, 

E = - grad ϕ - V grad α with ϕ=0 on ΓE (4) 
where ϕ is the scalar electric potential and α a scalar 
function defined in order to take into account the imposed 
voltage V [2]. In the case of numerical discretization, 
Whitney’s elements can be used to discretize the potential ϕ
and the function α in the nodal element space. 

Using equations (1), (3) and (4), the weak form of the 
scalar potential formulation is written as, 

∫∫ −=
DD

DD d'αεVd'ε ϕϕϕ gradgradgradgrad (5) 

with ϕ’ a test function verifying the same boundary 
condition as the potential ϕ. Using the Galerkin’s method, 
the interpolation functions are used as test function in (5). 

III. ADAPTIVE MESH REFINEMENT

In this formulation, the electric field E obtained by the 
FEM has a continuous tangential component on the whole 
domain as it is derived from the gradient of the scalar 
potential ϕ. The electric flux density D is continuous in each 
element but its normal component continuity at the interface 
between elements is not verified. In fact, these 
discontinuities of boundary conditions between elements are 
due to the FEM approximation of the scalar potential. The 
evaluation of the numerical error due to this unphysical 
discontinuity is used as criterion for the mesh refinement. 

Let f be a facet of an element of the mesh. On each facet 
f an error εf is defined such that, 

2
f )( ff

−+ Φ−Φ=ε (6) 

where +Φ f  and −Φ f  are the fluxes of D calculated from, 

respectively, both elements associated to the facet f. Then, 
the error associated to an element e of the mesh is obtained 
by summing the errors calculated on its facets, 

∑
∈

=
ef

fe εε (7) 

At this point, an error distribution map can be defined 
for the studied domain. Using this error distribution, one 
can use a mesh refinement tool according to an error 
criterion defined by the user. 

In our case, we used HOMARD® which is a mesh 
refiner from EDF R&D [3]. It is based on the refinement, 
and eventually the unrefinement, of meshes by cutting the 
elements. The criterion of the refinement has been fixed 
such that the elements with an error greater than the average 
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12. DEVICES AND APPLICATIONS

error are refined while the others remain untouched. The 
refinement can be done either in the whole domain or in a 
chosen part of the domain.  

IV. APPLICATION

The application chosen to emphasize the presented 
approach is a unit cell of an electrostatically actuated 
MEMS comb drive [4]. The geometry of the studied system 
is depicted in Fig. 1. Its dimensions are L=10 m, g=1 m, 
b=1 m, t=2 m, ts=0.5 m, gs=1 m, Ls=20 m. 

b g

L
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b
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x

ts
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z
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b g

L

Fixed electrode Movingelectrode Substrate
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t

L

Ls
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z
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Fig. 1: Geometry of the studied system  

A voltage of 30V is applied between the fixed and the 
moving electrodes, leading to an attractive electrostatic 
force in the x direction. First, a reference system is 
considered, which consists in solving the problem with 3D-
FEM using a very fine mesh (~300000 elements, Fig. 2).  

 (a) (b) 
Fig. 2: Reference meshes for positions 0 µm (a) and 5 µm (b)   

Then, starting from an initial coarse mesh, the same 
problem is solved and the mesh is refined according to the 
calculated error distribution using the previously mentioned 
criterion. The mesh size for several positions and refinement 
steps are given in Table I. 

TABLE I 
MESH SIZE FOR THREE POSITIONS AND REFINEMENT STEPS 

Number of elements Refinement 
step Position 0µm Position 1µm Position 2µm 

Initial mesh 21349 20644 20708 
1 52298 52576 52007 
2 64896 69126 65028 
3 95054 100937 96484 

In this study, the error was considered on the whole 
domain and the refinement was applied in a region 
surrounding the movable part. The meshes for two 
refinement steps are shown in Fig. 3. The electrostatic force 
is computed using a method based on the virtual work 
principle. 

 (a) (b) 
Fig. 3: Initial (a) and final refined (b) mesh for position 5 µm

In Fig. 4, we present a comparison between the results 
obtained by the reference system and after 1, 2 and 3 
refinement steps for the coarse mesh. At step 2, the results 
are already in good agreement with the reference. 

Fig. 4: Force comparison between the reference and refinement 

The relative error between the forces obtained from the 
reference, the coarse mesh and its last step refinement are 
given in Fig. 5. 

Fig. 5: Relative error for the force calculation  

The results obtained with the average error criterion and 
the refinement in a specific part of the domain, give 
satisfactory results. Nevertheless, the accuracy can be further 
improved. In the extended version, other error estimation 
techniques and refinement strategies will be presented. 
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12. DEVICES AND APPLICATIONS 

Abstract — This paper describes calculation of copper losses in 
resistance spot welding transformer (RSW) windings with two 
different methods, Dowell method and finite element method. 
The advantage of Dowell method, as an analytical method is 
inclusion of proximity effect influence in calculations and 
possibility of further use in determining of minimal copper losses 
by an optimization algorithm. The second part of the research 
gives a comparison between analytical results, numerical results 
and experimentally obtained ones. The main objective of this 
research is to evaluate the agreement between analytical and 
numerical results and to compare them with experimental 
results. It has also been proven that Dowell method is applicable 
on this particular type of transformer.  

I. INTRODUCTION  
This paper describes resistance spot welding (RSW) 

transformer and numerical, analytical and experimental 
analysis of copper losses in the windings. An algorithm to 
achieve minimal copper losses in windings by proper 
conductors design is fully described in the full paper. The real 
RSW transformer consists of two laminated iron cores, four 
layers of primary turns and two layers of secondary turns. 
Primary winding consists of four layers with total number of 
turns 55. Secondary winding consists of two layers and each 
one has a single turn. Primary winding of RSW transformer is 
supplied by a pulse width modulated voltage, which gives 
characteristic pulse form of primary current with a peak value 
100 A . Secondary current is 55 times higher and it retains a 
pulse form. Due to the rectifier mounted onto the secondary 
windings of RSW transformer, only one secondary layer (turn) 
is active during each half of a primary current period. At the 
load side (rectifier output) first half of a period gives 5500 A 
and the second as well. Together, two secondary turns give 
11000 A of DC peak value current at rectifier output. Nominal 
power at 80% duty cycle is 75 kVA. 

II. NUMERICAL MODEL  
Numerical model is based on finite element method [1]. 

Modelling, magnetic transient analysis and post-processing are 
carried out with programme package Maxwell3D.  

It has already been mentioned in introduction that during 
each half of a period of primary current only one secondary 
layer (turn) is active. It means that number of total active 
layers in one half of a period equals five. Number of layers 
and turns is significant for Dowell method [2]. 

Each primary and secondary turn is separately modelled, 
which contributes to the preciseness of the numerical model. 
Transient analysis is necessary to obtain instantaneous power 
time behaviour and determine copper losses in each time 
instant. Instantaneous losses time behaviour enables 
calculation of average copper losses. Minimal average copper 
losses can represent an objective function and winding’s 
dimensions can be optimization parameters. It is possible to 
create a parametric numerical model and apply an 
optimization algorithm in the case of numerical calculation. 
Numerical calculation of copper losses is based on current 
density calculation, which is determined with Helmholtz 
equation (1): 

 
2

0 0j ηωμ σ∇ − =J J ,                           (1) 
 
where J  is current density vector, j  is defined as 1j = − , 
ω  represents angular frequency, 0μ  is permeability of free 
space, σ  is electrical conductivity and η  is conductor spacing 
factor, respectively. 

III. DOWELL METHOD 

The magnetic field strength in the vicinity of the 
transformer winding can be easily determined by using MMF 
(magneto motive force) diagrams [3]. These diagrams are 
constructed by application of Ampere’s law, following the 
closed paths of the magnetic field lines which pass near the 
winding conductors. Dowell method is generally based on 
Fourier analysis of current and MMF diagrams. Fourier 
analysis is used to include the influence of higher harmonics 
from primary and secondary current, while MMF diagrams 
determine magnetic field strength. For this particular case, 
MMF diagrams are non-symmetric functions. The 
construction of the MMF diagram for the first half-period of 
the primary and secondary current is shown in Fig. 1.Total 
copper losses, without DC losses, according to Dowell method 
are given by the following expression (2): 

 

( )
. .

2 2
1

1 1 1 1
 2 2 1 ( )

layers layersharm harm

nk nk n k k n
n k n k

P I R m m Gϕ ϕ
= = = =

⎡= − +⎢⎣∑ ∑ ∑ ∑                   

                         ( ) 24 1 ( )k k nm m G ϕ ⎤− − ⎦ ,                         (2) 
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12. DEVICES AND APPLICATIONS 

where n signifies the nth harmonic, k is the layer number in 
transformer windings, harm is total number of harmonics, 
layers is total number of layers, nkP  is copper loss caused by 
the nth harmonic in the kth winding layer, nkI  is Fourier 
coefficient obtained from Fourier analysis of the primary or 
secondary current, R  is ohmic resistance at the given 
operation temperature, nϕ  is  obtained from conductor 
spacing factor and skin depth at the given frequency, km  

represents real part of the magnetic field ratio and 1( )nG ϕ , 

2 ( )nG ϕ  are expressions containing trigonometric and 
hyperbolic functions. The last two are obtained from the 
solution for the current density from relevant Helmholtz 
equation (1). Factors nϕ  and km  refer to proximity effect. 
 

 
Fig. 1. MMF diagram for the first half period of  primary and secondary 

current 
 
It is necessary to note that Dowell method encompasses 
copper losses caused by higher harmonics and skin effect.  

IV. RESULTS 
 Results are obtained with analytical calculations (Dowell 

method) and finite element method in Maxwell3D. 
Numerically calculated copper losses vary from analytical 
ones for approximately 10%. Table 1 contains results for only 
one case of dimension of windings and the differences 
between numerical, analytical and experimental results for this 
particular case are minor. Note that only preliminary 
experimental results are given here due to the space limit. 
More completed experimental, numerical and analytical 
results will be presented in the full paper. For now, analytical 
results distinguish from existing experimental results for 
approximately 8%.  

Finite element method results strongly depend on accuracy 
of the numerical model and time discretization. Instantaneous 
power time behaviour (Fig. 2) contains irregular increases of 
values because of the questionable accuracy of the finite 
element method. 

TABLE I 
SUMMARY OF DATA AND SOME OBTAINED RESULTS 

Physical Quantity Value  
Primary Current Peak Value  100 A 
Secondary Current  Peak Value  11000 A 
Primary Winding Temperature   130°C  
Secondary Winding Temperature 50°C 
Primary Winding Electrical  Conductivity   38·106 S/m 
Secondary Winding Electrical Conductivity   56·106S/m 
Nominal Power  75 kVA 
Copper Losses Obtained Numerically  2.058 kW 
Copper Losses Obtained With Dowell Method  2.154 kW 
Copper Losses Obtained With Measurements  2.326 kW 

 

 
Fig. 2. Instantaneous power time behaviour for primary layer width 3 mm and 

secondary layer width 12 mm obtained with Maxwell3D 
 
According to Fig. 2, total average copper losses, calculated 
with finite element method, given in Table 1, are obtained 
with  (3): 

3210

3
0 0

1 1( )d ( )d
2 10

t
P p p

t
τ τ τ τ

−⋅

−
= =

⋅∫ ∫ ,                (3) 

 
where ( )p τ  is instantaneous power and t  is time interval (in 
this case 2 mst = ). 

V. CONCLUSION 
The objective of this research is to analyze copper losses in 

RSW transformer windings. Three different methods are used 
to obtain results. Analytical approach (Dowell method) gives 
results, which are very close to so far experimentally obtained 
values, while numerical approach gives less accurate results. 
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4. ELECTROMAGNETIC COMPATIBILITY 

Abstract — As China's economy continued to grow, the 
electromagnetic influence on oil/gas pipeline near transmission 
line becomes increasingly prominent. In this paper, firstly, the 
transient simulation of the currents along ground wire and tower 
is performed by EMTP when the lightning strikes the tower of 
the transmission line. The results show that the currents along 
the ground wire and tower dramatically decrease and can be 
ignored after 5 spans (about 2 km). Secondly, based on the 
method of moment, the coating stress voltage on the oil/gas 
pipeline parallel to or across the transmission line is investigated 
and the approximate expression for the crossing situation is 
obtained, which involves the lightning current, pipeline type, 
earth resistivity and the distance between the pipeline and tower 
grounding structure. Eventually, with the lightning electrical 
strengths of different coatings, the safety distances between the 
pipeline and tower grounding structure for different lightning 
current peaks are suggested. 

I. INTRODUCTION 
With the fast development of economy in China, energy 

demand is gradually pressing and the power transmission lines 
and oil/gas pipelines are in the construction of rapid 
development. Ultra High Voltage (UHV) and West-East gas 
projects are the national key projects in recent years. Because 
of the similarity of transmission path selectivity in the power 
industry and oil/gas industry, the situations of parallelism, 
oblique approach and crossing between the transmission lines 
and pipelines have frequently happened. Therefore, the 
electromagnetic influence on oil/gas pipelines near the 
transmission lines becomes increasingly prominent [1]. 

The pipelines are subject to interference arising from three 
parts, capacitive, inductive and resistive coupling. Capacitive 
coupling only affects the aboveground pipeline since it has 
both a capacitance to the transmission line and to earth. And 
the pipeline buried below ground is shielded by the ground 
and cannot be affected by capacitive coupling. Inductive 
coupling is caused by the time-varying magnetic field 
produced by the transmission line currents. The induced 
voltage at the pipeline ends will vary as a function of length of 
parallelism, earth resistivity, distance between the pipeline and 
transmission line, and so on. Aerial and underground pipelines 
are both affected by inductive coupling. Resistive coupling 
between the transmission line and pipeline is only relevant 
during the grounding fault and lightning strike when 
significant level of current flows into the earth.  And this will 
raise the potential of the tower base and of the neighboring 
soil with regard to the remote earth, and result in a 
considerable stress voltage across the coating of the pipeline, 
which can lead to arcing that damages the coating, or even the 

pipeline itself. When the lightning strikes the transmission line, 
both the inductive and resistive coupling will take place and 
put the pipeline at severe risk. 

The electromagnetic influence on the underground 
pipeline near transmission line is chiefly concerned with the 
personal safety, pipeline safety, alternating current (ac) 
corrosion of pipeline and normally operating of pipeline 
cathodic protection system. Some research work has been 
carried out and the limits of electromagnetic influence are 
released in [2]-[4]. These studies mainly focus on the 
inductive and resistive coupling modeling during the normally 
operating and ground fault of the transmission line. The 
switching and lightning transient induced voltages on the 
aerial and buried pipelines are simulated and some 
conclusions are obtained in [5]. 

In this paper, firstly, the transient simulation of the 
currents along ground wire and tower is performed by EMTP 
when the lightning strikes the tower of the transmission line. 
Secondly, based on the method of moment (MoM) [6], the 
coating stress voltage on the pipeline parallel to or across the 
transmission line is investigated and the approximate 
expression for the crossing situation is put forward. Finally, 
with the lightning electrical strengths of different coatings, the 
safety distances between the pipeline and tower grounding 
structure can be obtained for different lightning current peaks. 

II. LIGHTNING CURRENTS ALONG GROUND WIRE AND TOWER 
In this section, the transient simulation of the currents 

along ground wire (shield wire) and tower is carried out 
making use of EMTP when the lightning strikes the tower of 
the transmission line, which involves different voltage levels 
(330kV, 500kV, 750kV and 1000kV), different configurations 
of the transmission line (horizontal-single-circuit, triangular-
single-circuit and vertical-double-circuit) and different earth 
resistivity (100Ωm, 500Ωm, 1000Ωm and 2000Ωm). The 
detailed results are not listed here. As illustrated in Fig.1, the 
EMTP simulation model includes 24-span ground wires and 
25-base towers, which is symmetrical with regard to the 
lightning point. The ground wires are symmetrically 
numbered from 1 to 12 while the towers are from 0 to 12, 
where the No.0 tower represents the location of lightning 
current injection. During the simulation, the lightning current 
is with the amplitude of 100kA, waveform of 2.6/50μs and 
wave impedance of 250Ω. The tower is modeled as the 
transmission line with single wave impedance, the grounding 
impedance of the tower takes the lightning impulse impedance, 
and the ground wires are modeled as the overhead 
transmission line. One thing worthy of note is that both the so-
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called back-flashover toward phase conductors and the spark 
discharge of the grounding conductors of the tower are not 
involved when the lightning strikes the tower of the 
transmission line. 

Based on the above simulations, the conclusions can be 
listed as follows: (1) the currents along the ground wires 
dramatically decrease, i.e. 20%-25% of the intruding lightning 
current peak for the 1st span, 10%-15% for the 2nd span, 5%-
10% for the 3rd span, and the currents can be ignored after the 
5th span; (2) the currents along the towers dramatically 
decrease, i.e. 80%-90% of the intruding lightning current peak 
for the No.0 base where the lightning current is injected, 15%-
20% for the 1st base, 5%-10% for the 2nd base, and the 
currents can be ignored after the 3rd base; (3) the currents 
along the ground wire and tower slightly depend on the 
voltage levels and configurations of the transmission line, 
namely, the height of tower is not very important during the 
simulation; (4) the higher the earth resistivity, the greater the 
lightning impulse impedance of the tower grounding structure, 
the higher the current along the ground wire, and the lower the 
current along the tower. In general, the earth resistivity has 
little effect on the lightning current distribution of the ground 
wire and tower.  These conclusions turn out contrary to those 
of the ground fault of the transmission line.  

As a result, for the situation of parallelism or oblique 
approach between the transmission line and pipeline, both the 
inductive and resistive coupling are considered, and the 
simplified transmission line model is suggested, which only 
includes 5 spans on each side of the lightning current injection 
point (10 spans in total). While for the situation of crossing, 
only the resistive coupling of the current in the earth through 
two towers adjacent to the pipeline is considered and the 
inductive coupling of the current along the overhead ground 
wire is ignored during the simulation. 

 
Fig. 1. Simulation model for EMTP 

 
Fig. 2. Simulation model for the method of moment 

III. COATING STRESS VOLTAGE FOR PARALLELISM 
As shown in Fig.2, the simulation model for the method of 

moment includes 10-span ground wires and 11-base towers. 
Both the two ground wires of the 1000kV double-circuit ac 
transmission line and the tower grounding structure shown in 
Fig.3 are modeled by the thin conductors according to the 
actual size of the configuration. The tower is approximately 
modeled by 4 vertical thin conductors. The underground 
pipeline is modeled by the hollow conductors with insulation 
coating. Combined the method of moment with the Fourier 
transform, the transient coating stress voltage along the 
pipeline parallel to transmission line is investigated for 
different approach distances. 

 
Fig. 3. Configuration of the pipeline and tower grounding structure 

IV. COATING STRESS VOLTAGE FOR CROSSING 
In this section, the proposed method is applied to the 

evaluation of the coating stress voltage along the pipeline 
across transmission line shown in Fig.3 and the corresponding 
approximate expression is put forward, which involves the 
lightning current, pipeline type, earth resistivity and the 
distance between the pipeline and tower grounding structure. 
Finally, with the lightning electrical strengths of different 
coatings, the safety distances between the pipeline and tower 
grounding structure for different lightning current peaks are 
suggested. 

ACKNOWLEDGEMENT 
This work was supported by the National Natural Science 

Foundation of China (no. 50707008). 

V. REFERENCES 
[1] China Electric Power Research Institute, Influence and mitigation of 

1000kV UHVAC double-circuit transmission line on metallic pipeline, 
China: China Electric Power Research Institute, 2009. 

[2] CIGRE, Guide on the influence of high voltage ac power systems on 
metallic pipelines, France: CIGRE, 1995. 

[3] EPRI, Power line fault current coupling to nearby natural gas pipelines, 
Canada: EPRI, 1987. 

[4] F.P. Dawalibi, R.D. Southey, “Analysis of electrical interference from 
power lines to gas pipelines Part I: computation methods,” IEEE Trans. 
on Power Delivery, 4(3): 1840-1846, 1989. 

[5] K. Kopsidas, I. Cotton, “Induced voltages on long aerial and buried 
pipelines due to transmission line transients,” IEEE Trans. on Power 
Delivery, 23(3): 1535-1543, 2008. 

[6] B. Zhang, Z. Zhao, X. Cui, “Diagnosis of breaks in substation’s 
grounding grid by using electromagnetic method,” IEEE Trans. on 
Magnetics, 38(2): 473–476, 2002. 

 

1023

 



11-(A) 

Abstract — This paper deals with the development of 

analysis method in a synchronous reluctance motor (SynRM) 

using finite element method (FEM) coupled electromagnetic 

field of Preisach model, which is presented to represent the 

additional thermal source due to hysteresis loss, & thermal 

field. The focus of this paper is the thermal analysis relative to 

hysteresis loss and copper loss in a SynRM.  

I. INTRODUCTION 

 

Issues such as efficiency and torque/ampere are important 

in evaluating the performance of an electric machine. 

 Such characteristics depend mostly upon the losses 

behavior of the machine and therefore the study of heating 

problems of electric machines and the prediction of 

temperature rises of magnetic core, teeth, insulation, 

conductor etc. are necessary for sophisticated design, yet 

extremely complex.  

Accurate solution is important to maintain design integrity, 

assure high performance and optimize costs.  

For this purpose, it is essential that the temperature 

distribution and its gradient in the electric machines are 

predicted more accurately.  

The heat losses of SynRM mainly consist of the Joule 

effect resulting from copper winding and the hysteresis loss 

of magnetic materials.  

The heat generated by copper windings could be obtained 

from the results of a general process used in the heat 

transfer analysis method [1].  

However hysteresis component in the internal thermal 

source have traditionally been obtained by analytical 

techniques, with many simplifying assumptions with respect 

to geometry and manufacturer material data.  

The Preisach model is now generally accepted to be a 

powerful hysteresis model, and is therefore intensively 

studied [2]-[4].  

With the advent of Preisach model, numerical technique 

for modeling the additional thermal source Jm in the 

magnetic material can be obtained. 

In this paper, a finite element analysis coupling 

electromagnetic field of Preisach model & thermal field for 

a SynRM are presented and dynamic characteristic analyses 

are performed under the effect of Joule and hysteresis loss. 

The focus of this paper is the development of thermal 

analysis method in a SynRM for Joule and hysteresis loss. 

II. FINITE ELEMENT METHOD COUPLED 

ELETROMAGNETIC FIELD OF PREISACH MODEL & 

THERMAL FIELD 

 

A. Governing Equation of SynRM in Electromagnetic Field 

When the moving coordinate system is used, the 

governing equation in 2D is given as follows: 

∂
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Where, 
A z   :  z component of magnetic vector potential 

      
J z    : current density, 

υ0   :  magnetic resistivity 

 

B. System Matrix 

The circuit equation is written as: 

{ } [ ]{ } [ ] { } { }V R I L
d

dt
I E= + +0                                  (3) 

Where, { }E   : E.M.F. vector in the winding , { }V  : 

supplying voltage vector, { }I   : phase current vector, [ ]L0 : 

leakage inductance 

To solve (1), we used the Galerkin finite element method. 

For the time differentiation in (3), a time stepping method is 

used with backward difference formula. Coupling (1), (2) 

and (3), the system matrix is given as follows: 
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Where, [LG] is coefficient matrix related to emf, the 

magnetization {M} is calculated by preisach modeling [5]. 

 

C. Finite element formulation in thermal field 

In the thermal field, the finite element model 

corresponding to variational formulation of the heat 

conduction problem with convective boundary conditions 

and thermal sources, for typical element, is given by the 
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following matrix equation. 

]T])[G[]H[]S([]T[
dt
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where, 

]T[
dt

d e
: time derivative temperature vector, ]M[ e : 

thermal capacity matrix, ]S[ e : thermal conductivity matrix , 

]H[ e : convection matrix, ]G[
e

: resistivity temperature 

dependency matrix , ]T[ e : temperature vector, ]F[ e : 

Heating sources vector due to the copper winding, ]F[ e
m : 

Heating sources vector due to hysteresis of materials, ]P[ e : 

convective vector, ]R[ e : Boundary vector 
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Where  

0ρ  : electric resistivity at 0T temperature ]m[ ⋅Ω , α : 

linear expansion coefficient [/K], fT : undisturbed fluid 

temperature [K], l : length between node [m] 

The convective heat transfer coefficient is calculated from 

the following experimental expression [5]. 

)v3.11(hhh fnf +==  

Where 

fh : forced convective heat transfer coefficient 

)]Km/(W[ 2
⋅  

nh  : natural convective heat transfer coefficient 

)]Km/(W[ 2
⋅  

fv  : average fluid velocity [m/s] 

III. SIMULATION AND DISCUSSION  

 

Fig.1 is the flow chart of transient thermal analysis of a 

SynRM using coupled electromagnetic of Preisach model & 

thermal finite element method taking into account the 

rotation. 

Current density oJ  and equivalent magnetizing current 

density mJ , which were calculated previously in 

electromagnetic field, are used as a heating source of 

thermal field. The variation of stator resistance and 

conductivity, which are causd by temperature rise, are 

returned to electromagnetic field. Fig.2 represents the 

isothermal line of analysis model.  

Through the proposed method, the characteristics of 

variable thermal analysis will be observed for a SynRM in 

next extended version 

 

Fig. 1 Flowchart of analysis 

 

 

Fig. 2 Isothermal line of analysis model 
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9. NUMERICAL TECHNIQUES 

Abstract — This paper proposes a novel preconditioning based 
on the incomplete Cholesky (IC) factorization and the concept of 
the explicit error correction (EEC) method for finite element 
electromagnetic field analyses: A-φ block IC preconditioning. The 
A method using the proposed method has the same convergence 
characteristic as the A-φ method with block IC preconditioning. 
The effectiveness of the proposed method is investigated in high-
frequency and quasi-static field analyses comparing conventional 
preconditioning.  

I. INTRODUCTION 
In electromagnetic field analyses by the edge-based finite-

element method (FEM), it is well known that the A-φ method 
has an advantage over the A method in convergence 
characteristic of iterative solvers such as the incomplete 
Cholesky conjugate gradient (ICCG) method [1]. The A 
method is superior to the A-φ method in terms of the number 
of unknowns. However, the improvement of the condition 
number is more significant and therefore the A-φ method is 
much faster than the A method.  

On the other hand, the explicit error correction (EEC) 
method and the implicit error correction (IEC) method were 
proposed as the novel frameworks for linear iterative solvers 
[2][3]. For example, the A-φ method can be regarded as an 
implicit error correction with the redundant unknowns φ. If the 
EEC method attains nearly the same convergence property as 
the IEC method by appropriately devising the auxiliary matrix, 
the EEC method is generally superior to the IEC method in 
terms of computational costs. This feature is noticeable in the 
case of the multigrid method which executes error correction 
at multiple levels [4]. These imply the possibility that the 
convergence characteristic of the A method can be improved 
by the concept of the EEC method. In fact, the folded 
preconditioning, which has a strong relationship to the EEC 
and IEC methods, especially in the case of folded Gauss-
Seidel preconditioner, has been proposed [5]. 

In this paper, from a different perspective, we develop the 
novel preconditioning for the A method based on the IC 
factorization by using the concept of the EEC method. The 
application of the IC smoother to the ordinary EEC procedure 
cannot derive the effective preconditioning because the 
preconditioner becomes nonsymmetric and cannot treat the 
off-diagonal blocks of the coefficient matrix obtained from the 
A-φ method, which represents the relationship between A and 
φ. Because preconditioning only needs the approximate 
solution, we propose omitting the off-diagonal blocks in the 
EEC procedure, which results in the novel preconditioning: 
the A- φ block IC preconditioning. We clarify the relationship 

between the proposed method and the folded preconditioning. 
To investigate the effectiveness of the proposed method, we 
compare the performance of the standard ICCG method, the 
folded ICCG method and the A-φ block ICCG method.  

II. A-φ BLOCK IC PRECONDITIONING 

A. EEC Method for the A method 
Consider solving the following linear system of equations 

derived from the A method 
bx =K .                   (1) 

Here, K is the coefficient matrix, x is the unknown vector, and 
b is the right-hand-side vector. Similarly, the linear system 
derived from the A-φ method is given by 

⎭
⎬
⎫

⎩
⎨
⎧

=
⎭
⎬
⎫

⎩
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
b

b
y
y

TTT GKGGKG
KGK

2

1 ,          (2) 

where G is the discrete gradient operator. The procedure of 
the EEC method corresponding to (2) is as follows [3]: 
(i)   Update the approximate solution x~  by a sweep for (1). 
(ii)  Compute vector p by solving )~( xbp KGKGG TT −= . 
(iii) Update the approximate solution by pxx G+← ~~ . 
The above procedure can also be used as the preconditioning.  

B. A-φ Block IC Preconditioning 
In order to develop the effective preconditioning for the A 

method which has nearly the same convergence characteristic 
as the A-φ method, we use the IC smoother for a sweep in the 
EEC procedure. The preconditioning for (1) with the IC 
smoother in the EEC procedure can be written as follows. 

( ) ( ) ( )( )( )1

11

1

22

1

11
1 −−−− −+= TTTT LLKIGLLGLLM .   (3) 

where M indicates the preconditioner, the superscript T means 
transpose, and the lower triangular matrix L1 and L2 are given 
by (4) by using IC factorization 

T
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The preconditioning (3) is nonsymmetric and the effective 
preconditioner cannot be derived if a post sweep is added to 
the EEC procedure. Preconditioning generally needs only the 
approximate solution. Additionally, (3) does not include the 
off-diagonal block L3. Therefore, we propose omitting the off-
diagonal blocks KG and GTK in (2) when the EEC procedure 
is used as the preconditioning. In this case, the step (ii) is 
modified as 
(ii)’ Compute vector p by solving bp TT GKGG = . 
This modification derives the novel preconditioner as follows: 
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( ) ( ) TTT GLLGLLM
1

22

1

11
1 −−− += .         (5) 

We term this method the A-φ block IC preconditioning 
because it only treats the diagonal blocks in (2). 

C. Relationship between A-φ Block IC and Folded IC 
The folded IC preconditioner for (1) is given by  

( ) ( )1
13

1
2231

1
11

1 −−−−−−− −−+= LLGLLLLGLLM TTTTT .  (6)  
Preconditioner (5) can be derived from (6) by regarding L3 as 
zero matrix, which indicates the A-φ block IC is a special case 
of the folded IC. For any preconditioned Krylov subspace 
(KS) method for a redundant linear system of equations, a 
mathematically equivalent KS method for the redundancy-
reduced linear system of equations can be constructed by 
using the folded preconditioner [5]. Thus, the CG method 
preconditioned by the A-φ block IC for the A method is 
mathematically equivalent to the CG method preconditioned 
by the block IC for the A-φ method. The convergence 
characteristic of the A-φ block ICCG method for the A method 
can be deteriorated slightly compared with the standard ICCG 
method for the A-φ method because of the omission of the off-
diagonal blocks. However, the optimal acceleration factor [6] 
of two diagonal blocks of (5) can be decided independently, 
which leads to the compensation for the deterioration. 
Furthermore, the operation counts for one iteration step and 
memory requirement can be reduced because of the decrease 
of the number of unknowns. Therefore, the total performance 
of the A-φ block ICCG method for the A method is expected to 
be superior to the standard ICCG method for the A-φ method.  

III. NUMERICAL EXAMPLES 

A. Rectangular-Iris Coupled Circular-Waveguide Filter  
The performance of the proposed method is examined in 

the high-frequency electromagnetic field analysis of the 
rectangular-iris coupled circular-waveguide filter shown in 
Fig. 1(a). The quarter part of the whole model is analyzed 
because of the symmetry. The convergence criterion for the 
iterative solvers is set to 10-8 and computations are executed 
on a Xeon X5472 with 8 GB RAM.  

Table I shows the computational results obtained from 4 
kinds of methods. The convergence characteristic of the 
folded ICCG method for the A method is almost the same as 
that of the standard ICCG method for the A-φ method, and the 
folded ICCG method has better performance. Meanwhile, the 
application of the A-φ block IC preconditioner does not 
deteriorate the convergence property due to the appropriate 
acceleration factors which vary by block. Thus, the proposed 
method can reduce the elapsed time by about 47 % and 37 % 
compared with the standard ICCG method and the folded 
ICCG method, respectively. From the above results, the 
effectiveness of the proposed method can be confirmed with 
respect to both elapsed time and memory requirement. 

B. Surface Permanent Magnet Motor 
The effectiveness of the proposed method is investigated 

in the nonlinear eddy-current analysis of the surface 
permanent magnet (SPM) motor shown in Fig. 1 (b). The one-

eighth part of the whole model is analyzed because of the 
symmetry and periodicity. To model the laminated iron core, 
the homogenization method is utilized. Table II shows the 
computational results at the first time step. The number of 
nonlinear iterations is 12 in all the cases. In eddy-current 
problems, the region where φ is defined is small compared 
with high-frequency problems. However, even in the case of 
eddy-current analyses of the practical electric machine, the A-
φ block IC preconditioning is fairly effective.  

More numerical results and detailed discussion about the 
proposed method will be included in the full paper. 

                              
(a) Circular-waveguide (95,256 elements)    (b) SPM motor (94,316 elements) 

Fig. 1. Magnetization as a function of applied field  

TABLE I  
Performance of iterative solves for circular-waveguide filter 

Solver ICCG 
(A-φ ) 

ICCG 
(A) 

Folded 
ICCG (A)

A-φ  block 
ICCG (A)

Number of unknowns 366,950 276,392 
Number of iterations 225 1357 224 184 

Elapsed time (s) 53.0 143.9 43.9 27.8 
Maximum memory 
consumption (MB) 492 269 393 324 

TABLE II 
Performance of iterative solvers for SPM motor 

Solver ICCG  
(A-φ ) 

ICCG 
(A) 

Folded 
ICCG (A)

A-φ  block 
ICCG (A)

Number of unknowns 304,347 280,180 
Total number of CG 

iterations 2496 14,587 2494 2321 

Elapsed time (s) 266.8 923.7 262.4 217.5 
Maximum memory 
consumption (MB) 197 167 190 178 
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Abstract—A robust formulation for the computation of com-
bined resistive, capacitive and inductive effects in time-harmonic
low frequency applications has been introduced in [1]. The
Galerkin discretization with conforming finite elements leads to
a sparse system matrix. Large jumps in the material coefficients
may cause severe ill-conditioning of the matrix. In this paper we
investigate how operator preconditioning can be used to construct
an efficient preconditioner. The approach can be treated with
almost linear complexity by making use of hierarchical matrices.

I. INTRODUCTION

Finite element based discretization of time-harmonic full
Maxwell or eddy current problems in realistic industrial appli-
cations requires a huge number of degrees of freedom (d.o.f.)
in order to guarantee sufficient precision. Thus, the application
of iterative solvers is desireable. It is often realized by em-
ploying algebraic multigrid methods, see [2] and [3]. A novel
alternative is preconditioners that are based on hierarchical
matrices. This yields a robust method even in the presence of
large jumps in the material coefficients [4].

II. ROBUST FULL MAXWELL AT LOW FREQUENCIES

If neither capacitive nor inductive effects can be neglected
in a low frequency application then quasi-static models cannot
be used and the solution of the full Maxwell’s equations is nec-
essary. An example is shown in figure 1. We consider the case
where field computation is confined to an artificially bounded
domain Ω ⊂ R3 of simple topology. Inside Ω there are ohmic
conductors occupying the region Ωc, and the non-conducting
region is Ωe := Ω \Ωc. Note that the non-conducting domain
may not only consist of air, but also of other parts like the
high-permeable core in figure 1. Voltage boundary conditions
are imposed at the contacts at ∂Ω∩ ∂Ωc. The stationary limit
ω → 0 of the full Maxwell’s equations has been addressed in
[1]. There it has been described how standard potential based
formulations of full Maxwell lack stability at low frequencies.
A robust formulation can be achieved by coupling Gauss’ law
in the non-conductive domain Ωe. This extra condition has to
be balanced by an extra unknown that results from the non-
direct splitting of the electric scalar potential ϕ into two parts
ϕ = ϕ̃+ψ, with ψ=constant in Ωc. The final stable formulation

Fig. 1. Arrangement of an inductively coupled capacitor. A time-harmonic
voltage-drop of 1 V / 50 Hz is imposed at the contacts. The conductors are
made of copper and have cylindrical shape with diameter of 2.5 cm. The core
is a non-conductor with relative permeability of 2000.

in strong form is given by:

curl
1
µ
curlA− (ω2− iωσ)A

+(iω+ σ)grad(ϕ̃+ ψ) = 0 in Ω ,

div(A) = 0 in Ω , (1)
div(grad(ϕ̃+ ψ)) = 0 in Ωe .

Herein µ, , σ are the material coefficients and ω is the
angular frequency. The matrix M that results from Galerkin
discretization of the system (1) with conformal finite elements
is singular. This becomes obvious by applying the divergence
on the first equation, because of the linear dependency of the
resulting equations in the non-conducting domain. An iterative
preconditioned BiCGstab succeeded in solving the unsymmet-
ric system. A preliminary preconditioner Pp was obtained
by applying the direct solver Pardiso [5] to (1) after setting
ω ← max{ω, 1Hz}, σ(x) ← max{σ(x), 10Ωm−1}. This
measure removes the linear dependence of the equations and
regularizes the system. Nevertheless, this procedure provides
a good approximation of (1), because of the continuity with
respect to frequency and conductivity. Fig. 2 shows the results
of the computation on a mesh that consists of 250,000 curved
tetrahedral first order finite elements.

III. OPERATOR PRECONDITIONING

An alternative preconditioner forM can be derived by using
the idea of operator preconditioning that has been introduced
in [6, Sect. 3]. It makes use of the stability of the variational
problem related to (1) with respect to suitably chosen norms on
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Fig. 2. Simulation results of the arrangement described in figure 1. The
upper left illustration shows the real part of the electric potential in [V ], the
upper right picture shows the rms-value of the magnetic induction in [T ], the
lower left picture shows the rms-value of the current density in [A/m2], and
the lower right picture shows the rms-value of the electric field in [V/m].

the function spaces. The inverse of the operator inducing these
norms will then furnish a preconditioner which is robust with
respect to discretization parameters. In the concrete setting
of (1) the novel preconditioner is given by inverting a finite
element discretization of

P :=



curl 1µ curlA+ ωσA 0 0

0 ϕ̃ 0
0 0 ψ


 , (2)

with A, ϕ functions on Ω, and ψ supported in Ωe. In
(2) we also impose lower bounds for frequency and con-
ductivity, that is, we set ω ← max{ω, 1Hz}, σ(x) ←
max{σ(x), 10Ωm−1}. First tests with a direct solver applied
to P demonstrated strongly improved efficiency of a precondi-
tioned BiCGstab iteration, see table I. The computations were
carried out on a 4 core 2,5 GHz / 16 GB RAM Intel Xeon.

Number of Time old Memory old Time new Memory new
complex d.o.f. min GB min GB

199 000 4.2 6.0 0.6 1.4
405 000 16.8 15.3 1.4 3.3
708 000 - - 3.3 6.3

1 074 000 - - 7.0 10.4
1 564 000 - - 10.6 15.1

TABLE I
TOTAL MEMORY AND TIME CONSUMPTION FOR THE COMPUTATION OF

THE PROBLEM OF FIGURE 1 WITH OLD Pp AND NEW PRECONDITIONER P.

Note that each block of the block-diagonal matrix P is real,
symmetric and positive definite. This is a great advantage
compared to other preconditioners. Memory and time con-
sumption of the applied direct solver Pardiso could drastically
be reduced by using a Cholesky decomposition.

IV. HIERARCHICAL MATRICES (H-MATRICES)
We have to overcome the fill-in problems of direct solvers

if the problem size is further enlarged. Fast summation

methods have considerably attracted attention during the last
two decades. The introduction of hierarchical matrices (H-
matrices) [7], [8] has paved the way to methods which have
almost linear complexity and which are robust; see also [9].
Their efficiency is gained from representing sub-blocks from
an appropriate matrix partition P by low-rank matrices; see
Fig. 3. The set of hierarchical matrices on the partition P and

Fig. 3. A hierarchical matrix with its rank distribution.

blockwise rank k is defined as

H(P, k) = {A ∈ CM×N : rank Ab ≤ k for all b ∈ P}.

The elements of this set can be stored with logarithmic-linear
complexity and hence provide data-sparse representations of
fully populated matrices. Additionally, exploiting the hierar-
chical structure of the partition, an approximate algebra can
be defined which is based on divide-and-conquer versions of
the usual block operations. These approximate operations also
have logarithmic-linear complexity and can be used to define
substitutes for higher level matrix operations such as inversion
and LU factorization. Our aim is to construct approximate pre-
conditioners for (1) by computing H-matrix approximations to
the factors of the Cholesky decomposition of (2). This has not
yet been implemented, but will be accomplished and presented
at the conference.
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The hybrid numerical integration
algorithm of Hankel transform for

magnetic induction tomography

Abstract —In the forward problem of multi-layer
medium magnetic induction tomography and
geological electromagnetic field, the integration
including dual Bessel function should be calculated.
Because of the serious oscillation and slow decay

of the product term, it is difficult to use ordinary
numerical integration method. This paper provide
a hybrid numerical integration algorithm, which
divide the integral interval into two regions:[0, )∞

and . In , the integration0[0, )λ 0[ , )λ ∞ 0[0, )λ
can be calculated through Gauss-Legendre
numerical integral method, while in , we0[ , )λ ∞
convert the integration into Fourier transform and
calculate it by polygonal approximation algorithm.
Finally, add the two results. This algorithm is

proved to have better convergence characteristic
and higher precision.

Index Terms—hybrid numerical integration,
Gauss-Legendre method,polygonal approximation

Ⅰ. Introduction

In the forward problem of magnetic induction
tomography and geological electromagnetic field,
the integration including dual-Bessel function of
the following form should be calculated:

(1)1 10
( ) ( ) ( ')F J J dλ λρ λρ λ

∞
⋅ ⋅ ⋅∫

where >0, >0, is the kernel function.ρ 'ρ ( )F λ
are the first order Bessel1 1( ), ( ')J Jλρ λρ

functions of first kind. It is also called as Hankel
transform.

Due to the serious oscillation and slow decay
of the dual Bessel function product term(as
shown in Fig.1), it is difficult to use ordinary
numerical integration method. Referring to the
research of Chave[1] and Huajun[2] , a new
numerical integration algorithm is introduced.

Fig.1. The plot of two one-order and first kind Bessel

functions multiplying

Ⅱ.Algorithm Description
According to the gradually changed

attenuation characteristic of Bessel function, the
integral interval can be divided into two[0, )∞
regions: and . In these two regions,0[0, )λ 0[ , )λ ∞
the integration be calculated by different
methods. The result is the sum of the two results.
A. Integration in Region 0[0, )λ

First, find the distribution of zero points for
the dual Bessel function product term in this
interval. Then, use Gauss-Legendre integral
method between the adjacent two zeros in turns.
We get 5 zero points of five-order Legendre
polynomials as the Gauss points in .[ 1,1]−
Arbitrary integral interval could be[ , ]a b
converted into interval by coordinate[ 1,1]−
transform [3].
B. Integration in region 0[ , )λ ∞
The Hankel transform can be written as fourier

transformation using the mass-argument
approximate expression of Bessel function, and
calculated by polygonal approximation algorithm.
The mass-argument approximate expression of
one-order Bessel function is:
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(2)( ) ( )1

2 3
cos

4
J x x x

x

π
π

⎛ ⎞≈ − → ∞⎜ ⎟
⎝ ⎠

Taking (2) into (1), substituting the integral

region with yields:[ )0 ,λ ∞

(3)

( ) ( ) ( )

( )
( )

( )
( )

0

0

0

'
1 1

'

'

'

'

sin

cos

F J J d

F d

F d

λ

λ

λ

λ λρ λρ λ

λ ρ ρ
λ λ

πλ ρ ρ

λ ρ ρ
λ λ

πλ ρ ρ

∞

∞

∞

⋅ ⋅ =

⎡ ⎤− +⎣ ⎦⋅ ⋅
⋅

⎡ ⎤− −⎣ ⎦+ ⋅ ⋅
⋅

∫

∫

∫

The Hankel transform has been convert into the

sum of two fourier transforms. Polygonal

approximation algorithm is employed to calculate

these two fourier transforms:

1
12

0 1

1
( ) cos( ) ( )sin( )

( ) ( )1
[cos( ) cos( )]

b
b

a
a

n
i i

i i
i i i

F d F

F F
λ

λ λρ λ λ λρ
ρ

λ λ
λ ρ λ ρ

λ λρ

=

+
+

= +

⋅ =

−
+ ⋅ − ⋅

−

∫

∑

(4)

1
12

0 1

1
( ) sin( ) ( )cos( )

( ) ( )1
[sin( ) sin( )]

b
b

a
a

n
i i

i i
i i i

F d F

F F
λ

λ λρ λ λ λρ
ρ

λ λ
λ ρ λ ρ

λ λρ

=

+
+

= +

⋅ = −

−
+ ⋅ − ⋅

−

∫

∑

(5)

Notes that, the integrating region of Polygonal

approximation algorithm is finite, namely, .[ , ]a b

But the integrating region in expression(3) is

infinite: , the infinite interval should be0[ , ]λ ∞

truncated according to the convergence

characteristic of at infinity.( )F λ

Ⅲ. Experiment of the test function

We used the following expression as the test

function.

(6)
2 2

1 10
( ) ( ) ( ')xF x e J J dλλ λρ λρ λ

∞ −= ⋅ ⋅ ⋅ ⋅∫
This integration has an analytical solution:

(7))
2

(
2

1
)(

2
21

1
4

2

2

2
2

2
1

x
Ie

x
xf x ρρ

ρρ
⋅

⋅=
+

−

where is the first kind of one-order1I

modified Bessel function.

The result of the numerical algorithm and the
analytical solution are drawn in the Fig.2:

Fig.2. Comparison between function analytical solution

and numerical solution

As Fig.2 shown, we can see that the numerical
solutions are coincide with the analytical ones.

Ⅳ. Conclusion
The algorithm solves the problem of numerical

integration of Hankel transform. The calculation
of the test function shows that this algorithm has
better convergence characteristic, higher
precision and efficiency. The algorithm can be
used in the solution of the forward problem in
magnetic inductive imaging and geological
electromagnetism exploration.
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9. NUMERICAL TECHNIQUES

Abstract — In contrast to the standard algebraic multigrid, the 
Wavelet-based Algebraic Multigrid method relies more strongly 
on the smoothing method because the coarse spaces are chosen a 
priori. So, it is very important to develop new smoother methods, 
especially for those cases where the classical Gauss-Seidel 
smoothing method does not give good results. This paper 
proposes a new multilevel smoothing approach based on 
projection technique. The proposed smoothing method was 
applied to smoothing the error in a linear systems issued from 
finite element solutions of the elliptic equation and the results 
compared with those obtained from the Gauss-Seidel method.

I. INTRODUCTION

HE WAVELET-BASED Algebraic Multigrid method 
(WAMG) was proposed for the solution of linear systems 

issued from Finite Element applications in Electromagnetic 
Field problems [1]. In this method an incomplete discrete 
wavelet transform is applied in order to generate an 
approximation of the original matrix in each level of a 
multiresolution process. The same approach is also used to 
transfer the vectors between the different grids in the multigrid 
scheme. In contrast to the standard algebraic multigrid, that 
uses some simple relaxation scheme and enforces the 
interaction between the smoother and the coarse-grid 
correction by choosing the coarser levels and the transfer 
operators appropriately [2],[3], the WAMG relies more 
strongly on the smoothing method because the coarse spaces 
are chosen a priori. So, the WAMG selects a suitable 
smoothing method to ensure an accurate error representation 
in the coarsest level. 

In face of this, it is very important to develop new 
smoothing methods that are suitable for the case where the 
classical Gauss-Seidel smoothing method does not give good 
results as, for example, for the global systems resulting from 
FEM–BEM formulations which the common smoother types 
do not work properly [4]. 

This paper proposes a new multilevel smoothing approach 
based on projection techniques which search an 
approximation in the high frequency subspace created by the 
high-pass filters in the discrete wavelet transform. 

II. THE REQUIREMENTS OVER THE SMOOTHER IN WAMG

In order to analyze the requirements over the smoothing 
methods in WAMG, we have to understand the DWT 
behavior and the effects of the use of this technique in the 
algebraic multigrid context. 

Usually in the literature, the discrete wavelet transform is 

defined using the concept of filter bank [5]. In such cases low-
pass and high-pass filters are chosen to obtain the low 
frequency and the high frequency terms of the input signal, 
respectively. In this procedure, if the discrete input signal 
x { [ ]} ∈= nx n  is sufficiently smooth then the high frequency 

terms are close to zero and the output low frequency 
component will be a good approximation of the signal. 

To better understand the effects of this technique in the 
WAMG context, we will suppose that there are only two 
grids: the original grid and a coarse grid. 

The WAMG method uses only the low-pass filters to 
produce an approximation of the original coefficient matrix. 
This approximation will represent the system of equation in 
the coarse grid and it will be used to solve the residual 
equation on the coarse grid. Then, the residual equation 
solution is used in the correction of the error in the original 
grid. 

As the WAMG coarse grid is created by the low-pass 
filters, the coarse grid error correction will only be accurate if 
the error is smooth. The fact that the error is smooth means 
that the high frequency components become small after a few 
stationary iterative iterations whereas the low frequency 
components hardly change [2]. Therefore, the smoothing 
method should to be able to remove or, at least, to lessen the 
high frequency components of the error. 

III. THE PROPOSED MULTILEVEL SMOOTHER METHOD

In a projection process an approximation for the solution 
of a linear system is extracted from a subspace K which is the 

subspace of candidate approximations, or search subspace. If 
m is the dimension of K, then the residual vector b Ax−  is 

constrained to be orthogonal to m linearly independent vectors 
in order to obtain such an approximation. This orthogonal 
condition defines another subspace L, of dimension m, called 

the subspace of constraints [6]. 
Mathematically, if we know an initial guess, 0x ∈K, the 

approximate solutions can be defined as 

0 ,x x δ δ= + ∈K          (1) 

0( , ) 0,r A w wδ− = ∀ ∈ L         (2)

in which 0 0r b Ax= − .

As an ideal smoother should remove the high frequency 
error component it is interesting that this smoother search an 
approximation to the linear system solution in a high 
frequency subspace.
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In other hand, the multiresolution analysis in discrete 
wavelet transform decompose the original grid (space) V in 
two subspaces V1 and W1 such that 

V1=span 1{ (2 )}kx kφ −
∈− ,        (3) 

W1=span 1{ (2 )}kx kψ −
∈− ,        (4) 

and
V1⊕ W1             (5) 

where φ  and ψ  are the scaling and wavelets function, 

respectively. Therefore, we can develop a smoothing method 
based on a projection approach with, 

K = L = W1          (6) 

which will search the approximations to the solution in the 
high frequency subspace W1. As result the obtained error 
should be smooth in the sense of the Discrete Wavelet 
Transform. 

In a matrix representation, denoting by W=[w1,…,wm] an   
n x m matrix whose column-vectors form a basis of W1, a two-
level smoothing method based on projection technique can be 
represented by the following algorithm: 

Algorithm: Two-level smoothing method 

2

2 1 2

2
1

1

1. Get the current approximation 

2. 

3. 

4. ( )

5. 

6. Return  

i

h
i

h T h

h T h

h
i i

i

x

r b Ax

r W r

e W AW r

x x We

x

−

+

+

= −

=

=

= +

The recursion of this two-level process produces a new 
multilevel smoothing method which has shown to be efficient 
in smoothing the high frequency error. 

IV. DESCRIPTION OF THE TEST PROBLEM

In order to analyze the efficiency of the proposed smoother 
the method was applied to smoothing the error in the linear 
systems with 5041 rows and 56911 nonzero elements, issued 
from finite element solutions of the elliptic equation. 

For analyzing the smoothing method behavior we assume 
that the exact solution x  is known, 

sin(2 200 / ) sin(2 600 / ) sin(2 1200 / )ix i n i n i nπ π π= × + × + ×
i=1,…,5041, and we use it to supply the right hand side vector 
b .

The error is analyzed after one, two and three smoother 
iterations. As in the WAMG context is supposed to there is no 
predefined geometric grids the error is analyzed in an 
algebraic sense, in which an error is smooth if it is slow to 
converge with respect to the smoothing method [2]. The 
classical Gauss-Seidel was used for comparison. 

V. RESULTS

The error after one, two and three smoothing iterations are 
shown in Fig. 1. As a zero initial guess was adopted the initial 
error is equal to the exact solution x .

Fig. 1. A portion of the error after one (top), two (middle) and three smoothing 
iterations

VI. CONCLUSIONS

The proposed method seems to be very efficient in 
smoothing the high frequency error. The results in Fig. 1 show 
that the errors produced by the multilevel approach appear less 
oscillatory than those created by the classical Gauss-Seidel 
method in the three first iterations. 
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Abstract —This work shows the use of a hybrid numerical 
technique to fully analyze circularly symmetric omnidirectional 
antennas fed by coaxial horn.  Mode Matching technique is 
employed to analyze the interior region of the coaxial horn. The 
Electric and Magnetic Field Equations (EFIE/HFIE) are 
employed to related the horn aperture fields and the induced 
currents on the reflectors and outer surfaces of the feed. Method 
of Moments (MoM) is used to solve the Field Integral Equations.  
The analysis yields the accurate prediction of the antenna 
radiation pattern and return loss at the feed connector. Due to the 
numerical efficiency of the scheme, the analysis can be associated 
with optimization methods to design the feed horn in order to 
minimize the antenna return loss. 

I. INTRODUCTION

Last-mile broadband access has been considered as an 
alternative wireless technology to attend the growing interest 
on high-speed Internet access, as it can show lower costs, rapid 
deployment, and lower maintenance when compared with 
cable technologies. For the antenna in the hub station,   
compact single and dual reflector omnidirectional antennas 
have been considered [1,2]. The reflector surfaces are bodies 
of revolution obtained by rotating the generating curves about 
a symmetry axis, as illustrated in Figure 1 for dual reflector 
systems.  The vertical polarization is obtained by employing a 
coaxial TEM feed horn, placed on the central opening of the 
main reflector, as indicated in Figure 1.

Figure 1 - Circular symmetric reflector surfaces. 

Besides the control of the radiation pattern in the elevation 
plane and the reduction of the return loss at the feed input, the 
design of the reflector these omnidirectional antennas has to 
provide compact configurations to make them attractive. 

However, the design for compact geometries implies on 
diminishing the distance between the elements and increasing 
the coupling effects between feed and reflectors. In order to 
estimate electrical performance of these compact 
omnidirectional antennas, a full-wave stepped-waveguide 
model and MoM/HFIE method are combined to analyse both 
the fields in the interior region and the contributions of the 
induced currents on the reflector, subreflector, and the exterior 
wall of the feed horn [3,4].  The interaction is accurately 
analysed by using the EFIE on the exterior surfaces of the 
coaxial horn. The equivalence currents principle is introduced 
to formulate the HFIE on the radiating aperture which 
combines the interior field transition problem with the exterior 
radiation. The procedure is similar to those described in [3,4] 
and applied in the electromagnetic analysis of conical feed 
horns excited by the TE11 mode. Here, the procedure is 
adapted to include the reflectors and a coaxial feed horn 
excited by the TEM mode.   As a consequence of the TEM 
mode excitation, only the TEM and TM modes are considered 
at the transition region, as the TE mode do not couple with the 
TEM excitation.. The application of the analysis technique 
yields the antenna radiation pattern as well as the antenna 
return loss at the end of the N-type connector.  The numerical 
scheme is particularly efficient in the optimization of the 
antenna feed horn. 

II. ANTENNA ANALYSIS

The analysis is separated in two parts. First, the horn is 
represented as series of stepped coaxial waveguides sections 
and Mode Matching is performed by rigorously enforcing the 
boundary conditions at each step. It results a scattering matrix 
[S] for the entire transition region: 




















=












A

C

2221

1211
A

C

a

a
SS

SS

b

b
                            (1) 

The scattering matrix relates the reflected modes at the two 
extremes of the transition region. In (1), the vectors [aC] and 
[aA] contain the amplitudes of incident modes at the region ´C´ 
and ´A´, respectively, whereas the vectors [bC] and [bA] 
contain the amplitudes of reflected modes at the connector ´C´ 
and aperture ´A´, respectively (see Figure 2). The matrix [S] 
depends on the geometrical parameters and on the wavelength 
as well as the number of modes considered to ensure 
continuity of the electric and magnetic throughout the 
transition region. Part of the power of the modes reaching the 

Analysis of Omnidirectional Compact 

Dual-reflector Antenna
S. R. Zang#1, and J. R. Bergmann#1

#PUC-Rio, CETUC 
Rua Marques de São Vicente 225, 22453-900, Rio de Janeiro, Brazil 
1sandro@cetuc.puc-rio.br,bergmann@cetuc.puc-rio.br 

1034

PD4.5



aperture, region A, is radiated into the space while the rest is 
reflected back into the horn. 

Figure 2 - Horn represented as series of stepped coaxial waveguides sections 

In the second part of the analysis scheme, to calculate the 
radiate fields and the amplitude of the reflected modes [bA], 
MoM is employed to solve the EFIE and MFIE, as described 
in [4]. To apply the above strategy, an equivalent to the actual 
electromagnetic problem is defined by replacing the feed 
radiating aperture by a sheet of perfect conductor with an 
equivalent magnetic current density  

( ) ( )( )
1

,
MN

A A A A A
l l l

l

M a b a b n e
=

    = − + ×    ∑
                         (2) 

where n


 is the unit vector normal to the aperture, A
le
  is the

electric field of the modes internal to the aperture and NM is 
the number of modes used in the expansion. The magnetic 

current density M


 radiates into the space and induces an 

electric surface current J


on the metallic wall of the equivalent 
problem, as described in Figure 3. These currents ensure the 
continuity of the tangential magnetic field across the aperture 
and zero tangential electric field on the metallic surface at the 
aperture and reflectors: 

[ ]
[ ] ASS

SS

HnMHJHn

0MEJEn




×=+×

=+×

)()(

)()(
                                (3)

where SE


 and SH


are electromagnetic field scattered by the 

currents M


 and J


. 

Figure 4 - Surface currents outside the feed horn  

To apply the MoM solution, the current densities M


and J


are expanded by sub sectional roof-top patch modes J
jP


and 

M
kP


respectively. In this way, a conversion matrix is 

introduced to transform the roof-top patch modes into 
eigenmodes of the aperture fields. By testing the EFIE with 

J
iP


and the HFIE with A

ln e× , it leads to two systems of  matrix 

equations. By combining them with (1), it is possible to define 
a relation between the vector [aC] and the vectors [bC] , [aA] 
and [bA] . 

III. RESULTS

The analysis algorithm was applied to calculate the antenna 
radiation pattern and the antenna return loss of a dual reflector 
omnidirectional system. The antenna is generated by an axis 
displaced confocal conics of ADE type where the parameters 
are described in [2]. The antenna radiation pattern and return 
loss are depictured in Figures 4 and 5 (dotted line), 
respectively. In order to minimize the peak of the antenna 
return loss over the operation band (7.5-10.0 GHz), the 
analysis was embedded in an optimization scheme to shape the 
feed horn profile. The results after the shaping are show by the 
lull line in Figure 3, where can e observed a 2 dB reductio in 
the peak. As the shaping may modify the feed radiation 
pattern, Figure 4 shows the antenna radiation pattern after 
optimization (full line). Measured results will be available for 
comparison. 

Figure 3 –Antenna Return Loss at the N-Type Connector 

Figure 4 –Antenna Radiation Pattern 
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I. INTRODUCTION 
The induction motor is the most important one because of its 

simplicity, low cost and ease of operation. Asymmetrical 
operation of the induction motor results in poor efficiency which 
eventually leads to the failure of the motor. The analysis of the 
induction motor is important for diagnose failures in the motor. 
The conventional dq model of the induction motor is based on 
the assumption that distribution of the stator windings is 
sinusoidal. This implies that the harmonics of the winding 
distribution are neglected in the analysis of the motor. This 
model is not suitable for motor analysis and simulation under 
rotor eccentricity or the broken rotor bars. However a model 
based on the winding function theory is more convenient for 
such conditions.  

This paper focuses on the mixed fault analysis of 3phase 
squirrel cage induction motor with the rotor static eccentricity 
and the broken rotor bars at steady state. The fault model is 
presented by the winding function theory and the coupled 
magnetic circuit method. Self and mutual inductances for the 
induction motor are calculated by using the winding function 
theory. The stator current is obtained by means of the coupled 
magnetic circuit method and Park’s transformation. Individual 
and mixed fault characteristic caused by the broken rotor bar 
and the rotor static eccentricity are analyzed. The analysis 
results are identified by the special frequency component 
obtained by the spectrum analysis of the stator current.  

II. MODELING OF INDUCTION MACHINES  
The voltage equations of mphase induction machine with 

n rotor bars for the stator loops in vectormatrix form can be 
written as 

dt
dIRV s

sss
Λ

+=               (1) 

rsrssss ILIL +=Λ                (2) 

where Vs is the stator voltage matrix, Rs is an m dimensional 
diagonal matrix consisting of resistances of each stator phase, 
Is is the stator current matrix, sΛ  is the stator flux linkage 
matrix, Lss is the (m*m) matrix of stator inductance, Lsr is an 
(m*n) matrix comprised of the mutual inductances between the 
stator phases and the rotor loops, and Ir is the rotor current 
matrix. 

The voltage equations for the rotor loops are 

dt
dIRV r

rrr
Λ

+=                  (3) 

rrrsrsr ILIL +=Λ              (4) 
where Vr is the rotor voltage matrix. In case of a cage rotor, the 
rotor loop voltages, Vr = 0. Rr is n symmetric matrix consisting 
of resistances of each rotor bar, rΛ is the rotor flux linkage 
matrix, Lrs is a (n*m) matrix consisting of the mutual 
inductances between the rotor loops and the stator phases, and 
Lrr is (n*n) matrix of rotor inductances. 

III. CALCULATION OF INDUCTANCES 

The winding function is defined by 

∫−=
π

φφ
π

φφ
2

0

)(
2
1)()( dnnN                  (5) 

The function )(φn  is called the turns function. The second 
term is clearly the average value of the turns function. 

Fig. 1 shows an important example of continuous winding 
distribution and such a winding is said to be uniformly 
distributed. Here, the Nt turns are assumed to be uniformly 
distributed over β radians. The function )(φn  is 

φ
β

φ tNn =)(              (6) 

where 
22 11
βφφβφ +≤≤− . Hence, )(φn changes linearly over 

this region. The other quantity changes same manner. The 
turns function )(φn remains fixed at Nt/2 until reaches 2φ at 
which point negative turns start being enclosed.  

According to winding function theory, the calculation of 
winding inductance between any two windings “A” and “B” in 
any electric machine can be computed by  

φ
φθ

φθφθφθθ
π

d
g

NNrL
re

rBrA
rrAB ),(

),(),(),()(
2

00
⋅

= ∫     (7) 

where rθ  is the angular position of the rotor with respect to 
some stator reference, φ  is a particular position along the  
stator inner surface, ge is effective airgap function, ℓ is the 
length of the stack, and r is the average radius of the airgap. 
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The term ),( φθrAN  and ),( φθrBN are called the winding 
function. 
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Fig.  1. Winding function, n(φ) changes linearly over the slot 
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Fig. 2. Winding function of phase “a” not considering effect of slot width 
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Fig. 3. Winding function of phase “a” considering effect of slot width 

 
Fig. 2 shows the winding function of the phase “a” not 

considering the slot width of the induction motor. In this figure, 
it is shown that the distribution of current over a slot pitch has 
been neglected in the computation of the winding function. Fig. 
3 shows the winding function of phase “a” considering the slot 
width. As the width of the slot increases, the winding function 
changes linearly across the slot.  

The specific machine studied in this paper is a threephase, 
1hp, 60Hz, 4pole, 30V induction motor. The motor has 36 
stator slots and 44 rotor bars with one coils per stator phase. 

IV. SIMULATION RESULTS 

Motor current signature analysis is a noninvasive, online 
monitoring technique for the diagnosis of problems in 
induction motors. 

Fig. 4 is a fast Fourier transform(FFT) zoom current 
spectra for 3 broken rotor bars. In Fig. 4, Fig. 5 and Fig. 6 a 
solid line and a dashed line represent a faulty motor and a 
healthy motor respectively. The motor was operating at full
load slip of 0.05, and the predicted twice slip frequency side
band “(12s)f” for a supply frequency of 60 Hz are ±6 Hz. As 
in Fig. 4 there is sideband at 6 Hz around the supply 
frequency by broken rotor bar. This is referred to as a twice 
slip frequency due to broken rotor bars.  

Fig. 5 is a FFT zoom current spectra for 50% rotor static 
eccentricity. In this figure there is only a frequency 
components “±fec” which are a function of rotor eccentricity. 

Fig. 6 is a FFT zoom current spectra for 3 broken rotor 
bars and 50% rotor static eccentricity. In this figure there are 

sideband and frequency component together. From these result, 
we know that one fault characteristic made by the broken rotor 
bars does not affect the other fault characteristic cause by the 
rotor static eccentricity.  

 

    




























   



















 
Fig. 4. FFT zoom stator current spectra for 3 broken rotor bars.  

 

    





























   



























 

 

 
Fig. 5. FFT zoom stator spectra for 50% rotor static eccentricity.  

 

    





























   



























 


 

 
Fig. 6. FFT zoom stator spectra for 3 broken rotor bars and  

50% rotor static eccentricity. 
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Av. Antônio Carlos 6627, 31270-901, Brazil
th.emanuel@gmail.com, adriano@cpdee.ufmg.br

Abstract—This paper presents a simple implementation strat-
egy for parallelizing mesh refinement algorithms that, besides
performance improvements, requires only a few changes in the
refinement algorithm. Furthermore, its fundamental structure
allows a generic implementation for reusable code. It is applied
and further analyzed in the instance of a Delaunay refinement
algorithm for curved complexes.

I. INTRODUCTION

The clock frequency of processors seems to have reached
an upper bound. This achievement has put parallelization as an
ever so important way to speed up computational applications.
A new programming paradigm has come up: algorithms must
allow parallel processing.

Parallelizing an algorithm may require great changes, or
even be impractical. A parallelization strategy that is less
intrusive in the sequential algorithm may be considered prefer-
able. Common strategies to parallelize a mesh refinement
algorithm include a fine grain parallel cavity expansion, a
medium grain parallel expansion of multiple cavities, and a
coarse grain parallel refinement of geometry subregions [1].
A fine granularity must consider specific algorithm behavior,
and it is justified only when the cavity inclusion predicate
is computationally expensive. At coarser granularity levels, it
is possible to develop strategies that are less dependent on a
specific refinement algorithm. This paper proposes a simple
medium grain implementation pattern.

The proposed strategy is used to parallelize a Delaunay
refinement algorithm for curved complexes [2]. Despite the
unique cavity expansion and remeshing of this refinement
algorithm, the parallelization strategy can be implemented
seamlessly.

II. IMPLEMENTATION PATTERN

The implementation pattern considers a refinement algo-
rithm that takes an element from the refinement queue, marks
up extra elements to be remeshed (cavity expansion algo-
rithm), remeshes the cavity, and finally updates the refinement
queue. The refinement queue contains full identification of
elements that must be refined according to some refinement
criteria. The parallelization strategy requires the following
interventions in the mesh generation algorithm:

• the refinement algorithm is embedded in a thread;

This work was supported by FAPEMIG under grant 13180, Brazil.

• the refinement queue becomes a global refinement queue
whose access is protected;

• the cavity expansion algorithm must detect and treat
cavity conflicts;

• the selection of an element to refine is only taken from
the global refinement queue when the thread’s local
refinement queue is empty.

Two extra data structures are used in the implementation
pattern. The first one is a local refinement queue for each
thread with elements that must exclusively be refined by its
thread. The second one is a localizing vector where threads
mark up elements of their cavity, and query to detect conflicts.
The localizing vector is indexed by element identification num-
bers, and contains the respective owner thread. The following
subsections describes the behavior of the implementation
pattern. Further details will be given in the final paper.

A. Non-conflicting Cavity Expansion

Each thread selects an element to refine and start expanding
its cavity from it (see Fig. 1). A thread marks up an element
with their identification number in the localizing vector as
soon as the cavity membership is verified. After completing
its cavity expansion, a thread remeshes the cavity and updates
the global refinement queue: cavity elements are removed from
the queue, and new elements that do not satisfy the refinement
criteria are inserted into the queue. Before selecting another
element to refine, the thread unmarks its cavity elements in
the localizing vector and clears its cavity.

0

0

0

1

1

1

0

1

Fig. 1. Threads 0 and 1 concurrently expand their cavities marking up
member elements in the localizing vector. The cavity expansion starts from
the bold border element. They are non-conflicting since no neighbor of one
cavity belongs to the other cavity.

B. Handling Conflicts

The cavity expansion goes through neighbor elements. Be-
fore testing the membership of a neighbor element, a thread
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checks, in the localizing vector, whether the element has
already been marked up by another thread. If so, a conflict
is confirmed. The conflicted thread then unmarks all its cavity
elements and pushes the start cavity element identification into
the local refinement queue of the conflicting thread, as shown
in Fig. 2. Using local refinement queues avoids another conflict
with the same thread when starting from the same element.
The conflicted thread takes another element to refine, and the
conflicting thread continues its cavity expansion.

0

0

1

10

1
1

1

1

1

thread�1

local�queue

id0

Fig. 2. Threads 0 and 1 concurrently expand their cavities marking up
member elements in the localizing vector (left). The cavity expansion starts
from the bold border element. Thread 0 detects a conflict with thread 1, then
unmarks all elements of its cavity and pushes its start element identification
into thread 1 local refinement queue (right). Thread 1 continues its cavity
expansion.

Each thread checks, in the localizing vector, whether the
start element of its cavity, which is taken from a refinement
queue, has already been marked up by another thread. If so,
a conflict is confirmed. In this case, the thread can simply
discard the refinement element, since it will be removed by
the conflicting thread after remeshing its cavity. The conflicted
thread takes another element to refine, and the conflicting
thread continues its cavity expansion.

C. Synchronization

To avoid inconsistencies with multiple threads changing, at
the same time, the global refinement queue or the localizing
vector, a binary semaphore for each data structure guarantees
exclusive access. The synchronization on the global refinement
queue is trivial: a thread claims the exclusive access to the
queue through its respective semaphore, and releases it after
changing it. The synchronization on the localizing vector
deserves some remarks.

When a thread detects a conflict, it owns the exclusive
access to the localizing vector. At this time, it unmarks all
elements of its cavity, and also pushes the start element into
the conficting thread local refinement queue, before releasing
the access. The conflicting thread would have to own the
semaphore to detect a conflict with the same thread, so that it
always continues expanding its cavity without realizing what
happened. Furhtermore, the conflicting thread only access its
local refinement queue after unmarking elements of its cavity.
That is why local refinement queues do not need their own
semaphores to guarantee exclusive access.

D. Preventing Conflicts

The local refinement queues were introduced to handle con-
flicts. However, delegating elements to be refined by a specific

thread can be used to prevent conflicts in a more general sense.
For instance, if it is possible to define disconnected refinement
locations for each thread, then elements to be refined from
one location can be pushed into the local refinement queue of
a specific thread. Notice that it does not matter the strategy
used to assign an element to a thread, and that intermediate
strategies are also possible, where unassigned elements are
obviously pushed into the global refinement queue. However,
if a thread becomes allowed to assign an element to another
one, the exclusive access to local refinement queues must be
guaranteed. Preventing conflicts imbues features of a coarse
grain parallelization.

III. INSTANTIATION

This section describes the instantiation of the parallization
strategy for a Delaunay refinement algorithm for curved ge-
ometries.

The cavity expansion comes from an extension of the
Bowyer-Watson algorithm, which may contain simplices of
different dimensions. Fortunately, the parallelization strategy
does not depends on expansion rules. It only interferes where
new cavity simplices are identified. Notice that neighbor
simplices can also be lower dimensional.

The refinement queues in Delaunay refinement algorithms
are usually actually priority queues, in order to reduce the
output mesh cardinality. However, only the exclusive access
guaranteed by a semaphore is required by the parallelization
strategy, which is independent on how elements to be refined
are removed/pushed from/into the queues.

It is possible to detect conflicts a priori and to efficiently
determine non-conflicting sets of elements to be refined for
Delaunay refinement algorithms [3], [4]. Although, they have
not been tested on curved geometry constraints.

Timings and practical behavior of the parallel Delaunay
refinement algorithm for curved geometries, with and without
strategies for preventing conflicts, will be shown in the final
paper. Further details of the instantiation will also be included.

IV. CONCLUSION

This paper presents a simple and general parallelization
strategy for mesh refinement algorithms. The parallelization
is typically medium grain, but allows to introduce features of
coarse grain ones by preventing conflicts.
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9. NUMERICAL TECHNIQUES

Abstract — When the magnetic field analyses of architectural 
components, in which magnetic materials are distributed 
complicatedly, are carried out, huge efforts toward the modelling 
are required. In this paper, a homogeneous technique is applied 
to the magnetic field analysis of the architectural components in 
order to reduce the effort and computer costs. The suitable 
region, where the homogeneous technique is applied, is 
investigated in the analysis of magnetic disturbance of a building 
model. Moreover, the effectiveness is shown in the analysis of the 
shielding performance of an open-type magnetically shielded 
room for MRI. It is shown that the homogeneous technique 
should be applied to not only the magnetic materials with 
complicated structure but also the air region surrounding them. 

I. INTRODUCTION

For example, when the magnetic disturbance due to 
buildings is calculated by the magnetic field analysis with the 
finite element method (FEM) [1, 2], huge efforts toward 
modelling complicatedly distributed magnetic materials in 
buildings are required. Moreover, the huge memory 
requirements and CPU time are also required due to large 
number of the finite elements. Recently, the homogeneous 
technique, in which the complicatedly distributed magnetic 
materials are replaced to the homogeneous body with the 
equivalent permeability, was proposed [3]. In this technique, 
the equivalent permeability is determined so that the energy 
of homogeneous body is equal to be that in the region of 
distributed magnetic materials. 

In this paper, the technique is applied to the magnetic field 
analysis of architectural components, in which magnetic 
materials are distributed complicatedly. First, the suitable 
region, where the homogeneous technique is applied, is 
investigated in the calculation of the magnetic disturbance of 
a simple building model. Next, the technique is applied to the 
analysis of the shielding performance of an open-type 
magnetically shielded room (MSR) [4] with square cylinders 
made of magnetic materials for a magnetic resonance 
imaging (MRI) in order to investigate the effectiveness.  

II. HOMOGENEOUS TECHNIQUE

The homogeneous technique [3] using a simple building 
model composed of only iron bars shown in Fig. 1 used in this 
paper is described. In the homogeneous technique, the iron 
bars distributed complicatedly in the building are replaced to 
the homogeneous body with equivalent permeability μh. The 
subscript h denotes the value for the homogeneous model. The 
equivalent permeability μh is determined by using the cell 
model which is a part of building as shown in Fig. 2. For 
example, the x-component μhx of μh is determined so that the 
energy of the homogeneous body is equal to be that of the cell 
model obtained by FEM as the following equation, in the case 

the same average flux density Bx is applied in the x-direction 
for both models;  
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where left and right hand side correspond to energies of cell 
and homogeneous models, respectively. The superscript ie
denotes the value for each element in cell model. ne and V are 
the number of elements and the volume, respectively. 
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Fig. 1. A simple building model (1/8 region). 
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Fig. 2. Homogeneous technique. 

III. ANALYSIS OF MAGNETIC DISTURBANCE DUE TO BUILDING

The magnetic disturbance due to the simple building 
model shown in Fig. 1, when the uniform flux density Box =1 
μT is applied in the x-direction, is analyzed by the 
homogeneous techniques with the following treatments: 

Method 1: One homogeneous model determined by the cell 
model shown in Fig. 2 (a) is applied to the whole region of 
buildings.  

Magnetic Field Analyses of Architectural 
Components Using Homogeneous Technique 
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9. NUMERICAL TECHNIQUES

Method 2: The homogeneous model determined by the 
different cell model is applied on the side of building because 
the shape configuration of cell model shown in Fig. 2(a) is 
different from that on the side of the real model. 

Method 3: The homogeneous model determined by the cell 
model adding that of Method 2 to the air region is applied on 
the side of building. 

Fig. 3 shows the distributions of the magnetic disturbances 
ΔBx (ΔBx=Bcx−Box, Bcx: the flux density obtained from 
calculation), obtained from the calculation using the real 
model and the several homogeneous techniques, on the line s-t 
which exists on the position between iron bars and the line s’-
t’ which exists at the position on the extension line of the iron 
bar, shown in Fig. 1. In the homogeneous techniques, the 
ΔBx’s on the lines s-t and s’-t’ are almost the same, whereas 
the ΔBx on the line s’-t’ becomes larger than that on the line s-
t in the real model because the flux concentrates near the iron 
bar. The results obtained from the homogeneous techniques 
should be close to the average values of those on lines s-t and 
s’-t’ in the real model. However, the results obtained from 
Methods 1 and 2 are close to that on the line s’-t’ in the real 
model. This is because the flux distribution in the air region 
near the building becomes uniform and the increase of the 
energy due to the concentration of the flux density near the 
iron bar can not be taking into account in Methods 1 and 2. 
On the other hand, the result obtained from Method 3 
becomes appropriate. As a conclusion, the homogeneous 
technique should be applied to not only the magnetic materials 
but also the air region surrounding them. 
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Fig. 3. Distributions of magnetic disturbance ΔBx on lines s-t and s’-t’.

IV. ANALYSIS OF OPEN TYPE OF MSR FOR MRI

    The homogeneous technique is also applied to the analysis 
of the shielding performance for an open-type MSR with the 
square cylinders made of magnetic material for MRI [4] 
shown in Fig. 4. The enlarged view of the square cylinder is 
shown in Fig. 5. The square cylinder is divided into two parts 
by the large slit in order to obtain the higher shielding 
performance.  

Two homogeneous techniques are examined: one is that 
each magnetic cylinder is replaced to the homogeneous body 
(Method A). The other is that both magnetic cylinders 
including the slit are replaced to the homogeneous body 
(Method B).   

Fig. 6 shows the distributions of the leakage flux densities 
on the line L shown in Fig. 4, obtained from the real model 
and the homogeneous techniques. The flux distribution 

obtained from Method A is much different from that of the 
real model. This is because the increase of the energy due to 
the non-uniformity of the flux distribution in the slit can not 
be represented in Method A.  The result obtained from 
Method B is in good agreement with that of the real model. 

The homogeneous technique is effective for the magnetic 
field analyses of architectural components when the cell 
model including air region near the magnetic material is used. 
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Abstract—An adaptive mesh for the finite element method is
problem dependent and, hence, unlikely to be defined a priori in
complex problems. The usual strategy to reach it is starting with
a coarse mesh and then solving the problem to define where
the mesh must be refined according to an error estimation.
This process goes on iteratively until a given accuracy is met.
Under this procedure, pre-discretization of curved parts of the
geometry clearly seems to be inefficient. This paper highlights
improvements and challenges when a finite element method
is coupled with a Delaunay refinement algorithm for curved
geometries.

I. INTRODUCTION

DELAUNAY refinement algorithms were first developed
for meshing piecewise linear complexes [1], [2], [3], [4],

and they were mainly motivated by the finite element method.
They already enjoy good theoretical guarantees in quality,
size and grading for arbitrary bidimensional piecewise linear
complexes. Unfortunately, for higher dimensional inputs, they
still lack meaningful theoretical guarantees, specially when
considering small input dihedral angles. Fortunately, Delaunay
refinement algorithms perform better in practice than in theory.

The Ruppert’s Delaunay refinement algorithm has been
extended [5], [6] to deal with curved bidimensional geome-
tries. This extension carries out all theoretical guarantees
of Ruppert’s algorithm, except size optimality that must be
further analyzed for curved geometries. Recently, Cheng et al.
[7], [8] have proposed a new Delaunay refinement algorithm
to cope with curved tridimensional geometries, based on a
Delaunay criterion over manifolds [3], [9]. Despite its ability
to mesh a large class of geometries, its queries on curved
surfaces are very complex and time consuming. This paper is
based on a simpler and faster, though less general, Delaunay
refinement algorithm for curved geometries [10].

II. DELAUNAY REFINEMENT FOR CURVED COMPLEXES

The Delaunay refinement algorithm for curved complexes
used in this paper [10] extends the fundamental ideas of
Ruppert refinement and Bowyer-Watson incremental insertion
algorithms. Every strongly Delaunay simplex is part of a De-
launay simplicial complex. Hence, pre-defined circumscribed
balls of conforming simplices do not enclose any other vertex
throughout the refinement. If any of them is encroached by

This work was supported by FAPEMIG under grant 13180, Brazil.

the insertion point, the insertion point is projected on the
respective piece, just like as in Ruppert algorithm. The new
simplices created by connecting the new vertex to the cavity
boundary, just like as in Bowyer-Watson algorithm, will have
empty circumscribed balls as long as the cavity simplices
are all those encroached by the projected insertion point.
However, for curved pieces, the empty circumscribed balls
may not be the pre-defined ones, so that some vertices may
have to be removed to ensure that. The creation of the initial
mesh is also changed. Homeomorphic simplices are created
from lower to higher dimensions. Lower dimensional simplices
are guaranteed, by refinement until they become strongly
Delaunay, to be part of connected higher dimensional meshes.
In this process, an input constraint piece only defines its
own parametric space. All boundary or constraint information
comes from lower dimensional connected simplices.

III. FINITE ELEMENT METHOD ON CURVED GEOMETRIES

Throughout this section, the improvements and challenges
of coupling finite element method and Delaunay refinement
for curved geometries will be highlighted in a simple electro-
magnetic analysis of a micromotor [11], whose geometry is
shown in Fig. 1.

Fig. 1. Point and line constraints of the micromotor geometry.

The first and most notable improvement when using Delau-
nay refinement for curved geometries is the efficient use of
coarse meshes, as the one shown in Fig. 2, and, naturally,
fine meshes. An adaptive strategy could start with such a
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coarse mesh and then refine it wherever needed, without
recreating the mesh after re-discretizing curves and surfaces
as an ordinary Delaunay refinement algorithm for piecewise
linear complexes would do.

Fig. 2. Coarse mesh for the micromotor (dielectric board and air meshes are
shown separately to ease visualization).

When the Delaunay refinement algorithm can handle curved
geometries, it becomes clear what is mesh generation, and
what is modeling, because no intermediate steps are needed
to create linear approximations of curved pieces. For instance,
the mesh generator itself truly refined the coarse mesh, shown
in Fig. 2, into a finer mesh with better geometry representation,
as shown in Fig. 3. During this refinement, new vertices were
inserted into curves and surfaces as needed.

Fig. 3. Refinement of the coarse mesh for the micromotor (dielectric board
and air meshes are shown separately to ease visualization).

The refinement timing difference, between the Delaunay
refinement for curved geometries used in this paper and one
for piecewise linear complexes, comes almost exclusively from
the computation of the point on piece that is equidistant to the
vertices of a conforming simplex. Whenever this computation
is fast (e.g. pieces are spheres, cylinders), or vertices are rarely

inserted on curved pieces (e.g. uniform refinement), the timing
difference is negligible.

Unfortunately, the Delaunay refinement for curved geome-
tries used in this paper requires strongly Delaunay simplices
conforming the input pieces, unique point on piece that is
equidistant to the vertices of a conforming simplex, and that
each curved piece is entirely contained in the circumscribed
balls of its conforming simplices. These requirements must be
satisfied throughout the refinement since the initial mesh. In
order to meet them, either artificial features could be inserted
into the input geometry, or more complex approaches [7], [8]
could be used to generate the initial mesh. Both result in a
higher computation cost and in a finer initial mesh.

Another challenging open problem in Delaunay refinement
for tri or higher dimensional curved geometries, is the treat-
ment of small input dihedral angles. Slivers can still be
removed in practice with a refinement criterion on minimum
(typically 15o) or maximum (typically 165o) dihedral angle,
although without any theoretical guarantee.

More details about the tetrahedral mesh quality and grading,
and refinement timing, will be given in the final paper, as well
as electromagnetic solutions of the micromotor problem.

IV. CONCLUSION

The Delaunay refinement for curved geometries has shown
to be very competitive when some requirements on the initial
mesh are verified. However, it is still a great challenge to cope
with small input dihedral angles and with arbitrarily complex
curved geometries. Its application to finite element method
seems to be rather promising, specially as a key feature in
adaptive and efficient mesh generation.
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Abstract—Finite element simulation can be directly affected
by mesh quality. The accuracy of finite element calculations
is dependent upon of the mesh quality. Previously, we have
introduced a novel approach to the construction of high-quality,
isotropic tetrahedral meshes from segmented medical imaging
data. This article proposes an experimental evaluation of the
impact of our tetrahedral meshes on electromagnetic and thermal
simulations with finite elements.

I. INTRODUCTION

In this paper, we show the impact of the geometrical
modelling on the numerical simulation of electromagnetic and
thermic phenomena in the human body exposed to radiofre-
quency field. We present the electromagnetic [1] and thermal
Finite Element Models (FEM). The time harmonic formulation
is directly written in term of total electric field E (1). It
is obtained by applying the Galerkin method to the wave
equation. Coupling to a first order Engquist-Majda Absorbing
Boundary Conditions (ABC) taking into account the open
boundary:

−
�

v
∇W × ∇ × E .dv −

�

v
Wk0

2 εt
∗ E .dv +

�

v
W gABC(E) .ds = − j ω µ0

�

τ
Je .dv (1)

with gABC(E) = j k0 Et , where Et is the tangential field,
k0 is the propagation constant of the electromagnetic field,
W the weight function, εt

∗ the tissue complex permittivity
values and Je the electric current density. Space discretization
is performed using incomplete first order edge elements.

Temperature calculation is based on the solution of the
instationary Pennes bio-heat equation (2) with E as source
term.

ρC
δT
δ t

= ∇.(k∇T )−Cbωb(T − Ta)+
1
2

σ |E|2 + Qm (2)

with ρ , the tissue density, C the specific heat of the tissue,
k the thermal conductivity, ωb the blood flow, Cb the specific
heat of the blood, Ta the temperature of the arteries, σ the
electrical conductivity and Qm the amount of heat produced
by metabolism. Thermal modelling is carried out with classic
nodal FEM. We use conjugate gradient solver with various
preconditioning techniques: diagonal, SSOR and Gauss.

II. TETRAHEDRAL MESHES GENERATION

A. State of the Art

There are basically three approaches for tetrahedral mesh-
ing: greedy approaches, Delaunay-based methods and hierar-

(a) (b) (c)

Fig. 1. Meshing process: the segmented ”Visible Human” Male Dataset
(a), tridimensional discrete set (b), tetrahedral meshing (c) of (b) with our
approach.

chical decomposition approaches. The greedy approaches start
from a boundary and move a front from the boundary towards
the empty space within the domain. Delaunay approaches
generate triangulations using Delaunay criteria. Unfortunately,
in 3D and higher dimensions, the Delaunay property alone
is insufficient to guarantee well-shaped elements. Finally,
hierarchical decomposition approaches recursively subdivide
the cube containing the geometric model until the desired
resolution is reached. Elements that lie outside the meshing
domain, and the elements inside the domain are split into
tetrahedra. Most of the previously cited approaches share a
common point : they take an input surface and enrich it
with new vertices to generate the tetrahedra. This can be
problematic around the objects boundaries, as the vertices
of the input surface can be an important constraint for the
resulting mesh, and induce tetrahedra with bad aspect ratio.

B. The Proposed Approach

We have proposed a novel tetrahedral mesh generation
algorithm in [2]. Our algorithm directly processes voxels of
segmented volumes coming from Tomographic Scanners or
Magnetic Resonance Images (MRI) (Fig. 1). No polygonal
input surface is needed. Our approach provides a robust
mesh design tool for discrete data that can accommodate
requirements on the final budget of vertices and on the mesh
gradation, for arbitrary domain complexity.

C. Tetrahedra Quality Measure

In our case, the ideal isotropic tetrahedral element is the
equilateral tetrahedron. An important parameter in this study
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Fig. 2. Effect of the tetrahedral quality: (a) on the electromagnetic and thermal simulations, respectively ES and TS, for several preconditioning techniques;
(b) on the thermal simulation for several quality criteria; (c) on the difference between the thermal problem simulation and the analytical solution.

is the choice of the quality criterion. Several quality measures
are available in the literature. In this paper, we use five quality
criteria : The first criterion is the Minimal Dihedral Angle
(MDA) αmin of a tetrahedron, which has a maximal value
of arccos(1/3) = 70,5◦, for a regular tetrahedron. Table I
tabulates several quality measures for tetrahedral elements
quality evaluation.

Criteria MDA L.J.
Radius Edge Aspect
ratio ratio ratio

Formula αmin
12

3√
9V 2

∑ li, j
2 3 rin

rout

lmin
lmax

12√
6

3V
lmax ∑Ai

TABLE I
QUALITY MEASUREMENT FACTORS

In this Table I, l is the length of the edges, A the areas
of the faces of a tetrahedron, rin the radius of its inscribed
sphere, rout the radius of its circumscribed sphere and V its
volume. The criterion L.J. is cited in [3]. The criteria are
normalized between 0 and 1 (exepted MDA), where 0 denotes
a bad element and 1 an equilateral tetrahedron.

III. EFFECT OF THE TETRAHEDRAL QUALITY

A. Theoretical Impact

The quality of geometric discretization is crucial for the
effectiveness of these applications [4]. Coarse discretization
and poor shape of the elements can introduce incorrect results
and numerical errors. Degenerate elements with small volumes
and small dihedral angles may lead to large local errors of
the solution. Small dihedral angles can have a negative effect
on the condition number of the stiffness matrix and large
dihedral angles cause large interpolation errors. The worst
impact results in an unsolvable system of equations.

B. Numerical Impact

The calculations are realized on a spherical geometry gen-
erated by our approach. The minimal dihedral angle is of
16.31◦. Figure 2.a shows the impact of the addition of a single
bad tetrahedron on the electromagnetic (incident wave at 433
MHz) and thermal (temporal model for convection transfer
heat) simulations for several preconditioning techniques. Fig-
ure 2.b presents the impact of the addition of a bad tetrahedron
on the thermal simulation for several quality criteria. Figure 2.c
shows the difference between the thermal problem simulation
and the analytical solution [5] when several bad elements are
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Fig. 3. Influence of the poor quality elements on the condition number for
the thermal simulation.

added. The condition number for a positive definite matrix
is defined by the ratio of the maximum eigenvalue to the
minimum eigenvalue. Figure 3 shows the condition number
and the number of iterations are highly correlated.

IV. DISCUSSION AND CONCLUSIONS

Certain geometrical quality measures are not adapted to
evaluate the shape of an element. As an example, a bad-
quality tetrahedron has a too great radius-edge ratio and a
sliver has a good radius-edge ratio but nearly zero volume
(slivers). The radius-edge ratio is not a proper measure for
slivers. We have shown in a practical way the impact of
the quality of tetrahedral meshes on electromagnetic and
thermal finite element models. Our results clearly show that
the FEM accuracy can be directly affected by mesh quality.
Experimental findings suggest dramatic run time reductions
using our high-quality mesher. According to this study, we
chose the criteria based on the MDA and cited in [3] for
the evaluation and the optimization of our mesh generation
algorithm.
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Abstract—We have developed a parallel computation method 
of the magnetic field for rotating machines by using the 3-D FEM 
with edge elements, which can run on PC clusters. In the 
developed method, the block ICCG method is adopted as the 
linear solver. The performance of the developed method running 
on a PC cluster is quantitatively clarified. 

I. INTRODUCTION 
From the viewpoint of the fields of the industrial 

applications, the parallel computing of the magnetic field for 
practical rotating machines on a reasonable PC cluster is 
desired. 

We have developed a parallel computing method of the 
three-dimensional finite element method (3-D FEM) with the 
edge elements for PC clusters in which the block ICCG 
method is adopted as the linear solver [1]. 

In this paper, we describe the outline of developed method 
and the performance of the developed method running on a 
PC cluster. 

II. DOMAIN DECOMPOSITION METHOD 
In the parallel computing, the domain decomposition 

method (DDM) is adopted. Using the DDM, the analyzed 
domain is divided into multiple subdomains, and the 
subdomains are calculated in parallel while doing appropriate 
data communications between those subdomains. 

Fig. 1 illustrates the DDM for FEM with edge elements. 
This figure shows that one domain is divided in two 
subdomains. 

The number of edges in each subdomain is almost the 
same to split the CPU power into subdomains evenly. The 
divided domain has the overlap elements. By using the 
overlap elements, the data communication between 
subdomains becomes unnecessary when the element 
coefficient matrix is created. 

The overlap element has two kinds of edges, one is called 
‘boundary edges’ and another is called ‘external edges’. In Fig. 
1 (b), the boundary edges are drawn as the bold lines (edge 7 
in Subomain I, and edges 8 and 9 in Subdomain II), and the 
external edges are drawn as the dotted lines (egdes 8 and 9 in 
Subdomain I, and edge 7 in Subdomain II). The boundary 
edge in one subdomain is the external edge in another 
subdomain. 

III. BLOCK ICCG METHOD 
In the ICCG method, the calculation in the forward and 

backward substitutions occupies around 50% of the total 
computing time. Therefore, these calculations should be 
parallelized in order to compute efficiently. 

The block ICCG method is one of the parallel processing 
techniques of the ICCG method [2]. Fig. 2 shows the 
coefficient matrix and vectors of Fig. 1 in the block ICCG 
method. The external edges in each subdomain are ignored in 
calculation of the IC decomposition in the block ICCG 
method to calculate the forward and backward substitutions in 
parallel. 

Fig. 3 shows the algorithm of block ICCG method. The 
upper subscripts k is the iteration count, the lower subscripts n 
is the subdomain number, and N is the number of subdomains. 
The communications are required in the calculation of inner 
product in line (a) and in the matrix-vector product in line (b). 
Other calculations in the method can be independently carried 
out in each subdomain. 
 

 
(a) whole domain 

 
(b) domain decomposition with overlap elements 

Fig. 1 Domain decomposition method for finite element method 
with edge elements. 

 

 
Fig. 2. Coefficient matrix and vectors in block ICCG method. 

Parallel Computing of Magnetic Field for 
Rotating Machines on PC Cluster 

Tomohito Nakano1, Yoshihiro Kawase1 and Tadashi Yamaguchi1 
1Department of Information Science, Gifu University, Gifu 501-1193, Japan E-mail: nakan@fem.info.gifu-u.ac.jp 

5

1

2

3
4

7 

6 

9 

8 

10 

11 12 

13 

overlap elements 

1

2

3
4

5

6

7

9

8

9 

8 

10 

11 12

13 

7 

Subdomain I Subdomain II

external edges 

: non-zero entries 
: ignored non-zero entries in the IC decomposition 

12

1
2
3
4
5
6
7
8
9

10
11

13

121 2 3 4 5 6 7 8 9 10 11 13 

Data communications

[AII]

= 

{xII} {bII}

[AI]

{xI} {bI}

[A] {x} {b}
subscript: subdomain number

1046

PD4.11



 

Fig. 3. Algorithm of block ICCG method 

IV. NUMERICAL RESULTS AND DISCUSSION 

A. Fundamental Equation of Magnetic Field 
The fundamental equation of magnetic field is given by the 

magnetic vector potential A as follows: 
( ) eJJMA ++= 00 rotrotrot νν          (1) 

where ν is the reluctivity, ν0 is the reluctivity of the vacuum, 
M is the magnetization of permanent magnet, J0 is the exciting 
current density, Je is the eddy current density. 

B. System configuration of PC cluster 
The PC cluster used in this study is composed of 16 PCs 

that have an Intel Core 2 Duo processor (2.66GHz) and 4GB 
memory. Each PC is connected by the 1 gigabit local area 
network. Because the PC cluster system has the distributed 
memory, not only speed-up but also a very large-scale 
analysis can be performed. 

C. Analyzed Model 
Fig. 4 shows the analyzed model of a motor for Blu-ray 

disc drive. In order to understand the analyzed model easily, 
the motor case is shown in only 1/3 region. The number of the 
unknown variables of this model is 19,430,514. 

In the full paper, other rotating machines are also studied. 

D. Performance of Proposed Method 
Fig. 5 shows the contour of flux density. The contour 

agrees completely with that calculated on a single PC. 
Table I shows the performance evaluation of the 

developed method. The performance of a single PC, which 
has the Intel Xeon processor (3.0GHz) and 16 GB memory, is 
also shown in order to evaluate the influence of the number of 
CPU on the iterations of CG. The elapsed time is evaluated in 

one time step. This calculation requires about 144 hours on a 
single PC. However, using the PC cluster, the calculation has 
been done in about 9 hours. The increase of CG iterations is 
due to the ignored non-zero entries in the block ICCG. It is 
expected that the convergence of CG becomes worse as the 
number of CPU becomes large. The convergence of Newton-
Raphson method doesn’t depend on the number of CPU.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TABLE I 
 PERFORMANCE EVALUATION OF THE DEVELOPED METHOD 

number 
of CPU 

elapsed 
time (hours) 

iterations 
of CG 

iterations of 
Newton-Raphson 

1*1 144.1  111,279 21 
16*2 8.8  144,114 21 

*1Computer used Intel Xeon (3.00GHz) PC. 
*2Computer used Intel Core2 Duo (2.66GHz) PC. 

V. CONCLUSION 
We have developed a parallel computation method of the 

magnetic field for rotating machines by using the 3-D FEM 
with edge elements, which can run on PC clusters. The very 
large-scale analysis can be performed by the PC cluster that 
has a distributed memory.  

In the full paper, other practical rotating machines are also 
computed on the PC cluster system. 
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Abstract—A local error estimator used for a posteriori h-type
finite element mesh refinement is presented in eddy current
testing with separated T-R probes. The proposed technique
combines the solutions obtained by feeding alternatively the
source and the measurer. The obtained results are compared
to the Ligurian approach.

I. INTRODUCTION

EDDY current testing (ECT) is widely used to check
the integrity of conducting parts. The finite element

method (FEM) is well fitted to the modelling of this kind of
problems due to its large flexibility which allows to deal with
complex probe and part configurations. However it requires
much attention to get a reliable result. In most case, the signal
variations in ECT due to a flaw are very low. In this context,
the quality of the mesh for a finite element simulation is
crucial. Creating a such mesh is delicate and requires expertise
from the user. In particular, a user of a finite element software
must pay attention to have a sufficient number of elements in
the skin depth of the part, in the vicinity of the probe and of
the flaw, etc. . . . To obtain accurate result, a sloution is to use a
mesh adaptation. In [1] the authors proposed an adaptive mesh
refinement procedure in ECT with double fonction probe: a
single coil that is used to induce the eddy currents and sense
changes in the test material. This procedure does not require
deep expertise from the user about the mesh construction.
Furthermore, only the required regions are refined to improve
the results in an automatic way.

In this paper we are interesting in mesh adaptation in ECT
problems with separated T-R probes (Transmitter and Receiver
probes). The last ones are constituted at least from two coils,
one (Transmitter :T-coil) is used to generate the source field
and the other (Receiver: R-coil) is used to sense changes
in the test material. The application of a mesh refinement
procedure using a “standard” approach like the Ligurian [1]
[2] for example, leads to refine the mesh around the T-coil
whereas the refinement mesh in the vicinity of the R-coil is
ignored. Consequently, inaccuracies in the response calculation
of the probe can be induced. In this context, an error estimator
for T-R separated probes is developped and compared to the
Ligurian approach.

II. DESCRIPTION OF THE PROBLEM

Fig. 1 shows an ECT arrangement. It includes a probe
constituted of two coils and a conducting material Ωc in which
exists a flaw.

Fig. 1. ECT configuration

The ECT problem can be solved by FEM using either a
magnetic formulation in terms of the combined vector-scalar
potentials ttt − φ where, ttt is the electric vector potential and
φ is the magnetic scalar potential, or an electric formulation
in terms of aaa − ψ where aaa and ψ are the magnetic vector
potential and a time primitive of the electric scalar potential,
respectively [3].

Considering a sinusoidal excitation, the transimpedance Z21

of the probe is calculated from Φ21 the flux in the R-coil due
to I1 the T-coil current and is obtained as:

Z21 = jω
Φ21

I1

(1)

where j =
√
−1 and ω denotes the pulsation.

A. Error estimators

Two error estimators are studied in this part. Both are based
on the minimization of the error in the respect of the magnetic
constitutive law which describes the relationship between BBB

and HHH , where BBB and HHH are determined by the aaa − ψ and
ttt− φ formulations, respectively. Indeed, the magnetic formu-
lation strongly verifies the Ampere law whereas the electric
formulation strongly verifies the Faraday law. It follows that
the errors appear in the way of a nonrespect of the constitutive
laws. A two criteria for error estimation in harmonic linear
case are presented in the follwing.
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1) 1st approach: This error estimator is called Ligurian. It
corresponds to a magnetic energy characterizing the difference
between the two formulation results [4]. For an element k of
the mesh, the magnetic Ligurian estimator is given by the
following equation:

λk(HHH,BBB) =

�

Ωk

1

2µk
||µkHHH −BBB||2 dΩk (2)

where BBB is the complex magnetic induction field obtained by
the electric formulation aaa − ψ and HHH the complex magnetic
field obtained by the magnetic formulation ttt − φ.

Experiences have shown that the application of the mesh
adaptation procedure using the Ligurian as error estimator
leads to refine the mesh arround the T-coil and in the skin
depth of the conducting material whereas the mesh in the
vicinity of the R-coil is not refined. This can introduces in-
accuracy in the calculation of probe transimpedance (equation
1). To overcome this effect, an error estimator is developped
in what follow.

2) 2nd approach: The idea is based on the Lorentz-
reciprocity relation in the calculation of the separated T-R
probe response [5]. It involves the product of fields obtained
by feeding alternatively the T-R coils. When the R-coil is fed
and T-coil is turned off, two admissible solutions BBBR and HHHR

are obtained by using the two dual formulations aaa − ψ and
ttt − φ respectively. Vice-versa, when the T-coil is fed and the
R-coil is turned off, we get two admissible solutions BBBT and
HHHT by the two formulations. Let’s define an error estimator
such as:

λTR
k =

�
λk(HHHT ,BBBT )λk(HHHR,BBBR) (3)

The criterion (3) allows to locate simultaneously the errors
in the mesh around the T-R coils which can lead to have a
good accuracy on the response of the probe.

III. NUMERICAL EXAMPLE

It consists in two identical circular air-cored coil (inner
radius of 6.15 mm, outer radius of 12.4 mm, lift-off of 0.88
mm, thickness of 6.15 mm and 3790 turns) which are placed
on an unflawed aluminum alloy plate (12.22 mm thick) with a
conductivity of 30.6 MS/m. The frequency is of 900 Hz. Fig. 2
presents the initial mesh for the considered configuration. The
distance between the two coils is of 24.8 mm.

Fig. 2. Initial mesh

An iterative procedure of mesh refinement is applied using
the two error estimators described above.

Fig. 3 shows the imaginary and real parts of the tran-
simpedance of the probe versus the iterations number.
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Fig. 3. Imaginary and real parts of the probe transimpedance

IV. CONCLUSION

It can be observed that the results obtained by using the
second approach are effectively better than those obtained
by the Ligurian approach : the results converge quickly to
each others for the second approach than the first one. More
details will be presented in the final paper (about accuracy,
computation time and the response of the probe in presence
of a thin crack [6] . . . ).
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Abstract — In this paper, a novel approach is demonstrated to 
detect demagnetization of permanent-magnet in synchronous 
motors. For this, an efficient criterion is introduced based on 
processing of developed torque using time series data mining 
method. This criterion function can be utilized to diagnose 
demagnetization fault occurrence and determine its percentage 
precisely. Meanwhile, impacts of load variation on the proposed 
criterion are investigated. Then the ability of the proposed 
criterion for the demagnetization fault detection and estimation 
of its severity is evaluated. For this, the relation between the 
nominated criterion and demagnetization percentage is computed 
by mutual information criterion. So, the percentage of the 
demagnetization is predicted using a support vector machine 
(SVM) as the classifier. The classification results illustrate that 
the proposed criterion can recognize fault percentage accurately. 
Finally, a white Gaussian noise is added to the simulated torque 
and robustness of the proposed criterion is analyzed with respect 
to the noise variance. Since, the accuracy of the calculated torque 
from modeled motor, has considerable impacts on precise fault 
recognition, time stepping finite element method (TSFEM) is 
used to model the healthy and faulty PMSM.     

I. INTRODUCTION 
Protection and maintenance of permanent magnet 

synchronous motors (PMSMs) as efficient motors in different 
industries are necessary. Faults in PMSMs are classified into 
three parts: magnetic, electrical and mechanical faults. Due to 
having access to the stator of the motor, detection of electrical 
fault in faulty PM is much easier in magnetic or mechanical 
faults [1]-[2]. Albeit lots of researches have been published to 
investigate impacts of demagnetization in PMSMs [3], there 
are a few documents which introduce an approach to detect 
this fault precisely [2]. A comprehensive fault recognition 
approach includes punctual modeling of faulty motor, 
selection of an appropriate signal for processing and a proper 
index. Proposed approach in this paper is illustrated in Fig. 1.       

II. MODELING OF FAULTY PMSM USING FINITE ELEMENT  
     According to Fig. 1, exact model of faulty PMSM is the 
first stage of any reliable fault recognition algorithm. 
Therefore, in developed model practical conditions of the 
faulty motor should be considered. Modeling methods which 
are based on the magnetic field computation and regard 
different aspects of the machine can be selected as an 
efficacious manner to evaluate required signals and parameters 
for processing and feature extraction. In this paper, healthy 
and faulty PMSM under demagnetization is modeled using 
TSFEM. In this modeling, geometrical complexities of all 
parts of the motor including stator, rotor and shaft are 
included. Moreover, spatial distribution of the stator windings, 

non-uniform air-gap, physical conditions of the stator 
conductors, rotor, shaft and air-gap, and non-linearity of the 
core materials are taken into account. Three-phase sinusoidal 
voltage applied to the terminals of the motor is the input. The 
transient equations of the external circuit and circuit elements 
are combined with the magnetic field equations. In addition, 
the motion equations are combined with the magnetic field 
equations in the FEM in which the motion equations are 
combined with these equations. Solving the set of equations 
gives the stator phase currents, magnetic flux density 
distribution, torque and speed as required variables far 
analyzing, processing and feature extraction (see Fig. 1). Fig. 
2 depicts the magnetic flux density distribution of the healthy 
and faulty motor under partial demagnetization of a PM. It 
depicts that the demagnetization distorts magnetic flux density 
wave forms. Distortion of magnetic flux density makes 
asymmetrical the torque profile. Fig. 3 demonstrates 
developed torque of the healthy and faulty motor. Fig. 3, 
represents that demagnetization causes torque ripples to 
increase. Since the variation rate of the faulty motor torque is 
considerable, time series data mining method (TSDM) is 
utilized for torque signal processing and feature extracting for 
demagnetization fault diagnosis.  

III. TIME SERIES DATA MINING METHOD 

TSDM attitude is employed to elicit efficacious criterion 
functions from the torque signal produced by the TSFEM. 
Based soundly in dynamical systems theory, the TSDM 
method reveals hidden patterns in time series data [4]. In this 
paper, time series data is time domain torque profile. A 
process called time-delay embedding is used to transform the 
torque profile into reconstructed state spaces, also called 
phase-spaces. Nominated the torque time series, Tem={T(k), 
k=1,…,M}, where k is a time index, M is the number of 
observations, a two dimensional (2-D) phase-space is 
generated by plotting T(k-10) on the x-y plane’s abscissa and 
T(k) on the ordinate. Then, ∆T=T(k)-T(k-1) which is calculated 
by applying the time delay embedding process to the time 
series of the torque profile. Fig. 4 presents the phase-space of 
the torque first difference time series for the healthy and faulty 
motor.        

IV. INTRODUCING A NOVEL CRITERION FUNCTION FOR 
DEMAGNETIZATION FAULT DIAGNOSIS 

Radius of geration around the center of mass [5] of the points 
in the phase-space mass is proposed as an efficient criterion 
for demagnetization fault detection. It should be noted that  
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Modeling: TSFEM     Signal selection for processing: Torque    Processor selection: TSDM  Criterion: Radius of geration 

Fig. 1. Algorithm for static eccentricity fault diagnosis in a PMSM
 

each point in the phase-space is given a unit mass. The radius 
of gyration Rg is computed as follows [4]: 

    �� � �∑ ����2�
�����

���
                                                        (1) 

Where l is the time lag of the phase space, M is the number of 
observations and the distance d(k) between the center of mass 
and the kth point in the phase space is  as follows: 
    ����� � ����� � ���� � ���� � �� � ����                       (2) 
where µ0 and µl, the centers of mass for their respective  
dimensions, are as follows: 

     μ� �
∑ ���������

�����
���

                                                          (3) 
Where x(k) is the time series observations at time index k. It is 
noticeable that d(k) is the distance of the kth phase-space 
”point” from the center of mass of the phase-space ”points”. 
Table I. shows the evaluated Rg for different partial and full 
demagnetization of one PM in the motor. Referring to Table I 
exposes that demagnetization occurrence causes to rise the Rg 
which can be utilized as a proper criterion for precise 
demagnetization fault diagnosis.  
 

a 

b 
Fig. 2.  Magnetic flux density distribution in PMSM air gap, (a) healthy and (b) 
with 25% demagnetization of one PM 

a 

b 
Fig. 3. Time variation of the developed torque (a) healthy and (b) faulty motor 
with 25% demagnetization of one PM  

a 

b 

c 
Fig. 4. Torque first difference phase-space, (a) Healthy, (b) 25% demagnetized 
and (c) full demagnetized 

Meanwhile, it illustrates that develops of the demagnetization 
increases the Rg which can be employed to determine the 
percentage of the demagnetization. Estimation of the 
demagnetization percentage is so important to predict motor 
performance and fixing necessity. 
 

TABLE. I. 
RADIUS OF GERATION FOR DIFFERENT PERCENTAGE OF 

DEMAGNETIZATION 
Operating Mode Radius of Geration 

Healthy 0.25 
25% Demagnetization 0.61 
50% Demagnetization 0.86 
75% Demagnetization 1.24 

100% Demagnetization 2.82 
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9. NUMERICAL TECHNIQUES 

Abstract — This research presents a method for the simulation 
of the magneto – mechanical system dynamics taking motion and 
eddy currents into account. The major contribution of this work 
leans on the coupling the field – motion problem considering 
windings as current forced massive conductors, rotor motion 
with two conductive materials and the torque calculated by the 
modified Maxwell stress tensor method and predicted by special 
stochastic algorithm. 3D model of the device is analyzed by time 
stepping finite element method. Mechanical motion of the rotor is 
determined by solving second order motion equation. Both 
magnetic and mechanical equations are coupled in iterative 
solving process. Presented method is verified by solving TEAM 
Workshop Problem 30.  

I. INTRODUCTION 
The improvement of numerical methods in the numerical 

analysis of electromechanical systems deals with development 
of the modeling techniques. In case of the analysis of field – 
motion coupled problems, beside field or motion mathematical 
description and numerical implementation, also coupling 
effects should be precisely determined [3-6,8]. That is why 
researchers pay special attention to obtain the best force or 
torque numerical approach and construct most optimal 
predictors. This is the necessary condition to construct useful 
model for analysis devices such as electromagnetic actuators, 
AC motors, permanent magnet DC or BLDC drives, etc 
[2,4,8]. 

This paper presents a consistent numerical method to 
analyze the AC induction motor described in TEAM 
Workshop Problem 30 [1], i.e., time – stepping finite – 
element analysis of the magnetic field considering motor 
windings as massive conductors and time – stepping model of 
the mechanical motion considering modified Maxwell stress 
tensor method combined with optimal torque predictor [9].   

II. THE MODEL 
The model of the problem is described by magnetic vector 

potential A and electric scalar potential V [7]. The problem is 
defined in three regions: i

cΩ  - conducting region of 

immovable conductor, m
cΩ  - conducting region of movable 

conductor and nΩ  - non-conducting region. The alternating 
current flows by the massive conductor generates magnetic 
field rotation in region nΩ  and eddy current in movable 

conductor m
cΩ .  

immovable massive conductor

movable massive conductor

Ω

Ω

Ω

n

m
c

i
c

i(t)

i(t)

 
 

Fig. 1. Model of induction motor part 
 

The total current i(t) is connected to the boundary surfaces of 
immovable massive conductor. The boundary value problem 
will be described widely in full paper. 

The magnetic torque is calculated using modified Maxwell 
stress tensor method. The global torque is determined from 
surface stresses combination caused by electromagnetic field. 
In case of the presented problem, the electromagnetic torque is 
calculated by the relationship: 

  ∑×≈
k

kk SPrT ,, 212 ∆ , (1) 

and is evaluated along a surface placed in the airgap between 
rotor and immovable massive conductor.  

r

S

S

P

P

12

1

11

2

boundary surfaces

 
 

Fig. 2. Illustration of the torque calculation 
 

Fig. 2 shows stress tensors P and radius r used to  
determine global torque. As a new contribution, the obtained 
torque value in each time step of the calculation is combined 
with optimal predictor [9]:  
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9. NUMERICAL TECHNIQUES 

 
dt

tdTttTctTcttT )()(1)()(ˆ)(ˆ
321 ∆+++−=∆+ ααα . (2) 

where T is a torque value obtained from Maxwell stress 

tensor, T̂  is a prediction of T. The term 
dt

tdT )(
 is obtained 

from spline qubic approximation of T(t). The predictor (2) 

minimizes value of the expectation [ ]2)(ˆ)( tTtTE − . A new 

predicted value )(ˆ ttT ∆+  is used to solve numerically the 
mechanical motion equation 
 T

dt
dJ ˆ=
ω  (3) 

where ω  is an angular velocity and J is a inertia of the rotor. 
In the full article will be presented wide description of 
adopted prediction technique.  

III. NUMERICAL EXPERIMENT 

To demonstrate the effectiveness of the method, a single 
phase induction motor is tested. The motor geometry and its 
excitation is detailed in description of the TEAM Problem 30 
[1]. There is examined 3D problem in which the eddy currents 
in the rotor composed of two different materials are induced 
by time harmonic current on the massive windings and 
rotation of the rotor.  

 
Fig. 3. The mesh of analyzed motor 

The massive conductors are excited current 2045,175 A at 
60 Hz. The rotor is made from aluminum and steel, so for the 
experiment purpose, assumed following specific gravity 
values: 2700 kgm-3 and 7800 kgm-3. The presented model has 
been tested with initial torque Nm10)0(ˆ 5−=T , considering 
dynamic characteristics: speed and torque-speed relationship. 

 
Fig. 4. Speed profile of the rotor 

 
Fig. 5. Torque – speed relationship of AC motor 

 
Fig. 4 shows the computed angular speed profile. In steady 

state the speed is about 360 rad/s, in accordance to the field 
rotating speed.    

Fig. 5 shows the torque - speed mechanical characteristic. 
Obtained curve during computations in comparison with [1] 
shows good agreement and usefulness of presented model.     

IV. CONCLUSION 

A method of analysis of the AC motors including the 
massive conductors approach and optimal torque predictor is 
presented. This method, thanks to adopted predictor 
technique, allows an exact analysis of electrical machines 
dynamics. Also the windings can be successfully represented 
as massive conductors with known prescribed currents for the 
very low frequency analysis. The comparison of simulated 
results and results given in description [1] shows a good 
agreement.   
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FD-TD Calculations of SAR
Validated Through Measurements

Ana de Oliveira Rodrigues, Juliano Junio Viana,
Alisson Henrique Quemel de Souza, Eduardo Aparecido dos Santos

Abstract—This paper presents the validation of Copaca-
bana v1.0, a Java based software that calculates Specific Absorp-
tion Rate (SAR) using the Finite-Difference Time-Domain method
(FD-TD). Measurements were performed at the Laboratório de
Absorção e Dosimetria (LAD) of the Centro de Pesquisa e Desen-
volvimento em Telecomunicações (CPqD) using a DASY4 system.
The half-wavelength dipole was validated by comparing the
field of this dipole with measurements and analytical solutions.
SAR calculation was validated using a three-dimensional model
described in international standards [3]. It is concluded that the
software Copacabana v1.0 was validated for SAR calculations
with maximum error of 14%.

keywords — SAR, FD-TD, measurements

I. INTRODUCTION

The Specific Absorption Rate (SAR) must be measured to evaluate
the thermal effect of high frequency electromagnetic fields in the
human body. SAR indicates the energy or power absorbed by one
mass unity, usually expressed in Watts per kilogram of biological
tissue (W/kg), and is proportional to the peak value of the electric
field |E0| irradiated by the source, and tissue density (ρ [Kg/m3])
and conductivity (σ [S/m]). SAR calculated using Eq.(1) [3]. SAR
is usually an indication of the temperature rise in the tissue induced
by the electromagnetic field.

SAR =
σ|E0|2

2ρ
[W/kg] (1)

Simulation software is necessary to calculate the SAR that will be
obtained by equipment under development to guarantee that ”spatial
peak SAR values (should not exceed) 1.6 W/kg, as averaged over any
1 g of tissue (defined as a tissue volume in the shape of a cube)”[2].
Direct measurements allow certification of equipment developed.
This work presents a software, Copacabana v.1.0, developed to
calculate SAR in three-dimentional (3D) models, using the Finite-
Difference Time-Domain (FD-TD) Method, and validation of the
software through direct measurements.

II. METHODS

A. FD-TD Calculations
Copacabana v1.0. is a Java based software that implements the

Finite-Difference Time-Domain Method (FD-TD) [7] in 3D with Mur
boundary conditions [5]. These boundary conditions present expected
error of 10%. The software calculates peak value of electric field,
peak SAR, SAR for 1g and SAR for 10g in each point of the domain.

Dr. Ana de Oliveira Rodrigues is a professor at Centro Universitário de
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Fig. 1. ”Flat Phantom” (adapted from [3]).

Fig. 2. Measurements: Dipole in Air and Flat Phantom

The model developed, shown in Fig.1, was a “flat phantom” [3] for
1.8GHz. The model is composed of 119, 122 and 89 cubes with 2mm
side in x, y and z directions (total of 1,292,102 cubes). Simulation was
run for 1,000 time steps of 2ps. The model tissues are: air around the
phantom (εR = 1, σ = 0); a 2mm plastic shell (εR = 3.7, σ = 0);
and the internal liquid (εR = 40, σ = 1.40).

The source was modeled as a half wavelength dipole, with a
radiated power (Pr) of 1W.

B. Measurements
All measurements were performed in the Laboratório de Absorção

e Dosimetria (LAD) do Centro de Pesquisa e Desenvolvimento em
Telecomunicações (CPqD). Fig2 shows the dipole in air and the ”flat
phantom”, filled with a liquid with εR = 38, 11 and σ = 1, 43.
Expected error of measurements is 25%.

III. RESULTS

A. Dipole in Air
The electromagnetic field irradiated by a half wavelength dipole

in air were obtained through analytical solution [1], measurements,
and FD-TD simulations using Copacabana v.1.0. The RMS value of
the electric field (|E|) in air were calculated and measured for a 2D
plane of 12cm using a 2mm grid. Fig.3 shows the results.

As the analytical solution is provided for the far field, it can be
observed that its values are not compatible with the measurements and
simulation in the near field points (0,02m to 0,08m). Measurements
show a better agreement to the results of the simulation in these
points than the analytical solution.
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9. NUMERICAL TECHNIQUES 2

Fig. 3. Results of electric field calculated with analytical solution from
Balanis [1], measurements and calculated with FD-TD. Vertical bars show
simulation (10%) and measurement (25%) expected errors.

Fig. 4. Left: Average SAR calculation using [4]. Right: Average SAR
calculation using [6]. Figure adapted from [6]

TABLE I
FD-TD CALCULATIONS OF SAR

Method Peak SAR SAR 1g SAR 10g
[W/kg] [W/kg] [W/kg]

Standard [3] 69.5 38.1 19.8
FD-TD [4] (error) 50.8 (27%) 32.8 (14%) 17.0 (13%)
FD-TD [6] (error) 50.8 (27%) 33.0 (14%) 17.8 (8%)

B. SAR
1) FD-TD Calculation: SAR averaged in 1g and 10g were

calculated using Copacabana v.1.0 in the ”flat phantom” described.
Two different methods were used, presented in Fig.4. In [4], the 1g
averaged cube is centered in the material and contains the peak SAR
value. In [6], the peak SAR value is considered in the centre of
the cube, and air cubes are not considered. Results are shown in
Table I. These results are compared to those presented in international
standards [3].

The percentual error in Peak SAR is relatively high (27%).
However, this value is directly dependent of the cell size used in the
simulations. A smaller grid will necessarily result in a higher peak
SAR value. SAR averaged in 1g and 10g, on the other hand, are sim-
ilar for [3] and both methods, with a maximum error of 14% for [4]
and [6]. The method described in [4] requires that either all cubes are
calculated, which is a large burden computationally, or that the user
indicates the point where the cube must be calculated. The method
described in [6], on the other hand, presents the advantage of being
model independent, because it does not require the knowledge of
where the peak SAR occurs. The calculation can be performed using
ever increasing cube sizes until the 1g or 10g SAR is achieved. This
algorithm can be automatic and does not require user intervention.

2) Measurements: Peak SAR, SAR 1g and SAR 10g were mea-
sured inside the phantom shown in Fig.2. Measurements were per-
formed in a cube with sides of 3cm, divided in a 2mm x 2mm x 6mm

TABLE II
MEASUREMENTS OF SAR

SAR 16dBm [W/kg] SAR 1W [W/kg]
Máx 1g 10g Máx 1g 10g
1.68 1.50 0.787 41.33 36.91 19.37

Fig. 5. SAR results from international standard [3], measurements and FD-
TD calculations using [4] and [6]. Vertical bars show simulation (10%) and
measurement (25%) expected errors.

grid. Table II presents SAR measurements for the maximum power
irradiated of 16.09dBm (40.64mW), then normalized to 1W.

IV. CONCLUSIONS

This work presented the comparison of SAR calculated by Co-
pacabana v.1.0 Java based software with measurements. The electric
field of a dipole in air was calculated was compared to measurements
and analytical solution, presenting a good agreement. Fig.5 resumes
the results obtained for peak SAR, SAR 1g and SAR 10g in the
international standard [3], measurements and FD-TD simulations.
Peak SAR shows an error of 27%, a significant difference that is
due to differences in cell size. SAR 1g and SAR 10g, that do not
depend on cell size, present error of 14%. It is concluded that the
Copacabana v.1.0 software was validated for SAR calculations using
FD-TD, with a maximum error of 14%.
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Abstract — This paper describes a technique for the multi-
scale numerical modelling of conducted emissions for the 
inverter lighting fixture placed in a large space of a shielded 
room. The analysis employs the 3-D finite element method. It is 
experimentally understood that conducted emissions are mainly 
generated by the common mode current, therefore the 
displacement current is also taken into consideration in the 
model. That is, precise FEM model is employed only for the 
region displacement current influences. The validity of the 
computation was confirmed by a comparison with measured 
results of a lighting fixture.

I. INTRODUCTION 
Electromagnetic waves caused by electric and electronic 

equipment are a serious problem because of interference to 
other equipment. Conducted emission, superimposed onto the 
power line, flow into other equipment and cause malfunctions. 
For this reason, electric and electronic devices are required to 
reduce conducted emissions. It is experimentally understood 
that conducted emissions are mainly generated by the 
common mode current. 

On lighting fixtures, a driving method for the inverters 
commonly used in such fixtures comparatively generates more 
noise than conventional lighting methods. Therefore the 
establishment of simulation technology to predict the noise is 
required during the design of such lighting fixtures. The 
authors have been studying an analysis technique [1], 
however, the common mode current has not been considered 
precisely because of the CPU time.  

In this paper, some parts, those thought to be influenced 
by the common mode current, are modeled in detail and other 
parts are modeled roughly to get highly accurate analyzed 
results within reasonable CPU time. The 3-D finite element 
method is employed for the numerical modelling of conducted 
emissions from the inverter in the frequency range from 10 to 
30 MHz. The validity of this numerical model is confirmed by 
comparing with the measured results. 

II. ANALYSIS METHOD 
In this analysis, 3-D finite element method [2] is employed. 

By considering displacement current, the fundamental 

equations of the electromagnetic field in frequency domain 
can be expressed as follows. 

( ) DJJA ϖν je ++= 0rotrot  
( )φϖσ grad+−= AJ je  

where, ν is reluctivity, A  is vector potential, 0J is forced 
current density, eJ is eddy current density, D  is dielectric flux 
density,σ  is conductivity, ν , A , 0J , eJ  and D  are complex 
numbers. In this analysis, the displacement current Dϖj  in 
equation (1) is taken into consideration, whereas eddy current 
density eJ  is not calculated since the displacement current is more 
dominant than the eddy current around this frequency. ϖ  is the 
angular frequency.  

III. BASIC ANALYZED MODEL 

The calculation model of analyzed region is shown in Fig.1. 
The LISN (Line Impedance Stabilization Network) is placed 
on the Ground reference plane and all the 6 faces of the 
shielded room are supposed to be perfect conductor as ground. 
The number of elements of this model is 690,609 and that of 
unknown variables is 645,577. 

 
 

 
 

 
 
 
 

 

Fig. 1  Position of the implement model in the whole analyzed region 

IV. EXPERIMENTAL VERIFICATION METHOD 

A method of verifying analyzed results is to compare with 
the measured conducted emission from the lighting implement. 
The measurements are conducted in the shielded room. The 
lighting implement is set on a mounting table whose height is 
0.4 m and the power line of 0.8m is wired straight towards the 
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LISN as shown in Fig.2. The LISN ESH2-Z5 manufactured 
by Rohde & Schwarz, whose operating frequency is from 
9kHz to 30MHz, is set on the ground reference plane and 
conducted emission, common mode voltage, are measured 
with a spectrum analyzer 8542E produced by Hewlett-
Packard, whose operating frequency is from 9 kHz to 29 GHz.  

 

 

 

 

 

Fig. 2  Conducted emission measurement in the shielded room 

V. IMPROVEMENT OF FEM MODEL 

Powerline, that is thought to be influenced by the common 
mode current, is modeled in detail to calculate displacement 
current. Basic model of the power line is shown in Fig. 3. 
Precise model is shown in Fig. 4.  

 

 
Fig. 3  Basic model of the power line 

0.6mm0.6mm

 

Fig. 4  Precise model of the power line 

VI. ANALYZED RESULTS AND DISCUSSION 
Fig. 5 shows the comparison of analyzed and measured 

conducted emission noise. Analyzed results of precise model 
of the power line better agree with the measured results than 
those of the basic model. Displacement current distribution 
around the power line is shown in Fig. 6. These figures 
indicate that the accuracy of the analysis is improved with the 
detailed mesh of the area thought to be influenced by the 
common mode current. The calculation error of about 5 to 
10dB is observed. One of the reasons is considered that the 
mesh size between lamp line inside the lighting implement 
and the implement itself is not adequate to calculate the 
displacement current. The number of elements of these 

models, unknown variables and CPU time are shown in Table. 
I. 

 
 

 
 
 
 
 
 
 
 
 
 

Fig. 5  Comparison of analyzed and measured results when the power line 
modeling is improved 

 

Fig. 6  Displacement current distribution around the power line 

TABLE I  DISCRETIZATION DATA AND CPU TIME 

Basic Model Precise Model
Ｎumber of　elements 229,795 2,807,128
Unknown valiable 288,338 3,147,214
CPU Time         43min      10h14min  

VII. CONCLUSION 
This paper described the technique of multi-scale numerical 

modelling of conducted emission for the inverter lighting 
implement placed in a large space of a shielded room 
employing the 3-D finite element method. The validity of the 
analysis was clarified through the measurement. The 
following conclusions were obtained.  

1) The common mode current flows mainly on power line. 
2) The power line should be modeled with the proper 

element size to be able to calculate displacement current. 
Consequently, the calculated results using this model were 

in better agreement with the measurement than those of the 
previous model in the frequency range from 10 to 30 MHz, 
thereby showing the validity of the model. 

VIII. REFERENCES 
[1] Y. Namba, T. Kida, Y.  Mitsutake and K. Hirata, “Conducted Emission 

Analysis of A Lighting Implement Employing the 3-D Finite Element 
Method,” COMPEL, vol.27, No.4, pp.855-860, 2008 

[2] K. Hirata, Y. Mitsutake and Y. Tamai, “Dynamic Performance Analysis 
of Rapid-Start Ballast using 3-D Finite Element Method”, Trans. IEE of 
Japan, vol. 122-D, no. 3, pp.241-246, March 2002  

800mm 1300mm

500mm

400mm

800mm

Lighting 
Implement

LISN

Mounting 
Table

800mm 1300mm

500mm

400mm

800mm

Lighting 
Implement

LISN

Mounting 
Table 30

35

40

45

50

55

17 18 19 20 21 22 23 24 25 26 27 28 29 30

Frequency[MHz]

Le
ve

l[d
Bμ

V
]

Precise Model Basic Model Measured

1057

 



9. NUMERICAL TECHNIQUES 1

Reduced Thermal Model for Stator Slot
L. Idoughi1, X. Mininger1, F. Bouillault1 and E. Hoang2

1LGEP (CNRS(UMR 8507) ; SUPELEC ; Univ Paris-Sud ; UPMC Paris 6),
Plateau de Moulon, 11 rue Joliot-Curie ; F-91192 Gif sur Yvette Cedex ; France

name@lgep.supelec.fr
2SATIE, ENS Cachan, CNRS UMR 8029, UniverSud, 61 av President Wilson, F-94230 Cachan Cedex, France

Abstract— This paper presents a method to get a reduced
thermal model simplifying the calculation of different temper-
atures in an electrical machine winding. The equivalent thermal
conductivity is deduced from a homogenization of the winding,
and a discretization is achieved using the Finite Integration
Technique. The model is then reduced, and the corresponding
results are compared with finite element simulations.

I. INTRODUCTION

A current tendency in electrical engineering is the use of
electrical actuators in rough conditions, particularly in high
temperature. For such applications, precise thermal models
integrating thermal material (electric insulates and magnetic
materials) properties are necessary to describe the system
behavior. Thus, one of the main points in the thermal study of
electrical machines concerns their winding, where the tempera-
ture rises to the maximum. However, the use of numerical tools
like finite element methods to estimate the hot spot in the slot
can lead to excessive simulation time, due to the heterogeneous
structure and the presence of electrical conductors with small
geometric dimensions compared to the machine ones. In this
paper, a reduced thermal model is proposed to determine
different temperatures (maximal, average...) in the slot. The
first step corresponds to an thermal homogenisation of a simple
geometry slot. Next, the Finite Integration Technique (FIT) is
used to establish the reduced thermal model.

II. EQUIVALENT THERMAL CONDUCTIVITY OF THE SLOT

In this study, we consider a slot, made up of only two
materials. The first one corresponds to the copper conductors
(thermal conductivity λ1), randomly distributed, and placed in
a second material, that can be air or resin (thermal conductivity
λ2). Considering an isotropic distribution of 2D cylindrical
conductors, [1] have shown that an estimation of the effective
conductivity can be obtained with the estimation of Hashin
and Shtrikman. The equivalent thermal conductivity λeq is
expressed:

λeq = λ2.
(1 + τ)λ1 + (1 − τ)λ2
(1 − τ)λ1 + (1 + τ)λ2

(1)

with τ the occupancy rate of the conductors in the slot. Fig.
1 presents the corresponding results, considering either resin
or air in the slot.

The increase of the equivalent thermal conductivity with
the occupancy rate is important with the resin, because of its
high thermal conductivity comparing to the air one. In the
next parts, an occupancy rate of 55% is considered, with resin
around the copper (λeq = 0.87).
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Fig. 1. Equivalent thermal conductivity as a function of the occupancy rate

III. REDUCED THERMAL MODEL OF THE SLOT

A usual solution to get simple thermal models of electrical
machines is the nodal approach, considering the elementary
volume as isotherm at the temperature of the associated node.
The thermal models often consider only one node in the
slot, giving one temperature of the winding [2]. The main
difficulty of this problem is the determination of the conduc-
tance between the two nodes, which depends on geometrical
dimensions and thermal material properties, with the choice
of the length and surface that have to be considered to get a
correct representation of the thermal flux distribution. Fig. 2
shows a static finite element simulation corresponding to the
thermal problem (2, with ϕ the thermal flux, P the heat losses),
where Dirichlet boundary condition (T = 0) is imposed on the
upper side of the structure, and Newmann boundary condition
on the other sides.

�
div(�ϕ) = P

�ϕ = −λ.
−−→
gradT

(2)

Due to the high iron conductivity, the corresponding part
of the machine is quite isotherm, and can therefore be right
represented with only one node. On the other hand, the tem-
perature gradient is important in the slot, where the maximum
temperature is reached. Thus, the model has to be more
detailed in this area.

To treat this problem, we use the FIT method, which is
well adapted to highlight the concept of thermal resistances
of the different parts of the slot. The FIT method transforms
the thermal equations in their integral form into a set of matrix
equations on dual grids pair [3]:
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Fig. 2. Temperature distribution, FE method

CΦ = P and H = CT
T (3)

where C is the discrete divergence matrix and −CT the
gradient one. Φ is the thermal flux vector through the facets
of the dual mesh, H the thermal grid voltage and T the
temperature at the nodes of the primary mesh. To complete
the system, we add a behavior law (H = MΦ). In the case of
orthogonal grids, the M matrix is diagonal and mii is equal
to:

mii =
1

SL

�

Li

1

λ
�τ.d�γ (4)

where λ is the local thermal conductivity, Si the surface of
facet i, Li the lenght of edge i, �τ the unit tangent vector
along the edge i. From (3) and the behavior law, the system
becomes:

[C][M ]−1[CT ][T ] = [G][T ] = [P ] (5)

If the domain relative to the thermal fluxes is the slot, the
unknown temperatures near the boundary are linked to those
in the iron, supposed to be at the same temperature Tf .

If we suppose that Joule losses P0 are uniform in the slot,
P can be expressed as [P ] = P0[D] with Di = Si/S, S being
the total surface of the slot.

Equation 5 can be written

[Ts] = −Tf [Gs]
−1[Gf ] + P0[Gs]

−1[D] (6)

Due to the property of matrix [G], [Gs]
−1[Gf ] is a vector

[I] with all elements equal to 1, and the system becomes:

[Ts] = −[I]Tf + P0[R] (7)

R is the column vector giving the equivalent thermal resistance
between the considered point in the slot and the one in the iron.
The different equivalent thermal models of the devices using
two nodes are represented Fig. 3.
The resistance Rf includes the effect of conduction in the core
and the convection exchange with the exterior, supposed to be
at temperature Te. Considering a 9-nodes model for a half slot,
the resulting nodal locations are shown Fig. 4.

Depending on the choice for the node i, the temperature Ti
can have different meanings:

Fig. 3. Reduced thermal model

Fig. 4. Nodal discretization of a half slot

• maximum temperature in the slot (node 7)
• mean temperature of the slot (obtained by the mean of

all the equivalent thermal conductances)
The corresponding results are presented in table I, with a

comparison with FE ones. The relative error is lower than 5
%.

TABLE I

COMPARISON OF ANALYTICAL AND FEM RESULTS

∆Tmax ( ˚ C) ∆Tmean ( ˚ C)
Reduced model 18.02 10.96

FE Method 18.24 11.43
Relative error (%) 1.2 4.3

IV. CONCLUSION

The results obtained in the static case with the reduced
model presents a good accuracy, with low computation needs.
In the full paper, an extension of the model for transient
analyses will be established in order to get the temperature
variations versus time. Ongoing works will concern the adap-
tation of this reduced model to structures more similar to usual
electrical machines.
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no. 3, pp. 116-120, Sep. 1977.

1059

 



9. NUMERICAL TECHNIQUES 

 

Abstract — This work presents new features of the system 

named ROME, developed at the Virtual Engineering Laboratory 

of the Institute for Advanced Studies of Brazilian Air Force, and 

the analysis of its application on optimization problems. ROME 

was developed based on Java and RMI technology and aims to 

manage distributed processing in non-dedicated heterogeneous 

clusters. The system provides robust mechanisms for self-

adjusting load balancing and fault tolerance during the execution 

of parallel processing. 

I. INTRODUCTION 

Load balancing, fault-tolerance and scalability are the 

problems commonly encountered when performing parallel 

and/or distributed computing. A different approach to the 

parallelization of systems was developed at the Virtual 

Engineering Laboratory (LEV) of the Institute for Advanced 

Studies [1]. The system, named ROME, was developed in Java 

and uses the remote method invocation (RMI), a mechanism 

that provides the ability to remotely invoke a method of an 

object in another Java Virtual Machine (JVM)[2]. The major 

focus of the project was to develop a system which provides 

native load balancing and run-time failure recovery. Due to the 

characteristics of Java, the system is inherently multiplatform 

allowing its use in clusters composed by computers with 

different hardware and operating system configurations. It is 

more appropriate for coarse-grain parallel processing. 

The system was developed based on the object oriented 

programming (OOP) paradigm  and designed to be used as a 

class library, allowing its use with low level of additional 

programming. The description of classes, their functionalities  

and an evaluation of the system behavior when managing a 

optimization problem were presented in [1]. 

II. BASIC DESCRIPTION OF THE SYSTEM AND NEW FEATURES 

Table I presents the main features of system ROME, 

compared with two of the most popular packages widely used 

to perform calculations and simulations in the area of parallel 

scientific computing: the Message Passing Interface (MPI) [3] 

and Parallel Virtual Machine (PVM) [4].  

ROME follows a master/slave model, in the sense that 

there is an application (master) responsible for dividing the 

global problem in small tasks, sending the tasks to be solved 

by the slave applications and gathering back the results. It is 

composed basically by two main programs: a master machine 

and a slave machine. However, unlike the traditional 

master/slave model, the master machine is set to a passive 

mode, behaving most like a “server application”: the master 

waits for a “request for a task” of a slave application before 

sending a task to it. 

The operation using the "request for a task" mode allows 

implicit load balancing, since the slave application executed in 

an environment that presents higher performance will call for 

more tasks than other in a lower performance environment. A 

slave requests for a task only when the percentage of use of its 

processor is below a certain value defined by the user.  

The system allows configuring the total number of slave 

machines connected per master machine as well as the number 

of slave machines for each user’s parallel application managed 

by the master machine.  

Two methods for identifying slave application faults are 

available: the direct detection method and the time estimation 

method. In the time estimation method, a estimative of the 

response time of a slave machine is calculated during run-time. 

If the response time of the slave machine exceeds the 

estimative (expires), the tasks attributed to it  is sent to another 

slave. 

TABLE I 

MPI, PVM and ROME CHARACTERISTICS 

Characteristics MPI PVM 
ROME 

v.1 

ROME 

v.1.1 

Heterogeneous architectures • • • • 

Multiplatform  • i  • i • • 

Slaves intercommunication • •  • 

Fault tolerant  • ii • • 

Native load balancing   • • 

Dynamic identification of 

slaves 
  • • 

Native slave redundancy   • • 

Object transmission   • • 

Dynamic identification of 

multiple core processors 
   • 

Native master redundancy    • 

Additional user´s  

programming 
High High Low Lower 

Programming languages 
C, C++, 

Fortran 

C, C++, 

Fortran 

Java iii 

(C, C++, 

Fortran, 

etc) 

Java iii 

(C, C++, 

Fortran, 

etc) 
i requires compilation for each operating system, ii requires implementa-

tion to recover lost data  iii the system is implemented in Java language 

but the applications can be implemented in any language because they 

can be executed as processes. 
 

The usage of the system requires the implementation, in 

Java, of two methods of an abstract class, responsible for the 

master process, and of two other methods of the slave process 

class. These methods should be implemented in derived 

classes. The user's application can be developed either in Java, 

or be executed as processes. In the last case, the user´s 

application can be developed in any desired language. 

Distributed Processing Management using  

ROME 
Nancy Mieko Abe, Claudio Dias Marins and Angelo Passaro 

Virtual Engineering Laboratory, Institute for Advanced Studies - IEAv 

Rodovia dos Tamoios, km 5,5, 12228-001, Brazil 
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In the new version (v1.1), changes were made to further 

enhance the reliability (fault-tolerance) of the system with the 

identification of failures in the master machine, allowing a 

second machine to take control of the parallel processing 

without losing data of the tasks already computed. Other 

feature included is the possibility of  communication among 

slaves, i.e., tasks running on different machines or processors 

can exchange information among themselves. Communication 

between nodes was made only between master and slaves in 

the previous version.  

The new version also allows using computers that have 

multiple processors cores, automatically identifying the 

number of processors available. The system allows to add  all 

or part of them in the processing cluster. 

III. RESULTS 

In a previous work, ROME was submitted to tests using 

codes for the optimization of electrooptic modulator devices 

by using a genetic algorithm (GA) [5]. Figures of merit of  

each individual generated by the GA are computed by a code 

based on the Finite Element Method. In this case, each task 

submitted to a given slave presents almost the same execution 

time. Fig. 1 shows the relative performance of the slaves used 

in the parallel processing and the automatic load balancing 

achieved. The cluster was composed by computers with very 

different hardware configurations and operating systems. Slave 

1 and 10 run in a dual core processor. Slave 10 joined the 

computation later, by manual interference of the operator. 

Fig.  2 illustrates the behavior of the response time 

estimative of one slave. After five tasks were completed, the 

system began to compute the estimative using the historical 

data. For the referred slave the value changed to 400s and 

remained almost constant for all the computed tasks. 
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Fig. 1. The dots indicate the relative performance of each processor (left axis) 

and the histogram represents the number of the processes distributed to each 

processor (right axis) 

 

In a recent test, ROME was used in a study of doped multi-

quantum well (MQW) semiconductor structures [6], involving 

an optimization process. A MQW can be composed by several 

wells with different doping concentrations. In this problem, 

when the doping concentration in the wells is low (less than 

5.0x10
16

cm
-3

), the convergence of the self-consistent 

computation is fast. However, for high values of doping 

concentration the convergence process can be much more 

costly. A homogeneous cluster composed by four multi-core 

computers was used to carry out the optimization. Fig. 3 shows 

the adaptation of one processing core of the system to tasks of 

different response time. In this case, the method for estimating 

the response time was able to adapt the system to the response 

time of the slave. The master machine invalidates a task that 

do not answer in the predicted time and includes it back in the 

list of tasks waiting for a free processor. However, the system 

accepts results of a task whose response time has expired, 

provided that the task has not been sent to other slave yet. It 

should be pointed out that, in some cases, the submission of 

tasks of very different execution time to a processing core can 

result in a dead-lock. Because the process is invalidated, the 

estimative of response time is not updated. This procedure 

continues, occupying all processors. 
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Fig. 2. Estimative response time of a slave. 
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Fig. 3. Estimative response time for tasks with a very different response time 

IV. FINAL COMMENTS 

This work presents new features of system ROME, a robust 

management system for distributed processing, developed 

using Java language and the RMI resource.  

The system is in testing with the execution of applications 

developed at LEV. New methods for adapting the system to 

applications in which the execution time of the tasks executed 

in the slaves are too different are about to be defined and 

implemented. In principle, the system allows the identification 

of slaves connected in LAN or WAN and is a powerful tool for 

parallel processing in a distributed and heterogeneous 

environment. 
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Abstract — In common, the accuracy of FEA result is a strong 
relation to the mesh characteristics, such as the number of 
elements, the element shape, the mesh density and so on. 
However, it is difficult to clarify whether the mesh is suitably 
generated, and whether the accuracy is sufficient enough. We 
have proposed the method to simply evaluate the characteristics 
of mesh and FEA result by using the magnetic flux lines, which 
are analytically calculated from the FEA result.  

I. INTRODUCTION

Often, in order to increase the accuracy of FEA and to 
shorten the computation time, the graded mesh is employed. 
However, it may contain the poor-shaped elements causing 
long computation time and inaccuracy. Sometimes, in order to 
increase the accuracy, the excessively small elements are 
generated, therefore the computation time is wasted. The 
result accuracy and the speed of FEA are a strong relation to 
the mesh characteristics, such as the number of elements, the 
element shape and the mesh density. However, we cannot 
easily judge which mesh characteristics is the most important 
factor to increase the accuracy of FEA results. Also, we 
cannot know whether the obtained FEA result has enough 
accuracy. Usually, the error estimation method [1] is used. 
However, to estimate the error all over the domain is a labor 
task, and it is difficult to estimate the error since the true value 
is unknown. Consequently, another result with more fine mesh 
is necessary to estimate the error. 

In this paper, we have proposed the way to simply and 
roughly evaluate the mesh characteristics and the result 
accuracy from the magnetic flux lines calculated from only 
one FEA result. The actual magnetic flux line in a closed 
domain is closed. The magnetic flux line analytically 
calculated from the FEA result [2], [3] is also closed in the 
domain, but the locus is unrealistically long and complex 
when the result accuracy is poor. Therefore, the characteristics 
of the result and the mesh are easily evaluated by drawing a 
few magnetic flux lines. 

II. EVALUATION FROM MAGNETIC FLUX LINE

The methods to analytically calculate magnetic flux lines 
from tetrahedral and hexahedral edge FEA results were 
proposed [2], [3]. Surely, the calculated magnetic flux lines in 
a closed domain are closed and do not go outside the domain, 
since the result of FEA satisfies div B = 0. However, when the 
accuracy is poor, some calculated magnetic flux lines are not 
simply closed, as shown in Fig. 1(b). The unrealistic magnetic 
flux lines are generated from the FEA result with poor mesh 
quality, i.e. bad-shaped elements exist, number of elements is 

insufficient, and so on. On the other hand, the magnetic flux 
line in Fig. 1(a) is actual and it is obtained from the FEA 
result with good mesh quality. Consequently, by drawing the 
magnetic flux lines of FEA result, it is possible to judge 
whether the mesh is suitable for the FEA and whether the 
accuracy is sufficient enough. It is, however, impossible to 
obtain the exact value of the accuracy in this method. Of 
course, the true value of the magnetic field is also unknown. 

N

S

N

S

Permanent magnetCalculated magnetic 
flux line from FEA 
result with bad 
accuracy

N

On the way

Start point
to draw

Actual magnetic 
flux line

N

S

N

S

Permanent magnet

(a) actual line to be obtained                (b) unrealistic line obtained 
Fig. 1. Actual and unrealistic magnetic flux lines 

We have investigated the relation between the calculated 
magnetic flux lines and the mesh quality. The gap distance 
generated by drawing round the magnetic flux line obtained 
from the FEA result is defined as an error indicator, as shown 
in Fig. 2. The simple test model, as shown in Fig. 3, consists 
of a permanent magnet in a closed domain, and six different 
meshes generated by the mesh generator in [2] are prepared. 
The properties of six meshes are shown in Table I. 

Start point for drawing

Arbitrary plane

Permanent magnet

Magnetic flux line calculated from FEA result

Gap distance

Point intersecting magnetic flux line on plane

Fig. 2. The definition of the gap distance occurring from inaccurate result.

III. RESULTS OF EVALUATION

The gap distances of 6 magnetic flux lines on each mesh 
are plotted in Fig. 4, and the loci of the magnetic flux lines on 
Mesh I, III, V and VI are visualized in Fig. 5. In Figs. 4 and 5, 
the solutions in the cases of Mesh II and III have the high 
accuracy, since the magnetic flux lines are almost single loop. 
On the other hands, the Mesh I is too rough though the 
computation time and the ICCG convergence reveal good  
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9. NUMERICAL TECHNIQUES (D) ERROR ESTIMATION

TABLE I 
PROPERTIES OF MESHES 

Mesh No. I II III 
No. of Elements 29,791 226,9981 531,441
No. of Edges 95,232 703,452 1,633,932

No. of unknowns 83,700 658,800 1,555,200
Solver Time [s] 8.0 11.0 323.5
No. of ICCG Iteration 134 269 338

Mesh Characteristic 
Regular 

Hexahedron
Regular 

Hexahedron 
Regular 

Hexahedron
Mesh No. IV V VI 
No. of Elements 202,153 367,817 620,827

No. of Edges 613,196 1,113,788 1,854,374

No. of unknowns 600,128 1,093,616 1,824,374

Solver Time [s] 3,265.5 19,368.3 60,873.1

No. of ICCG Iteration 6,643 24,595 42,296

Mesh Characteristic 
Graded Hex. 

Mesh
Graded Hex. 

Mesh 
Graded Hex. 

Mesh

Permanent Magnet
(1T, 20mm x 

20mm x 20mm)

300mm

300mm

300mm

140mm

140mm

N
S

140mm

x

zy

Fig. 3. Simple test model consisting of a permanent magnet. 

performance. The Meshes IV, V and VI contain some bad-
shaped elements, even though Mesh VI has the largest number 
of elements. The magnetic flux line 1 in Fig. 5(d) shifts to y-
direction, therefore the gap distance is large. 

The graded mesh is, often, used to shorten the computation 
time while keeping the high accuracy. However, the graded 
hexahedral mesh contains some distorted elements, as the 
result, the accuracy becomes poor. On the Fig. 5 (c), the loci 
of the magnetic flux line 1, the most outer line, are multiple-
looped, since the line 1 passes through the distorted elements 
with poor quality on changing mesh density. The magnetic 
fields Bz and By on the +x-direction line from the center of the 
permanent magnet are plotted in Fig. 6. The magnetic fields 
about Bz agree well, but the magnetic field By of the Mesh VI 
is obviously wrong since By = 0. The large gap distance 
results from such small error.  

When the property of the magnetic flux lines is good, the 
ICCG convergence and the accuracy are good enough. 
Therefore, by drawing the magnetic flux lines using the 
method [2] from only one FEA result, it is possible to judge 
whether the properties of the mesh is good or poor, without 
computing the exact value of the error. 

IV. CONCLUSION

In this paper, the method to roughly judge the accuracy of 
the edge FEA result has been proposed. In the method, it is 
checked whether the magnetic flux line calculated from the 
FEA result with good property is closed or not. 
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Fig. 5. Visualization of loci of magnetic flux lines. 
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9. NUMERICAL TECHNIQUES

Abstract —Inductive coil gun’s performance analysis is very 
important for experimental research and its electromagnetic 
optimization design. Circuit simulation is carried out based on 
current filament model (CFM), the government equations of 
CFM may boil down to initial value problem of non-linear 
variable coefficient ordinary differential equations, which can be 
solved by numerical method and is easy to program. From circuit 
simulation, the dependence of system performance on variable 
parameter can be found. Field model is built based on composite 
grid method (CGM). CGM uses two sets of mutual independent 
grids to discrete solution region, the coarse grids discrete the 
global region and the fine grids discrete the moving part , so the 
trouble of remeshing in normal finite element technique based on 
one set of grid is overcome. In this paper performance analysis of 
three stages coaxial inductive coil gun is carried out based on 
field-circuit method. Three dimensional moving conductor eddy 
current (MCEC) field simulation of coil gun is realized, field 
variables distribution in the launching process is obtained. By 
comparing the results of circuit model and field model validity of 
the two models is proved.  

I. INTRODUCTION

Coil launcher commonly constitutes by five parts: pulse 
power, high-speed switch, exciting coil, armature and 
projectile [1]. The pulse power loads electromagnetic energy 
on exciting coil after pulsed on. Transient magnetic field 
produced by the exciting coils induces circumferential eddy 
current in the armature. The circumferential eddy current 
interacts with radial component of the magnetic field which 
produces Lorentz force to drive the armature and projectile in 
the direction of muzzle. When armature arrives at an 
appropriate position, the next stage is fired, this process 
continues until the projectile is out of bore. 

Coil gun’s launching is a complex electromagnetic transient 
process; to obtain main performance parameters is not easy. 
Compared with expensive prototype experiments, numerical 
simulation can save design cost and improve work efficiency 
greatly in the optimized design of coil gun. Numerical 
simulation model for coil gun can be divided into two types: 
circuit model and multi-physical field model [2]. The circuit 
model has the virtue of simple and easy realization. According 
to the circuit model, dependence of variable parameters on 
result can be found easily. The multi-physical field model 
solves the problem from partial differential equation or 
integral equation, and can obtain various field quantities 
accurately, such as magnetic flux density and eddy current 
density [3].  

In the analysis of coil gun only use circuit model can’t get 
the field distribution, so precise analysis is impossible [4]; 

only use field model can’t complete the whole analysis 
procedure, since the current of exciting coils which is material 
property in field model doesn’t know in advance. So it is 
absolutely essential to analyze coil gun based on field and 
circuit combined model.  

II. BASIC PRINCIPLES OF CIRCUIT MODEL AND FIELD MODEL

A. Current Filament Model 

There are two types of circuit model: current sheet model 
(CSM) [5] and current filament model (CFM) [6]. CSM 
replaces the currents in an actual barrel and in a cylindrical 
tubular projectile (sleeve) with two equivalent current sheets 
located at their equivalent radius; by computing the magnetic 
field produced by the two current sheets the Lorentz force 
applied on projectile can be obtained.  CFM divides massive 
conductive parts of the system into elementary volume 
elements, in which uniform distribution of current is assumed, 
a current filament is associated with every volume element, 
and its electrical parameters are calculated, the electrical and 
mechanical equations governing the behaviors of the system 
are formulated on the basis of the adopted equivalent network 
(schematic diagram of CFM is shown in Fig. 1.).Considering 
the definite physical meaning and simple solving process of 
CFM, this paper uses it to establish circuit model. 

(a)                                              (b) 
Fig. 1. Schematic diagram of CFM (a. CFM of coil gun; b. equivalent circuit)  

B. Composite Grid Method 

Launching process of coil gun is a complex moving 
conductor eddy current (MCEC) problem. In order to solve 
the problem, this paper applies a novel method — composite 
grid method (CGM). CGM developed from the conventional 
multi-grid method uses two grid sets: one coarse grid for the 
global region and one fine grid for the local region [7], as 
shown in Fig. 2. The results of the coarse mesh are 
interpolated onto the boundary of the fine mesh as its Dirichlet 
condition. Then fine mesh region is solved and reaction force 
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9. NUMERICAL TECHNIQUES

on its boundary is obtained, the reaction force reacts on the 
coarse mesh and global region is re-solved. The iteration 
continues until result convergence. The calculation procedure 
of CGM is shown in Fig. 3. Since the two grid sets are created 
independently, CGM overcomes the trouble caused by only 
one set of grid and it is very convenient to handle with MCEC 
problems [8].  

     
Fig. 2. Solution region and discrete grids of CGM 

Fig. 3. Calculation procedure of CGM 

III. COUPLE THE TWO METHOD IN ANALYSIS OF COIL GUN 

A three-stage coaxial inductive coil gun simulation model 
according to field-circuit technique is built in this paper. First, 
we use circuit model to simulate launching process. The 
structure diagram of coil gun and division of current filament 
is shown in Fig. 4. Current waveform of exciting coils and 
current filaments obtained from circuit simulation are shown 
in Fig. 5. 
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Fig. 4. Structure diagram of coil gun and division of current filament 
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Fig. 5. Current waveform of circuit model (a. Current of exciting coil; b. 

Current of the first four current filaments) 

Then the 3D field model based on CGM is built as shown 
in Fig. 6. The currents got by circuit model are loaded in field 
model as material properties of exciting coils and the field 
model is solved. Field quantities such as eddy current field, 

magnetic flux density are displayed in Fig. 7. Results of the 
two models are compared (as shown in Fig. 8.) and the 
agreement of the two methods is proved. 

(a)                               (b)                                       (c) 

Fig. 6. Field model and domain mesh (a. 3D view; b. global region meshed in 
coarse grids; c. armature meshed in fine grids)

     (a)                                 (b)                                  (c) 
Fig. 7. Field quantities distribution at 3.1ms (a. flux density in coarse mesh; b. 

flux density in armature; c. eddy in armature) 
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9. Numerical Techniques – (g) hybrid methods
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Abstract⎯ Model refinements of magnetic circuits are per-
formed via a subdomain finite element method based on a per-
turbation technique. A complete problem is split into subprob-
lems, some of lower dimensions, to allow a progression from 1-D 
to 3-D models. Its solution is then expressed as the sum of the 
subproblem solutions supported by different meshes. The proce-
dure simplifies both meshing and solving processes, and quanti-
fies the gain given by each model refinement on both local fields 
and global quantities. 

I. INTRODUCTION

The perturbation of finite element (FE) solutions provides 
clear advantages in repetitive analyses and helps improving 
the solution accuracy [1]-[4]. It allows to benefit from previ-
ous computations instead of starting a new complete FE solu-
tion for any variation of geometrical or physical data. It also 
allows different problem-adapted meshes and computational 
efficiency due to the reduced size of each subproblem. 

A subproblem FE method is herein developed for coupling 
solutions of various dimensions, starting from simplified mod-
els, based on ideal flux tubes defining 1-D models, that evolve 
towards 2-D and 3-D accurate models. It is an extension of the 
method proposed in [2]-[4], applied to refinements up to 3-D 
models. From the so calculated field corrections, the associate 
corrections of global quantities inherent to magnetic models, 
i.e. fluxes, magnetomotive forces (MMFs), currents and volt-
ages, are also evaluated. The developments are performed for 
the magnetic vector potential FE magnetostatic and magneto-
dynamic formulations, paying special attention to the proper 
discretization of the constraints involved in each subproblem. 
The method is illustrated and validated on test problems. 

II. COUPLING OF MAGNETIC MODELS

OF VARIOUS DIMENSIONS

A. Series of coupled subproblems 

Instead of solving a complete problem, generally with a 3-
D model, it is proposed to split it into a sequence of subprob-
lems, some of lower dimensions, i.e. 1-D and 2-D models. Its 
solution is then to be expressed as the sum of the subproblem 
solutions. 

Each subproblem is defined in its own domain, generally 
distinct from the complete one. At the discrete level, this aims 
to decrease the problem complexity and allow distinct meshes 
with suitable refinements. Each subproblem approximates at 
best its contribution to the complete solution. The domains of 

the subproblems can overlap [2], [3] or not [1], [4]. Herein, 
non-overlapping subdomains are considered. They are sepa-
rated by interfaces 

This work was supported by the F.R.S.-FNRS (Belgium), the CNPq (Brazil), 
the Belgian Science Policy (IAP P6/21) and the Walloon Region. 

Γf,p, through which a sequence of bound-
ary conditions (BCs) or interface conditions (ICs) is to be de-
fined. 

B. Canonical magnetostatic or magnetodynamic  problems 

Each subproblem p is defined in a domain Ωp, with bound-
ary ∂Ωp =Γp =Γh,p∪Γb,p. It is governed by magnetostatic or 
magnetodynamic equations with volume and surface sources 
or constraints. Classical volume sources fix remnant induc-
tions in magnetic materials and current densities in stranded 
inductors. Similar volume sources can also express changes of 
permeability and conductivity from one problem to another 
[3]. Also, the usually homogeneous surface sources, i.e. BCs 
or ICs on the traces of the magnetic field hp and flux density 
bp, respectively n×hp|Γf,p

 and of n ⋅ bp|Γf,p
, with n the unit ex-

terior normal, can be extended to non-zero constraints calcu-
lated from previous problems. ICs have the general forms 

 [n×hp]γp
= jf,p ,  [n ⋅ bp]γp

= bf,p , (1a-b) 

where the notation [ ⋅ ]γ= ⋅ |γ+ – ⋅ |γ– expresses the discontinuity 
of a quantity through an interface γ (with sides γ+ and γ–) in 
Ωp. The associated surface fields jf,p and bf,p are generally 
zero, defining classical ICs for the physical fields, i.e. the con-
tinuities of the tangential component of hp and of the normal 
component of bp. If nonzero, they define possible surface 
sources that account for particular phenomena occurring in the 
idealized thin region between γ+ and γ–.

C. Sources at subproblem interfaces 

Portions of a 3-D structure satisfying a translational or rota-
tional symmetry can be first studied via 2-D models. This con-
sists in neglecting some end effects, zeroing either n×hp|Γf,p
or n ⋅ bp|Γf,p

. Besides, if the field is chosen to be zero out of 
Ωp, a discontinuity of one of its traces is then voluntarily de-
fined through Γf,p.

With such assumptions, two subproblems 1 and 2 with ad-
jacent non-overlapping sudomains Ω1 and Ω2 share a com-
mon interface Γf,1 =Γf,2 through which a field discontinuity 
occurs. A third subproblem, 3-D, serves then to correct the 
field distribution in a certain neighborhood Ω3 on both sides 
of the interface, then denoted Γf,3. This is done via ICs 

 [n×h3]Γf,3
= jf,3 ,  [n ⋅ b3]Γf,3

= bf,3 . (2a-b) 

with the surface sources 

  jf,3= – (n×h1|Γf,1
– n×h2|Γf,2

) , bf,3= – (n⋅b1|Γf,1
– n⋅b2|Γf,2

) . (3a-b) 
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These sources compensate the traces 1 and 2 to recover the 
continuity of the total solution. Note that Γf,1, Γf,2 and Γf,3 are 
similar and only differ at the discrete level due to their differ-
ent supporting meshes.

The ICs (2a) and (2b) in a magnetic vector potential (a) FE 
formulation are considered via natural and essential con-
straints respectively [3]. The essential constraint strongly fixes
the discontinuity of the trace of a through Γf,3 (continuity if 
bf,3 = 0), whereas the natural constraint weakly acts via a sur-
face integral term in the FE formulation. This surface term,
with (2a) and (3a), involves the traces of previous solutions,
each one being actually involved in similar surface terms in 
the associated previous FE formulations, thus linked with
their other volume integrals. At the discrete level, these sur-
face integrals must be substituted with those volume integrals,
limited to one single layer of FEs touching the interface [1]-
[4]. Because each solution is calculated in a different mesh,
mesh-to-mesh projections of solutions are necessary. They
can be profitably limited to the single layers of FEs. This pro-
cedure is of key importance for ensuring consistency between
all the formulations and their coupling. It will be detailed in
the extended paper and it will be shown to allow the accurate 
calculation of the global quantities (flux, MMF, current, volt-
age) at each step of the series, in particular the correction due
to the end effects. 

III. APPLICATION EXAMPLES

As a primary illustration, two flux tubes are first separately
considered before being connected in series (Fig. 1). The solu-
tions in each separate tube are simply calculated via 1-D mod-
els. When the tubes are connected, their junction surface acts
as an interface Γf,3, with continuity of the normal magnetic
flux density ([n ⋅ b3]Γf,3

= 0) and discontinuity of the tangential
magnetic field ([n×h3]Γf,3

≠ 0). This gives the requested source 
for a 2-D model, calculating the field correction limited to a
certain neighborhood Ω3 on both sides of the interface, with a
locally refined mesh.

Y
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=
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Fig. 1. Field lines (top) and magnetic flux density (bottom) of the initial prob-
lem with two ideal flux tubes in series (b1 and b2 in both tubes left), its local 
correction at the junction (b3, middle) and the complete solution (b, right).

A stranded inductor is then studied via the coupling of a 2-
D plane model for its portion with a translational symmetry, a 
2-D axisymmetrical model for its end winding and a 3-D 
model for the 3-D correction on both sides of the interface
separating the portions (Figs. 2 and 3). Because the correction 
is local to the interface, the associated 3-D mesh only needs to 
be refined in its vicinity.

Various results and discussions will be given in the ex-
tended paper, in particular regarding the correction of both lo-
cal and global quantities, the way to consider additional re-
gions (e.g. the magnetic or conducting plate below the induc-
tor in Fig. 2; based on [1] and [3] for magnetostatic and mag-
netodynamic models), the way the fields decrease at infinity 

with the different models and the adaptation of the domain of
each subproblem with its effect on the convergence of the
complete solution. Parameterized analysis modifying some
subproblems (e.g. end windings) while keeping the others
constant will be shown to benefit from the developed method.

Z

Y X

Fig. 2. Field lines generated by a stranded inductor (half geometry): solution 
of a 2-D plane model in the XY plane (z = 0) (b1, portion on the left) and of a 
2-D axisymmetrical model in the YZ plane (x = 0) (b2, portion on the right);
the interface between the two portions is shown. 
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Fig. 3. Magnetic flux density along the coil axis in the 3-D system: b1 for the
2-D plane model (implicitly extended as a constant up to z = 100 mm), b2 for
the 2-D axisymmetrical model, b3 for the 3-D correction and b for the com-
plete 3-D model. The solution b1+b2+b3 is generally obtained with a higher
accuracy than b for a lower computational cost thanks to the coupling of 
meshes, some of lower dimensions.

IV. CONCLUSIONS

The developed subdomain FE method allows to split mag-
netic models into subproblems of lower complexity with re-
gard to meshing operations and computational aspects. A 
natural progression from simple to more elaborate models,
from 1-D to 3-D geometries, is thus possible, while quantify-
ing the gain given by each model refinement on both local and 
global quantities.

REFERENCES

[1] P. Dular, R. V. Sabariego, J. Gyselinck and L. Krähenbühl, “Sub-domain
finite element method for efficiently considering strong skin and 
proximity effects,” COMPEL, Vol. 26, No.4, pp. 974-985, 2007.

[2] P. Dular, R. V. Sabariego, M. V. Ferreira da Luz, P. Kuo-Peng and
L. Krähenbühl, “Perturbation Finite Element Method for Magnetic
Model Refinement of Air Gaps and Leakage Fluxes,” IEEE Trans.
Magn., Vol. 45, No.3, pp. 1400-1403, 2009.

[3] P. Dular, R.V. Sabariego, M.V. Ferreira da Luz, P. Kuo-Peng and
L. Krähenbühl, “Perturbation finite-element method for magnetic
circuits,” IET Science, Measurement & Technology, Vol. 2, No. 6, 2008.

[4] P. Dular, R.V. Sabariego and L. Krähenbühl, “Magnetic Model
Refinement via a Perturbation Finite Element Method – From 1-D to 3-
D,” COMPEL, Vol. 28, 2009, in press.

1067

 



14. BENCHMARKING (TEAM) 

Abstract— During the course of evolution living organisms 
have developed sophisticated behavior, intricate communication 
capabilities, decentralized colony control, group foraging 
strategies and a high degree of cooperation when tackling tasks.  
Bio-inspired optimization techniques, which operate in analogy to 
the swarming and social behavior found in nature, have been 
adopted to solve a variety of engineering problems. In this paper 
an optimization strategy based on an improved bacterial foraging 
strategy based on Gaussian distribution is proposed. The validity 
of the given algorithm is tested on the TEAM workshop 
benchmark problem 22.  

Index Terms— TEAM workshop benchmark problem 22, 
optimization, swarm intelligence, electromagnetic optimization, 
bacterial foraging algorithm.  

I. INTRODUCTION

Recently, great efforts have been devoted to the application 
of optimization metaheuristics inspired by swarm intelligence 
approaches, and in this context the development of bio-
inspired swarm intelligence methodologies based on bacteria 
colony behavior is an emergent research area [1],[2].  

A particularly interesting group behavior has been 
demonstrated for several motile species of bacterial colonies, 
where intricate stable spatio-temporal patterns based on stimuli 
of cell-cell signaling and foraging are formed in semi-solid 
nutrient media. Defining chemotaxis as a bias of movement 
according to the gradient of a chemical agent, chemotactic 
signaling is a response to an agent emitted by the bacteria [3]. 
Basically, chemotaxis is a foraging behavior that implements a 
type of optimization where bacteria try to climb up the nutrient 
concentration and avoid noxious substances. Relying on these 
biological concepts, an optimization method based on the 
foraging of Escherichia coli can be defined [4].  

In this work, an improved approach based on a bacterial 
foraging strategy using a variable speed with Gaussian 
probability distribution function is proposed and tested on the 
TEAM workshop problem 22 in comparison with the classical 
foraging strategy proposed in [1]. 

II. FUNDAMENTALS OF BACTERIAL FORAGING OPTIMIZATION

Natural selection tends to eliminate animals with poor 
foraging strategies and to favor gene propagation of those with 

good foraging strategies, since these have higher chances of 
succeeding in reproduction.  

Bacterial colonies have developed sophisticated modes of 
cooperative behavior which enable them to respond to adverse 
growth conditions and it has been shown that this behavior 
manifests itself in the formation of complex colonial patterns. 
This phenomenon can be modeled by four simple and distinct 
behaviors (steps): chemotaxis, swarming, reproduction, and 
elimination and dispersal. 

The presence of a flagellum allows the bacteria to move in 
two different forms: they might run (swim for a period of 
time), movement achieved by the flagellum rotation counter 
clockwise, or they can tumble, achieved by the flagellum 
rotation clockwise. Bacteria switch between these two modes 
of operation during their entire lifetime (rarely the flagellum 
stops rotating). 

After a run period, a bacterium tumbles, and the tumble 
interval is about 0.14 ± 0.19 s, according to Passino [2]. After 
the tumble, the bacterium is pointed in a random direction. 
When the flagellum are rotated counter clockwise, the 
bacterium will move towards the direction it’s turned, at an 
average speed of 10–20 µm/s, meaning, about 10 times its 
length by second, for a mean interval of 0.86 ± 1.18 s. 

The local environment where bacteria live might change, 
either gradually or suddenly. Therefore, bacteria can suffer a 
process of elimination, through the appearance of a noxious 
substance, or a process of dispersion, through the action of 
other substances. 

 A bacterium position after a tumble can be determined 
through equation (1), where the position in that instant is 
calculated in terms of the position in the previous instant and 
the step size ( )iC  applied in a random direction ( )jφ , 

generated by the bacterium tumble, 

( ) ( ) ( ) ( )lkjiClkjlkj ,,*,,',,1' φθθ +=+ .         (1) 

where i indicates the bacterium, j the chemotactic step, k
the reproductive step and l the elimination and dispersal step. 

To adapt such strategy to optimization problems, an 
equation to determinate the cost of each position is needed, to 
generate the comparison between the position and the 
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environment. In standard BFS notation, the cost is determined 
by the equation, 

( ) ( ) ( ) ( )( )lkjPlkjJlkjiJlkjiJ cc ,,,,,',,,,,, θ+= .    (2) 

In which the cost (fitness) of a position ( )lkjiJ ,,,  is also 

affected by the attractive and repulsive forces existing among 
the bacteria of the population, ( ) ( )( )lkjPlkjJcc ,,,,,'θ . 

After a determined number of chemotactic steps (steps 
including the movement and the cost determination of each 
bacterium position), a reproductive step occurs. In this 
reproductive step bacteria are sorted in decreasing order by 
their cumulative cost. The lower half of the list dies, these are 
the bacteria that couldn’t gather enough nutrients during the 
chemotactic steps, and the upper half divide themselves into 
two new bacteria, located in the same position. 
Summarizing, the locomotory response of a cell to its 
environment is such that the cell responds by changing both 
the direction and the duration of the next movement step. This 
response requires some directional information from the 
environment that bacteria obtain by comparing an 
environmental property at two different time steps.  

A. Improved bacterial foraging strategy 
The parameter C(i), i=1,2,..,S regulates the speed of the 

movement taken in one step of bacteria colony, where S is 
population size (total number of bacteria). In this work, new 
approaches for the setup of parameter C(i) are proposed. 

In this paper, the an improved bacterial foraging strategy 
(IBFS) is proposed based on the studies of mutation operators 
in fast evolutionary programming [5], [6] and fast particle 
swarm optimization [7]-[8] for the setup of speed parameter 
C(i) of bacteria.  

The aim is to modify the constant C(i) in conventional 
bacterial foraging strategy proposed by Passino [2] by a 
Gaussian distribution which can improve local searches. The 
IBFS approach tested is based on the following configuration: 
C(i)=0.01· |Gauss|·(ub-lb), i=1,2,..,S, where Gauss(·) are 
random numbers generated according to a Gaussian 
probability distribution with zero mean, and ub and lb are 
upper and lower bound of search space. 

The simulation results of  the IBFS method are compared 
with the classical bacterial foraging strategy (CBFS) approach 
with constant velocity, where C(i)=0.01·(ub-lb), i=1,2,..,S. 

III. OPTIMIZATION RESULTS

The TEAM workshop problem 22 concerns the optimal 
design of a superconducting magnetic energy storage (SMES) 
device  in order to store a significant amount of energy in the 
magnetic field with a fairly simple and economical coil 
arrangement which can be rather easily scaled up in size. The 
benchmark consists in a continuous, constrained, eight-
parameter problem and all details are given in [9].  

In the TEAM 22 problem study, the following control 
parameters have been adopted for both the IBFS and CBFS 
approaches: population size S=20, number of chemotactic 
steps Nc = 10, maximum number of steps for bacterium 

movement in a turn Ns = 5, number of reproductions Nre = 5, 
number of elimination-dispersals events Ned = 5, and 
elimination-dispersal probability ped = 0.3. The stopping 
criterion was 10,000 evaluations of objective function. 

The experiments were conducted for 30 independent runs. 
Table I reveals that IBFS is clearly superior to CBFS for 

this benchmark problem.  

TABLE I 
ANALYSIS OF RESULTS (30 RUNS) FOR TEAM WORKSHOP PROBLEM 22

Optimization Objective Function OF in 30 Runs 

Approaches Maximum 
(Worst) 

Mean Minimum 
(Best) 

Std. Dev. 

CBFS 8.7454 3.4360 0.8333 3.5638 
IBFS 2.7362 1.3107 0.0917 0.9529 

IV. CONCLUSION AND FUTURE RESEARCH

In this paper, the CBFS and IBFS approaches are 
compared on the basis of the TEAM 22 benchmark problem. 
In the extended version of the papers both techniques will be 
compared with other families of stochastic optimizers and 
more details regarding the implementation and the tuning of 
the control parameters of both CBFS and IBFS approaches 
will be given. 

Ongoing research is aimed at designing an IBFS for 
multiobjective problems.  
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Abstract—A Population Based Incremental Learning (PBIL) 
method is proposed to search the robust optimal solution of an 
inverse problem in which some tolerances or small perturbations 
on the decision variables are inevitable. The numerical results 
serve to demonstrate the advantages and disadvantages of the 
proposed algorithm and the necessity to devote efforts in the 
development of robust oriented optimal algorithms. 

I. A PBIL METHOD FOR ROBUST OPTIMAL SOLUTIONS 
Traditionally, the main goal of most optimization studies is 

to find the global optimal solutions of a single or multiple 
objective function(s). In real engineering applications, 
uncertainties and tolerances are inevitable, hence if the global 
solution being found is very sensitive to design variables, 
small variation or perturbation on the optimized decision 
variables will give rise to significant performance degradation 
of the ‘global optimal design’. Therefore, the preferred design 
solution is probably not the global optimal solution, but the 
‘optimal’ one that has a high tolerance or robustness against 
small variation of the decision parameters [1]. Consequently, 
it is necessary to develop techniques which identify the robust 
optimal solutions of a design problem. 

To evaluate the robust performance of a solution, an 
expected fitness function as defined below is commonly used.  

exp ( ) ( ) ( )f x f x p dδ δ δ∞
−∞= +∫                         (1) 

where, δ is the disturbance on the design variable x distributed 
based on a probability function p(δ), f(x) is the original 
objective function of the design problem. 

The expected fitness function defined in (1), rather than 
the original one, is proposed to be used in the iterative process 
of a robust algorithm to assess the solutions. Since there is no 
close form for the probability function ( )p δ , the expected 
fitness value of a solution x is generally determined from  

exp
1

1( ) ( )
n

i
i

f x f x
n =

= ∑                               (2) 

where n is the number of sampling points generated in a small 
neighborhood of the specific point x.  

Obviously, a set of additional function evaluations are 
required to determine the expected fitness of a specific 
solution. However, the function evaluations in inverse 
problems are nontrivial and hence are computationally heavy. 

A. The PBIL Method 
The proposed PBIL method is developed by combining 

genetic algorithm (GA) and competitive learning so as to 
reduce the difficulties of crossover and mutation operations in 
GA, whilst retaining the stochastic search nature of a GA 

[2],[3]. The PBIL method therefore is similar to GA in using a 
binary encoded representation of an optimal problem. The 
salient feature of this algorithm is the introduction of a real 
valued probability vector. The length of this real valued 
probability vector is identical to that of the encoded 
chromosome of a feasible solution in optimal problems. The 
value of each element of the vector is the probability of having 
a ‘1’ in that particular bit position of the encoded chromosome. 
In every generation, this probability vector is used to generate 
a new population in such a way that the probability for the ith 
bit of a chromosome to become ‘1’ is proportional to the value 
of the ith element of this probability vector. After evaluating 
the objective functions of the new population, this probability 
vector is updated using only the best individual of the current 
population and shifts it towards the chromosome of the best 
individual. 

B. Mechanism for Expected Fitness Assignment 
Generally speaking, the robust optimal solutions of a 

multimodal objective function are either those of the local 
(global) optima or those distributed on the boundaries of the 
parameter space. For an idea robust oriented optimizer, the 
expected fitness assignment procedure of the aforementioned 
solutions instead of all the intermediate ones are activated in 
order to reduce unnecessary computational burdens without 
scarifying the solution quality. Based on this argument, only 
the best two elites and boundary solutions in the current 
population are proposed to be designated with the expected 
fitness values. Obviously, the implementation of such a 
mechanism will save a huge amount of computation costs, 
which are otherwise required by available robust optimal 
methods, in which the expected fitness values for all the 
solutions are uniformly assigned. 

C. Generation of Additional Sample Points 
As formulated in (2), to evaluate the expected fitness of a 

potential robust solution, some additional sampling points and 
their objective function evaluations are generally required. 
Since the function evaluation is computationally heavy due to 
the involvement of numerical simulation such as finite 
element analysis, it would be desirable if the individuals in the 
current population could be used for determining the expected 
fitness value of a potential solution. However, the 
precondition for the current individuals to be designated a 
fitness value of a specified solution is that the distances 
between these individuals and the solution in question will not 
exceed a small threshold. In this regard, the intrinsic 
mechanism for generating a new population of the PBIL 
method is such that  the whole population is generated by 
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using a single probability vector and satisfies this precondition 
absolutely (this is also the reason why PBIL method is being 
proposed in this study for robust optimizations). Consequently, 
the application of the mechanism for generating new 
populations of the proposed PBIL method eliminates the 
additional computation burden for generating additional 
samples and function evaluations.  

D. Formulation to Compute Expected Fitness 
To consider the effect of the distribution of neighborhood 

points on the expected fitness value, a distance-weighted 
formula for fitness computations of a solution xi is proposed as  

exp
1 1

( ) ( )
n n

i i i
i i

f x w f x w
= =

= ∑ ∑                                  (3) 

where, 1/ || ||i iw x x α= −  is the distance-weighted factor of the 
thi  sampling point of x, α is a positive constant, n is the 

number of the total sampling points. 

II. APPLICATIONS 

A. Application One 
This is a high frequency inverse problem. The problem is 

to exploit the minimal number of elements to optimize a 
completely non-uniform antenna array to produce a 
satisfactory or acceptable field pattern. The desired field 
pattern is a shaped beam with a cosecant variation and the 
details about this problem are referred to [4]. 

To produce a field pattern which is close enough to the 
desired one using the proposed method, a 19 element non-
uniform antenna array is selected and used to optimize the 
complex excitations and locations of each element so as to 
find the robust solution of this inverse problem. Also, for 
performance comparison purpose, a general purpose PBIL 
algorithm is employed to find the global optimal of the same 
problem. After 43655 iterations, the proposed algorithm finds 
a robust solution with an objective function value of 0.09044. 
These are compared to 40102 iterations of the general purpose 
PBIL for the global solution with an objective function value 
of 0.079049. The array factors of the final solutions of the 
proposed and the general purpose PBIL methods are 
compared in Fig. 1, and the robustness of these two optimal 
solutions against some small tolerances are shown in Fig. 2. 
From these numerical results it can be seen that although the 
final solution of the general purpose PBIL algorithm is better 
than that of the proposed robust optimal method, the 
robustness of the optimal solution of the latter is considerable 
stronger than that of the former, as the maximum sidelobe 
level of the final design of the general purpose PBIL, when 
subject to a small perturbation, exceeds the predefined limit of 
-25 decibel. Moreover, the higher iteration numbers with the 
proposed algorithm compared with those of other available 
robust optimizers is not an issue as almost all of the 
intermediate solutions of available optimizers are required to 
be assigned a fitness value, whereas the proposed one assigns 
the fitness values intelligently. 

B. Application Two 
The geometry optimization of the multi-sectional arcs of 

the pole shoe of a large salient pole hydro-generator [5] is 
then solved. For performance comparison purpose, a general 
purpose PBIL algorithm is also used in this case study. The 
final numerical results are given in Table I. Similar 
conclusions as those for application example one are also 
observed. 

Moreover, the numerical results as reported serve to 
demonstrate that it is essential to conduct robust optimal 
designs for an inverse problem in which uncertainties are 
inevitable.  

 

cos( )θ  
Fig. 1 Comparison of the array factors of the optimized antenna arrays by 

using different optimal methodologies. 

cos( )θ  
Fig.2. Robustness of the final solutions of different optimal methodologies. 

TABLE II 
PERFORMANCE COMPARISON ON APPLICATION TWO 

Algorithm Iterative No. Bf1(Tesla) (Bf1)exp Tesla) 
General PBIL 

Proposed PBIL 
2415 
3146 

1.085 
1.056 

1.001 
1.043 
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Abstract—This work tackles the evaluation of a multigrid
cycling strategy using inner flexible Krylov subspace iterations. It
provides a valuable improvement to the Reitzinger and Schöberl
algebraic multigrid method for systems coming from edge-
element discretizations.

I. INTRODUCTION

In finite element method libraries, the linear system solvers
play a key role in terms of performances in the computing time
and in the memory consumption. Multigrid methods are among
the most efficient iterative linear system solvers for elliptic
problems [1]. In this work, we focus on the discretization with
the lowest order edge element of a curl-curl equation

curl δ curlU+ γU = f on Ω ⊂ Rd (d = 2 or 3), (1)

which gives rise to a linear system Ax = f . Several Algebraic
MultiGrid (AMG) algorithms have been proposed for “effi-
ciently” solving this system [2]–[7]. We use the main ideas
of the algorithm proposed by Reitzinger and Schöberl (RS),
who were the first to propose an edge prolongation matrix
satisfying a commutativity property [3]. Our motivation comes
from the fact that this algorithm has the fastest setup time and
gives the sparsest prolongation and coarse grid matrices among
the available methods. However, it also gives the poorest rate
of convergence, leading, in the literature, to a non-optimal
multigrid solver. We combine the RS algorithm ideas with
a Krylov-based multigrid cycle in order to recover classical
multigrid performance. Numerical experiments are performed
on 2D problems.

II. COMPONENTS OF THE ALGORITHM

A. Recursive Krylov-based multigrid cycle

The multigrid preconditioning algorithm on grid k (denoted
by MGp) is given by Algorithm 1 where matrix Ak represents
the discrete problem on grid k (grid 0 is the coarsest) and Pk

is the prolongation matrix from grid k − 1 to grid k.
Algorithm 1: INPUT rk, OUTPUT zk = MGp(rk)

1) Relax using smoother Mk: zk ←M−1
k rk.

2) Restrict residual: rk−1 ← PT
k (rk −Akzk).

3) Compute an approximate solution θ̃k−1 to:

Ak−1θk−1 = rk−1. (2)

4) Prolongate coarse-grid correction: zk ← zk + Pkθ̃k−1.
5) Relax using smoother Mk: zk ← zk+M−1

k (rk−Akzk).

If k−1 is zero, the solution of (2) is exact. If not, a common
strategy is to perform once MGp(rk−1) (V-cycle) or twice (W-
cycle) to approximately solve (2). Following [8], we propose
to consider a K2-cycle which is a W-cycle completed by
the two first iterations of a flexible Krylov subspace method.
An example with the flexible conjugate gradient is given by
Algorithm 2.

Algorithm 2: INPUT rk−1, OUTPUT θ̃k−1 = CS(rk−1)
1) First iteration:

dk−1 ← MGp(rk−1); αk−1 ←
rTk−1dk−1

dTk−1Ak−1dk−1
;

θ̃k−1 ← αk−1dk−1; rk−1 ← rk−1 − αk−1Ak−1dk−1.
2) Second iteration:

ck−1 ← MGp(rk−1);
dk−1 ← dk−1 −

cTk−1Ak−1dk−1

dTk−1Ak−1dk−1
ck−1;

θ̃k−1 ← θ̃k−1 +
rTk−1dk−1

dTk−1Ak−1dk−1
dk−1.

The iteration cost in time and memory of both K2- and
W-cycle is roughly equivalent. Moreover, their convergence
rate are theoretically similar [8]. Nevertheless, in practice the
K2-cycle has a better convergence rate than the W-cycle [8].

B. Prolongation matrix and smoother
Reitzinger and Schöberl proposed to construct an edge

prolongation matrix P edg satisfying a commutativity property:

P edgGH = GhP nod. (3)

In this equality, P nod is a nodal prolongation matrix obtained
from a nodal auxiliary matrix and Gh and GH are respectively
fine and coarse edge-node incidence matrix.

At the finest level, Gh is given by the relation between
vertices and edges on the finite element mesh. At the same
level, the nodal auxiliary matrix B, following the proposition
in [9], contains information about the edge-node incidence,
the lengths of the edges and coefficient δ from (1). The con-
struction of P nod is then performed by the double pairwise-
aggregation algorithm proposed in [10]. Once P nod is known,
the definition of the coarse edge incidence matrix GH and
the edge prolongator P edg are straightforward. To apply the
construction recursively, coarse grid matrices are obtained by
Galerkin product:

AH = (P edg)TAP edg, BH = (P nod)TBP nod. (4)

The smoother is a symmetric version of the smoother
proposed in [11] in a geometric multigrid context. It uses on
each grid the corresponding edge-node incidence matrix.
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III. NUMERICAL RESULTS

The behavior of the method with an increasing size of the
problem and several kinds of parameters δ and γ is studied.

A. Structured mesh

The examples are taken from [12]. The domain is a unit
square and Dirichlet boundary conditions are enforced. The
mesh with triangles is structured but this fact is not used by
the solver. For the parameters, three situations are considered:

1) Homogeneous parameters: δ = γ = 1.
2) Oscillating with discontinuities for δ = f(x, y) and γ =

1. Function f have the following definition:

f = C(2 + sin(40πx))2(2 + cos(40πy))2

with C =




10 in ]0, 0.5[×]0, 0.5[,
104 in ]0.5, 1[×]0, 0.5[,
10−1 in ]0, 0.5[×]0.5, 1[,
102 in ]0.5, 1[×]0.5, 1[.

3) Oscillating with discontinuities for δ = f(x, y) and for
γ = f(y, x).

The behavior of the iterative method is evaluated by com-
puting the average convergence rate σest in energy norm:

σest =


ertkAerk
ert0Aer0

1/(2kf )

with erk the error at the k-th iteration and kf the iteration
where the stopping criterion is reached.

An examination of the convergence rate of the two-grid
algorithm provides information to predict the behavior of the
multigrid cycle. In Table I, the two-grid convergence rate is
quasi-independent of the size of the problem and is bounded
away from 1. Case 3 is the worst situation probably because
the aggregation does not take into account variation of γ; it
may explain the bad convergence rate for one particular mesh
in this case (in bold). The number of unknowns is divided
roughly by 4 between fine and coarse grids which is the
best trade-off between coarsening and the overall arithmetic
complexity.

With such convergence rates for the two-grid solver, it is
illustrated in Table II that the convergence rates of the W-cycle
(and of course of the V-cycle) deteriorates as the number of
grids increases. On the contrary, the convergence rate of the
K2-cycle has a remarkable stability.

TABLE I
RESULTS OBTAINED WITH A TWO-GRID SOLVER.

d.o.f. fine grid 736 3008 12160 48896

Case 1 d.o.f. coarse grid 184 751 3040 12224
σest 0.62 0.68 0.70 0.71

Case 2 d.o.f. coarse grid 187 788 3087 12404
σest 0.64 0.72 0.69 0.69

Case 3 d.o.f. coarse grid 187 788 3087 12404
σest 0.61 0.72 0.87 0.68

TABLE II
COMPARISON BETWEEN A W-CYCLE AND A K2-CYCLE SOLVER. CASE 3

ON THE MESH WITH 48896 D.O.F..

# grids 3 4 5 6 7
d.o.f. coarsest grid 3279 844 216 55 11

K2-cycle, σest 0.68 0.68 0.68 0.68 0.68
W-cycle, σest 0.83 0.89 0.93 0.95 0.97

B. Unstructured mesh

Coefficients δ and γ are those defined in Case 3. The domain
is still a unit square but an unstructured mesh, refined at the
center of the square, is considered. Table III confirms the
results obtained for the structured meshes.

TABLE III
COMPARISON BETWEEN A TWO-GRID, A W-CYCLE AND A K2-CYCLE

SOLVER.

d.o.f. finest grid 2043 8988 36717
two-grid, σest 0.64 0.61 0.61
# grids 5 6 5

d.o.f. coarsest grid 6 9 216
K2-cycle, σest 0.64 0.62 0.61
W-cycle, σest 0.90 0.80 0.95

The change of cycling proposed for the RS algorithm
seems to make this algorithm robust and optimal in 2D.
The proposed algorithm can be straightforwardly extended to
3D problems but our actual Matlab implementation does not
enable us to propose results on challenging problems and also
to discuss computational time and memory requirements. We
are working on an implementation in Fortran90 in order to
propose valuable comparisons on realistic problems.
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[3] S. Reitzinger and J. Schöberl, “An algebraic multigrid method for finite

element discretizations with edge elements,” Numerical Linear Algebra
with Applications, vol. 9, no. 3, pp. 223–238, 2002.

[4] J. J. Hu, R. S. Tuminaro, P. B. Bochev, C. J. Garasi, and A. C.
Robinson, “Toward an h-independent algebraic multigrid method for
Maxwell’s equations,” SIAM Journal on Scientific Computing, vol. 27,
no. 5, pp. 1669–1688, 2006.
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Abstract — For problems with sharp edges, where the electric 
or magnetic field is singular, p-adaptive finite-element analysis 
loses some of its effectiveness. This can be remedied by including 
singular elements which are better able to model the potentials 
near such edges. The singular elements are hierarchical and the 
p-adaption takes places over the combined set of singular and 
regular elements. Results show that a greatly improved adaptive 
convergence is obtained. 

I. INTRODUCTION

The adaptive finite element (FE) method is generally 
accepted as being an effective technique for computing 
electromagnetic fields [1]. In p-adaption, the elements of the 
starting mesh are not changed in shape or size, but instead 
more basis functions are added to elements in which the 
unknown field is thought to need improvement. Since most 
finite elements use polynomial basis functions, this is usually 
done by increasing the polynomial order of the elements. For 
this to work, a range of element orders must be available, and 
they must be hierarchical, so that two neighboring elements 
can be of different orders without causing a discontinuity in 
the field. 

P-adaption has the advantage over h-adaption that it does 
not require mesh refinement, which can be costly and 
unreliable. In smooth regions, away from material interfaces, 
p-adaption is known to provide exceptional accuracy. 
However, near sharp corners and edges, where the electric or 
magnetic field is mathematically singular, p-adaption loses 
some of its effectiveness. It can be improved by combining it 
with mesh refinement in hp methods, e.g. [2]. An alternative, 
which avoids mesh refinement entirely, is proposed here. In 
the elements connected to the singular corners and edges, the 
usual polynomial basis functions of the hierarchal elements 
are replaced by singular basis functions that are better able to 
represent the field behavior in those regions. The singular 
elements are also hierarchical and can support p-adaption, 
which then proceeds on the entire mesh of regular and 
singular elements. 

II. REGULAR AND SINGULAR HIERARCHICAL ELEMENTS

The proposed method computes a scalar potential in 3D, 
e.g., the magnetic or electric scalar potential. The regular 
elements are the scalar, hierarchical tetrahedra described in 
[3]. The pth-order element can represent all polynomials of 
degree p in 3D.

The singular elements are built from these by a process of 
transformation. This is explained more fully in [4], but the 

main steps are as follows. First, two kinds of singular element 
are identified: those with just one vertex on a sharp edge 
(“Point” elements) and those with just two vertices on a sharp 
edge (“Line” elements). All other elements are assumed to 
have no vertices on a sharp edge and are regular. New local 
coordinates are introduced in the Point and Line elements and 
in both cases, one of the coordinates, ρ , represents the 

normalized distance from the sharp edge. Next, the 
polynomial basis functions are re-expressed in the new 
coordinates. Each then takes the form of a polynomial in ρ .

This polynomial is transformed by replacing each term kρ  by 

kνρ , where kν  are singularity indices. These are non-integer 

in general and are obtained from the analytic expression for 
the scalar potential near a sharp edge. They depend on the 
geometry and materials at the edge. For example, if two zero-
potential plates meet at an interior angle πα > , forming a 
sharp edge,  the indices are απν kk = .

The transformation produces a set of new basis functions 
that are much better at modeling the potential near the 
singularity. Moreover, the pth-order singular element has the 
same number of basis functions as the pth-order regular 
element, and the Line, Point and regular elements may all be 
set to any orders without introducing discontinuities in the 
potential. 

III. ERROR INDICATOR AND THE ADAPTION SCHEME

At each adaptive step, the order of element e is increased 
or not depending on the value of an error indicator. The 
indicator used in this work exploits the hierarchical nature of 
the elements and is based on the approach taken in [5], though 
that work described an indicator specifically for the scattering 
parameters of a microwave device.  

Suppose the discrete, weighted-residual problem solved at 
any stage of the adaption is to find the unknown potential u
belong to a discrete space V:

( ) ( ) Vwwbwua ∈∀=,  (1) 

where a  and b are bilinear and linear forms, respectively, and 
w is a weight function. Let eV  be the slightly larger function 

space in which the order of element e has been increased by 1, 
and let eu  be the discrete solution in this larger space. The 

error indicator is an estimate of the square of the energy norm 
of the difference between u and eu :
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high-order, singular finite elements 
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( )uuuua ee −− ,  (2) 

It can be shown that expression (2) is exactly equal to  

( ) ( )uuuauub ee ,−−−  (3) 

but that (3) is more accurate than (2) when eu  is 

approximated, which it must be because it would be too 
expensive to obtain eu  exactly. It is approximated by 

euu Δ+ , where u is the solution to (1), as before, and euΔ  is 

a linear combination of just the new basis functions added to 
element e when its order is increased. Let eVΔ  be the space 

spanned by these new basis functions.   To determine euΔ ,

we solve:

( ) ( ) eeeee Vwwbwuua Δ∈Δ∀Δ=ΔΔ+ ,  (4) 

This results in a local matrix problem, equal in dimension to 
the number of extra basis functions added to element e. It is 
solved for each element in the problem. From (3), the 
indicator is: 

( ) ( )uuaubI eee ,Δ−Δ=  (5) 

At each adaptive step, the elements are ranked according to 
(5) and a specified fraction of them with the highest errors 
have their orders increased by 1. This fraction is set to 25% 
for the results below. 

IV. TEST CASE

The adaptive algorithm is applied to the geometry shown 
in Fig. 1, which shows a gap between two stripline 
transmission lines. Half the geometry is shown: there is a 
plane of symmetry at x=0. The gap capacitance is found by 
setting the electric potential on the narrower strip to 1V, and 
on the wider strip to 0V. The box walls at y=0, y=b and x=0
are left unconstrained, and the other three box walls are 
constrained to 0V. Solving this electrostatic problem by the 
FE method gives the potential throughout the box, from which 
the stored energy and capacitance can be found. 

h

a b

x

z
y

h

Fig. 1. A gap between two stripline transmission lines. b=11a/5, h=a/5. The 
strips are of equal length and the gap between them is a/5. The wider strip has 

a half-width (shown) of 2a/5 and the narrower strip has a half-width of a/5.

The volume is subdivided into a coarse, unstructured mesh 
of 160 tetrahedra. For the case “Singular adaption” in Fig. 2, 
the tetrahedra touching the sharp edges (shown with thick red 
lines in Fig. 1) are made into singular Line or Point elements. 
In the “Regular adaption” case, all the elements use 
polynomial basis functions. Each point shows the result of one 
FE solution in the adaptive iteration, starting with all element 
orders equal to 1. The highest element order allowed is 4. The 
sharp edges have an interior angle πα 2= , so 2kk =ν .

Nothing special is done about the two sharp corners that are 
present, where the behavior of the potential is different. 

A reference value of the stored energy is obtained by using 
independent FE software [6] with an h-adapted mesh of 
116,803 third-order tetrahedra. The reference value is 
estimated to be within 0.1% of the true energy. 

Fig. 2 clearly shows the limitation of traditional p-
adaption. Using only regular elements, the error cannot be 
made smaller than about 5%. On the other hand, by including 
singular elements, not only does the error fall more swiftly as 
the adaption proceeds, but the final accuracy is about 0.6%. 
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Fig. 2. Error in computed energy versus the number of degrees of freedom for 
the stripline example, during an adaptive solution using either regular 

elements alone, or a combination of regular and singular elements.  
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Abstract—We describe a general formalism that allows to
reduce the spatial dimension of a field problem from 3-D to
(2+1)-D. Subsequently we identify conditions under which the
third dimension can be eliminated. Eventually we see that the
resulting 2-D field problems only decouple if an orthogonality
criterion is fulfilled. The approach is based solely on differential-
form calculus and can therefore be easily transferred into a
discrete setting. As a numerical example we compute the fields
of twisted wires.

Index Terms—Continuous Symmetries, Dimensional Reduc-
tion, Discrete Electromagnetism

I. DIMENSIONAL REDUCTION

D IMENSIONAL reduction occurs in different contexts:
Relativistic 4-D field problems are reduced, mostly

implicitly, to 3-D problems with time as a parameter. 3-D
problems with symmetries (axi-symmetry, symmetry along
a Cartesian axis) are reduced to 2-D problems. This paper
constitutes a step in the endeavor to unite all different aspects
in a single, differential-form based framework.

We denote by X p the space of p-vector fields of tangent vec-
tors on a 3-dimensional Riemannian manifold M , and by Fp

the space of differential p-forms on M . We use the generalized
contraction operator i : X q × Fp → Fp−q : (v,ω) → ivω,
p ≥ q, which is induced from the standard contraction with
a 1-vector according to the rule iw∧u = iu iw for u ∈ X 1,
w ∈ X q−1. Moreover we define the multiplication operator as
j : F1×Fp → Fp+1 : (µ,ω) → jµω = µ∧ω. The operators
i and j are defined in the obvious way on the respective dual
spaces, [2]. The duality product is denoted by · | · .

Let µ ∈ F1 be an exact 1-form µ = dλ that defines a
(codimension one) foliation of the 3-dimensional manifold M .
ϕ : U → M denotes the embedding of the 2-dimensional
manifold U in M at λ = const. We define the horizontal
(w.r.t. the foliation) component of a differential form by the
introduction of a directional vector field u ∈ X 1 that is
transversal to the foliation so that iuµ = 1. We denote
Fp
u := {ω ∈ Fp | iuω = 0} the space of horizontal

differential forms and X p
µ = {v ∈ X p | iµv = 0} the space of

horizontal vector fields. The horizontal component ω ∈ Fp
u

of a form ω is defined by the relation ω|ϕ∗v = ϕ∗ω|v,
v ∈ X p(U). It can be shown that ω = iu jµω. Moreover,
each ω ∈ Fp can be uniquely represented by a pair of
horizontal forms (ω,ω⊥) = (iu jµ , iu )ω ∈ Fp

u × Fp−1
u .

Conversely, ω = ω + jµω⊥.
For all relevant operators of exterior calculus on M we

introduce counterparts (denoted by a hat) that are defined on

the horizontal subspaces. On the other hand, these operators
are defined on U as well (subscripted by U ), either intrinsically
or induced by the embedding. For example, for the horizontal
exterior derivative d̂ := iu jµd : Fp

u → Fp+1
u it can be shown

that ϕ∗ ◦ d̂ = dU ◦ ϕ∗.
Let g : X p → Fp denote the Riesz isomorphism of the

metric on M . We define ĝ : X p
µ → Fp

u such that ĝv|w =
gv|w ∀ v,w ∈ X p

µ. If gU denotes the Riesz isomorphism of
the induced metric on U , then gU = ϕ∗ ◦ ĝ ◦ ϕ∗.

Let Ω ∈ F3 denote the normalized and Ω̂ := iuΩ ∈ F2u
the horizontal volume form on M , Ω̂|ĝ−1Ω̂ = 1. Then ΩU =
±ϕ∗ Ω̂, depending on the orientation of U . We assume that
U is oriented such that the positive sign holds.

The explicit definition of the Hodge operator on M reads ∗ :
Fp → F3−p : α → ig−1αΩ. The horizontal Hodge operator
is defined analogously, ∗̂ : Fp

u → F2−pu : α → iĝ−1α Ω̂, and
again ϕ∗ ◦ ∗̂ = ∗U ◦ ϕ∗.

II. CONTINUOUS SYMMETRY

We use the above definitions to decompose the magnetic
vector potential A, the electric current density J , and eventu-
ally the curl-curl equation of magnetostatics, d 1µ ∗ dA = J 1:


d̂ 0
Lu −d̂


1
µ
∗̂


−η iv η
1
η (1 + η2jν iv ) −η jν




d̂ 0
Lu −d̂


A
A⊥


=


J
J⊥


, (1)

where η = µ, ν = (gu), and v = ĝ−1ν. The 2x2
block representation of the exterior derivative and the Hodge
operator in terms of the horizontal operators has been derived
in [1], eq. (19) and (46) 2, respectively.

Continuous symmetry means that u denotes a direction in
which the Lie derivatives Lu vanish, i.e. no variation of fields,
material parameters and metric (u is a Killing field) along u.

For the system (1) to be decoupled, we need the symmetry
direction u to be orthogonal to the foliation, thus µ∧gu = 0,
or, equivalently ν = v = 0. Since gu is not an integrable
form in general, a foliation that ensures decoupling does not
generally exist.

1µ denotes the linear magnetic permeability, not to be confused with the
1-form µ.

2Note that the parameters v and ν are defined slightly differently in [1].
v in [1] has to be replaced by −ξη2v, and ν by − 1

ξ
ν.
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III. DISCRETIZATION

A mimetic discretization of the pulled-back version of (1)
requires discrete counterparts of each of the operators. For this
paper we restrict ourselves to 2-D triangular meshes and first-
order approximation of p-forms by p-cochains. The derivative
operators are well-known to be discretized by incidence ma-
trices. For a discrete Hodge operator we refer to [3], among
several possibilities.

The vector-field v can be discretized by a 1-chain v, see [4].
The 1-form ν and the right-hand side forms are discretized
by the de Rham map. The multiplication operator can be
derived from the discrete cap product [5] that approximates
the continuous wedge product.

A discrete contraction operator has been proposed in [4].
We give a brief outline of the basic concept. The continuous
contraction fulfills iv β|s = limt→0 t

−1β|extr(s,v, t) for a 2-
form β, a 1-vector-field v, and a 1-chain s 3. The extrusion of
s in the 2-manifold U is done by transporting the points of s
by the flow of the vector-field v, parameterized by t.

On the discrete level we wish to contract a 2-cochain β
by a 1-chain v which stems from the discretization of v. To
this end we extrude all edges ei in the complex by edges ej ,
j = i. If the edges i and j coincide in a node, the result of the
extrusion is a triangle spanned by the two edges which can be
approximated by a 2-chain. The extrusion is the empty point-
set otherwise. Next the extrusion 2-chain is mapped to the
reals by the 2-cochain β. Eventually the above limit process
yields

iv β|ei =


j



k

|ei ∧ ej |
|fk|

vjλk
ijβk (2)

which defines the i-th coefficient of the 1-cochain iv β. The
factor λk

ij equals the orientation or(ei ∧ ej) if the triangle
formed by ei and ej has a nonzero intersection with the
positively oriented face fk, and 0 otherwise. Bold-font letters
denote the 1- and 2-vectors for edges and faces, and vj and βk

are the chain and cochain coefficients of v and β, respectively.
This result has been validated by numerical experiments, it

differs however from the formulae given in [4], [6].

IV. HELICOIDAL SYMMETRY - NUMERICAL EXAMPLE

In the axi-symmetric case we use cylindrical coordinates
(r, ϕ, z) and set µ = dϕ, u = ∂ϕ, and hence η = 1

r . For
L∂ϕ = 0 we find with ν = 0 and v = 0

−d̂
1
r

1
µ
∗̂ d̂A⊥ = J, −d̂r

1
µ
∗̂ d̂A = J⊥, (3)

as the dimensionally reduced representation of the curl-curl
equation.

As an example of a non-orthogonal splitting, we use heli-
coidal coordinates (R,φ, Z), R = r, Z = z and φ = ϕ− αz,
to represent thin wires along u = ∂Z . The foliation is given
by µ = dZ. We compute η = 1, ν = αR2dφ, and v = α∂φ.

With this information at hand we proceed to a mimetic
discretization of (1). The kernel of the system matrix is

3This is essentially the same as requiring ivβ|w = β|jvw.

composed from the space of constant 0-cochains (A⊥ part) and
the image of the discrete gradient (A part). A regularization
scheme S = S +KKT is employed, where S is the system
matrix, K is a basis of the kernel of S, and S is the regularized
matrix. This approach is feasible despite the asymmetry of S
since kernS = kernST.

As an example we calculate the fields of three twisted wires
for vanishing sum of the three currents through the 2-D cross-
section U , see Fig. 1.

Fig. 1. Left: Currents flowing along helicoidal paths through a 2-D cross-
section U . Right: Vector proxies of the parallel magnetic induction in U .

V. CONCLUSION

We have given a (2+1)-D formulation of 3-D magneto-
static field problems. Continuous symmetry along a transversal
direction eliminates the third dimension. In case there exists
a foliation that is orthogonal to the symmetry direction, the
equations can be decoupled, resulting in two independent 2-D
field problems.

We have applied the theory to a field problem with he-
licoidal symmetry and successfully produced first results. A
thorough validation will follow in the full paper. During the
process we have had to reopen the question how to properly
discretize the contraction operator. Additional work is required
to provide an answer in more general cases, including an
analysis of the mimetic properties of the discrete contraction.
We will get back to this matter in the full paper as well.
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Abstract—A discrete 1D Green’s function for accurately com-
puting the 2D electromagnetic field in complicated domains
is introduced. The key advantages of the proposed method is
laid on the accuracy as well as the availability on complex
domains. The 2D Green’s function for solving electromagnetic
field computations in a 2D domain is strongly depend on the
geometry of the domain. The boundary element method uses
only the fundamental solution instead of the Green’s function
itself since it is even easier to find the fundamental solution than
to do the Green’s function. In this case, however, attentions must
be paid, due to the singularity of the fundamental solution, to the
singular integrals on the boundary of the domain. It is another
merit of our method to circumvent such a singular integral.

I. INTRODUCTION

Green’s function methods for solving electromagnetic field
computations in 2D strongly depend on problem domains. The
boundary element method [1], [2] is well known technique
using only the fundamental solution instead of the Green’s
function since it is even easier to find the fundamental solution
than to do the Green’s function itself. However, attentions must
be paid in this case to the singular integrals over the boundary
since the fundamental solution has the blow-up singularity at
a singular point. To avoid the singular integral and accurately
compute the 2D electromagnetic field in complicated domains,
we introduce a discrete 1D Green’s function for a 1D differen-
tial operator separated from the 2D differential one to govern
the electromagnetic field in a 2D domain.

The first attempt has been made to solve the higher dimen-
sional elliptic boundary value problems using the axial Green’s
function method(AGM) [3]. As a matter of fact, although the
AGM is an accurate approach in a complicated domain, it
needs the numerical integration on parallel lines to each axis
in 2D to solve the elliptic type of boundary value problems
since the axial Green’s function is found in an integral form
due to variable coefficient. In case of the static electromagnetic
field, the governing equation has the type of Poisson problem
which is elliptic with constant coefficient, so that we can
find the discrete 1D Green’s function simpler than the axial
Green’s function of AGM. It has nothing to do with numerical
integrations. Since the numerical integrations is in general a
time consuming work, it becomes more efficient way to use
the discrete 1D Green’s function proposed in this paper instead
using the axial Green’s function in [3]. Through the static

electromagnetic field computation, we show the efficiency and
accuracy of the method using the discrete 1D Green’s function.

II. DISCRETE 1D GREEN’S FUNCTION METHOD

Let us first consider the following Dirichlet problem in 1D
which can describe the 1D electrostatic potential:

Lt(u) ≡ u′′(t) = f(t) in Ω = [a, b] (1)
u(a) = ua, u(b) = ub. (2)

Assume Pn = {a = t0 < t1 < · · · < tn = b} is an arbitrary
partition of the interval [a, b]. If ūh(t) is a piecewise linear
interpolation for a given function u(t) on Pn, then it is readily
obtained that

ūh(t) =
n−1

k=1

1
2


u(tk+1) − u(tk)

∆tk+1
− u(tk) − u(tk−1)

∆tk


|t − tk|

+ At + B (3)

for some constants A and B where ∆tk = tk − tk−1 is the
length of k-th subinterval on [a, b]. Applying the boundary
conditions (2) and then rearranging terms, the interpolation in
(3) can be translated into

ūh(t) =
n−1

k=1

1
2

βk(u) G(t, tk; a, b) + uB(t; a, b, ua, ub) (4)

provided we define

βk(u) ≡ u(tk+1) − u(tk)
∆tk+1

− u(tk) − u(tk−1)
∆tk

, (5)

G(t, τ ; a, b) ≡ |t − τ | −


b − t

b − a
|a − τ | + t − a

b − a
|b − τ |


,

(6)

uB(t; a, b, ua, ub) ≡ ua
b − t

b − a
+ ub

t − a

b − a
. (7)

As a matter of fact, the coefficient βk(u) can be written as
follows for k = 1, 2, · · · , n − 1,

βk(u) = u′′(tk)
∆tk + ∆tk+1

2

+
1
6

u′′′(t+k )∆t2k+1 − u′′′(t−k )∆t2k


(8)

for some t±k with tk−1 < t−k < tk < t+k < tk+1.
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Based on the interpolation (3) and the approximation (8), the
inverse differential operator approximated with second order
accuracy for the 1D problem in (1) and (2) is obtained as the
form

uh(t) =
n−1
k=1

1
2

hk f(tk) G(t, tk; a, b) + uB(t; a, b, ua, ub)

≡ 〈f,Gt〉 + uB
t = L−1

t (f) (9)

where hk = 1
2 (∆tk + ∆tk+1) implies the average length of

adjacent subintervals at tk for k = 1, 2, · · · , n − 1.
It can be proved that the approximate solution in (9) has

O(h2)-convergence for arbitrary subintervals due to (8). We
call 1

2G in (9) the discrete 1D Green’s function since it acts
as a Green’s function in a discrete sense.

III. OPERATOR DECOMPOSITION FOR 2D ELECTROSTATIC
POTENTIAL PROBLEM

The electrostatic potential problem in 2D is expressed in the
Poisson problem. Assume Ω is an open bounded domain in
R2 and x = (x, y) a point in Ω. Using the 1D inverse operator
in (9), our aim is to solve the 2D Poisson problem defined by

Lx(u) + Ly(u) = uxx + uyy = f in Ω, (10)

u = u∂Ω on ∂Ω. (11)

Introducing a new variable φ enables us to decompose the
Poisson equation into two equations

Lx(u) = φ in Ω, (12)
Ly(u) = f − φ in Ω, (13)

u = u∂Ω on ∂Ω. (14)

As a result of elimination of u(see [3]) from (12), (13), and
(14) at the cross point (xi, yj) ∈ Ω of x-axial line(Xyj ) and
y-axial line(Yxi) illustrated in fig 1(left), we can write

L−1
x (φ) = L−1

y (f − φ) at (xi, yj) ∈ Ω, (15)

provided (xi, yj) is a cross point of x-axial line Xyj and y-
axial line Yxi . Equivalently, from the definitions of the bracket
〈, 〉 and the boundary value operator uB in (9), the formulation
for φ becomes

〈φ,Gx〉 + uB
x = 〈f − φ,Gy〉 + uB

y at (xi, yj) ∈ Ω. (16)

After discretizing and solving the resultant linear system in
(16) by the BiCGM, we obtain φ and then by inserting it into
(9) instead of f the numerical solution uh can be calculated.
Moreover, directly differentiating it, the first order derivatives
are estimated on any cross point.

IV. NUMERICAL RESULTS AND CONCLUSION

Fig 1, the error decay of uh is of order O(h2) and its first
derivatives have the convergence rate faster than O(h). The
uniform axial lines are used in this case and it is also checked
that the same convergence order can be achieved even in non-
uniformly distributed axial lines. Fig 2 shows the numerical
solution for the electrostatic potential problem on L-shaped
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Fig. 1. Schematic diagram for axial lines Xyj and Yxi which meet at
(xi, yj)(top left), O(h2) convergence rates of the numerical solution U =
uh(top right) and its first derivatives Ux(bottom left) and Uy(bottom right):
Exact solution u(x, y) = cos(x y) in (x − 3)2 + (y − 3)2 < 1.52.

∆
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Fig. 2. 2D electrostatic potential problem: Domain configuration(left) and
the numerical solution uh(right)

domain. Although the exact solution u is known to have a
derivative singularity at the corner, the discrete 1D Green’s
function method for the 2D electrostatic problem yields an
accurate numerical solution. As we anticipated from the fact
that there is no numerical integrations at all, this method is
far faster than the original AGM in [3] particularly for the
Poisson problem. Our method is not a difference scheme but
rather close to the integral one, so that it helps the method
stable and accurate.
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Abstract — we introduce a parallel programming method to 
solve massive matrix multiplications on multi-core and multi-
GPU platform with CUDA. Based on the different power features 
of each power-related processing element (PE) including CPUs 
and GPUs, we provide a load scheduling approach to adjust the 
workload distribution among each PE in order to optimize the 
overall power efficiency of  the system during the matrix 
computation. On GPU kernel programming, some memory 
management methods have been implemented for enhancing the 
utilities of GPU shared memories therefore accelerating 
computation speed. The timing and power consumptions have 
been measured when the above methods have been implemented. 
Comparing with non load scheduling program, it can save up to 
25% of energy; also the multi GPU timing performance has 
enhanced 40% than single GPU.    

Index Terms—Software Methodology: (g) programming 
techniques, (h) massively parallel algorithms. 

I. INTRODUCTION

 An optimal way of multiplying matrices is a fundamental 
operation in solving electromagnetic problems requiring large 
numbers of elements for high-accuracy solutions. Faster 
matrix multiplication would give more efficient algorithms for 
many standard linear algebra problems, such as solving 
systems of linear equations and finding determinants. The 
performance of matrix multiplication is highly dependent on 
the underlying computational algorithm as well as the system 
architecture. The Graphics Processing Units (GPU) are now 
considered as serious challengers for high-performance 
computing solutions because of its suitability for massively 
parallel processing and vector computations. However they 
have power consumptions up to 300W. Power efficiency 
investigation is also required by program design because a 
large scale computation may need hundreds hours of 
continuous execution, the program design strategies will 
significantly affect the overall energy expense.  [1] 

We introduce in this paper (1) Parallel matrix 
multiplication by Parallel CUDA kernel on multi-GPUs.to 
reach a very high GFLOPS.  (2)  A load balancing approach 
to adjust the workload distribution therefore minimizing the 
power consumption. (3) The performance results.  [2], [3] 

II. LARGE MATRIX MULTIPLICATION ON CPU-GPU
MULTIPROCESSING PLATFORM

m nA R ×For given matrices ∈ and , there are various 
algorithms to implement C A  in parallel. Here we 
partition the matrix A, let , where 

is each row in matrix A. We calculate 

n mB R ×∈
B=

1 2( , .... )T T T T
nA A A A=

1 ( 1, 2,..., )n
iA R i n×∈ =

C AB= follow the procedure, as shown in Fig 1.  
(1) Assign computations (  GPU i/ 1 ( 1) /,..., )im p i m pA A B+ + to

( 0,1,..., 1)i p= − ;

/ 1 ( 1) /( ,..., )im p i m pC C+ + / 1 ( 1) /( ,..., )im p i m pA B A B+ +

(2) Run local computation on each GPU
=   ;  

(3) Write the result in matrix C to CPU memory.  
GPU is viewed as a compute device operating as a processor 
to the main CPU (host). Data-parallel, compute intensive 
functions should be loaded to the GPU device. Also a different 
level of parallelism is applied on CPU side with OpenMP to 
parallelize applications in a coherent and efficient way. A 
CUDA kernel can be called by any of the CPUs running 
OpenMP. To well utilize the GPU shared memory in one 
block, we schedule the workload segment as same size as the 
shared memory, this can significantly improve GPU efficiency. 
The usage of Multi-GPU can gain 40% speedup than single 
GPU. (The programming details will be provided in the long 
paper). 

Fig.1 Parallel Matrix Multiplication on Multi CPU-GPU platform 

III. POWER AWARE 

In a multiprocessing system, power can be defined at 
various levels of granularity such as system, cores, and 
components, represented as           the overall 
system power consumption can be defined as (1)  

      ,               , .componentP
systemP coreP
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1 1

( ) ( ) ( )
N M

i i j j
system CPU GPU comm heat

i j

P w P w P w P P
= =

= + + +∑ ∑

k

CPUP =

/ 1 ( 1) /,..., )im p i m p kA A B+ + − to

( 0,1,..., 1)i p= − ;

( 1) / ( 1) /( ,..., )i m p k i m pA A B+ − +

i ( 0,1,..., 1)i p= −

[1000,10000]∈ [2000,20000]n∈

David C. Snowdon,

Intel® 64 and 

www.nvidia.co

Fig.2. Scheduled workload for Matrix Multiplication on  
Multi CPU-GPU platform 

Fig.3. Timing Performance  
   (1) 

Where      is the number of CPU cores,     is the number of 
GPUs,    is the workload,     and   represent the workload 
assigned to the CPU i and GPU j, respectively. If a core i is 
composed by k components and a GPU is composed by l
components, their power consumption can be represent as 

and , respectively. ( , )

1

( )i i k i
CPU

n

P w
=
∑ ( , )

1

( )
l

j j l j
GPU GPU

n

P P w
=

= ∑
A basic principle for power aware load scheduling is to (1) 

try to move workloads to low-power component; (2) minimize 
the number of used high-power component; (3) try to reduce 
the working time, in order to save system power.  

In this work, (1) and (3) have been implemented. In detail 
we schedule the portion of the computations to be run on 
CPUs by using multi threads, then the CPU utilization is 
enhanced, and the overall time performance is improved, 
finally the total energy consumption is reduced. We change  

(1) Assign computations (  GPU i

(2) Assign computations to CPU 

;

(3) Run local computation on each CPU and GPU, and 
then write the result in matrix C to CPU memory.  

Where k is the number of vectors to be assigned to CPU, also 
in above algorithm, we assume the number of CPU and GPU 
are same. (We will provide detailed approach in the long 
paper).

IV. RESULTS 

We provide the results from DELL M1730 with duo cores 
platform composed by 2 Intel(R) Core(TM) 2 Extreme CPU 
X9000 @ 2.80GHz, and two Nvidia GeForce graphic cards 
8800MGTX. One thing need to be noted that, the double 
precise in CPU is 64bits; however GPU can only use float 
which is 32bits. We use Kahan Summation Formula to 
improve the precision for the multiplication result.  

We calculated m  and 

double precise matrix multiplication on above CPU-GPU 
platforms utilizing the GPU programming method in (I) and 
power aware load scheduling method in (II). The peak 
performance for one GPU can reach 654.82 GFLOPS. The 
timing result is shown in Fig.1. When applying load 
scheduling, we have 20-30% speedup than without load 
scheduling.  (Detail analysis will be in the long paper) 

We have measured the power consumption of the 
computation by using power analyzer from AC power input, 
and without AC power by measure the battery. The power 
consumption values measured from the program are shown in 
Fig. 4. The Load balancing approach can improve power 
performance around 5 -30% depending on the problem size 
and working environment (in this DELL M1730). 

Fig.4. Power Performance 

N M
w iw iw

V. CONCLUSION

A CPU-GPU programming method for large- scale matrix 
multiplication on multi-core platform has been proposed. 
Power aware load scheduling approach are introduced to the 
algorithm model for timing and power performance improving.   
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Abstract — A wide class of finite element electromagnetic 

applications require computing very large sparse matrix vector 

multiplications (SMVM). Due to the sparsity pattern and size of 

the matrices, solvers can run relatively slowly. The rapid 

evolution of graphic processing units (GPUs) in performance, 

architecture and programmability make them very attractive 

platforms for accelerating computationally intensive kernels such 

as SMVM. This work presents a new algorithm to accelerate the 

performance of the SMVM kernel on the NVIDIA graphic cards.  

I. INTRODUCTION 

The performance of finite element (FE) electromagnetic 

applications can be dominated by the iterative solvers used, 

such as conjugate gradient (CG) based methods. As problems 

become larger and more complex, the computation overhead 

of these kernels dramatically increases the execution time of 

such solvers on single core CPUs. Thus the development of 

efficient methods to improve the performance of iterative 

solvers on parallel processors is almost inevitable. 

One of the most important kernels in iterative solvers such 

as the CG method is the sparse matrix vector multiplication 

(SMVM). This operation is preformed at each iteration and 

often consumes a majority of the computation time.  The main 

objective of the SMVM kernel is to calculate Ax where A is a 

sparse matrix and x is a dense vector. Major limitations of 

SMVM computation involving FE matrices are large memory 

storage and bandwidth requirements as well as indirect and 

irregular memory accesses.   

Graphic Processing Units (GPUs) have recently evolved 

into very attractive commodity data-parallel coprocessors. 

Easy to learn programming interfaces such as CUDA [1] have 

allowed massive multithreading and increased utilization of 

large numbers of cores on the GPU, making them cost 

efficient highly parallel platforms to solve computationally 

intensive scientific problems [2]. 

The main objective of this work is to accelerate the 

performance of finite element SMVM kernels on the NVIDIA 

GT 8800 graphic cards using a new algorithm, namely     

PCSR (Prefetch-Compressed Row Storage). 

II. GPU ARCHITECTURE 

The NVIDIA GT 8800 graphic card (Fig. 1) consists of 12 

streaming multiprocessors (SMs), each containing eight scalar 

processors (SPs), or processors cores running at 1.5GHZ. 

Each of the SMs access a separate 16KB shared Memory and 

a total of 8192 registers. The 12 SMs are connected via 

512MB of off-chip device memory. 

Using the CUDA programming model, the GPU is viewed 

as a compute device capable of executing a large number of 

threads in parallel. While the main core of the code is run on 

the CPU, parts of the applications that exhibit rich data 

parallelism are implemented as kernel functions on the device 

(GPU). Data required by the kernel is transferred to the GPU 

global memory and the parallel portion of the application is 

then executed on the device using many different threads. The 

programmer divides the threads into threads blocks which are 

distributed amongst the SMs allowing each multiprocessor to 

run a maximum of 8 blocks. Thread blocks allocated to one 

SM communicate via fast shared memory, but blocks from 

different SMs can only communicate trough global memory 

with a memory access latency of up to 600 cycles. Every 32 

threads in a block execute the same instruction and are called a 

warp. When threads in the same warp follow different paths of 

control flow, we say that these threads diverge in their 

execution. Thread divergence forces the threads in a warp to 

execute sequentially thus reduces the execution speed of the 

application and should be avoided [1]. 

 
Fig. 1. The GT8800 underlying architecture. 

III. SMVM  IMPLEMENTATION ON GPUS 

The SMVM kernel is one of the most popular operations in 

finite element simulations. One of the most commonly used 

data structures for solving such kernels is the Compressed 

Row Storage (CSR) format. CSR stores the nonzero elements 

of the sparse matrix into a value vector (VAL) while a 

corresponding array (INDX) holds the column index of each 

entry. The format also uses a pointer array (PTR), which 

points to the first entry of each row in VAL and INDX [3].  

Although the computation capabilities of GPUs are very 

promising (up to 250GFLOPS for GT8800), many challenges 

exist in optimizing the performance of scientific applications 

such as the SMVM kernel on such platforms. Some are as 

follows: global memory access latency, limited shared 

memory, thread synchronizations, thread divergence, 

inadequate number of threads and limited global memory 

bandwidth. The way the programmer addresses these issues 

differs depending on the application [1].  

Since the release of CUDA in 2007, few works have 

investigated the SMVM kernel optimization on the GPUs. 

Finite element sparse matrix vector multiplication 

on graphic processing units 
Maryam Mehri Dehnavi, David M. Fernández, and Dennis Giannacopoulos, Members, IEEE 

Department of Electrical & Computer Engineering, McGill University 

3480 University Street, Montreal, Quebec H3A 2A7, Canada 

maryam.mehridehnavi@mail.mcgill.ca, david.fernandezbecerra@mail.mcgill.ca, dennis.giannacopoulos@mcgill.ca  
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Buatois et al. [4] investigated the performance of Blocked-

CSR on the G80 serious of NVIDIA graphic cards. Their 

method does not address thread divergence and is not efficient 

for sparse matrices with small average non-zeros per row. 

Sengupta et al. [5] proposed the use of segmented scan for 

calculating SMVM on GPUs. Wiggers et al. [6] reorders the 

matrix rows to increase parallelism in the SMVM kernel. 

Compared to previous work, our proposed algorithm 

introduces new methods to hide global memory access latency 

(data prefetch) and also introduces a new partitioning scheme 

that enables the programmer to achieve maximum 

performance by changing the size of the partitions for each 

block and thread. Detailed description of the methods and its 

major contributions are described in the next section. 
 

IV. THE PREFETCH-CSR ALGORITHM 

The proposed algorithm, PCSR (Prefetch-Compressed 

Row Storage), is composed of a novel partitioning scheme and 

a kernel implementation strategy. The partitioning scheme 

determines the number of threads per block (n) and blocks per 

kernel (m) during execution. The VAL and INDX vectors in 

the CSR format are first padded with zeros to be divisible into 

m equal sections, each sent to a separate block. As shown in 

Fig. 2, each block then calculates their allocated section of the 

value vector in n iterations. While some threads are pre-

fetching the required data for iteration x+1 from global 

memory into shared memory, the remaining threads proceed 

with the addition and multiplications required to calculate the 

result vector related to rows uploaded in the previous iteration. 

Major advantages and contributions of the new algorithm in 

overcoming some of the GPU programming limitations for the 

SMVM kernel are as follows: 

¥ Pre-fetching the required data for the next iteration in 

each thread block hides much of the global memory 

access latencies; thus, while many threads are waiting on 

global memory accesses, other threads proceed with the 

necessary calculations for the current data in shared 

memory. 

¥ Unlike previous techniques, in the new algorithm the 

threads only need to be synchronized once, minimizing 

the number of idle threads throughout execution.  

¥ Simultaneous upload of required values of the x vector 

for each iteration into the shared memory regularizes the 

accesses to the x vector, enables parallel uploading of the 

x vector values, and decreases the memory access 

overhead by loading it into fast shared memory.  

¥ Rows split by iterations in each block can communicate 

through the very fast on-chip register file avoiding 

excessive global memory accesses. 

¥ By varying m and n in the proposed partitioning scheme, 

maximum performance can be determined via changing 

the number of threads executing per SM while 

considering the register and shared memory limitations of 

each multiprocessor. 

¥ Thread divergence is also decreased by allocating the 

calculations for the result vector to consecutive threads in 

a warp while threads in other warps upload data into 

shared memory. 

 
Fig. 2. The Prefetch-CSR Algorithm. 

 

Sample results of PCSR for the bcsstk matrix from [6] are 

shown in Table I. The speedups demonstrated show the 

performance of the PCSR algorithm vs. the non-prefetch CSR 

on the GPU (m and n are the same in both methods). As n 

increases the number of iterations per block increase, allowing 

the prefetch algorithm to hide more of the memory access 

latency. Although the performance of PCSR compared to non-

prefetch CSR further increases for values of m below 12, the 

general performance compared to CPUs of both algorithms for 

m<12 decreases due to having idle SMs (full details in long 

version paper).  Speedups of up to 1.5 with full utilization of 

all SMs, shows the importance of prefetching data in CSR 

using GPUs. Since previous non-prefetching CSR algorithms 

[3] on the GPU have shown up to 10 times speedup compared 

to the CPU, speedup increases of 1.5 for PCSR compared to 

previous algorithms can accelerate CSR on the GPUs up to 15 

times compared to the CPU (PCSR speedup results compared 

to the CPU will be presented in the long version paper). 

TABLE I 

PCSR ALGORITHM SPEEDUP COMPARED TO NON-PREFETCH CSR 

ON GT 8800 

Partitioning 
values 

n=1 
m=180 

n=12 
m=15 

n=15 
m=12 

n=30 
m=6 

Speedup      1   1.3    1.5    1.9 

 

In the long version of the paper we will propose a 

technique to minimize thread divergence in the SMVM 

algorithm and increase the instruction mix, and m and n 

partitioning values will also be varied to achieve maximum 

performance.  
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